JP5424293B2 - Biological treatment apparatus and biological treatment method - Google Patents

Biological treatment apparatus and biological treatment method Download PDF

Info

Publication number
JP5424293B2
JP5424293B2 JP2008025668A JP2008025668A JP5424293B2 JP 5424293 B2 JP5424293 B2 JP 5424293B2 JP 2008025668 A JP2008025668 A JP 2008025668A JP 2008025668 A JP2008025668 A JP 2008025668A JP 5424293 B2 JP5424293 B2 JP 5424293B2
Authority
JP
Japan
Prior art keywords
gas
biological treatment
biological
separation membrane
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008025668A
Other languages
Japanese (ja)
Other versions
JP2009183848A (en
Inventor
久 佐藤
禎仁 中原
学 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Hokkaido University NUC
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Hokkaido University NUC
Priority to JP2008025668A priority Critical patent/JP5424293B2/en
Publication of JP2009183848A publication Critical patent/JP2009183848A/en
Application granted granted Critical
Publication of JP5424293B2 publication Critical patent/JP5424293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、生物処理装置及び生物処理方法に関する。   The present invention relates to a biological treatment apparatus and a biological treatment method.

農業、畜産業、水産業等における廃棄物や廃水、下水や下水汚泥等の処理では、これらを嫌気性微生物により生物処理する方法が開発・実用化されている。これらの廃棄物、廃水等に含まれる有機物は、嫌気性微生物により発酵され、最終的にメタン、二酸化炭素、水素ガスが発生する。そのため、廃棄物や廃水等を処理すると同時に、気相に放出されたガスを回収し、該ガスからメタンガス等の特定のガスを分離することも行われている。   In the treatment of waste, wastewater, sewage, sewage sludge, etc. in agriculture, livestock industry, fishery industry, etc., a method of biologically treating these with anaerobic microorganisms has been developed and put into practical use. Organic substances contained in these wastes, wastewaters, and the like are fermented by anaerobic microorganisms, and finally methane, carbon dioxide, and hydrogen gas are generated. For this reason, wastes and wastewater are treated, and at the same time, a gas released into the gas phase is recovered and a specific gas such as methane gas is separated from the gas.

廃棄物や廃水等から発生したガスから二酸化炭素を除去してメタンガスを濃縮、分離する方法としては、化学吸収法、物理吸収法、PSA(Pressure Swing Adsorption)法、分離膜を用いた分離法等が挙げられる。なかでも、システムを簡便に構成できる点、装置を比較的小規模にできる点から分離膜を用いた分離法が好ましい。   Methods for concentrating and separating methane gas by removing carbon dioxide from gas generated from waste and wastewater, etc., chemical absorption method, physical absorption method, PSA (Pressure Swing Adsorption) method, separation method using separation membrane, etc. Is mentioned. Of these, a separation method using a separation membrane is preferable because the system can be simply configured and the apparatus can be made relatively small.

分離膜を用いてメタンガスを分離する方法としては、嫌気性微生物の作用によってごみ埋立地から発生し、気相に放出されたガスを回収して、二酸化炭素を通しやすい分離膜に該ガスを通してメタンガスを分離する方法が示されている(特許文献1)。
また、嫌気性微生物による廃水処理によって発生し、気相に放出されたメタンガスと炭酸ガスの混合ガスを回収し、該混合ガスから分離膜を用いてメタンガスを分離して利用する装置が示されている(特許文献2)。
特開昭61−53994号公報 特開平4−177013号公報
As a method of separating methane gas using a separation membrane, the gas generated from the landfill site by the action of anaerobic microorganisms and recovered in the gas phase is recovered, and the methane gas is passed through the separation membrane which is easy to pass carbon dioxide. A method for separating the two is shown (Patent Document 1).
Also shown is an apparatus that recovers a mixed gas of methane gas and carbon dioxide gas generated by wastewater treatment by anaerobic microorganisms and released into the gas phase, and separates and uses the methane gas from the mixed gas using a separation membrane. (Patent Document 2).
JP 61-53994 A Japanese Patent Laid-Open No. 4-177013

このような従来の生物処理方法や生物処理装置においては、生物処理中に廃棄物から発生して気相に放出されたガスを回収している。しかし、これらは、ガスは嫌気性微生物により生成されているため、廃棄物や廃水から気相に放出されるまでに消費されたり、廃棄物、廃水、微生物集合体(すなわち生物膜)中に残存していたガスを回収できていなかった。このため、生物処理方法や生物処理装置におけるシステム全体のガス回収量を増大させることができず、エネルギー回収量を増大させることができなかった。
そのため、廃棄物や廃水中で消費されたり、残存したりしていたガスを回収できる方法が望まれている。
In such a conventional biological treatment method and biological treatment apparatus, the gas generated from the waste and released into the gas phase during the biological treatment is recovered. However, since these gases are produced by anaerobic microorganisms, they are consumed before being released into the gas phase from waste or wastewater, or remain in waste, wastewater, or microbial aggregates (ie, biofilms). The gas that had been recovered could not be recovered. For this reason, the gas recovery amount of the whole system in the biological treatment method or the biological treatment apparatus cannot be increased, and the energy recovery amount cannot be increased.
Therefore, there is a demand for a method that can recover the gas that has been consumed or remained in waste or wastewater.

そこで本発明では、廃棄物や廃水等の処理対象物中で消費されたり、残存したりしていたガスを回収できる生物処理装置および生物処理方法の提供を目的とする。   Accordingly, an object of the present invention is to provide a biological treatment apparatus and a biological treatment method that can recover gas that has been consumed or remained in a treatment object such as waste or wastewater.

本発明の生物処理装置は、処理対象物を生物処理してガスを発生させる生物処理槽と、前記処理対象物と接触するように前記生物処理槽内に配置され、ガスを透過する非透水性の分離膜を有するガス分離手段と、前記ガス分離手段の内部を減圧する減圧手段と、前記減圧手段から排出されるガスを回収貯留するためのガス貯留手段とを備えていることを特徴とする装置である。 The biological treatment apparatus of the present invention includes a biological treatment tank that biologically treats an object to be treated to generate gas, and a non-water-permeable material that is disposed in the biological treatment tank so as to be in contact with the object to be treated and allows gas to pass therethrough . A gas separation means having a separation membrane, a decompression means for decompressing the inside of the gas separation means, and a gas storage means for collecting and storing the gas discharged from the decompression means. Device.

また、本発明の生物処理装置は、前記ガス分離手段が、前記分離膜の表面又はその近傍に微生物担持機構を備えていることが好ましい。
また、前記分離膜が非透水性分離膜であることが好ましい。
また、前記分離膜が気体選択透過性分離膜であることが好ましい。
In the biological treatment apparatus of the present invention, it is preferable that the gas separation means includes a microorganism supporting mechanism on the surface of the separation membrane or in the vicinity thereof.
The separation membrane is preferably a non-permeable separation membrane.
The separation membrane is preferably a gas selective permeable separation membrane.

また、本発明の生物処理方法は、処理対象物を生物処理してガスを発生させ、当該ガスを回収する生物処理方法において、ガスを透過する非透水性の分離膜を有するガス分離手段を前記処理対象物に接触させ、前記ガス分離手段の内部を減圧して、前記処理対象物から前記ガスを分離し、分離したガスを回収することを特徴とする方法である。
また、本発明の生物処理方法は、前記分離膜の表面に生物層を形成させることが好ましい。
Further, the biological treatment method of the present invention is a biological treatment method in which an object to be treated is biologically treated to generate a gas, and the gas is recovered, wherein the gas separation means having a non-permeable separation membrane that allows gas to permeate is provided. In this method, the gas separation means is brought into contact with a processing object, the pressure inside the gas separation means is reduced, the gas is separated from the processing object, and the separated gas is recovered.
In the biological treatment method of the present invention, it is preferable to form a biological layer on the surface of the separation membrane.

本発明の生物処理装置および生物処理方法は、廃棄物や廃水等の処理対象物中で消費されたり、残存したりしていたガスを回収できる。   The biological treatment apparatus and biological treatment method of the present invention can recover gas that has been consumed or remained in a treatment object such as waste or wastewater.

[生物処理装置]
本発明の生物処理装置は、処理対象物を生物処理してガスを発生させる生物処理槽と、前記処理対象物と接触するように前記生物処理槽内に配置され、ガスを透過する分離膜を有するガス分離手段と、前記ガス分離手段の内部を減圧する減圧手段とを備えていることを特徴とする装置である。
[Biological treatment equipment]
The biological treatment apparatus of the present invention includes a biological treatment tank that biologically treats a treatment target object to generate gas, and a separation membrane that is disposed in the biological treatment tank so as to come into contact with the treatment target object and transmits gas. The apparatus includes: a gas separating unit having a pressure reducing unit that depressurizes the inside of the gas separating unit.

(第1の実施形態)
図1は、本発明の生物処理装置の一例を示す構成図である。生物処理装置10は、生物処理槽12と、生物処理槽12内に配置されたガス分離手段14と、ガス分離手段14に接続された減圧手段16と、ガス分離手段14の表面又は表面近傍に設けられた微生物担持機構18と、生物処理槽12の上部のガス排出口20および減圧手段16から排出されるガスを貯留するガス貯留手段22とを備える。
(First embodiment)
FIG. 1 is a configuration diagram showing an example of a biological treatment apparatus of the present invention. The biological treatment apparatus 10 includes a biological treatment tank 12, a gas separation means 14 disposed in the biological treatment tank 12, a decompression means 16 connected to the gas separation means 14, and a surface of the gas separation means 14 or in the vicinity of the surface. A microorganism holding mechanism 18 is provided, and a gas storage unit 22 that stores the gas discharged from the gas discharge port 20 and the decompression unit 16 in the upper part of the biological treatment tank 12.

生物処理槽12としては、嫌気条件下で嫌気性微生物によって処理対象物に含まれる有機物を発酵させて、ガスを発生させる嫌気性生物処理槽が挙げられる。生物処理槽12の形状は特に限定されず、各種用途に応じた形状を用いることができる。   Examples of the biological treatment tank 12 include an anaerobic biological treatment tank in which an organic substance contained in a treatment target is fermented by anaerobic microorganisms under anaerobic conditions to generate gas. The shape of the biological treatment tank 12 is not particularly limited, and shapes corresponding to various uses can be used.

ガス分離手段14は、ガスを透過する分離膜を有するものである。
ガス分離手段14としては、公知の分離膜モジュール(中空糸膜モジュール、平膜モジュール等)が挙げられる。
分離膜としては、中空糸膜、平膜等が挙げられ、表面積が大きく充填率を高くできる点から、中空糸膜が好ましい。
The gas separation means 14 has a separation membrane that allows gas to pass therethrough.
Examples of the gas separation means 14 include known separation membrane modules (hollow fiber membrane modules, flat membrane modules, etc.).
Examples of the separation membrane include hollow fiber membranes and flat membranes, and hollow fiber membranes are preferred from the viewpoint of a large surface area and a high filling rate.

また、分離膜は、水分率の高い処理対象物を生物処理する場合であっても水分を含まないガスを分離、回収することが容易である点から、非透水性分離膜が好ましく、非透水性中空糸膜がより好ましい。非透水性中空糸膜としては、例えば、疎水素材からなる分離膜や、ガス透過性の非多孔質分離層を多孔質支持層で挟んだ三層構造膜が挙げられる。三層構造膜は、多孔質支持層が後述の微生物担持機構18としての役割も果たすため、分離膜として好適である。   The separation membrane is preferably a water-impermeable separation membrane because it is easy to separate and recover a gas that does not contain moisture even when biologically treating an object to be treated with a high moisture content. A hollow fiber membrane is more preferable. Examples of the non-permeable hollow fiber membrane include a separation membrane made of a hydrophobic material and a three-layer structure membrane in which a gas-permeable non-porous separation layer is sandwiched between porous support layers. The three-layer structure membrane is suitable as a separation membrane because the porous support layer also serves as the microorganism-supporting mechanism 18 described later.

また、分離膜は、水素やメタン等の有用なガスを高濃度で分離、回収することが容易になる点から、気体選択透過性分離膜が好ましく、気体選択透過性中空糸膜がより好ましい。気体選択透過性中空糸膜としては、例えば、ポリウレタン製の非多孔質分離層を有する三層構造膜等が挙げられる。   The separation membrane is preferably a gas selective permeable separation membrane and more preferably a gas selective permeable hollow fiber membrane from the viewpoint that it is easy to separate and recover useful gases such as hydrogen and methane at a high concentration. Examples of the gas permselective hollow fiber membrane include a three-layer structure membrane having a non-porous separation layer made of polyurethane.

ガス分離手段14は、処理対象物に接触するように生物処理槽12内に配置される。例えば、処理対象物が液状である場合は、生物処理槽12内において、処理対象物に浸漬される位置に配置され、処理対象物が固形状の場合は、生物処理槽12内において、処理対象物に埋没する位置に配置される。   The gas separation means 14 is arrange | positioned in the biological treatment tank 12 so that a process target object may be contacted. For example, when the processing target is liquid, the processing target is disposed in the biological processing tank 12 at a position immersed in the processing target. When the processing target is solid, the processing target is stored in the biological processing tank 12. It is placed at a position where it is buried in an object.

減圧手段16としては、ガス分離手段14の内部を減圧できるものであれば特に限定されず、例えば、吸引ポンプ等が挙げられる。   The decompression means 16 is not particularly limited as long as the inside of the gas separation means 14 can be decompressed, and examples thereof include a suction pump.

微生物担持機構18としては、膜表面や膜表面近傍に生物付着性の高い微生物担持機構を設けた分離膜が挙げられる。微生物担持機構18は、比表面積の高い多孔質体及び/又は微生物の付着し易い素材であり、炭素繊維が好ましい。微生物担持機構18には、予め嫌気性微生物等の生物を付着させておいてもよい。   Examples of the microorganism supporting mechanism 18 include a separation membrane provided with a microorganism supporting mechanism having high bioadhesiveness on the membrane surface or in the vicinity of the membrane surface. The microorganism supporting mechanism 18 is a porous body having a high specific surface area and / or a material to which microorganisms are easily attached, and carbon fiber is preferable. Organisms such as anaerobic microorganisms may be attached to the microorganism-supporting mechanism 18 in advance.

ガス貯留手段22としては、分離、回収したガスを貯留できるものであれば特に限定されず、アルミバッグや圧力容器等が挙げられる。   The gas storage means 22 is not particularly limited as long as it can store the separated and recovered gas, and examples thereof include an aluminum bag and a pressure vessel.

つぎに、生物処理装置10を用いた生物処理方法について説明する。
生物処理槽12内に処理対象物を入れ、処理対象物を生物処理し、ガスを発生させる。同時に、減圧手段16を作動させてガス分離手段14内を減圧にし、処理対象物中で発生したガスを透過して分離する。生物処理槽12の上部のガス排出口20および減圧手段16から排出されるガスは、ガス貯留手段22に回収される。処理対象物の生物処理を続けるうちに、微生物担持機構18に生物が付着し、ガス分離手段14の表面に生物層が形成される。
Next, a biological treatment method using the biological treatment apparatus 10 will be described.
A processing object is put in the biological treatment tank 12, the processing object is biologically processed, and gas is generated. At the same time, the pressure reducing means 16 is operated to reduce the pressure in the gas separating means 14, and the gas generated in the object to be processed is permeated and separated. The gas discharged from the gas discharge port 20 and the decompression means 16 in the upper part of the biological treatment tank 12 is collected by the gas storage means 22. While the biological treatment of the object to be treated is continued, the organism adheres to the microorganism carrying mechanism 18 and a biological layer is formed on the surface of the gas separation means 14.

処理対象物としては、生物処理によりガスを発生するものであればよく、例えば、農業、畜産業、水産業、食品業における廃棄物及び廃水、下水、下水汚泥等が挙げられる。処理対象物は、固形状であっても液状であってもよい。
生物処理としては、嫌気条件下で嫌気性微生物によって処理対象物に含まれる有機物を発酵させる処理が挙げられる。
The treatment object may be anything that generates gas by biological treatment, and examples thereof include waste and wastewater, sewage, sewage sludge and the like in agriculture, livestock industry, fishery industry, and food industry. The object to be treated may be solid or liquid.
Examples of the biological treatment include a treatment of fermenting an organic substance contained in the object to be treated by anaerobic microorganisms under anaerobic conditions.

嫌気性微生物としては、例えば、メタン生成古細菌等の微生物が挙げられる。
生物処理を行う際は、微生物を処理対象物に新たに加えてもよく、処理対象物に元から存在する微生物を利用してもよい。
また、ガス分離手段14の表面又は表面近傍に生物層を形成することにより、生物層中の生物反応により発生したガスを分離膜に透過して分離することが容易になる。また、生物層の内部側、すなわち生物層における最も分離膜に近い側は、より高度な嫌気条件になりやすく、処理対象物の生物処理活性が向上する。生物層は、処理対象物を生物処理する間に自然に形成されるようにしてもよく、予め生物層を形成させたガス分離手段14を用いてもよい。
Examples of the anaerobic microorganism include microorganisms such as methanogenic archaea.
When performing biological treatment, microorganisms may be newly added to the object to be treated, or microorganisms that are originally present in the object to be treated may be used.
Further, by forming a biological layer on or near the surface of the gas separation means 14, it becomes easy to permeate and separate the gas generated by the biological reaction in the biological layer through the separation membrane. Further, the inner side of the biological layer, that is, the side closest to the separation membrane in the biological layer is likely to be more highly anaerobic, and the biological treatment activity of the treatment target is improved. The biological layer may be formed naturally during biological treatment of the object to be treated, or the gas separation means 14 in which the biological layer is formed in advance may be used.

以上説明した生物処理装置10にあっては、ガス分離手段14が処理対象物に接触するように生物処理槽12内に配置されているため、処理対象物中で消費されたり、残存したりしていたガスを回収できる。
また、以上説明した生物処理方法にあっては、ガス分離手段を前記処理対象物に接触させるため、処理対象物中で消費されたり、残存したりしていたガスを回収できる。
In the biological treatment apparatus 10 described above, the gas separation means 14 is disposed in the biological treatment tank 12 so as to come into contact with the treatment object, and thus is consumed or remains in the treatment object. The recovered gas can be recovered.
Further, in the biological treatment method described above, the gas separation means is brought into contact with the treatment object, so that the gas that has been consumed or remained in the treatment object can be recovered.

(第2の実施形態)
図2は、本発明の生物処理装置の他の例を示す構成図である。生物処理装置30において生物処理装置10と同じ部分については同符号を付して説明を省略する。生物処理装置30は、生物処理槽32と、生物処理槽32内に配置されたガス分離手段34と、ガス分離手段34に接続された減圧手段16と、ガス分離手段34の表面又は表面近傍に設けられた微生物担持機構36と、生物処理槽32の上部のガス排出口38と、減圧手段16から排出されるガスを貯留するガス貯留手段22と、生物処理槽32の底部側の処理対象物流入口40(以下、流入口40という)および上部側の処理対象物流出口42(以下、流出口42という)を備える。
(Second Embodiment)
FIG. 2 is a block diagram showing another example of the biological treatment apparatus of the present invention. The same parts of the biological treatment apparatus 30 as those of the biological treatment apparatus 10 are denoted by the same reference numerals and description thereof is omitted. The biological treatment apparatus 30 includes a biological treatment tank 32, a gas separation means 34 disposed in the biological treatment tank 32, a decompression means 16 connected to the gas separation means 34, and a surface of the gas separation means 34 or in the vicinity of the surface. The provided microorganism supporting mechanism 36, the gas discharge port 38 at the top of the biological treatment tank 32, the gas storage means 22 for storing the gas discharged from the decompression means 16, and the processing target logistics on the bottom side of the biological treatment tank 32 An inlet 40 (hereinafter referred to as an inflow port 40) and an upper processing target distribution outlet 42 (hereinafter referred to as an outflow port 42) are provided.

生物処理槽32は、いわゆるUASB(Up-flow Anaerobic Sludge Blanket)リアクターであり、生物処理槽32の底部側に設けられた流入口40から流入した処理対象物が上部側の流出口42から流出し、流出した処理対象物が再度流入口40から流入して生物処理装置30内を循環する。生物処理槽32の形状は特に限定されず、各種用途に応じた形状を用いることができる。
生物処理槽32は、処理対象物が液状である場合に好適である。
The biological treatment tank 32 is a so-called UASB (Up-flow Anaerobic Sludge Blanket) reactor, and the treatment object flowing in from the inlet 40 provided on the bottom side of the biological treatment tank 32 flows out from the outlet 42 on the upper side. Then, the processing object that has flowed out flows again from the inlet 40 and circulates in the biological treatment apparatus 30. The shape of the biological treatment tank 32 is not particularly limited, and shapes according to various uses can be used.
The biological treatment tank 32 is suitable when the object to be treated is liquid.

ガス分離手段34は、ガスを透過する分離膜を有するものである。
ガス分離手段34としては、公知の分離膜モジュール(中空糸膜モジュール、平膜モジュール等)が挙げられる。
中空糸膜モジュールは、複数の中空糸膜(分離膜44)と集気管46とを備え、中空糸膜の少なくとも一方の端部が集気管46に連通した状態で集気管46に固定されたものである。中空糸膜の他方の端部は同様に集気管に連通した状態で固定されたものでもよく、端部が封止されたものであってもよく、ループ状に折り返したものであってもよい。
The gas separation means 34 has a separation membrane that allows gas to pass therethrough.
Examples of the gas separation means 34 include known separation membrane modules (hollow fiber membrane modules, flat membrane modules, etc.).
The hollow fiber membrane module includes a plurality of hollow fiber membranes (separation membranes 44) and an air collection tube 46, and is fixed to the air collection tube 46 in a state where at least one end of the hollow fiber membrane communicates with the air collection tube 46 It is. Similarly, the other end of the hollow fiber membrane may be fixed in a state where it communicates with the air collecting tube, or the end may be sealed, or may be folded in a loop shape. .

中空糸膜は、水分率の高い処理対象物を生物処理する場合であっても水分を含まないガスを分離、回収することが容易である点から、非透水性中空糸膜が好ましく、生物処理装置10において挙げたものと同じものが挙げられる。   The hollow fiber membrane is preferably a water-impermeable hollow fiber membrane because it is easy to separate and recover a gas that does not contain moisture even when biologically treating an object to be treated with a high moisture content. The same thing as what was mentioned in the apparatus 10 is mentioned.

また、中空糸膜は、水素やメタン等の有用なガスを高濃度で分離、回収することが容易になる点から、気体選択透過性中空糸膜が好ましく、生物処理装置10において挙げたものと同じものが挙げられる。   The hollow fiber membrane is preferably a gas permselective hollow fiber membrane from the viewpoint that it is easy to separate and recover useful gases such as hydrogen and methane at a high concentration. The same can be mentioned.

ガス分離手段34は、処理対象物に浸漬するように生物処理槽32内に配置される。ガス分離手段34は、処理対象物の流れを妨げないように配置することが好ましい。また、ガス分離手段の表面または表面近傍に生物層を形成させる場合は、形成される生物層の厚みも考慮して、処理対象物の流れを妨げないようにすればよい。   The gas separation means 34 is arrange | positioned in the biological treatment tank 32 so that it may be immersed in a process target object. The gas separation means 34 is preferably arranged so as not to hinder the flow of the processing object. In addition, when a biological layer is formed on the surface of the gas separation means or in the vicinity of the surface, the thickness of the biological layer to be formed may be taken into consideration so as not to disturb the flow of the processing object.

微生物担持機構36は、生物処理装置10における微生物担持機構18と同じものを挙げることができる。   The microorganism supporting mechanism 36 can be the same as the microorganism supporting mechanism 18 in the biological treatment apparatus 10.

つぎに、生物処理装置30を用いた生物処理方法について説明する。
生物処理槽32内に処理対象物を入れ、処理対象物を生物処理し、ガスを発生させる。同時に、減圧手段16を作動させてガス分離手段34内を減圧にし、処理対象物中で発生したガスを透過して分離する。生物処理槽32の上部のガス排出口38および減圧手段16から排出されるガスは、ガス貯留手段22に回収される。処理対象物の生物処理を続けるうちに、微生物担持機構36に生物が付着し、ガス分離手段34の表面に生物層が形成される。
Next, a biological treatment method using the biological treatment apparatus 30 will be described.
An object to be treated is placed in the biological treatment tank 32, the object to be treated is biologically treated, and gas is generated. At the same time, the pressure reducing means 16 is operated to reduce the pressure in the gas separating means 34, and the gas generated in the object to be processed is permeated and separated. The gas discharged from the gas discharge port 38 and the decompression means 16 in the upper part of the biological treatment tank 32 is recovered by the gas storage means 22. While the biological treatment of the object to be treated is continued, the organism adheres to the microorganism carrying mechanism 36 and a biological layer is formed on the surface of the gas separation means 34.

処理対象物としては、第1の実施形態で挙げたもののうち、廃水、下水等の液状のものが挙げられる。生物処理としては、嫌気条件下で嫌気性微生物によって処理対象物に含まれる有機物を発酵させる処理が挙げられる。
嫌気性微生物としては、第1の実施形態で挙げた微生物と同じものが挙げられる。生物処理を行う際は、微生物を処理対象物に新たに加えてもよく、処理対象物に元から存在する微生物を利用してもよい。
また、ガス分離手段34の表面又は表面近傍に生物層を形成することにより、生物層中の生物により発生したガスを透過して分離することが容易になる。また、生物層の内側はより高度な嫌気条件になりやすく、処理対象物の生物処理活性が向上する。
Examples of the processing target include liquids such as waste water and sewage among those mentioned in the first embodiment. Examples of the biological treatment include a treatment of fermenting an organic substance contained in the object to be treated by anaerobic microorganisms under anaerobic conditions.
Examples of the anaerobic microorganism include the same microorganisms as those mentioned in the first embodiment. When performing biological treatment, microorganisms may be newly added to the object to be treated, or microorganisms that are originally present in the object to be treated may be used.
Further, by forming a biological layer on or near the surface of the gas separation means 34, it becomes easy to permeate and separate the gas generated by the organism in the biological layer. In addition, the inside of the biological layer tends to be more highly anaerobic, and the biological treatment activity of the treatment object is improved.

以上説明した生物処理装置30にあっては、ガス分離手段34が処理対象物に浸漬するように生物処理槽32内に配置されているため、処理対象物中で消費されたり、残存したりしていたガスを回収できる。
また、以上説明した生物処理方法にあっては、ガス分離手段を前記処理対象物に浸漬させるため、処理対象物中で消費されたり、残存したりしていたガスを回収できる。
In the biological treatment apparatus 30 described above, since the gas separation means 34 is disposed in the biological treatment tank 32 so as to be immersed in the treatment object, it may be consumed or remain in the treatment object. The recovered gas can be recovered.
Further, in the biological treatment method described above, since the gas separation means is immersed in the treatment object, the gas consumed or remaining in the treatment object can be recovered.

本発明の生物処理装置および生物処理方法では、発生したガスを処理対象物中から直接取り出しながら生物処理を行うことで、処理対象物中のガス濃度が低くなり、生物処理の活性が高くなるという効果も得られる。
本発明の生物処理装置は、廃棄物や廃水等の廃棄物処理装置として用いてもよく、処理対象物から特定のガスを製造するガス製造装置として用いてもよい。
In the biological treatment apparatus and biological treatment method of the present invention, the biological treatment is performed while taking out the generated gas directly from the treatment target, so that the gas concentration in the treatment target is reduced and the biological treatment activity is increased. An effect is also obtained.
The biological treatment apparatus of the present invention may be used as a waste treatment apparatus such as waste or waste water, or may be used as a gas production apparatus for producing a specific gas from a treatment target.

尚、本発明の生物処理装置は、図1および図2に例示した装置には限定されない。例えば、図2に例示した生物処理槽32を複数備え、隣接する生物処理槽32の流出口42と流入口40とを連接した生物処理装置であってもよい。   In addition, the biological treatment apparatus of this invention is not limited to the apparatus illustrated in FIG.1 and FIG.2. For example, a biological treatment apparatus including a plurality of biological treatment tanks 32 illustrated in FIG. 2 and connecting the outlet 42 and the inlet 40 of the adjacent biological treatment tank 32 may be used.

以下、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
本実施例では、図1に例示した生物処理装置10を用いた。生物処理槽12として縦100mm×横200mm×高さ300mmで有効容積6Lの角型生物反応リアクターを用いた。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following description.
In this embodiment, the biological treatment apparatus 10 illustrated in FIG. 1 is used. As the biological treatment tank 12, a rectangular biological reaction reactor having a length of 100 mm × width of 200 mm × height of 300 mm and an effective volume of 6 L was used.

また、ガス分離手段14として、複数の中空糸膜と、集気管とを有する下記の中空糸膜モジュールを用いた。
中空糸膜は、ポリウレタン製の気体分離層(厚さ1μm)をポリエチレン製の多孔質支持層(厚さ20μm)で挟み込んだ三層構造を有し、外径が280μmであるガス選択性の中空糸膜(三菱レイヨン社製)を用いた。該中空糸膜の有効膜面積は0.1mであった。
Further, as the gas separation means 14, the following hollow fiber membrane module having a plurality of hollow fiber membranes and an air collection tube was used.
The hollow fiber membrane has a three-layer structure in which a polyurethane gas separation layer (thickness 1 μm) is sandwiched between polyethylene porous support layers (thickness 20 μm), and a gas-selective hollow having an outer diameter of 280 μm. A thread membrane (Mitsubishi Rayon Co., Ltd.) was used. The effective membrane area of the hollow fiber membrane was 0.1 m 2 .

処理対象物としては、下記組成の模擬廃水を用いた。
mg/L
NaHCO 1000
HPO 50
(NHHPO 28
KCl 28
NHCl 32
FeCl・6HO 16
MgCl・6HO 32
MnSO・6HO 0.2
CuSO・6HO 0.2
CoCl・6HO 0.2
Ni 0.2
Zn 0.2
粉ミルク 1250
嫌気性微生物は処理対象物に新たに添加せず、処理対象物中にもともと存在する嫌気性微生物を利用した。
As a treatment target, simulated wastewater having the following composition was used.
mg / L
NaHCO 3 1000
K 2 HPO 4 50
(NH 4 ) 2 HPO 4 28
KCl 28
NH 4 Cl 32
FeCl 3 · 6H 2 O 16
MgCl 2 · 6H 2 O 32
MnSO 4 · 6H 2 O 0.2
CuSO 4 · 6H 2 O 0.2
CoCl 2 · 6H 2 O 0.2
Ni 0.2
Zn 0.2
Powdered milk 1250
Anaerobic microorganisms that were originally present in the treatment object were used without newly adding anaerobic microorganisms to the treatment object.

[実施例1]
前記生物処理槽10を用いて、処理廃水量を2L/日、処理時間5日、処理温度35℃の条件下で前記模擬廃水の処理を行った。また、処理期間中は、流出口12から流出した模擬廃水が流入口11から流入するようにして、8L/分で生物処理槽10内を循環させた。また、処理期間中、分離膜21である中空糸膜の内部は、減圧ポンプ(図示せず)により0.05MPaまで減圧した。
模擬廃水の処理中、中空糸膜モジュールから取り出されるガスの組成をガスクロマトグラフィー分析により測定した結果を表1に示す。
[Example 1]
Using the biological treatment tank 10, the simulated wastewater was treated under the conditions of a treatment wastewater amount of 2 L / day, a treatment time of 5 days, and a treatment temperature of 35 ° C. Further, during the treatment period, the simulated waste water flowing out from the outlet 12 was circulated in the biological treatment tank 10 at 8 L / min so as to flow in from the inlet 11. During the treatment period, the inside of the hollow fiber membrane as the separation membrane 21 was decompressed to 0.05 MPa by a decompression pump (not shown).
Table 1 shows the results of gas chromatographic analysis of the composition of the gas extracted from the hollow fiber membrane module during treatment of the simulated wastewater.

[比較例1]
処理対象物である模擬廃水から気相に放出されたガスを、生物処理槽10の上部に設けられたガス流出口13から取り出すこと以外は、実施例1と同様にして生物処理を行い、得られたガスの組成を測定した。
[Comparative Example 1]
A biological treatment is carried out in the same manner as in Example 1 except that the gas released from the simulated wastewater, which is the treatment target, into the gas phase is taken out from the gas outlet 13 provided in the upper part of the biological treatment tank 10. The composition of the resulting gas was measured.

Figure 0005424293
Figure 0005424293

表1に示すように、実施例1では、嫌気性微生物により模擬廃水中で消費されたり、残存したりしてしまうガスを分離することができた。また、得られたガス中に占めるメタンガスの割合が高く、目的のガスを高い選択性で得ることができた。
一方、比較例1では、模擬廃水中で消費されたり、残存したりしてしまうガスを分離することができず、得られたガス中に占めるメタンガスの割合が小さかった。
As shown in Table 1, in Example 1, the gas that was consumed or remained in the simulated wastewater by the anaerobic microorganisms could be separated. Moreover, the ratio of methane gas in the obtained gas was high, and the target gas could be obtained with high selectivity.
On the other hand, in Comparative Example 1, the gas that was consumed or remained in the simulated wastewater could not be separated, and the proportion of methane gas in the obtained gas was small.

本発明の生物処理装置及び生物処理方法は、処理対象物中で消費されたり、残存したりしてしまうガスを分離することができるため、廃棄物や廃水等の処理や、それらを処理対象物としたメタンガスや水素ガス等の有用なガスの製造等に好適に用いることができる。   Since the biological treatment apparatus and biological treatment method of the present invention can separate gases that are consumed or remain in the treatment object, the treatment of waste and waste water, and the treatment object It can be suitably used for production of useful gases such as methane gas and hydrogen gas.

本発明の生物処理装置の一例を示した構成図である。It is the block diagram which showed an example of the biological treatment apparatus of this invention. 本発明の生物処理装置の他の例を示した構成図である。It is the block diagram which showed the other example of the biological treatment apparatus of this invention.

符号の説明Explanation of symbols

10 生物処理装置 12 生物処理槽 14 ガス分離手段 16 減圧手段 30 生物処理装置 32 生物処理槽 34 ガス分離手段   DESCRIPTION OF SYMBOLS 10 Biological treatment apparatus 12 Biological treatment tank 14 Gas separation means 16 Decompression means 30 Biological treatment apparatus 32 Biological treatment tank 34 Gas separation means

Claims (5)

処理対象物を生物処理してガスを発生させる生物処理槽と、
前記処理対象物と接触するように前記生物処理槽内に配置され、ガスを透過する非透水性の分離膜を有するガス分離手段と、
前記ガス分離手段の内部を減圧する減圧手段と、
前記減圧手段から排出されるガスを回収貯留するためのガス貯留手段と、
を備えていることを特徴とする生物処理装置。
A biological treatment tank for biologically treating the object to be processed to generate gas;
A gas separation means disposed in the biological treatment tank so as to come into contact with the object to be treated, and having a water-impermeable separation membrane that allows gas to pass through;
Decompression means for decompressing the inside of the gas separation means;
Gas storage means for collecting and storing the gas discharged from the decompression means;
A biological treatment apparatus comprising:
前記ガス分離手段が、前記分離膜の表面又はその近傍に微生物担持機構を備えた、請求項1に記載の生物処理装置。   The biological treatment apparatus according to claim 1, wherein the gas separation means includes a microorganism supporting mechanism on or near the surface of the separation membrane. 前記分離膜が気体選択透過性分離膜である、請求項1又は2に記載の生物処理装置。 The biological treatment apparatus according to claim 1 or 2 , wherein the separation membrane is a gas selective permeable separation membrane. 処理対象物を生物処理してガスを発生させ、当該ガスを回収する生物処理方法において、
ガスを透過する非透水性の分離膜を有するガス分離手段を前記処理対象物に接触させ、前記ガス分離手段の内部を減圧して、前記処理対象物から前記ガスを分離し、分離したガスを回収することを特徴とする生物処理方法。
In a biological treatment method for biologically treating a treatment target to generate a gas and recovering the gas,
A gas separation means having a non-permeable separation membrane that allows gas to pass through is brought into contact with the object to be treated, the inside of the gas separation means is decompressed, the gas is separated from the object to be treated, and the separated gas is The biological treatment method characterized by collect | recovering.
前記分離膜の表面に生物層を形成させる、請求項に記載の生物処理方法。 The biological treatment method according to claim 4 , wherein a biological layer is formed on the surface of the separation membrane.
JP2008025668A 2008-02-05 2008-02-05 Biological treatment apparatus and biological treatment method Active JP5424293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008025668A JP5424293B2 (en) 2008-02-05 2008-02-05 Biological treatment apparatus and biological treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008025668A JP5424293B2 (en) 2008-02-05 2008-02-05 Biological treatment apparatus and biological treatment method

Publications (2)

Publication Number Publication Date
JP2009183848A JP2009183848A (en) 2009-08-20
JP5424293B2 true JP5424293B2 (en) 2014-02-26

Family

ID=41067678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008025668A Active JP5424293B2 (en) 2008-02-05 2008-02-05 Biological treatment apparatus and biological treatment method

Country Status (1)

Country Link
JP (1) JP5424293B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189261A (en) * 2010-03-12 2011-09-29 Mitsubishi Rayon Co Ltd Biological treatment system, and biological treatment method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5914930B2 (en) * 2011-09-29 2016-05-11 三菱レイヨン株式会社 Biological treatment apparatus and biological treatment method
WO2014017466A1 (en) * 2012-07-23 2014-01-30 三菱レイヨン株式会社 Dissolved gas removal device, and biological treatment device for organic materials to be treated and biological treatment method for same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661253B2 (en) * 1987-01-31 1994-08-17 株式会社明電舎 Cultivation device for anaerobic fatty acid-degrading bacteria
JPH08173988A (en) * 1994-12-21 1996-07-09 Nagayanagi Kogyo Kk Anaerobic water treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189261A (en) * 2010-03-12 2011-09-29 Mitsubishi Rayon Co Ltd Biological treatment system, and biological treatment method

Also Published As

Publication number Publication date
JP2009183848A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
US10315936B2 (en) Forward osmosis separation processes
AU2009259824B2 (en) Forward osmosis separation processes
US9044711B2 (en) Osmotically driven membrane processes and systems and methods for draw solute recovery
Zhang et al. Integration of biological method and membrane technology in treating palm oil mill effluent
JP5582388B2 (en) Biological treatment system and biological treatment method
US20140151295A1 (en) Plants for advanced treatment of wastewater and method for treating wastewater using thereof
JP2017527441A5 (en)
JP2008221070A (en) Gas-liquid contacting device and gas-liquid contacting method
Tibi et al. Membrane distillation as post-treatment for anaerobic fluidized bed membrane bioreactor for organic and nitrogen removal
CN104681843B (en) Forward osmosis membrane-microorganism fuel battery
JP5424293B2 (en) Biological treatment apparatus and biological treatment method
CN107162167B (en) Process and device for treating organic wastewater by catalytic oxidation of ozone
JP2008023488A (en) Method for supplying electron donor to microorganism and its device, and bioreactor using it
JP4859170B2 (en) Nitrogen-containing organic wastewater treatment system
Guo et al. The role of a membrane performance enhancer in a membrane bioreactor: a comparison with other submerged membrane hybrid systems
US9534236B2 (en) Membranes for wastewater-generated energy and gas
JPS61249599A (en) Biological reaction device
Zhang et al. Influence of solution and operating conditions on the treatment of aquaculture wastewater using direct contact membrane distillation: Ammonia rejection and membrane fouling
JP5914930B2 (en) Biological treatment apparatus and biological treatment method
JP2019166441A (en) Biological treatment apparatus
NL2004860C2 (en) Apparatus and method for obtaining a specific ion from a fluid.
Barnes et al. Investigation of membrane processes for the removal of volatile fatty acids
JP5979566B2 (en) Dissolved gas removal apparatus, biological treatment apparatus for organic treatment object, and biological treatment method
JP7421496B2 (en) Wastewater treatment equipment and wastewater treatment method
JPS61249598A (en) Two-phase type anaerobic treatment device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121203

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5424293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250