JP5421730B2 - Manufacturing method of glass fiber filter - Google Patents

Manufacturing method of glass fiber filter Download PDF

Info

Publication number
JP5421730B2
JP5421730B2 JP2009248181A JP2009248181A JP5421730B2 JP 5421730 B2 JP5421730 B2 JP 5421730B2 JP 2009248181 A JP2009248181 A JP 2009248181A JP 2009248181 A JP2009248181 A JP 2009248181A JP 5421730 B2 JP5421730 B2 JP 5421730B2
Authority
JP
Japan
Prior art keywords
glass fiber
resin
fiber mat
glass
fiber filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009248181A
Other languages
Japanese (ja)
Other versions
JP2011092842A (en
Inventor
竜司 増田
琢也 陣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP2009248181A priority Critical patent/JP5421730B2/en
Publication of JP2011092842A publication Critical patent/JP2011092842A/en
Application granted granted Critical
Publication of JP5421730B2 publication Critical patent/JP5421730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガラス繊維から構成されるガラス繊維マットを使用したガラス繊維フィルタの製造方法に関するものである。   The present invention relates to a method for producing a glass fiber filter using a glass fiber mat composed of glass fibers.

従来、ガラス繊維を用いたガラス繊維フィルタ等のガラス繊維マットの製造方法として、例えば、特許文献1に開示がなされている。従来の製造方法は、回転ドラムに綾振しながらガラス繊維を巻回し、尿素樹脂やメラミン樹脂等を付着させて繊維間を結着することにより構成されたガラス繊維の積層体を、回転ドラムの軸方向に切り開いて平板状のガラス繊維積層体を形成する。そして、前記尿素樹脂やメラミン樹脂等が粘着性を有する状態で前記積層体を前記軸方向に伸長して厚さ方向に膨らませ(以下、「伸長工程」とする。)、その後、圧縮等を行ってガラス繊維マットとするものである。また、その他に、熱硬化性樹脂(特許文献2)、弾性的ポリエステル樹脂(引用文献3)又はアクリル系若しくはフェノール系等の熱硬化性水性組成物(引用文献4)を使用するものが提案されている。   Conventionally, for example, Patent Document 1 discloses a method for manufacturing a glass fiber mat such as a glass fiber filter using glass fibers. A conventional manufacturing method involves winding a glass fiber while traversing a rotating drum, attaching a urea resin, a melamine resin, or the like, and bonding the fibers together, thereby forming a glass fiber laminate on the rotating drum. A flat glass fiber laminate is formed by cutting in the axial direction. Then, in a state where the urea resin, the melamine resin or the like has adhesiveness, the laminate is expanded in the axial direction and expanded in the thickness direction (hereinafter referred to as “elongation process”), and then compression or the like is performed. Glass fiber mat. In addition, those using thermosetting resins (Patent Document 2), elastic polyester resins (Cited Document 3), or acrylic or phenolic thermosetting aqueous compositions (Cited Document 4) have been proposed. ing.

上記ガラス繊維間を接着する樹脂は、溶融ガラスを使用した高温下では、その伸長工程において粘着性を適切に保つことができず、不良品が発生しやすいという問題点があった。例えば、尿素樹脂やメラミン樹脂等の熱硬化性樹脂の場合、重合反応が開始してしまうと反応を止めることはできず、図1に示すように樹脂の粘着性は急激に変化して粘着性を調整することができない。このため、ガラス繊維積層体を形成してからおおよそ24〜48時間以内に伸長工程を行う必要があった。
また、ポリエステル樹脂等の熱可塑性樹脂の場合、加熱により粘着性の制御は可能であるが、同樹脂は高温環境下で使用されるエアフィルタの用途には向かないという問題があった。
The resin for bonding between the glass fibers has a problem that, under high temperature using molten glass, the adhesiveness cannot be properly maintained in the elongation process, and defective products are easily generated. For example, in the case of a thermosetting resin such as urea resin or melamine resin, the reaction cannot be stopped once the polymerization reaction starts, and the adhesiveness of the resin changes rapidly as shown in FIG. Can not be adjusted. For this reason, it was necessary to perform an extending | stretching process within about 24-48 hours after forming a glass fiber laminated body.
In the case of a thermoplastic resin such as a polyester resin, the adhesiveness can be controlled by heating. However, the resin has a problem that it is not suitable for an air filter used in a high temperature environment.

特公昭41−4833号Japanese Patent Publication No.41-4833 特公昭33−7795号Japanese Patent Publication No.33-7795 特公昭45−10786号Japanese Examined Sho 45-10786 特開2008−23505号JP 2008-23505 A

本発明は、高温環境下で使用することが可能で、しかも、繊維間の接着剤の粘着性の調整が容易なガラス繊維フィルタの製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the glass fiber filter which can be used in a high temperature environment and is easy to adjust the adhesiveness of the adhesive agent between fibers.

本発明者等は、上記目的を達成するために鋭意研究の結果、下記の解決手段を見いだした。
本発明のガラス繊維フィルタの製造方法は、請求項1に記載の通り、ガラス繊維を交差するように積層し、前記ガラス繊維間に熱硬化型樹脂を付着させてガラス繊維マットを形成する工程、前記樹脂の反応開始温度以下の雰囲気下に前記ガラス繊維マットをおく工程、前記ガラス繊維マットを常温で保管する工程、前記ガラス繊維マットを伸長させる工程、及び、前記樹脂を硬化してガラス繊維フィルタとする工程を上記記載の順序で有し、前記熱硬化型樹脂は、水溶性又は溶媒溶解性で、反応開始温度が100℃以上であり、前記ガラス繊維マットをおく工程は、前記ガラス繊維間で結着するまでの時間を前記樹脂の水分又は溶媒量を調整することにより任意に設定する工程であり、温度20〜60℃及び相対湿度30〜80%で、大気圧下で1〜24時間の範囲内から設定する工程であることを特徴とする。
請求項2に記載の本発明は、請求項1に記載のガラス繊維フィルタの製造方法において、前記樹脂の反応開始温度以下の雰囲気下に前記ガラス繊維マットをおく工程は、大気下における前記樹脂の乾燥工程であることを特徴とする。
請求項3に記載の本発明は、請求項1又は2に記載のガラス繊維フィルタの製造方法において、前記ガラス繊維マットを保管する工程は、保管により粘着性が伸長可能領域を超えた場合に、水分を付与することで粘着性を前記伸長可能領域にする工程をさらに備えた。
請求項4に記載の本発明は、請求項1乃至3の何れか1項に記載のガラス繊維フィルタの製造方法において、前記ガラス繊維マットを形成する工程は、ガラス繊維を回転ドラムに巻回しながら前記樹脂を付着させ、前記回転ドラムに巻回されたガラス繊維の積層体を前記回転ドラムの軸方向に切り開いて前記ガラス繊維マットを形成する工程であることを特徴とする。
請求項5に記載の本発明は、請求項4に記載のガラス繊維フィルタの製造方法において、前記ガラス繊維マットを伸長させる工程は、前記ガラス繊維を前記ドラムの軸方向に伸長する工程であることを特徴とする。
請求項6に記載の本発明は、請求項1乃至5の何れか1項に記載のガラス繊維フィルタの製造方法において、前記ガラス繊維マットを形成する工程において、前記水溶性又は溶媒溶解性で、かつ熱硬化型樹脂の濃度を20〜70%とし、前記ガラス繊維マットに対して付着率(固形分換算)を10〜40%とすることを特徴とする。
As a result of intensive studies to achieve the above object, the present inventors have found the following solutions.
The method for producing a glass fiber filter according to the present invention includes, as described in claim 1, a step of laminating glass fibers so as to cross each other, and attaching a thermosetting resin between the glass fibers to form a glass fiber mat. A step of placing the glass fiber mat in an atmosphere below the reaction start temperature of the resin, a step of storing the glass fiber mat at room temperature, a step of extending the glass fiber mat, and a glass fiber filter by curing the resin. and a step of the order described above, the thermosetting resin is a water-soluble or solvent-soluble, the reaction starting temperature is at 100 ° C. or more, the step of placing said glass fiber mat, between the glass fibers in Ri step der arbitrarily set by adjusting the time until the sintered wearing water or solvent content of the resin, at a temperature 20 to 60 ° C. and a relative humidity of 30% to 80%, the atmospheric pressure Characterized in that in a step of setting the range of 1 to 24 hours.
According to a second aspect of the present invention, in the method for producing a glass fiber filter according to the first aspect, the step of placing the glass fiber mat in an atmosphere below the reaction start temperature of the resin includes the step of placing the resin in the air. It is a drying process.
The present invention described in claim 3 is the method for manufacturing a glass fiber filter according to claim 1 or 2 , wherein the step of storing the glass fiber mat is performed when the adhesive exceeds the stretchable region by storage. The method further comprises the step of making the adhesiveness the stretchable region by applying moisture.
According to a fourth aspect of the present invention, in the method for manufacturing a glass fiber filter according to any one of the first to third aspects, the step of forming the glass fiber mat is performed by winding the glass fiber around a rotating drum. The glass fiber mat is formed by attaching the resin and cutting the glass fiber laminate wound around the rotary drum in the axial direction of the rotary drum.
According to a fifth aspect of the present invention, in the method for producing a glass fiber filter according to the fourth aspect, the step of extending the glass fiber mat is a step of extending the glass fiber in the axial direction of the drum. It is characterized by.
According to a sixth aspect of the present invention, in the method for producing a glass fiber filter according to any one of the first to fifth aspects, in the step of forming the glass fiber mat, the water-soluble or solvent-soluble property is obtained. And the density | concentration of a thermosetting resin shall be 20 to 70%, and the adhesion rate (solid content conversion) shall be 10 to 40% with respect to the said glass fiber mat.

本発明によれば、ガラス繊維間の接着剤として水溶性又は溶媒溶解性で、かつ熱硬化型樹脂を使用して、この樹脂の反応開始温度以下の雰囲気下にガラス繊維マットをおく工程を設けることにより、ガラス繊維間の結着するまでの時間を、同樹脂の水分又は溶媒量を調整することにより任意に設定することができる。このため、樹脂付着後に、ガラス繊維マットに余熱が残っていたとしても、早期に硬化させずに水分調整を行うことにより、後に続く工程を急いで行う必要がなく、円滑な作業工程を確保することができる。また、ガラス繊維マットを形成する工程のみを行った後、異なる場所に輸送してからでもガラス繊維フィルタを作製することが可能となる。
また、水溶性又は溶媒溶解性で、かつ熱硬化型樹脂を用いることより、水分が存在する間は重合反応が起らないため、繊維交点でずれないように適切な粘着性を保つことができる。また、伸長工程前に硬化をすることで、樹脂を支点に繊維の移動が可能となるため繊維が破断することを防ぐことができる。
According to the present invention, there is provided a step of placing a glass fiber mat in an atmosphere below the reaction start temperature of the resin using a water-soluble or solvent-soluble resin as an adhesive between the glass fibers and using a thermosetting resin. Thus, the time until the glass fibers are bonded can be arbitrarily set by adjusting the moisture or the solvent amount of the resin. For this reason, even if residual heat remains in the glass fiber mat after the resin adheres, it is not necessary to quickly perform the subsequent process by adjusting the moisture without curing at an early stage, thereby ensuring a smooth work process. be able to. Moreover, after performing only the process of forming a glass fiber mat, it becomes possible to produce a glass fiber filter even after transporting to a different place.
In addition, by using a water-soluble or solvent-soluble and thermosetting resin, the polymerization reaction does not occur while moisture is present, so that appropriate tackiness can be maintained so as not to shift at the fiber intersection. . Moreover, since the fiber can be moved with the resin as a fulcrum by curing before the stretching step, the fiber can be prevented from breaking.

従来の熱硬化樹脂の粘着性変化を示す説明図Explanatory drawing which shows the adhesiveness change of the conventional thermosetting resin 本発明の一実施の形態の熱硬化樹脂の粘着性変化を示す説明図Explanatory drawing which shows the adhesive change of the thermosetting resin of one embodiment of this invention

次に、本発明の実施の形態について説明する。
本実施の形態は、
(a)Eガラス、Cガラス、ホウケイ酸ガラス等のガラス繊維を交差するように積層し、前記ガラス繊維間にアクリル系、エポキシ系、ウレタン系、尿素系、メラミン系、フェノール系等の水溶性又は溶媒溶解性で、かつ熱硬化型樹脂を付着させてガラス繊維マットを形成する工程
(b)前記樹脂の反応開始温度以下の雰囲気下に前記ガラス繊維マットをおく工程
(c)前記ガラス繊維マットを伸長させる工程、及び、
(d)前記樹脂を硬化してガラス繊維フィルタとする工程
を有するものである。
尚、水溶性又は溶媒溶解性型の樹脂は乾燥して固形分濃度が増大していくにつれて粘着性は徐々に上がるのに比べて、エマルジョン型の樹脂は、乾燥の初期ではあまり粘度は変化せず、終期で急激に変化しるため粘着性の制御が難しく、しかも、粘度が小さくガラス繊維マットに付着しにくいので好ましくない。
Next, an embodiment of the present invention will be described.
This embodiment is
(A) Glass fibers such as E glass, C glass, and borosilicate glass are laminated so as to cross each other, and water-soluble such as acrylic, epoxy, urethane, urea, melamine, phenol, etc. between the glass fibers. Or a step of forming a glass fiber mat by dissolving a solvent-soluble and thermosetting resin (b) placing the glass fiber mat in an atmosphere below the reaction start temperature of the resin (c) the glass fiber mat Elongating, and
(D) A step of curing the resin to form a glass fiber filter.
In addition, the viscosity of emulsion type resins does not change much at the beginning of drying, compared to the case where water-soluble or solvent-soluble resins dry and the solid content increases. However, since it changes abruptly at the end, it is difficult to control the adhesiveness, and the viscosity is small and it is difficult to adhere to the glass fiber mat.

工程(a)、工程(c)及び工程(d)に関しては、特許文献1等に開示された公知の方法を使用することができる。例えば、工程(a)は、ガラス繊維を回転ドラムに巻回しながら前記樹脂を付着させ、前記回転ドラムに巻回されたガラス繊維の積層体を前記回転ドラムの軸方向に切り開いて前記ガラス繊維マットを形成する工程となる。
工程(a)において形成されるガラス繊維マットの形状等は特に制限はないが、通常は、平均繊維径10〜30μmのガラス長繊維から構成される。
Regarding the step (a), the step (c) and the step (d), a known method disclosed in Patent Document 1 or the like can be used. For example, in the step (a), the glass fiber mat is obtained by attaching the resin while winding the glass fiber around a rotating drum, and cutting the glass fiber laminate wound around the rotating drum in the axial direction of the rotating drum. It becomes the process of forming.
The shape of the glass fiber mat formed in the step (a) is not particularly limited, but is usually composed of long glass fibers having an average fiber diameter of 10 to 30 μm.

工程(b)は、前記ガラス繊維マットを前記樹脂の反応開始温度以下の雰囲気におくものである。具体例を挙げるとすると、樹脂を硬化しないように乾燥させる工程となる。本発明では、前記樹脂として、水溶性又は溶媒溶解性で、かつ熱硬化型樹脂を使用する。同樹脂の水分又は溶媒量を調整することによりガラス繊維マットを構成するガラス繊維間の結着の時間を任意に調整できるからである。また、同樹脂の粘着性を調整することにより、硬化時に結着部位がずれることなくガラス繊維の破断を防ぐことができる。尚、同樹脂の反応開始温度は100℃以上のものであることが好ましい。
また、同樹脂をガラス繊維に付着させる方法としては、特に制限するものではないが、例えば、噴霧、塗布、浸漬等する方法を挙げることができる。
また、前記樹脂の濃度についても、硬化後にガラス繊維間を結着し、工程(c)の際に結着部位が支点となってガラス繊維間の関係を維持した状態で伸長できるものであれば特に制限するものではない。一例を挙げると、その濃度を20〜70%とし、ガラス繊維の全重量(g)に対する付着量(g)を固形分付着率とし、10〜30%とすることが好ましい。
In the step (b), the glass fiber mat is placed in an atmosphere below the reaction start temperature of the resin. If a specific example is given, it will be the process of drying so that resin may not be hardened. In the present invention, a water-soluble or solvent-soluble and thermosetting resin is used as the resin. This is because the binding time between the glass fibers constituting the glass fiber mat can be arbitrarily adjusted by adjusting the moisture or solvent amount of the resin. Moreover, by adjusting the adhesiveness of the resin, breakage of the glass fiber can be prevented without shifting the binding site during curing. The reaction initiation temperature of the resin is preferably 100 ° C. or higher.
Further, the method for adhering the resin to the glass fiber is not particularly limited, and examples thereof include a method of spraying, coating, and dipping.
Also, the concentration of the resin is such that it can be stretched in a state where the glass fibers are bound after curing and the relationship between the glass fibers is maintained at the binding site in the step (c). There is no particular limitation. As an example, the concentration is preferably 20 to 70%, and the adhesion amount (g) with respect to the total weight (g) of the glass fiber is defined as the solid content adhesion rate, and is preferably 10 to 30%.

工程(b)の条件は、後の工程において、ガラス繊維間を結着させることができる程度に、ガラス繊維マット全体で水分又は溶媒量を均一にする必要があり、温度20〜60℃及び相対湿度30〜80%で、大気圧下で1〜24時間程度とすることが好ましい。これにより、図2に示すように、ガラス繊維マットが適度な粘着性を有する伸長領域に到達した時点で乾燥工程を停止すれば、前記樹脂の反応開始温度以下なので重合反応が起こらず、粘着性を一定に保つことができ、結着部位が支点となってガラス繊維間の関係を維持した状態で工程(c)を行うことが可能となる。従って、乾燥を防ぐことが可能な適切な保管状態であれば、数日〜数ヶ月の間粘着性はほぼ変化することなく、長期の保管が可能となる。
また、保管により粘着性が伸長可能領域を超えたとしても、加湿等の水分を付与することで粘着性を伸長可能領域にすることができる
The condition of the step (b) is that the water or solvent amount needs to be uniform throughout the glass fiber mat so that the glass fibers can be bound in the subsequent step. It is preferable that the humidity is 30 to 80% and the atmospheric pressure is about 1 to 24 hours. Thereby, as shown in FIG. 2, if the drying process is stopped when the glass fiber mat reaches the stretched region having appropriate tackiness, the polymerization reaction does not occur because the temperature is lower than the reaction start temperature of the resin, and the tackiness is reduced. Can be kept constant, and the step (c) can be performed in a state where the binding site serves as a fulcrum and maintains the relationship between the glass fibers. Therefore, if it is in an appropriate storage state that can prevent drying, the adhesiveness is not substantially changed for several days to several months, and long-term storage is possible.
Moreover, even if the adhesiveness exceeds the stretchable region by storage, the adhesiveness can be made an extensible region by applying moisture such as humidification.

以下に本発明の実施例を比較例とともに説明する。
[実施例1]
軸方向の長さ1800mm、直径1500mmの回転ドラムを145rpmで回転させ、直径約4mmのノズルから1300℃で溶融させたガラス繊維を綾振幅50mmで巻回し、その際に、55%に調製された水溶性熱硬化型アクリル樹脂(製品名 A−600、ロームアンドハース社製)を噴霧してガラス繊維に対して均一に塗布するようにした。巻回されたガラス繊維積層体を前記回転ドラムの軸方向に切り開いて長さ1200mm、幅4700mmのガラス繊維マットを得た。
その後、ガラス繊維マットを30℃、相対湿度50%の乾燥室で24時間乾燥後、常温で保管した後、前記軸方向に伸長して、温度230℃で樹脂を加熱硬化し、厚さ18mm、長さ40000mm、幅1600mmの樹脂付着率20%、密度5.8kg/mのガラス繊維フィルタを得た。このときの伸長可能期間は3ヶ月以上であった。尚、同フィルタの初期圧力損失は20Pa、捕集効率は81%であった。
Examples of the present invention will be described below together with comparative examples.
[Example 1]
A rotating drum having an axial length of 1800 mm and a diameter of 1500 mm was rotated at 145 rpm, and a glass fiber melted at 1300 ° C. from a nozzle having a diameter of about 4 mm was wound with a twill amplitude of 50 mm. A water-soluble thermosetting acrylic resin (product name A-600, manufactured by Rohm and Haas) was sprayed so as to be uniformly applied to the glass fiber. The wound glass fiber laminate was cut open in the axial direction of the rotating drum to obtain a glass fiber mat having a length of 1200 mm and a width of 4700 mm.
Thereafter, the glass fiber mat was dried in a drying room at 30 ° C. and a relative humidity of 50% for 24 hours and stored at room temperature, and then stretched in the axial direction to heat and cure the resin at a temperature of 230 ° C. A glass fiber filter having a resin adhesion rate of 20% and a density of 5.8 kg / m 3 having a length of 40000 mm and a width of 1600 mm was obtained. The extendable period at this time was 3 months or more. The filter had an initial pressure loss of 20 Pa and a collection efficiency of 81%.

[比較例1]
水溶性熱硬化型アクリル樹脂に代えて、尿素メラミン樹脂(製品名 PUM−10、昭和高分子社製)を使用した以外は実施例1と同様にした。このときの伸長可能期間は約20hであった。得られたガラス繊維フィルタは、厚さ15mm、長さ40000mm、幅1600mmであり、樹脂付着率30%、密度8.4kg/mであった。尚、同フィルタの初期圧力損失は23Pa、捕集効率は83%であった。
[Comparative Example 1]
It replaced with the water-soluble thermosetting acrylic resin, and was carried out similarly to Example 1 except having used urea melamine resin (product name PUM-10, Showa High Polymer Co., Ltd. product). At this time, the extension period was about 20 hours. The obtained glass fiber filter had a thickness of 15 mm, a length of 40000 mm, a width of 1600 mm, a resin adhesion rate of 30%, and a density of 8.4 kg / m 3 . The filter had an initial pressure loss of 23 Pa and a collection efficiency of 83%.

尚、上記フィルタ特性については、捕集効率、圧力損失をJIS B 9908(換気用エアフィルタ、電気集じん機の性能試験方法)の形式1(計数法)を適用して試験した。   In addition, about the said filter characteristic, the collection efficiency and the pressure loss were tested applying the format 1 (counting method) of JIS B 9908 (the air filter for ventilation, the performance test method of an electric dust collector).

上記実施例1は、水溶性熱硬化型アクリル樹脂を用いているため、常温では反応が開始せず、水分調整を行うことが容易であったため、常温保管を3ヶ月以上した後でも伸長してガラス繊維フィルタを得ることができた。また、3ヶ月保管したガラス繊維マットから得られたガラス繊維フィルタは、圧力損失及び捕集効率も目標値(初期圧力損失30Pa以下、捕集効率60%以上)を満たしていた。
一方、比較例1は、尿素メラミン樹脂の反応開始温度が30〜70℃であるため、水の蒸発とともに重合が開始され、一度反応が開始されると逐次進行するため2日以上保管したものは伸長してガラス繊維フィルタを得ることができなかった。尚、24時間保管してガラス繊維フィルタとしたものは、圧力損失及び捕集効率の性能は目標値を満たしていた。
Since Example 1 uses a water-soluble thermosetting acrylic resin, the reaction did not start at room temperature, and it was easy to adjust the water content. A glass fiber filter could be obtained. Moreover, the glass fiber filter obtained from the glass fiber mat stored for 3 months also satisfied the target values (initial pressure loss 30 Pa or less, collection efficiency 60% or more).
On the other hand, in Comparative Example 1, since the reaction start temperature of the urea melamine resin is 30 to 70 ° C., the polymerization is started as the water evaporates, and once the reaction is started, the reaction proceeds sequentially. The glass fiber filter could not be obtained by stretching. In addition, what was stored for 24 hours and used as the glass fiber filter satisfy | filled the target value in the performance of pressure loss and collection efficiency.

Claims (6)

ガラス繊維を交差するように積層し、前記ガラス繊維間に熱硬化型樹脂を付着させてガラス繊維マットを形成する工程、
前記樹脂の反応開始温度以下の雰囲気下に前記ガラス繊維マットをおく工程、
前記ガラス繊維マットを常温で保管する工程、
前記ガラス繊維マットを伸長させる工程、及び、
前記樹脂を硬化してガラス繊維フィルタとする工程を上記記載の順序で有し、
前記熱硬化型樹脂は、水溶性又は溶媒溶解性で、反応開始温度が100℃以上であり、
前記ガラス繊維マットをおく工程は、前記ガラス繊維間で結着するまでの時間を前記樹脂の水分又は溶媒量を調整することにより任意に設定する工程であり、温度20〜60℃及び相対湿度30〜80%で、大気圧下で1〜24時間の範囲内から設定する工程であることを特徴とするガラス繊維フィルタの製造方法。
Laminating glass fibers so as to cross each other, and attaching a thermosetting resin between the glass fibers to form a glass fiber mat,
Placing the glass fiber mat in an atmosphere below the reaction start temperature of the resin,
Storing the glass fiber mat at room temperature;
Extending the glass fiber mat; and
Having the process of curing the resin to make a glass fiber filter in the order described above ,
The thermosetting resin is water-soluble or solvent-soluble and has a reaction start temperature of 100 ° C. or higher.
Step of placing the glass fiber mat, Ri step der arbitrarily set by adjusting the water or solvent content of the resin the time until formation wear between the glass fibers, the temperature 20 to 60 ° C. and a relative humidity A method for producing a glass fiber filter, characterized by being a step of setting from 30 to 80% within a range of 1 to 24 hours under atmospheric pressure .
前記樹脂の反応開始温度以下の雰囲気下に前記ガラス繊維マットをおく工程は、大気下における前記樹脂の乾燥工程であることを特徴とする請求項1に記載のガラス繊維フィルタの製造方法。   The method for producing a glass fiber filter according to claim 1, wherein the step of placing the glass fiber mat in an atmosphere at or below the reaction start temperature of the resin is a step of drying the resin in the atmosphere. 前記ガラス繊維マットを保管する工程は、保管により粘着性が伸長可能領域を超えた場合に、水分を付与することで粘着性を前記伸長可能領域にする工程をさらに備えた請求項1又は2に記載のガラス繊維フィルタの製造方法。 Step storing said glass fiber mat, when the adhesive by storage exceeds the stretchable regions, to claim 1 or 2 further comprising the step of adhesiveness by imparting moisture to the extended area The manufacturing method of the glass fiber filter of description. 前記ガラス繊維マットを形成する工程は、ガラス繊維を回転ドラムに巻回しながら前記樹脂を付着させ、前記回転ドラムに巻回されたガラス繊維の積層体を前記回転ドラムの軸方向に切り開いて前記ガラス繊維マットを形成する工程であることを特徴とする請求項1乃至3の何れか1項に記載のガラス繊維フィルタの製造方法。   The step of forming the glass fiber mat includes the step of attaching the resin while winding the glass fiber around a rotating drum, and cutting the glass fiber laminate wound around the rotating drum in the axial direction of the rotating drum. The method for producing a glass fiber filter according to any one of claims 1 to 3, wherein the method is a step of forming a fiber mat. 前記ガラス繊維マットを伸長させる工程は、前記ガラス繊維を前記ドラムの軸方向に伸長する工程であることを特徴とする請求項4に記載のガラス繊維フィルタの製造方法。   5. The method for producing a glass fiber filter according to claim 4, wherein the step of extending the glass fiber mat is a step of extending the glass fiber in the axial direction of the drum. 前記ガラス繊維マットを形成する工程において、前記水溶性又は溶媒溶解性で、かつ熱硬化型樹脂の濃度を20〜70%とし、前記ガラス繊維マットに対して付着率(固形分換算)を10〜40%とすることを特徴とする請求項1乃至5の何れか1項に記載のガラス繊維フィルタの製造方法。   In the step of forming the glass fiber mat, the concentration of the water-soluble or solvent-soluble and thermosetting resin is 20 to 70%, and the adhesion rate (in terms of solid content) is 10 to 10% with respect to the glass fiber mat. The method for producing a glass fiber filter according to any one of claims 1 to 5, wherein the glass fiber filter is 40%.
JP2009248181A 2009-10-28 2009-10-28 Manufacturing method of glass fiber filter Active JP5421730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009248181A JP5421730B2 (en) 2009-10-28 2009-10-28 Manufacturing method of glass fiber filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009248181A JP5421730B2 (en) 2009-10-28 2009-10-28 Manufacturing method of glass fiber filter

Publications (2)

Publication Number Publication Date
JP2011092842A JP2011092842A (en) 2011-05-12
JP5421730B2 true JP5421730B2 (en) 2014-02-19

Family

ID=44110371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009248181A Active JP5421730B2 (en) 2009-10-28 2009-10-28 Manufacturing method of glass fiber filter

Country Status (1)

Country Link
JP (1) JP5421730B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3743285B2 (en) * 2000-12-15 2006-02-08 ヤマハ株式会社 Process for producing semi-cured wood panels and semi-cured wood panels
JP4550387B2 (en) * 2003-08-28 2010-09-22 日本無機株式会社 Heat resistant prefilter and method for producing the same
US20060078719A1 (en) * 2004-10-07 2006-04-13 Miele Philip F Water repellant fiberglass binder comprising a fluorinated polymer
JP5263926B2 (en) * 2007-11-30 2013-08-14 信越化学工業株式会社 DIE BONDING AGENT COMPOSITION AND SEMICONDUCTOR DEVICE USING THE SAME

Also Published As

Publication number Publication date
JP2011092842A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
US9868275B2 (en) Method for preparing carbon fiber composite material
US9840061B2 (en) Blended thermoplastic and thermoset materials and methods
JP7214194B2 (en) Ceramic composite material and its manufacturing method
JP5691182B2 (en) Manufacturing method of inorganic fiber mat
JP2018528110A5 (en)
JP2011520657A (en) Pipe-shaped component and manufacturing method thereof
JP5421730B2 (en) Manufacturing method of glass fiber filter
EP1592853B2 (en) Mineral wool panel comprising a web which covers both faces thereof
US7685695B2 (en) Method of producing a speaker
US4685241A (en) Graphite fiber fishing rod
US11135782B2 (en) Manufacturing method and device of carbon fiber sheet molding compound
JP5352423B2 (en) Structure control method of glass fiber filter
JP7192881B2 (en) Inorganic fiber binder and inorganic fiber mat
JP2023543549A (en) Method for producing shaped objects by filament winding
KR101728159B1 (en) Method of manufacturing a fishing rod
US6767625B2 (en) Method for making a charge of moldable material
JP3743285B2 (en) Process for producing semi-cured wood panels and semi-cured wood panels
US20080054530A1 (en) Pre-Impregnated Sheet With Bound Fibers
JP2021029400A (en) Manufacturing method of wooden straw
KR101478032B1 (en) manufacturing mehtod of insulating materials having glass fiber
JPH09262910A (en) Production of fiber reinforced resin pipe
CN110407990B (en) Ester modified phenolic resin and preparation method and application thereof
JP3913805B2 (en) Golf club shaft manufacturing method
RU2416844C1 (en) Method of making dielectric cowling
JPH02167859A (en) Production of carbon fiber-reinforced carbon composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131122

R150 Certificate of patent or registration of utility model

Ref document number: 5421730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250