JP5420843B2 - Method for reducing hydrocarbon sulfur content - Google Patents

Method for reducing hydrocarbon sulfur content Download PDF

Info

Publication number
JP5420843B2
JP5420843B2 JP2008007538A JP2008007538A JP5420843B2 JP 5420843 B2 JP5420843 B2 JP 5420843B2 JP 2008007538 A JP2008007538 A JP 2008007538A JP 2008007538 A JP2008007538 A JP 2008007538A JP 5420843 B2 JP5420843 B2 JP 5420843B2
Authority
JP
Japan
Prior art keywords
hydrocarbon
sulfur content
sulfur
mass
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008007538A
Other languages
Japanese (ja)
Other versions
JP2009167309A (en
Inventor
泰博 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2008007538A priority Critical patent/JP5420843B2/en
Publication of JP2009167309A publication Critical patent/JP2009167309A/en
Application granted granted Critical
Publication of JP5420843B2 publication Critical patent/JP5420843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、オレフィン分を含む炭化水素中の硫黄分を低減する方法に関し、特には熱分解装置、あるいは接触分解装置から生成する軽質な炭化水素中の硫黄分を除去、低減する方法に関する。   The present invention relates to a method for reducing sulfur content in hydrocarbons containing olefins, and more particularly to a method for removing and reducing sulfur content in light hydrocarbons produced from a thermal cracking device or catalytic cracking device.

石油精製の分野において熱分解装置とは、触媒を用いることなく高温下で分子量の大きい炭化水素分子を分解し、分子量の小さい軽質炭化水素を得る装置のことである。原料炭化水素としては、重質原油、常圧残油、減圧残油などの重質油が通常用いられ、熱分解によってエチレン・プロピレンといった石油化学の原料を多く含むガス、ナフサや灯軽油といった燃料油等が主に生成物として得られる。原料油として重質油が用いられることから、原料油中の硫黄分は高く、したがって生成物中に含まれる硫黄分も高くなる。熱分解生成物はまた、オレフィン分にも富んでおり、ライトエンド側のガス分やナフサ留分もオレフィン分に富んでいる。この結果、石油化学原料や高オクタン価ガソリン基材として利用できる化合物が多く含まれるが、硫黄分が、通常数百〜数千質量ppmとかなり多く含まれるためそのまま利用することは困難である。このような高い硫黄分の炭化水素を従来知られている一般的な水素化精製によって脱硫するとオレフィン分がほとんど水素化されてしまい、ガソリン基材や石油化学原料としての価値を失ってしまう。従来、このような高い硫黄分の熱分解ガス成分は、そのままあるいは水素化精製を経て専ら製油所の自家燃料などに消費され、商品として有効に利用されていなかった。   In the field of petroleum refining, a thermal cracking device is a device that decomposes hydrocarbon molecules having a large molecular weight at a high temperature without using a catalyst to obtain light hydrocarbons having a small molecular weight. Heavy hydrocarbons such as heavy crude oil, atmospheric residue, and vacuum residue are usually used as raw material hydrocarbons. Gases containing many petrochemical raw materials such as ethylene and propylene by pyrolysis, fuels such as naphtha and kerosene Oil etc. are mainly obtained as a product. Since heavy oil is used as the feed oil, the sulfur content in the feed oil is high, and therefore the sulfur content in the product is also high. The pyrolysis product is also rich in olefins, and the gas and naphtha fractions on the light end side are also rich in olefins. As a result, many compounds that can be used as petrochemical raw materials and high octane gasoline bases are contained, but it is difficult to use them as they are because the sulfur content is usually quite high at several hundred to several thousand mass ppm. When such high-sulfur hydrocarbons are desulfurized by conventional hydrorefining, the olefin content is almost hydrogenated, and the value as a gasoline base material or petrochemical raw material is lost. Conventionally, such a pyrolytic gas component having a high sulfur content has been consumed as it is or after being subjected to hydrorefining, for example, in private fuel of a refinery, and has not been effectively used as a product.

オレフィン分の水素化反応を進行させない脱硫方法として、吸着による脱硫が提案されている(特許文献1、2)。この方法は、水素を用いない緩やかな条件で脱硫することができるため、簡便な設備、かつエネルギー消費が少なく、経済的な運転コストで実施可能であり、当然、オレフィン分はそのまま保持することができる。
しかし、前記吸着による脱硫方法では、硫黄分を吸着剤に取り込むという原理上、原料油の硫黄分が高濃度である場合には短時間で破過してしまい、これを回避するには、吸着剤を大量に用いたり、あるいは、吸着剤を繰り返し再生しながら用いなければならず、大量の吸着剤の購入費用や吸着剤の再生に要するエネルギーが大きいといった実用上の問題があった。
Adsorption desulfurization has been proposed as a desulfurization method in which the hydrogenation reaction of the olefin does not proceed (Patent Documents 1 and 2). Since this method can be desulfurized under mild conditions without using hydrogen, it can be carried out with simple equipment, low energy consumption, and economical operating costs. Naturally, the olefin content can be kept as it is. it can.
However, in the desulfurization method by adsorption, in principle, when the sulfur content of the raw material oil is high, the sulfur content is broken into the adsorbent, and in order to avoid this, There has been a practical problem that a large amount of the adsorbent must be used or the adsorbent must be repeatedly regenerated, so that the purchase cost of the large amount of adsorbent and the energy required to regenerate the adsorbent are large.

未だ、重質油分解装置から得られる分解ガス成分から、オレフィン分を減少させることなく、硫黄分をマイルドな条件において安定にかつ経済的に硫黄分を除去、低減する方法は確立されていない。
特開2006−335865号公報 特開2006−335866号公報
There has not yet been established a method for removing and reducing sulfur content stably and economically under mild conditions without reducing olefin content from cracked gas components obtained from heavy oil cracking equipment.
JP 2006-335865 A JP 2006-335866 A

そこで、本発明は、重質油の非水素下における分解装置から得られる硫黄及びオレフィンを多量に含有する分解石油ガス成分から、オレフィン分を減少させることなく、長期間にわたって安定にかつ経済的に硫黄分を除去、低減できる方法を提供することを課題とする。   Therefore, the present invention provides a stable and economically stable product over a long period of time without reducing the olefin content from a cracked petroleum gas component containing a large amount of sulfur and olefin obtained from a cracker under non-hydrogen of heavy oil. It is an object to provide a method capable of removing and reducing sulfur content.

本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、硫黄化合物とオレフィンやアルカリとの反応を利用して硫黄化合物の分子量を大きくして分留すると容易に硫黄分を除去できることを見出し、本発明に想到した。
すなわち、本発明の以下の炭化水素の硫黄分低減方法である。
(1)オレフィン分を1容量%以上、及び硫黄分を100質量ppm以上含有し、かつ、全硫黄分に占めるメルカプタン硫黄分が80質量%以上、スルフィド硫黄分が10質量%以下、及びチオフェン硫黄分が10質量%以下である原料炭化水素を処理して硫黄化合物の分子量を大きくする工程と、大きくなった分子量の硫黄化合物を蒸留分離して炭化水素中の硫黄分を10質量ppm以下に低減する工程とを含むことを特徴とする炭化水素の硫黄分低減方法。
(2)原料炭化水素が熱分解して得られた炭素数2〜4の炭化水素及び/又は接触分解して得られた炭素数2〜4の炭化水素を80容量%以上含有する上記(1)に記載の炭化水素の硫黄分低減方法。
(3)硫黄化合物の分子量を大きくする工程が、アルカリ溶液で処理である工程である上記(1)又は(2)に記載の炭化水素の硫黄分低減方法。
(4)原料炭化水素に含まれる炭素数1〜3のメルカプタン硫黄の割合が全メルカプタン硫黄分に対して90質量%以上である上記(1)〜(3)に記載の炭化水素の硫黄分低減方法。
As a result of intensive studies to solve the above problems, the present inventor can easily remove the sulfur content by fractionating by increasing the molecular weight of the sulfur compound by utilizing the reaction between the sulfur compound and the olefin or alkali. As a result, the present invention has been conceived.
That is, the following hydrocarbon sulfur content reducing method of the present invention.
(1) The olefin content is 1% by volume or more, and the sulfur content is 100 mass ppm or more, and the mercaptan sulfur content in the total sulfur content is 80% by mass or more, the sulfide sulfur content is 10% by mass or less, and thiophene sulfur. A process of increasing the molecular weight of the sulfur compound by treating the raw material hydrocarbon having a content of 10% by mass or less, and reducing the sulfur content in the hydrocarbon to 10 mass ppm or less by distilling and separating the sulfur compound having the increased molecular weight. A process for reducing the sulfur content of hydrocarbons.
(2) The above (1) containing 80% by volume or more of a hydrocarbon having 2 to 4 carbon atoms obtained by pyrolysis of the raw material hydrocarbon and / or a hydrocarbon having 2 to 4 carbon atoms obtained by catalytic cracking The sulfur content reduction method for hydrocarbons as described in 1).
(3) The method for reducing hydrocarbon sulfur content according to (1) or (2) above, wherein the step of increasing the molecular weight of the sulfur compound is a step of treatment with an alkaline solution.
(4) The sulfur content reduction of the hydrocarbon according to the above (1) to (3), wherein the ratio of the mercaptan sulfur having 1 to 3 carbon atoms contained in the raw material hydrocarbon is 90% by mass or more with respect to the total mercaptan sulfur content. Method.

本発明によれば、硫黄化合物の分子量を大きくする工程と大きくなった分子量の硫黄化合物を蒸留分離する工程とからなることから、簡単な設備、容易な操作で、オレフィン分を含む炭化水素から硫黄分を、オレフィン分を損なうことなく長期間にわたって安定にかつ経済的に低減することができるという格別な効果を奏する。   According to the present invention, since it comprises a step of increasing the molecular weight of the sulfur compound and a step of distilling and separating the sulfur compound of the increased molecular weight, the sulfur from the hydrocarbon containing the olefin can be obtained with simple equipment and easy operation. There is an extraordinary effect that the content can be stably and economically reduced over a long period of time without impairing the olefin content.

[原料炭化水素]
本発明の炭化水素の硫黄分低減方法において、対象となる炭化水素(原料炭化水素)は、硫黄分を100質量ppm以上有し、かつ、全硫黄分に占めるメルカプタン硫黄分が80質量%以上、スルフィド硫黄分が10質量%以下、及び、チオフェン硫黄分が10質量%以下である。原料炭化水素中の全硫黄分は、好ましくは100〜5,000質量ppmであり、さらに好ましくは100〜2,000質量ppmであり、特に好ましくは100〜1,000質量ppmである。硫黄分およびメルカプタン硫黄分が5,000質量ppmを超えると、後述する硫黄分を重質化する処理において、硫黄分の反応率が低下して重質化率が低下し好ましくない。
[Raw material hydrocarbon]
In the hydrocarbon sulfur content reduction method of the present invention, the target hydrocarbon (raw material hydrocarbon) has a sulfur content of 100 mass ppm or more, and the mercaptan sulfur content in the total sulfur content is 80 mass% or more, The sulfide sulfur content is 10% by mass or less, and the thiophene sulfur content is 10% by mass or less. The total sulfur content in the raw material hydrocarbon is preferably 100 to 5,000 mass ppm, more preferably 100 to 2,000 mass ppm, and particularly preferably 100 to 1,000 mass ppm. If the sulfur content and the mercaptan sulfur content exceed 5,000 ppm by mass, in the treatment for increasing the sulfur content, which will be described later, the reaction rate of the sulfur content decreases and the polymerization rate decreases, which is not preferable.

原料炭化水素中の全硫黄分に占めるメルカプタン硫黄分の割合は、好ましくは90質量%以上であり、より好ましくは95質量%以上であり、特に好ましくは97質量%以上である。また、全硫黄分に占めるメルカプタン硫黄分の割合が80質量%未満であると、硫黄化合物を重質化処理した後、重質硫黄分を蒸留除去して得られる軽質留分側の炭化水素(製品炭化水素ともいう)中に硫黄分が残存しやすくなり好ましくない。また、メルカプタン硫黄分は炭素数が小さいほど反応性が高いことから、原料炭化水素中の炭素数1〜3のメルカプタン硫黄分の全メルカプタン硫黄分に対する割合は、好ましくは90質量%以上であり、より好ましくは95質量%以上、さらに好ましくは97質量%以上である。   The ratio of the mercaptan sulfur content in the total sulfur content in the raw material hydrocarbon is preferably 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 97% by mass or more. In addition, when the mercaptan sulfur content in the total sulfur content is less than 80% by mass, the hydrocarbon on the light fraction side obtained by distilling off the heavy sulfur content after desulfurizing the sulfur compound ( Sulfur content tends to remain in the product hydrocarbon), which is not preferable. Further, since the mercaptan sulfur content is higher in reactivity as the carbon number is smaller, the ratio of the mercaptan sulfur content of 1 to 3 carbon atoms in the raw material hydrocarbon to the total mercaptan sulfur content is preferably 90% by mass or more, More preferably, it is 95 mass% or more, More preferably, it is 97 mass% or more.

原料炭化水素の全硫黄分に占めるスルフィド硫黄分の割合は、好ましくは5質量%以下であり、より好ましくは1質量%以下である。また、原料炭化水素の全硫黄分に占めるチオフェン硫黄分の割合は、好ましくは5質量%以下であり、より好ましくは1質量%以下である。   The ratio of the sulfide sulfur content in the total sulfur content of the raw material hydrocarbon is preferably 5% by mass or less, and more preferably 1% by mass or less. Moreover, the ratio of the thiophene sulfur content to the total sulfur content of the raw material hydrocarbon is preferably 5% by mass or less, more preferably 1% by mass or less.

スルフィド硫黄およびチオフェン硫黄は、安定な、重質化しにくい硫黄化合物であるため、原料炭化水素中で全硫黄分に占めるスルフィド硫黄分またはチオフェン硫黄分の割合が10質量%を超えると、後述する硫黄化合物の分子量を大きくする工程で大きな分子量の硫黄化合物を生成しにくいため、蒸留分離する工程を経ても、硫黄分が10質量ppm以下の軽質留分炭化水素(製品炭化水素)を得るのが困難になり好ましくない。   Since sulfide sulfur and thiophene sulfur are stable and difficult to heavyize sulfur compounds, if the ratio of sulfide sulfur content or thiophene sulfur content in the total sulfur content in the raw material hydrocarbon exceeds 10% by mass, sulfur described later Since it is difficult to produce a large molecular weight sulfur compound in the process of increasing the molecular weight of the compound, it is difficult to obtain light fraction hydrocarbons (product hydrocarbons) having a sulfur content of 10 mass ppm or less even after the process of distillation separation. It is not preferable.

また、本発明の炭化水素の硫黄分低減方法において、原料炭化水素中のオレフィン分の割合は1容量%以上であり、好ましくは10容量%以上であり、より好ましくは20容量%以上であり、特に好ましくは30容量%以上である。オレフィン分が1容量%未満であると、オレフィンを減少させることなく硫黄分を低減するメリットがほとんど享受できなくなり好ましくない。   Further, in the hydrocarbon sulfur content reducing method of the present invention, the ratio of the olefin content in the raw material hydrocarbon is 1% by volume or more, preferably 10% by volume or more, more preferably 20% by volume or more, Especially preferably, it is 30 volume% or more. If the olefin content is less than 1% by volume, the merit of reducing the sulfur content without decreasing the olefin is hardly obtained, which is not preferable.

本発明で用いる原料炭化水素としては、炭素数2〜4の炭化水素を80容量%以上含む炭化水素が好ましい炭化水素として挙げられる。炭素数2〜4を主成分とする留分には、反応性が高く、比較的容易に除去できるメルカプタン硫黄分が多く含有されるためである。熱分解装置や接触分解装置から得られる炭素数2〜4の炭化水素は、メルカプタン硫黄分を多く含有し、前記硫黄分の規定を満たすので、好ましい原料炭化水素として挙げられる。特に、熱分解装置から得られる炭化水素が、一般的に接触分解よりも硫黄分が多い重質炭化水素油を処理するため、適度に多い硫黄分を含有しており、本発明の原料炭化水素として好ましい。   The raw material hydrocarbon used in the present invention is preferably a hydrocarbon containing 80% by volume or more of a hydrocarbon having 2 to 4 carbon atoms. This is because the fraction containing 2 to 4 carbon atoms as a main component contains a high amount of mercaptan sulfur which is highly reactive and can be removed relatively easily. The hydrocarbon having 2 to 4 carbon atoms obtained from the thermal cracking device or the catalytic cracking device contains a large amount of mercaptan sulfur and satisfies the above-mentioned definition of the sulfur content, and is therefore cited as a preferred raw material hydrocarbon. In particular, the hydrocarbon obtained from the thermal cracking apparatus generally contains a large amount of sulfur in order to treat heavy hydrocarbon oil having a higher sulfur content than catalytic cracking, and the raw material hydrocarbon of the present invention As preferred.

後述の硫黄化合物の分子量を大きくする工程における効率の観点から、原料炭化水素に含まれる硫化水素は少ないほど好ましく、アミン洗浄やストリッピングなどの硫化水素を除去する工程を経た炭化水素を好適に用いることができる。原料炭化水素中の硫化水素濃度は10容量%以下が好ましく、より好ましくは1容量%以下、さらに好ましくは0.1容量%以下、特に好ましくは0.01容量%以下である。   From the viewpoint of efficiency in the step of increasing the molecular weight of the sulfur compound described later, the amount of hydrogen sulfide contained in the raw material hydrocarbon is preferably as small as possible, and the hydrocarbon that has undergone the step of removing hydrogen sulfide such as amine washing or stripping is preferably used. be able to. The concentration of hydrogen sulfide in the raw material hydrocarbon is preferably 10% by volume or less, more preferably 1% by volume or less, still more preferably 0.1% by volume or less, and particularly preferably 0.01% by volume or less.

[硫黄化合物の分子量を大きくする工程]
この工程は、炭化水素中に含まれる硫黄化合物の分子量を大きくする工程である。原料炭化水素中に含有される低分子量のメルカプタン硫黄化合物の分子量を選択的に大きくすることにより、その含硫黄化合物の重質化を行うものである。具体的には、アルカリ溶液による処理や、硫黄化合物とオレフィン類とを反応させる方法などが挙げられるが、アルカリ溶液による処理が好適に用いられる。アルカリ溶液による処理は、低温・低圧というマイルドな条件で行うことができるため特に好ましい。
アルカリ溶液によって処理する場合、アルカリ溶液と原料炭化水素とを、空気または酸素の存在下にて接触させ、メルカプタン硫黄分をジスルフィド硫黄化合物に変換する。アルカリ溶液と原料炭化水素は水と油であり、接触効率を高めるために、双方を向流にて接触させたり、アルカリ溶液槽に原料炭化水素を細かくバブリングさせたりすることが好ましい。このとき、生成したジスルフィド化合物は原料炭化水素に含まれる。
硫黄化合物とオレフィン類とを反応させ硫黄化合物を重質化する方法としては、JPI Petroleum Refining Conference “Recent Progress in Petroleum Process Technology”、37 (2002) に記載のSHUプロセスを用いることができる。
[Step of increasing molecular weight of sulfur compound]
This step is a step of increasing the molecular weight of the sulfur compound contained in the hydrocarbon. By selectively increasing the molecular weight of the low molecular weight mercaptan sulfur compound contained in the raw material hydrocarbon, the sulfur-containing compound is made heavier. Specific examples include a treatment with an alkaline solution and a method of reacting a sulfur compound and an olefin. A treatment with an alkaline solution is preferably used. The treatment with the alkaline solution is particularly preferable because it can be performed under mild conditions of low temperature and low pressure.
When treating with an alkaline solution, the alkaline solution and the raw material hydrocarbon are brought into contact with each other in the presence of air or oxygen to convert the mercaptan sulfur content into a disulfide sulfur compound. The alkaline solution and the raw material hydrocarbon are water and oil, and in order to increase the contact efficiency, it is preferable that both are brought into contact with each other in a countercurrent or the raw material hydrocarbon is finely bubbled in the alkaline solution tank. At this time, the produced disulfide compound is included in the raw material hydrocarbon.
The SHU process described in JPI Petroleum Refining Conference “Recent Progress in Petroleum Process Technology”, 37 (2002) can be used as a method for reacting a sulfur compound with an olefin to make the sulfur compound heavy.

アルカリとしてはメルカプタン硫黄分と反応するものであれば何でも良いが、水酸化ナトリウムが好ましい物質として挙げられる。アルカリとしては、アンモニアや水酸化カリウムも好適に用いられる。水酸化ナトリウム水溶液を用いる場合、水溶液中に水酸化ナトリウムが0.01〜50重量%含まれていることが好ましく、より好ましくは5〜30重量%であり、さらに好ましくは10〜25重量%である。溶液中の水酸化ナトリウム濃度が0.01重量%未満だと、メルカプタン硫黄分の重質化反応が進行しづらくなり、効率よくメルカプタン硫黄分を除去することが困難になり好ましくない。   Any alkali can be used as long as it reacts with mercaptan sulfur, and sodium hydroxide is a preferred substance. As the alkali, ammonia or potassium hydroxide is also preferably used. When using an aqueous sodium hydroxide solution, the aqueous solution preferably contains 0.01 to 50% by weight of sodium hydroxide, more preferably 5 to 30% by weight, and even more preferably 10 to 25% by weight. is there. When the sodium hydroxide concentration in the solution is less than 0.01% by weight, it is difficult to make the mercaptan sulfur heavy reaction difficult, and it becomes difficult to efficiently remove the mercaptan sulfur.

水溶液中の水酸化ナトリウム濃度が50重量%を超えると、一部の水酸化ナトリウムが水に溶けなくなり、好ましくない。アルカリ溶液と原料炭化水素を接触させる温度は0〜100℃が好ましく、さらに好ましくは20〜80℃であり、より好ましくは30〜60℃である。接触温度が0℃未満だと、効率よくメルカプタン硫黄分を除去することが困難になり好ましくない。接触温度が100℃を超えると、溶液が気体となり炭化水素との接触効率が低下し好ましくない。   When the concentration of sodium hydroxide in the aqueous solution exceeds 50% by weight, a part of sodium hydroxide is not dissolved in water, which is not preferable. 0-100 degreeC is preferable, as for the temperature which an alkaline solution and raw material hydrocarbon are made to contact, More preferably, it is 20-80 degreeC, More preferably, it is 30-60 degreeC. When the contact temperature is less than 0 ° C., it is difficult to efficiently remove the mercaptan sulfur content, which is not preferable. When the contact temperature exceeds 100 ° C., the solution becomes a gas and the contact efficiency with the hydrocarbon is lowered, which is not preferable.

炭化水素がガスの場合、アルカリ溶液と接触後、気液分離して蒸留分離工程へ炭化水素を導き、炭化水素が液体の場合は、アルカリ溶液と混合後、静置分離により炭化水素と水相を分離して、蒸留分離工程へ導くことができる。   When the hydrocarbon is a gas, after contacting with the alkali solution, gas-liquid separation is performed to guide the hydrocarbon to the distillation separation process. When the hydrocarbon is a liquid, after mixing with the alkali solution, the hydrocarbon and water phase are separated by stationary separation. Can be separated into a distillation separation process.

[蒸留分離]
前記の硫黄化合物の分子量を大きくする工程により、重質化したメルカプタン類の硫黄化合物は重質留分中に偏在しているので、分留することで分子量が大きくなった硫黄化合物を除去することができる。
[Distillation separation]
Since the sulfur compounds of the heavy mercaptans are unevenly distributed in the heavy fraction by the step of increasing the molecular weight of the sulfur compound, the sulfur compound having a large molecular weight is removed by fractional distillation. Can do.

炭化水素を、前記硫黄化合物の分子量を大きくする工程を行った後に、蒸留分離し、軽質留分と重質留分を得る。蒸留分離は、軽質留分の硫黄分が10質量ppm以下、好ましくは5質量ppm以下、さらに好ましくは1質量ppm以下となるように行う。また、軽質留分のメルカプタン硫黄分は好ましくは5質量ppm以下、より好ましくは1質量ppm以下となるよう蒸留分離することが好ましい。   After performing the step of increasing the molecular weight of the sulfur compound, the hydrocarbon is separated by distillation to obtain a light fraction and a heavy fraction. The distillation separation is performed so that the sulfur content of the light fraction is 10 ppm by mass or less, preferably 5 ppm by mass or less, more preferably 1 ppm by mass or less. The mercaptan sulfur content of the light fraction is preferably distilled and separated so as to be 5 ppm by mass or less, more preferably 1 ppm by mass or less.

蒸留分離して得られた軽質留分は、硫黄分が10質量ppm以下、好ましくは5質量ppm以下、さらに好ましくは1質量ppm以下である。また、軽質留分のメルカプタン硫黄分は好ましくは5質量ppm以下、より好ましくは1質量ppm以下である。軽質留分の硫黄分が10質量ppmを超えたり、メルカプタン硫黄分が5質量ppmを超えると、石油化学製品を得る装置において、触媒の活性低下や装置の腐食など悪影響を及ぼしてしまうため好ましくない。   The light fraction obtained by distillation separation has a sulfur content of 10 mass ppm or less, preferably 5 mass ppm or less, more preferably 1 mass ppm or less. The mercaptan sulfur content of the light fraction is preferably 5 ppm by mass or less, more preferably 1 ppm by mass or less. If the sulfur content of the light fraction exceeds 10 mass ppm or the mercaptan sulfur content exceeds 5 mass ppm, it is not preferable because it will adversely affect the activity of the catalyst and the corrosion of the device in the apparatus for obtaining petrochemical products. .

以下に、実施例により具体的に説明するが、本発明はこれらの例により何ら制限されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

(実施例1)
中東系原油の減圧残油留分をディレードコーキングプロセスによって処理し、得られた生成物を分留し、さらに、得られた炭素数3〜4の炭化水素をジイソプロピルアミン溶液と向流接触させて硫化水素の除去を行い原料として用いる炭化水素Aを得た。炭化水素A中の硫化水素濃度は0.01容量%以下であった。炭化水素Aを、水酸化ナトリウムを15重量%含む水酸化ナトリウム水溶液に40℃にて向流接触させた後、軽質留分中に炭素数4の炭化水素が含まれないように蒸留分離し、その軽質留分である低硫黄炭化水素Bと重質留分である重質炭化水素Cを得た。尚、炭化水素Aに対する炭化水素Bの割合は33容量%であった。原料炭化水素A、及び蒸留分離して得られた炭化水素BとCの性状を表1に示す。
Example 1
A Middle East crude oil vacuum residue fraction is treated by a delayed coking process, the resulting product is fractionally distilled, and the obtained hydrocarbon having 3 to 4 carbon atoms is brought into countercurrent contact with a diisopropylamine solution. Removal of hydrogen sulfide gave hydrocarbon A used as a raw material. The hydrogen sulfide concentration in the hydrocarbon A was 0.01% by volume or less. Hydrocarbon A was subjected to countercurrent contact at 40 ° C. with an aqueous solution of sodium hydroxide containing 15% by weight of sodium hydroxide, and then distilled and separated so that the light fraction did not contain hydrocarbons having 4 carbon atoms. The low-sulfur hydrocarbon B that is the light fraction and the heavy hydrocarbon C that is the heavy fraction were obtained. The ratio of hydrocarbon B to hydrocarbon A was 33% by volume. Table 1 shows properties of the raw material hydrocarbon A and the hydrocarbons B and C obtained by distillation separation.

(実施例2)
実施例1の炭化水素Aを、水酸化ナトリウムを15重量%含む水酸化ナトリウム水溶液に40℃にて向流接触させた後、軽質留分:重質留分が95:5(容量比)となるように分留し、その軽質留分である低硫黄炭化水素Dと重質留分である重質炭化水素Eを得た。炭化水素DとEの性状を表1に示す。
(Example 2)
After the hydrocarbon A of Example 1 was brought into countercurrent contact with an aqueous sodium hydroxide solution containing 15% by weight of sodium hydroxide at 40 ° C., the light fraction: heavy fraction was 95: 5 (volume ratio). Thus, a low-sulfur hydrocarbon D that is a light fraction and a heavy hydrocarbon E that is a heavy fraction were obtained. Properties of hydrocarbons D and E are shown in Table 1.

(比較例1)
実施例1の原料炭化水素Aを、ニッケル−モリブデン系水素化脱硫触媒(Advanced Refining Technologies社製HOP414)を用い、反応温度350℃、反応圧力5MPa、ガス空間速度(GHSV)360h−1、水素/油比300NL/Lの条件で水素化脱硫し炭化水素Fを得た。得られたHDS炭化水素Fの性状を表1に示す。
(Comparative Example 1)
Using the nickel-molybdenum-based hydrodesulfurization catalyst (HOP414 manufactured by Advanced Refining Technologies), the raw material hydrocarbon A of Example 1 was subjected to a reaction temperature of 350 ° C., a reaction pressure of 5 MPa, a gas space velocity (GHSV) of 360 h −1 , hydrogen / Hydrodesulfurization was performed under conditions of an oil ratio of 300 NL / L to obtain hydrocarbon F. Properties of the obtained HDS hydrocarbon F are shown in Table 1.

密度はJIS K2249によって測定し、硫黄分はJIS K2541記載の微量電量滴定式酸化法に準拠して測定し、メルカプタン硫黄分、スルフィド硫黄分、チオフェン硫黄分は化学発光硫黄検出器(SCD)を備えたガスクロマトグラフィーにより測定し、炭化水素組成はJIS K2240記載のガスクロマトグラフ法によって測定した。   The density is measured according to JIS K2249, the sulfur content is measured according to the microcoulometric titration method described in JIS K2541, and the mercaptan sulfur content, sulfide sulfur content, and thiophene sulfur content are equipped with a chemiluminescent sulfur detector (SCD). The hydrocarbon composition was measured by gas chromatography described in JIS K2240.

Figure 0005420843
Figure 0005420843

以上に示す通り本発明の硫黄分低減方法によると、オレフィン分を減少させることなく硫黄分を1質量ppm以下まで脱硫することが可能であることが分かる。すなわち、実施例1で得られた低硫黄炭化水素Bは、原料炭化水素Aに含まれていたCオレフィン分をほぼ全量含んでおり、実施例2で得られた低硫黄炭化水素Dは、原料炭化水素Aに含まれていたCオレフィン分のほぼ全量とCオレフィン分の95%を含んでいる。したがって、本発明の炭化水素の硫黄分低減方法により、石油化学原料や高オクタン価ガソリン基材として有用な、超低硫黄で、高いオレフィン分を有する炭化水素を得られることが分かる。一方、比較例1のHDS炭化水素Fのデータから、水素化脱硫では、オレフィン分がすべて水素化されて全く残存しておらず、石油化学原料や高オクタン価ガソリン基材として不適であることが分かる。 As shown above, according to the sulfur content reducing method of the present invention, it is understood that the sulfur content can be desulfurized to 1 ppm by mass or less without reducing the olefin content. That is, the low sulfur hydrocarbon B obtained in Example 1 contains almost the entire amount of the C 3 olefin contained in the raw material hydrocarbon A, and the low sulfur hydrocarbon D obtained in Example 2 is: Almost all of the C 3 olefin contained in the raw material hydrocarbon A and 95% of the C 4 olefin are contained. Therefore, it can be seen that the hydrocarbon sulfur content reducing method of the present invention can provide a hydrocarbon having an ultra-low sulfur and a high olefin content that is useful as a petrochemical raw material or a high octane gasoline base material. On the other hand, from the data of HDS hydrocarbon F of Comparative Example 1, it can be seen that hydrodesulfurization is not suitable as a petrochemical raw material or a high octane gasoline base material because all the olefin content is hydrogenated and does not remain at all. .

Claims (3)

炭素数2〜4の炭化水素を80容量%以上含み、オレフィン分を20容量%以上、及び硫黄分を100質量ppm以上含有し、かつ、全硫黄分に占めるメルカプタン硫黄分が80質量%以上、スルフィド硫黄分が10質量%以下、及びチオフェン硫黄分が10質量%以下、硫化水素濃度が0.1容量%以下である原料炭化水素と水酸化ナトリウムを5〜30重量%含む水酸化ナトリウム水溶液とを、空気または酸素雰囲気下にて、接触温度20〜80℃で接触させ、原料炭化水素中のメルカプタン硫黄分をジスルフィド硫黄分に変換することによって硫黄化合物の分子量を大きくする工程と、大きくなった分子量の硫黄化合物を蒸留分離して炭化水素中の硫黄分を10質量ppm以下に低減する工程とを含むことを特徴とする炭化水素の硫黄分低減方法。 80% by volume or more of hydrocarbon having 2 to 4 carbon atoms , 20 % by volume or more of olefin, and 100% by mass or more of sulfur, and 80% by mass or more of mercaptan sulfur in the total sulfur content, A sodium hydroxide aqueous solution containing 5 to 30% by weight of a raw material hydrocarbon having a sulfide sulfur content of 10% by mass or less, a thiophene sulfur content of 10% by mass or less , and a hydrogen sulfide concentration of 0.1% by volume or less ; And a step of increasing the molecular weight of the sulfur compound by bringing the mercaptan sulfur content in the raw material hydrocarbon into a disulfide sulfur content by contacting them at a contact temperature of 20 to 80 ° C. in an air or oxygen atmosphere . And a step of reducing the sulfur content in the hydrocarbon to 10 ppm by mass or less by distilling and separating a sulfur compound having a molecular weight. Reduction method. 原料炭化水素が、熱分解及び/又は接触分解して得られたものである請求項1に記載の炭化水素の硫黄分低減方法。 Feedstock hydrocarbon, sulfur reduction a hydrocarbon according to claim 1 is obtained pyrolytic Kai及 beauty / or catalytic cracking to. 原料炭化水素に含まれる炭素数1〜3のメルカプタン硫黄の割合が全メルカプタン硫黄分に対して90質量%以上である請求項1又は2に記載の炭化水素の硫黄分低減方法。
The method for reducing the sulfur content of a hydrocarbon according to claim 1 or 2 , wherein the ratio of the mercaptan sulfur having 1 to 3 carbon atoms contained in the raw material hydrocarbon is 90% by mass or more based on the total mercaptan sulfur content.
JP2008007538A 2008-01-17 2008-01-17 Method for reducing hydrocarbon sulfur content Active JP5420843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008007538A JP5420843B2 (en) 2008-01-17 2008-01-17 Method for reducing hydrocarbon sulfur content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008007538A JP5420843B2 (en) 2008-01-17 2008-01-17 Method for reducing hydrocarbon sulfur content

Publications (2)

Publication Number Publication Date
JP2009167309A JP2009167309A (en) 2009-07-30
JP5420843B2 true JP5420843B2 (en) 2014-02-19

Family

ID=40968870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007538A Active JP5420843B2 (en) 2008-01-17 2008-01-17 Method for reducing hydrocarbon sulfur content

Country Status (1)

Country Link
JP (1) JP5420843B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923645A (en) * 1973-09-07 1975-12-02 Ashland Oil Inc Method for oxidizing mercaptans occurring in petroleum refining streams
US4626341A (en) * 1985-12-23 1986-12-02 Uop Inc. Process for mercaptan extraction from olefinic hydrocarbons
US5320742A (en) * 1991-08-15 1994-06-14 Mobil Oil Corporation Gasoline upgrading process
US6231752B1 (en) * 1999-09-17 2001-05-15 Catalytic Distillation Technologies Process for the removal of mercaptans

Also Published As

Publication number Publication date
JP2009167309A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
US7780847B2 (en) Method of producing low sulfur, high octane gasoline
US11124713B2 (en) Process for fluidized catalytic cracking of disulfide oil to produce ethylene used for metathesis to produce propylene
US20120055849A1 (en) Process for Oxidative Desulfurization and Sulfone Management by Gasification
BRPI0704069B1 (en) sulfur-containing hydrocarbon fraction treatment process
EA012698B1 (en) Configurations and methods for removal of mercaptans from feed gases
JP2021514022A (en) Additives for supercritical water processes to upgrade heavy oils
JP2022504390A (en) Heavy oil upgrading for steam decomposition process
JP2013536249A (en) Olefin production process by cracking refinery offgas and dilute feedstock of other light hydrocarbons
US10400183B2 (en) Integrated process for activating hydroprocessing catalysts with in-situ produced sulfides and disulphides
JP2005529212A (en) Method for removing sulfur contaminants from hydrocarbon streams
JP2020514484A (en) Process for the management of sulfones by oxidative desulfurization and gasification
US10968400B2 (en) Process to remove olefins from light hydrocarbon stream by mercaptanization followed by MEROX removal of mercaptans from the separated stream
US8696890B2 (en) Desulfurization process using alkali metal reagent
JP6937832B2 (en) Oxidative desulfurization of oils and sulfone management using FCC
JP5345298B2 (en) Method for refining hydrocarbon oil
JP5420843B2 (en) Method for reducing hydrocarbon sulfur content
NL2020504B1 (en) Process for preparing a sweetened hydrocarbon liquid composition with reduced tendency to form gums, a scavenger composition for use in said process, and the sweetened hydrocarbon liquid composition with reduced tendency to form gums so prepared.
US20240034703A1 (en) Processes and Systems for Upgrading a Hydrocarbon
US8673132B2 (en) Heavy oil conversion process with in-situ potassium sulfide generation
US20210363437A1 (en) Conversion of merox process by-products to useful products in an integrated refinery process
JP5547423B2 (en) Low sulfur gasoline base material manufacturing apparatus and low sulfur gasoline base material manufacturing method
JP2006299263A (en) Novel method for desulphurising gasoline by transforming sulphur-containing compound into compound of higher boiling point
WO2019093890A1 (en) Process for preparing a sweetened hydrocarbon liquid composition with reduced tendency to form gums, a scavenger composition for use in said process, and the sweetened hydrocarbon liquid composition with reduced tendency to form gums so prepared
RU2361902C1 (en) Method of refining of light fractions of secondary origin
CN117062897A (en) Method and system for upgrading hydrocarbons

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131121

R150 Certificate of patent or registration of utility model

Ref document number: 5420843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250