JP5420425B2 - Piezoelectric transformer - Google Patents

Piezoelectric transformer Download PDF

Info

Publication number
JP5420425B2
JP5420425B2 JP2009552488A JP2009552488A JP5420425B2 JP 5420425 B2 JP5420425 B2 JP 5420425B2 JP 2009552488 A JP2009552488 A JP 2009552488A JP 2009552488 A JP2009552488 A JP 2009552488A JP 5420425 B2 JP5420425 B2 JP 5420425B2
Authority
JP
Japan
Prior art keywords
elastic body
piezoelectric
electrode
terminal
piezoelectric transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009552488A
Other languages
Japanese (ja)
Other versions
JPWO2009099093A1 (en
Inventor
亮 中川
泰秀 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2009552488A priority Critical patent/JP5420425B2/en
Publication of JPWO2009099093A1 publication Critical patent/JPWO2009099093A1/en
Application granted granted Critical
Publication of JP5420425B2 publication Critical patent/JP5420425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、圧電体の機械的振動を利用して所望の出力電圧を得る圧電トランスに関するものである。   The present invention relates to a piezoelectric transformer that obtains a desired output voltage using mechanical vibration of a piezoelectric body.

この種の圧電トランスは、例えば液晶ディスプレイのバックライト用のインバータ等の高圧用電源に使用されている。圧電トランスは、比較的低電圧の入力から高電圧の出力を発生することができる。詳しくは、圧電トランスは、そのケース内に圧電体(圧電振動子)を収容しており、この圧電体が電気エネルギーを機械エネルギーに変換する機能を有している。すなわち圧電体には一次電極及び二次電極が形成されており、このうち一次電極に入力電圧が印加されると、圧電体が機械的な振動(共振現象)を生じることにより、二次電極から変圧した状態で所望の出力電圧を得ることができる。   This type of piezoelectric transformer is used for a high-voltage power source such as an inverter for a backlight of a liquid crystal display. A piezoelectric transformer can generate a high voltage output from a relatively low voltage input. Specifically, the piezoelectric transformer contains a piezoelectric body (piezoelectric vibrator) in its case, and this piezoelectric body has a function of converting electrical energy into mechanical energy. That is, a primary electrode and a secondary electrode are formed on the piezoelectric body, and when an input voltage is applied to the primary electrode, the piezoelectric body generates mechanical vibration (resonance phenomenon), thereby causing the secondary electrode to A desired output voltage can be obtained in a transformed state.

従来、圧電トランスを実装部品の形態に加工する場合、圧電体をケース体に収容し、その内部で圧電体を弾性体等で支持することにより、圧電体の機械的振動を吸収する手法が一般的である。例えば、圧電体をケース体に収容した先行技術として、軟弾性体の表面に金属箔(金属膜)を一体に形成し、金属箔により圧電体の電極と端子とを電気的に接続しつつ、軟弾性体により電気的接続を支持する構造が知られている(例えば、日本国特開2006−49671号公報:特許文献1参照。)。
特開2006−49671号公報
Conventionally, when processing a piezoelectric transformer into the form of a mounted component, a method of absorbing mechanical vibration of a piezoelectric body by accommodating the piezoelectric body in a case body and supporting the piezoelectric body with an elastic body or the like inside is generally used. Is. For example, as a prior art in which a piezoelectric body is accommodated in a case body, a metal foil (metal film) is integrally formed on the surface of a soft elastic body, and the electrodes and terminals of the piezoelectric body are electrically connected by the metal foil, A structure that supports electrical connection with a soft elastic body is known (for example, see Japanese Patent Application Laid-Open No. 2006-49671: Patent Document 1).
JP 2006-49671 A

しかしながら、先行技術のように軟弾性体の表面に形成された極薄の金属箔(金属膜)を導電体として用いる場合、構造的に導電体が脆弱であり、長期間にわたる耐久性の面で不安がある。   However, when an extremely thin metal foil (metal film) formed on the surface of a soft elastic body as in the prior art is used as a conductor, the conductor is structurally fragile and has a long-term durability. I have anxiety.

また、金属箔と軟弾性体とでは材料の弾性係数(ヤング率)が大きく異なることから、圧電体の振動に対して軟弾性体の方は高い弾性によって充分に追随することができても、表面に一体成形された金属箔の方はほとんど振動に追随できない。この場合、軟弾性体の表面で金属箔が破断したり、剥離したりする可能性があるため、やはり長期間の使用に耐えることが難しいという問題がある。   In addition, since the elastic modulus (Young's modulus) of the material is greatly different between the metal foil and the soft elastic body, even if the soft elastic body can sufficiently follow the vibration of the piezoelectric body with high elasticity, The metal foil integrally formed on the surface can hardly follow the vibration. In this case, the metal foil may be broken or peeled off on the surface of the soft elastic body, so that there is a problem that it is difficult to withstand long-term use.

さらに先行技術は、「軟弾性体」と「金属」という異種材料を一体成形(めっき処理、スパッタリング等)していることから、その成形には複雑な加工技術を必要とする上、その分の加工コストが嵩むという問題もある。   Furthermore, since the prior art integrally molds different materials “soft elastic body” and “metal” (plating treatment, sputtering, etc.), the molding requires a complicated processing technique. There is also a problem that processing costs increase.

このため圧電トランスの技術分野においては、長期にわたる使用に耐えることができ、かつ、比較的低コストに製造することができることが一つの課題となっている。   For this reason, in the technical field of piezoelectric transformers, one problem is that it can withstand long-term use and can be manufactured at a relatively low cost.

本発明の圧電トランスは、外面に電極が形成された圧電体と、圧電体を収容する収容部を有したケース体と、ケース体に設けられ、少なくとも収容部内に一部が露出する端子と、収容部内に圧電体の電極と端子との間にて圧縮された状態で設置される弾性体と、弾性体の少なくとも圧縮方向に対向する2箇所の外面に沿う状態で弾性体とともに収容部内に収容されることにより、電極及び端子にそれぞれ圧着されて電極と端子とを相互に導通させる導電部材とを備える。   The piezoelectric transformer of the present invention, a piezoelectric body having an electrode formed on the outer surface, a case body having a housing portion for housing the piezoelectric body, a terminal provided at the case body, at least a part of which is exposed in the housing portion, An elastic body installed in a compressed state between the electrodes and terminals of the piezoelectric body in the housing portion, and housed in the housing portion together with the elastic body in a state along at least two outer surfaces facing the compression direction of the elastic body Thus, a conductive member is provided that is crimped to the electrode and the terminal, respectively, and electrically connects the electrode and the terminal.

本発明によれば、圧電体がケース体(収容部)内で弾性体によって支持されているため、圧電体の機械的な振動を弾性体で吸収することができる。さらに、弾性体は圧電体を支持するだけでなく、その外面に沿って導電部材を案内し、導電部材を圧電体の電極と端子とに圧着させて相互に導通させる機能をも有している。   According to the present invention, since the piezoelectric body is supported by the elastic body in the case body (housing portion), the mechanical vibration of the piezoelectric body can be absorbed by the elastic body. Furthermore, the elastic body not only supports the piezoelectric body, but also has a function of guiding the conductive member along the outer surface thereof, and causing the conductive member to be crimped to the electrode and the terminal of the piezoelectric body so as to conduct each other. .

この場合、導電部材は特に弾性体の表面に一体成形されている必要がないので、単体の部品としてその材料や寸法を適切に選定することにより、導電部材そのものの耐久性を高めることができる。また、導電部材は弾性体の反発力(圧縮に対する反発力)により圧電体の電極と端子の双方に対して強固に圧着されるため、圧電体が振動しても、弾性体と電極又は端子の間から導電部材が脱落することがない。したがって本発明の圧電トランスは、長期間にわたる使用にも充分耐えることができる。   In this case, since the conductive member does not need to be integrally formed on the surface of the elastic body, the durability of the conductive member itself can be increased by appropriately selecting the material and dimensions as a single component. In addition, since the conductive member is firmly pressed against both the electrode and the terminal of the piezoelectric body by the repulsive force (repulsive force against compression) of the elastic body, even if the piezoelectric body vibrates, the elastic body and the electrode or terminal The conductive member does not fall out of the gap. Therefore, the piezoelectric transformer of the present invention can sufficiently withstand long-term use.

また本発明によれば、弾性体と導電部材という異種の材料(例えば、ゴムと金属)を一体に成型する必要はないので、それぞれの加工に際して特別な作業は不要であり、それだけ圧電トランスの製造コストを低く抑えることができる。   In addition, according to the present invention, it is not necessary to integrally mold different materials such as an elastic body and a conductive member (for example, rubber and metal). Cost can be kept low.

すなわち、導電部材は弾性体とは別体であり、かつ、単体で変形自在であることが好ましい。例えば、導電部材が柔軟性の高い金属ワイヤ、金糸線、金属板等であれば、圧電トランスの組み立て作業時に、導電部材を弾性体の外面に沿って自在に変形させた状態にしておくことができる。そして、ケース体(収容部)に圧電体を収容する際、その電極と端子との間に弾性体を圧入することで、導電部材も一緒にケース体に収容される。このとき、弾性体が電極と端子との間で圧縮されることにより、その反発力で導電部材を電極又は端子に強く圧着させることができる。   That is, it is preferable that the conductive member is separate from the elastic body and can be deformed alone. For example, if the conductive member is a highly flexible metal wire, gold thread wire, metal plate, etc., the conductive member may be freely deformed along the outer surface of the elastic body during assembly of the piezoelectric transformer. it can. And when accommodating a piezoelectric body in a case body (accommodating part), an electroconductive member is accommodated in a case body together by press-fitting an elastic body between the electrode and a terminal. At this time, since the elastic body is compressed between the electrode and the terminal, the conductive member can be strongly pressed against the electrode or the terminal by the repulsive force.

このように、本発明の採用する構造によれば、圧電トランスの組み立て作業が容易になることから、圧電トランスの生産に際して自動機械を用いた完全な自動化に適する。したがって本発明は、より大量かつ安価に製品を提供することができるという産業上の利点がある。   As described above, according to the structure adopted by the present invention, the assembly work of the piezoelectric transformer becomes easy, which is suitable for complete automation using an automatic machine when producing the piezoelectric transformer. Therefore, the present invention has an industrial advantage that a product can be provided in a larger amount and at a lower cost.

また弾性体は、少なくとも2箇所の外面からの導電部材の脱落を防止するべく導電部材を保持する保持部を有することが好ましい。弾性体が保持部を有するものであれば、接着剤等を用いなくても長期にわたり導電部材を保持し続けることができる。したがって、圧電トランスの耐久性や信頼性をより確実なものとすることができる。   Moreover, it is preferable that an elastic body has a holding part holding a conductive member in order to prevent the conductive member from falling off at least two outer surfaces. If the elastic body has a holding portion, the conductive member can be held for a long time without using an adhesive or the like. Therefore, the durability and reliability of the piezoelectric transformer can be made more reliable.

本発明の圧電トランスは、簡素な構造であって、その組み立てが容易であり、なおかつ製造コストの低減に大きく寄与することができる。   The piezoelectric transformer of the present invention has a simple structure, is easy to assemble, and can greatly contribute to a reduction in manufacturing cost.

図1は、一実施形態の圧電トランスを構成要素に分解して示す斜視図、FIG. 1 is an exploded perspective view showing a piezoelectric transformer according to an embodiment as components. 図2は、圧電トランスを完成状態で示す水平断面図(図1のII−II線に沿う断面図)、2 is a horizontal sectional view showing the piezoelectric transformer in a completed state (a sectional view taken along line II-II in FIG. 1). 図3は、弾性体ブロックの設置部位を拡大して示す部分的な断面図、FIG. 3 is a partial cross-sectional view showing an enlarged installation site of the elastic block, 図4は、第1例の弾性体ブロックを単独で示す平面図、FIG. 4 is a plan view showing the elastic block of the first example alone, 図5は、第1例の弾性体ブロックを単独で示す正面図、FIG. 5 is a front view showing the elastic block of the first example alone; 図6は、第2例の弾性体ブロックの正面図、そして、FIG. 6 is a front view of the elastic block of the second example, and 図7は、第2例の弾性体ブロックの縦断面図である。FIG. 7 is a longitudinal sectional view of the elastic block of the second example.

符号の説明Explanation of symbols

100 圧電トランス
102 圧電セラミックス(圧電体)
104 樹脂ケース(ケース)
104c,104d,104e,104f 凹部
105 収容部
106 一次側電極(電極)
108 二次側電極(電極)
110,112,114 端子
116,120 弾性体ブロック(弾性体)
117 導電線(導電部材)
100 Piezoelectric transformer 102 Piezoelectric ceramics (piezoelectric material)
104 Resin case
104c, 104d, 104e, 104f Concave portion 105 Housing portion 106 Primary electrode (electrode)
108 Secondary electrode (electrode)
110, 112, 114 Terminal 116, 120 Elastic body block (elastic body)
117 Conductive wire (conductive member)

以下、本発明の実施形態について図面を参照しながら説明する。
図1は、一実施形態の圧電トランス100を構成要素に分解して示す斜視図である。また、図2は、この圧電トランス100を完成状態で示す水平断面図(図1のII−II線に沿う断面図)である。一実施形態の圧電トランス100は、例えば液晶ディスプレイのバックライト用のインバータ等の高圧用電源に使用されるものであって、比較的低電圧の入力から高電圧の出力を発生させることができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a piezoelectric transformer 100 according to an embodiment in an exploded manner. FIG. 2 is a horizontal cross-sectional view (cross-sectional view taken along the line II-II in FIG. 1) showing the piezoelectric transformer 100 in a completed state. The piezoelectric transformer 100 of one embodiment is used for a high voltage power source such as an inverter for a backlight of a liquid crystal display, and can generate a high voltage output from a relatively low voltage input.

〔圧電体〕
図1に示されるように、圧電トランス100は、主に圧電セラミックス(圧電体)102及び樹脂ケース(ケース体)104を備えている。圧電セラミックス102はケース104内に収容されており、ケース104には圧電セラミックス102のための収容部105が形成されている。なお、圧電トランス100を図示しない回路基板に実装した場合、図1中の上方向は樹脂ケース104の底面側に相当する。すなわち圧電トランス100は、樹脂ケース104の底面側を図示しない回路基板の実装面に向き合わせた状態で実装される。
[Piezoelectric body]
As shown in FIG. 1, the piezoelectric transformer 100 mainly includes a piezoelectric ceramic (piezoelectric body) 102 and a resin case (case body) 104. The piezoelectric ceramic 102 is accommodated in a case 104, and an accommodating portion 105 for the piezoelectric ceramic 102 is formed in the case 104. When the piezoelectric transformer 100 is mounted on a circuit board (not shown), the upward direction in FIG. 1 corresponds to the bottom surface side of the resin case 104. That is, the piezoelectric transformer 100 is mounted with the bottom surface side of the resin case 104 facing the mounting surface of a circuit board (not shown).

本実施形態の圧電セラミックス102は、例えばチタン酸ジルコン酸鉛系セラミックス(PZT)等の圧電振動子を分極して得られたものである。この圧電セラミックス102の形状については特に限定しないが、ここでは一例として略直方体形状(平板状)を挙げることができる。   The piezoelectric ceramic 102 of the present embodiment is obtained by polarizing a piezoelectric vibrator such as lead zirconate titanate ceramic (PZT). The shape of the piezoelectric ceramic 102 is not particularly limited, but here, as an example, a substantially rectangular parallelepiped shape (flat plate shape) can be given.

〔電極〕
圧電セラミックス102の外面のうち、その厚み方向で対になる両面には、それぞれ一次側電極106が形成されている。図1には片面のみ示されているが、この反対側の面にも同様の一次側電極106が形成されている(図2参照)。また、圧電セラミックス102の外面のうち、その長手方向の一端部に二次側電極108が形成されている。本実施形態では、圧電セラミックス102の厚み方向で対になる一方の面(図1に示された片面)にのみ二次側電極108が形成されている。
〔electrode〕
Of the outer surfaces of the piezoelectric ceramic 102, primary electrodes 106 are respectively formed on both surfaces that are paired in the thickness direction. Although only one side is shown in FIG. 1, a similar primary electrode 106 is formed on the opposite side surface (see FIG. 2). In addition, a secondary electrode 108 is formed on one end of the outer surface of the piezoelectric ceramic 102 in the longitudinal direction. In the present embodiment, the secondary-side electrode 108 is formed only on one surface (one surface shown in FIG. 1) paired in the thickness direction of the piezoelectric ceramic 102.

これら一次側電極106及び二次側電極108は、圧電セラミックス102の外面に例えば金属ペーストを用いたスクリーン印刷によって形成されている。圧電セラミックス102の幅方向、つまり、上述した長手方向及び厚み方向にそれぞれ略直交する方向でみると、各電極106,108の長さは、圧電セラミックス102の幅よりも僅かに短い。なお一次側電極106は、圧電セラミックス102の全長(長手方向)に対して約半分程度の長さを有する。   The primary electrode 106 and the secondary electrode 108 are formed on the outer surface of the piezoelectric ceramic 102 by screen printing using, for example, a metal paste. When viewed in the width direction of the piezoelectric ceramic 102, that is, in the direction substantially orthogonal to the longitudinal direction and the thickness direction described above, the lengths of the electrodes 106 and 108 are slightly shorter than the width of the piezoelectric ceramic 102. The primary electrode 106 has a length of about half of the total length (longitudinal direction) of the piezoelectric ceramic 102.

〔ケース体〕
樹脂ケース104は、その底面側が開口されたケース本体104bを有する。また樹脂ケース104は、この底面側から上面側(図1では下方に位置する)に向けて延びた内壁104aを有している。なお樹脂ケース104には、内壁104aの内側に収容部105が形成されている。
[Case body]
The resin case 104 has a case body 104b whose bottom surface is opened. Further, the resin case 104 has an inner wall 104a extending from the bottom surface side toward the upper surface side (located downward in FIG. 1). The resin case 104 has an accommodating portion 105 formed inside the inner wall 104a.

図には示されていないが、樹脂ケース104の開口は底面側のみであり、その上面は閉塞されている。また、これら内壁104aは、圧電セラミックス102の全長よりも僅かに長い。このためケース本体104b内、つまり収容部105には、圧電セラミックス102を縦置きの姿勢(胴回りの側端面を天地にした状態)で収容することができる。   Although not shown in the drawing, the opening of the resin case 104 is only on the bottom surface side, and the top surface thereof is closed. Further, these inner walls 104 a are slightly longer than the entire length of the piezoelectric ceramic 102. For this reason, the piezoelectric ceramics 102 can be accommodated in the case main body 104b, that is, in the accommodating portion 105, in a vertically placed posture (a state where the side end surface around the waist is set upside down).

樹脂ケース104には、ケース本体104b内の4箇所に凹部104c,104d,104e,104fが設けられている。これら4つの凹部104c〜104fは、いずれも内壁104aから本体104bの外側に向けて一定の幅でケース本体104bの樹脂を抉り取る(窪ませる)ようにして形成されている。   The resin case 104 is provided with recesses 104c, 104d, 104e, 104f at four locations in the case main body 104b. These four recesses 104c to 104f are formed so as to scrape (depress) the resin of the case body 104b with a certain width from the inner wall 104a toward the outside of the body 104b.

凹部104c〜104fうち、2つの凹部104c,104dは一次側電極106側に配置されており、これらは本体104b内で圧電セラミックス102を挟んで対向する位置関係にある。なお凹部104c,104dは、互いに同一(対称)形状である。   Of the recesses 104c to 104f, the two recesses 104c and 104d are disposed on the primary electrode 106 side, and these are in a positional relationship facing each other with the piezoelectric ceramic 102 interposed therebetween in the main body 104b. The concave portions 104c and 104d have the same (symmetric) shape.

また凹部104c,104dは、圧電セラミックス102の長手方向に生ずる機械的な振動の節(理論上の振幅が零になる位置)に形成されている。より詳しくは、凹部104c,104dは、圧電セラミックス102の全長(λ)に対し、その長手方向の前端部分からλ/4だけ離れた位置に設けられている。   The recesses 104c and 104d are formed at a node of mechanical vibration generated in the longitudinal direction of the piezoelectric ceramic 102 (position where the theoretical amplitude becomes zero). More specifically, the recesses 104c and 104d are provided at a position away from the front end portion in the longitudinal direction by λ / 4 with respect to the entire length (λ) of the piezoelectric ceramic 102.

これは、本実施形態の圧電セラミックス102がその固有共振周波数(λの波長)の電圧で駆動されているからであり、その際の振動の節は、長手方向の前端部分及び後端部分からそれぞれλ/4だけ離れた位置にある。なお、ここでは一次側電極106が形成されている端部を長手方向の「前」とし、二次側電極108が形成されている端部を「後」としている。同時に、この長手方向に生ずる機械的な振動よりは小さいものの、上述した幅方向や厚み方向にも機械的な振動が生じている。そして、当該幅方向の振動の節は、その上端部分と下端部分との間の略中央位置にあり、当該厚み方向の振動の節も、その先端部分と末端部分との間の略中央位置にある。   This is because the piezoelectric ceramic 102 of the present embodiment is driven by the voltage of its natural resonance frequency (λ wavelength), and the vibration nodes at that time are respectively from the front end portion and the rear end portion in the longitudinal direction. It is at a position separated by λ / 4. Here, the end where the primary electrode 106 is formed is referred to as “front” in the longitudinal direction, and the end where the secondary electrode 108 is formed is referred to as “rear”. At the same time, although it is smaller than the mechanical vibration generated in the longitudinal direction, mechanical vibration is also generated in the width direction and the thickness direction described above. The vibration node in the width direction is at a substantially central position between the upper end portion and the lower end portion, and the vibration node in the thickness direction is also at a substantially central position between the tip portion and the end portion. is there.

一方、二次側電極108に近接して配置された凹部104e,104fもまた、圧電セラミックス102を挟んで互いに対向する位置関係にある。このうち図1でみて手前側に位置する凹部104eは、奥側に位置する凹部104fに比較して大きな形状である。   On the other hand, the recesses 104e and 104f arranged close to the secondary electrode 108 are also in a positional relationship facing each other with the piezoelectric ceramic 102 interposed therebetween. Of these, the concave portion 104e located on the near side as viewed in FIG. 1 has a larger shape than the concave portion 104f located on the far side.

〔端子〕
樹脂ケース104には、合計3本の端子110,112,114が設置されている。このうち2本の端子110,112は、樹脂ケース104内で一次側電極106に対向してそれぞれ配置されている。一方、残りの端子114は、樹脂ケース104内で二次側電極108に対向して配置されている。そして、これら3本の端子110,112,114は、ケース104の上面側から底面側に向けてケース本体104bに挿入されている。このとき、各端子110,112,114の側面が対応する凹部104c,104d,104e内で部分的に露出するとともに、それぞれの先端が底面側から突出する。
(Terminal)
The resin case 104 is provided with a total of three terminals 110, 112, and 114. Among these, the two terminals 110 and 112 are respectively disposed in the resin case 104 so as to face the primary electrode 106. On the other hand, the remaining terminals 114 are disposed in the resin case 104 so as to face the secondary electrode 108. The three terminals 110, 112, and 114 are inserted into the case main body 104 b from the upper surface side to the bottom surface side of the case 104. At this time, the side surfaces of the terminals 110, 112, and 114 are partially exposed in the corresponding recesses 104c, 104d, and 104e, and the tips of the terminals protrude from the bottom surface side.

なお、図2に示されるように、この内壁104aにおいて、圧電セラミックス102の長手方向の後端部分からλ/4だけ離れた位置(長手方向に生ずる機械的な振動の節)には、圧電セラミックス102を両側から案内する突起状のリブ104tが形成されている。そして、例えばシリコーン接着剤124がリブ104tを覆い隠すように本体104b内に充填されることにより、圧電セラミックス102がシリコーン接着剤124を介して樹脂ケース104に接着される。   As shown in FIG. 2, on the inner wall 104a, the piezoelectric ceramic is located at a position (λ / 4 mechanical vibration node in the longitudinal direction) away from the rear end portion in the longitudinal direction of the piezoelectric ceramic 102 by λ / 4. Protruding ribs 104t for guiding 102 from both sides are formed. Then, for example, the piezoelectric ceramic 102 is bonded to the resin case 104 via the silicone adhesive 124 by filling the main body 104b with the silicone adhesive 124 so as to cover the rib 104t.

〔弾性体〕
このように、ケース本体104b内に圧電セラミックス102が収容された状態において、互いに対をなす2つの凹部104c,104dには、それぞれ弾性体ブロック116が設置されている。また凹部104eには、別の弾性体ブロック120が設置されている。なお、その他の凹部104fには絶縁ゴム122が設置されている。そして圧電セラミックス102は、樹脂ケース104内にその上面側から浮かせた状態で収容される。このとき圧電セラミックス102は、2つの弾性体ブロック116の間、そして弾性体ブロック120と他の絶縁ゴム122との間に挟まれることで保持される。なお弾性体ブロック116,120もまた、特に導電性を有しない絶縁ゴム材料(例えば、シリコーンゴム)で構成されている。
[Elastic body]
Thus, in the state where the piezoelectric ceramic 102 is accommodated in the case main body 104b, the elastic body block 116 is installed in each of the two recesses 104c and 104d that make a pair. In addition, another elastic body block 120 is installed in the recess 104e. An insulating rubber 122 is installed in the other concave portion 104f. The piezoelectric ceramic 102 is accommodated in the resin case 104 in a state of being floated from the upper surface side. At this time, the piezoelectric ceramic 102 is held by being sandwiched between the two elastic body blocks 116 and between the elastic body block 120 and the other insulating rubber 122. The elastic body blocks 116 and 120 are also made of an insulating rubber material (for example, silicone rubber) that is not particularly conductive.

各弾性体ブロック116は、樹脂ケース104内にて、圧電セラミックス102の一次側電極106と端子110,112との間にそれぞれ配置されている。換言すれば、弾性体ブロック116の一方の側端面が一次側電極106に接触し、他方の側端面が端子110又は端子112に接触している。このとき弾性体ブロック116は、それぞれ対応する凹部104c,104d内に嵌め込まれ、一次側電極106と端子110,112との間で圧縮(圧入)された状態にある。   Each elastic body block 116 is disposed between the primary electrode 106 of the piezoelectric ceramic 102 and the terminals 110 and 112 in the resin case 104. In other words, one side end surface of the elastic body block 116 is in contact with the primary electrode 106, and the other side end surface is in contact with the terminal 110 or the terminal 112. At this time, the elastic body block 116 is fitted into the corresponding concave portions 104c and 104d, and is compressed (press-fitted) between the primary electrode 106 and the terminals 110 and 112.

また弾性体ブロック120は、樹脂ケース104内にて、圧電セラミックス102の二次側電極108と端子114との間に配置されている。ここでも同様に、弾性体ブロック120の一方の側端面が二次側電極108に接触し、他方の側端面が端子114に接触している。このとき弾性体ブロック120は、対応する凹部104e内に嵌め込まれ、二次側電極108と端子114との間で圧縮(圧入)された状態にある。   The elastic body block 120 is disposed between the secondary electrode 108 of the piezoelectric ceramic 102 and the terminal 114 in the resin case 104. Here, similarly, one side end face of the elastic body block 120 is in contact with the secondary electrode 108 and the other side end face is in contact with the terminal 114. At this time, the elastic body block 120 is fitted into the corresponding recess 104e and is compressed (press-fitted) between the secondary electrode 108 and the terminal 114.

このように、本実施形態では弾性体ブロック120が二次側電極108と端子114との間で圧縮されていることから、樹脂ケース104内でのバランスを考慮し、二次側電極108と反対側の面にも絶縁ゴム122を配置することが好ましい。すなわち、絶縁ゴム122は、ケース104内で圧電セラミックス102を弾性体ブロック120との間に挟み込み、その機械的振動を吸収するのに寄与している。このため絶縁ゴム122もまた、樹脂ケース104内にて、圧電セラミックス102の外面と内壁104a(凹部104f)との間で圧縮(圧入)された状態にある。   Thus, in this embodiment, since the elastic body block 120 is compressed between the secondary side electrode 108 and the terminal 114, the balance in the resin case 104 is considered and it is opposite to the secondary side electrode 108. It is preferable to arrange the insulating rubber 122 also on the side surface. That is, the insulating rubber 122 contributes to sandwiching the piezoelectric ceramic 102 between the elastic body block 120 in the case 104 and absorbing the mechanical vibration. Therefore, the insulating rubber 122 is also compressed (pressed) between the outer surface of the piezoelectric ceramic 102 and the inner wall 104a (recessed portion 104f) in the resin case 104.

〔導電部材〕
弾性体ブロック116,120には、それぞれ外面に沿って導電線117が巻かれている。すなわち、これら導電線117は各弾性体ブロック116,120とは別体のものであり、それぞれ単体で柔軟に変形できる素材(例えば、金属ワイヤ、金糸線等)である。なお、本実施形態では図示の例としてワイヤ状のものを例に挙げているが、導電線117は板状の導電部材であってもよい。
[Conductive member]
A conductive wire 117 is wound around each of the elastic body blocks 116 and 120 along the outer surface. That is, the conductive wires 117 are separate from the elastic blocks 116 and 120, and are each a material (for example, a metal wire, a gold thread wire, etc.) that can be flexibly deformed individually. In the present embodiment, a wire-like one is taken as an example in the figure, but the conductive wire 117 may be a plate-like conductive member.

図3は、弾性体ブロック116,120の設置部位を拡大して示す部分的な断面図である。以下、図1,図2に図3を追加して、一次側電極106や二次側電極108と各端子110,112,114との電気的な接続について説明する。   FIG. 3 is a partial cross-sectional view showing an enlarged installation site of the elastic body blocks 116 and 120. Hereinafter, FIG. 3 will be added to FIGS. 1 and 2, and the electrical connection between the primary side electrode 106 and the secondary side electrode 108 and the terminals 110, 112, and 114 will be described.

〔一次側電極と端子との接続〕
先ず弾性体ブロック116については、一次側電極106と端子110,112にそれぞれ対向する2つの外面と、これら2つ外面の間に位置する下側の外面(つまり下面)に沿うようにしてU字形状に導電線117が巻かれている。この状態で弾性体ブロック116が圧入されると、図2,図3に示されているように、弾性体ブロック116の圧縮に対する反発力で導電線117が一次側電極106と端子110,112にそれぞれ圧着された状態となる。これにより、樹脂ケース104内では、2箇所の一次側電極106と各端子110,112との電気的な接続が実現されている。
[Connection between primary electrode and terminal]
First, the elastic body block 116 is U-shaped along two outer surfaces facing the primary electrode 106 and the terminals 110 and 112, and a lower outer surface (that is, a lower surface) positioned between the two outer surfaces. A conductive wire 117 is wound around the shape. When the elastic body block 116 is press-fitted in this state, the conductive wire 117 is applied to the primary electrode 106 and the terminals 110 and 112 by the repulsive force against the compression of the elastic body block 116 as shown in FIGS. Each is crimped. Thereby, in the resin case 104, the electrical connection of the two primary side electrodes 106 and each terminal 110,112 is implement | achieved.

〔二次側電極と端子との接続〕
次に弾性体ブロック120については、二次側電極108と端子114にそれぞれ対向する2つの外面と、これら2つ外面の間に位置する下側の外面(下面)に沿うようにしてU字形状に導電線117が巻かれている。この状態で弾性体ブロック120が圧入されると、同じく図2,図3に示されているように、弾性体ブロック120の圧縮に対する反発力で導電線117が二次側電極108と端子114にそれぞれ圧着された状態となる。これにより、樹脂ケース104内では、二次側電極108と端子114との電気的な接続が実現されることになる。
[Connection between secondary electrode and terminal]
Next, the elastic body block 120 is U-shaped along the two outer surfaces facing the secondary electrode 108 and the terminal 114, and the lower outer surface (lower surface) located between the two outer surfaces. A conductive wire 117 is wound around the wire. When the elastic body block 120 is press-fitted in this state, the conductive wire 117 is applied to the secondary electrode 108 and the terminal 114 by the repulsive force against the compression of the elastic body block 120 as shown in FIGS. Each is crimped. Thereby, in the resin case 104, the electrical connection between the secondary electrode 108 and the terminal 114 is realized.

なお、図1には導電線117が余剰な長さを有する状態で示されているが、樹脂ケース104内への圧入後、例えば樹脂ケース104からはみ出た余剰部分は切断されることが望ましい。これにより、回路基板への実装時に無関係な箇所との電気的な接続が発生するのを防止することができる。   Although the conductive wire 117 is shown in FIG. 1 with a surplus length, it is desirable that, for example, the surplus portion protruding from the resin case 104 is cut off after being pressed into the resin case 104. Thereby, it is possible to prevent an electrical connection with an irrelevant part when mounting on the circuit board.

上記のように本実施形態では、弾性体ブロック116,120の弾性力(反発力)を用いた圧着により、導電線117を用いて一次側電極106と端子110,112、そして二次側電極108と端子114との電気的な接続を確実に行うことができる。圧電トランス100の使用時に圧電セラミックス102が機械的に振動しても、その強固な圧着によって導電線117は保持されるため、長期間にわたり耐久性を発揮することができる。   As described above, in the present embodiment, the primary electrode 106, the terminals 110 and 112, and the secondary electrode 108 using the conductive wire 117 by pressure bonding using the elastic force (repulsive force) of the elastic blocks 116 and 120. And the terminal 114 can be securely connected to each other. Even when the piezoelectric ceramics 102 vibrate mechanically when the piezoelectric transformer 100 is used, the conductive wire 117 is held by the strong pressure bonding, and therefore, durability can be exhibited over a long period of time.

〔保持部〕
以上に加えて本実施形態では、弾性体ブロック116,120に関して導電線117の脱落を防止し、その保持をより確実にすることができる。以下、いくつか例を挙げて説明する。
[Holding part]
In addition to the above, in the present embodiment, it is possible to prevent the conductive wires 117 from falling off with respect to the elastic body blocks 116 and 120, and to more reliably hold them. Hereinafter, some examples will be described.

〔第1例〕
図4は、第1例の弾性体ブロック116,120を単独で示す平面図であり、図5は、その正面図である。
[First example]
4 is a plan view showing the elastic blocks 116 and 120 of the first example alone, and FIG. 5 is a front view thereof.

図4及び図5に示されているように、弾性体ブロック116,120には、上記のように導電線117が巻かれる外面(両側端面及び下面)に保持溝116a,120aが形成さている。これら保持溝116a,120aは、例えば断面半円形状をなし、等幅で一条に形成されている。   As shown in FIGS. 4 and 5, the elastic body blocks 116 and 120 are formed with holding grooves 116a and 120a on the outer surfaces (both end surfaces and the lower surface) around which the conductive wire 117 is wound as described above. These holding grooves 116a and 120a have, for example, a semicircular cross section and are formed in a single line with an equal width.

保持溝116a,120aは、その窪み内にて導電線117を確実に保持し、弾性体ブロック116,120の圧入状態において導電線117の位置ずれを防止するとともに、その脱落を確実に防止することができる。これにより、圧電トランス100としての信頼性を高め、長期間にわたる耐久性を向上することができる。   The holding grooves 116a and 120a reliably hold the conductive wire 117 in the recess, prevent the conductive wire 117 from being displaced in the press-fitted state of the elastic body blocks 116 and 120, and reliably prevent the drop. Can do. Thereby, the reliability as the piezoelectric transformer 100 can be improved, and durability over a long period of time can be improved.

〔第2例〕
次に図6は、第2例の弾性体ブロック116,120の正面図であり、図7はその縦断面図(図6中のVII−VII断面)に相当する。
[Second example]
Next, FIG. 6 is a front view of the elastic body blocks 116 and 120 of the second example, and FIG. 7 corresponds to a longitudinal sectional view (cross section VII-VII in FIG. 6).

図6に示される正面図は、弾性体ブロック116,120を樹脂ケース104内での圧縮方向にみたものである。そして第2例では、弾性体ブロック116,120の内部を圧縮方向に貫通して保持穴116b,120bが形成されている。さらに弾性体ブロック116,120には、保持穴116b,120bの全長にわたって、側面から保持穴116b,120bに通じる切り割れ部116c,120cが形成されている。   The front view shown in FIG. 6 is a view of the elastic body blocks 116 and 120 in the compression direction within the resin case 104. In the second example, holding holes 116b and 120b are formed through the elastic body blocks 116 and 120 in the compression direction. Further, the elastic body blocks 116 and 120 are formed with cut portions 116c and 120c that extend from the side surfaces to the holding holes 116b and 120b over the entire length of the holding holes 116b and 120b.

このため保持穴116b,120b内には、側面の切り割れ部116c,120cを通じて導電線117を容易に挿入することができる。この場合、導電線117が柔軟性の高い素材であったとしても、これを容易に保持穴116b,120bに挿通することができるので、それだけ作業性を向上することができる。   Therefore, the conductive wire 117 can be easily inserted into the holding holes 116b and 120b through the side cut portions 116c and 120c. In this case, even if the conductive wire 117 is a highly flexible material, it can be easily inserted into the holding holes 116b and 120b, so that the workability can be improved accordingly.

なお、図7に示されているように、導電線117を保持穴116b,120bに挿通した状態であっても、圧縮方向でみた両側端面に沿う状態で導電線117が位置するので、導電線117を一次側電極106と端子110,112、又は二次側電極108と端子114に対して確実に圧着させることができる。   As shown in FIG. 7, even when the conductive wire 117 is inserted through the holding holes 116b and 120b, the conductive wire 117 is positioned along the both end surfaces as viewed in the compression direction. 117 can be securely crimped to the primary side electrode 106 and the terminals 110 and 112, or the secondary side electrode 108 and the terminal 114.

また樹脂ケース104内に弾性体ブロック116,120を圧入する際、予め保持穴116b,120b内に導電線117を挿入しておけば、圧入作業の途中で導電線117の位置がずれてしまうことがない。これにより、確実に各導電線117を一次側電極106と端子110,112又は二次側電極108と端子114に圧着させることができる。   Further, when the elastic blocks 116 and 120 are press-fitted into the resin case 104, if the conductive wires 117 are inserted into the holding holes 116b and 120b in advance, the positions of the conductive wires 117 may be shifted during the press-fitting operation. There is no. Thereby, each conductive wire 117 can be reliably crimped | bonded to the primary side electrode 106 and the terminals 110 and 112 or the secondary side electrode 108 and the terminal 114. FIG.

以上のように本実施形態では、弾性体ブロック116,120と導電線117とが別体であるため、異なる材料を一体成形するような複雑な加工を必要としない。また、圧電トランス100の組み立て時は、弾性体ブロック116,120の外面に導電線117を沿わせた状態で樹脂ケース104内に圧入するだけでよいので、作業性がよく、自動化への対応が容易である。したがって、材料の加工コストや組み立てコストを低減し、大量かつ安価に圧電トランス製品を市場に供給することができる。   As described above, in the present embodiment, since the elastic body blocks 116 and 120 and the conductive wire 117 are separate bodies, complicated processing such as integrally molding different materials is not required. Further, when the piezoelectric transformer 100 is assembled, it is only necessary to press-fit into the resin case 104 with the conductive wires 117 along the outer surfaces of the elastic body blocks 116 and 120. Therefore, workability is improved and automation is supported. Easy. Therefore, it is possible to reduce material processing costs and assembly costs, and to supply piezoelectric transformer products to the market in large quantities and at low cost.

本発明は上述した一実施形態に制約されることなく、種々に変形して実施可能である。例えば、図4及び図5に示される第1例では弾性体ブロック116,120の両側面に加えて下面にも保持溝116a,120aが形成されているが、保持溝116a,120aは両側面だけに形成されていてもよいし、両側面のうち一方だけに形成されていてもよい。また、保持溝116a,120aの断面形状や幅寸法、長さ等は特に任意であり、使用する導電線117等の形状に合わせて適宜に変形してもよい。   The present invention can be implemented with various modifications without being limited to the above-described embodiment. For example, in the first example shown in FIGS. 4 and 5, the holding grooves 116a and 120a are formed on the lower surface in addition to the both side surfaces of the elastic body blocks 116 and 120, but the holding grooves 116a and 120a are only on both side surfaces. It may be formed in only one of both side surfaces. Further, the cross-sectional shape, width dimension, length, and the like of the holding grooves 116a and 120a are particularly arbitrary, and may be appropriately modified in accordance with the shape of the conductive wire 117 or the like used.

また、図6及び図7に示される第2例では弾性体ブロック116,120の中央に1つだけ保持穴116b,120bが形成されているが、保持穴116b,120bの位置や個数には特に制約がなく、任意の箇所と個数に変更することができる。   Further, in the second example shown in FIGS. 6 and 7, only one holding hole 116b, 120b is formed in the center of the elastic body block 116, 120, but the position and number of the holding holes 116b, 120b are particularly limited. There are no restrictions and it can be changed to any number and number.

一実施形態では、樹脂ケース104内に凹部104c,104d,104eを形成して弾性体ブロック116,120を配置しているが、特に凹部104c,104d,104eを設けなくてもよい。   In the embodiment, the elastic body blocks 116 and 120 are arranged by forming the recesses 104c, 104d, and 104e in the resin case 104. However, the recesses 104c, 104d, and 104e do not have to be provided.

その他、図示とともに示した各部材の形態はいずれも好ましい一例であり、これらを適宜変形可能であることはいうまでもない。   In addition, the form of each member shown with illustration is a preferable example, and it goes without saying that these can be appropriately modified.

Claims (2)

外面に電極が形成された圧電体と、
前記圧電体を収容する収容部を有したケース体と、
前記ケース体に設けられ、少なくとも前記収容部内に一部が露出する端子と、
前記収容部内に前記圧電体の電極と前記端子との間にて圧縮された状態で設置される弾性体と、
前記弾性体の少なくとも圧縮方向に対向する2箇所の外面に沿う状態で前記弾性体とともに前記収容部内に収容されることにより、前記電極及び前記端子にそれぞれ圧着されて前記電極と前記端子とを相互に導通させる導電部材と
を備え
前記導電部材は、
前記弾性体とは別体であり、かつ、単体で変形自在であることを特徴とする圧電トランス。
A piezoelectric body having electrodes formed on the outer surface;
A case body having a housing portion for housing the piezoelectric body;
A terminal provided in the case body, at least a part of which is exposed in the housing portion;
An elastic body installed in a compressed state between the electrode of the piezoelectric body and the terminal in the housing portion;
The elastic body is housed in the housing portion together with the elastic body in a state along at least two outer surfaces facing the compression direction, so that the electrode and the terminal are bonded to each other. and a conductive member for conducting the,
The conductive member is
A piezoelectric transformer, which is separate from the elastic body and can be deformed alone.
請求項1に記載の圧電トランスにおいて、The piezoelectric transformer according to claim 1,
前記弾性体は、The elastic body is
少なくとも前記2箇所の外面からの前記導電部材の脱落を防止するべく前記導電部材を保持する保持部を有することを特徴とする圧電トランス。A piezoelectric transformer comprising: a holding portion for holding the conductive member so as to prevent the conductive member from falling off from at least the two outer surfaces.
JP2009552488A 2008-02-05 2009-02-04 Piezoelectric transformer Active JP5420425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009552488A JP5420425B2 (en) 2008-02-05 2009-02-04 Piezoelectric transformer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008024772 2008-02-05
JP2008024772 2008-02-05
JP2009552488A JP5420425B2 (en) 2008-02-05 2009-02-04 Piezoelectric transformer
PCT/JP2009/051872 WO2009099093A1 (en) 2008-02-05 2009-02-04 Piezoelectric transformer

Publications (2)

Publication Number Publication Date
JPWO2009099093A1 JPWO2009099093A1 (en) 2011-05-26
JP5420425B2 true JP5420425B2 (en) 2014-02-19

Family

ID=40952167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009552488A Active JP5420425B2 (en) 2008-02-05 2009-02-04 Piezoelectric transformer

Country Status (2)

Country Link
JP (1) JP5420425B2 (en)
WO (1) WO2009099093A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5859182B2 (en) * 2009-08-28 2016-02-10 株式会社タムラ製作所 Piezoelectric module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886832A (en) * 1994-09-14 1996-04-02 Sony Corp Characteristic measuring unit for semiconductor device
JPH1074992A (en) * 1996-09-02 1998-03-17 Matsushita Electric Ind Co Ltd Piezoelectric transformer component
JP2006049671A (en) * 2004-08-06 2006-02-16 Nec Tokin Corp Piezoelectric transformer component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116106A (en) * 1994-10-14 1996-05-07 Hitachi Ferrite Ltd Rosen type piezoelectric transformer and manufacture thereof
JP2001177210A (en) * 1999-12-21 2001-06-29 Tokin Corp Method of mounting piezoelectric transformer and device using the transformer
JP2004186405A (en) * 2002-12-03 2004-07-02 Murata Mfg Co Ltd Connection structure between piezoelectric transformer and mount terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886832A (en) * 1994-09-14 1996-04-02 Sony Corp Characteristic measuring unit for semiconductor device
JPH1074992A (en) * 1996-09-02 1998-03-17 Matsushita Electric Ind Co Ltd Piezoelectric transformer component
JP2006049671A (en) * 2004-08-06 2006-02-16 Nec Tokin Corp Piezoelectric transformer component

Also Published As

Publication number Publication date
JPWO2009099093A1 (en) 2011-05-26
WO2009099093A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
CN101160711B (en) Ultrasonic actuator
US7642696B2 (en) Vibration actuator and drive unit including the same
KR960012700A (en) Composite electronic component and manufacturing method thereof
JP5255263B2 (en) Piezoelectric transformer
JP6652650B2 (en) Plasma generator
KR101491508B1 (en) Ultrasonic transducer
JP5352471B2 (en) Piezoelectric transformer
JP5420425B2 (en) Piezoelectric transformer
JP2007318997A (en) Ultrasonic actuator
JP2000124519A (en) Piezoelectric transformer
JP5302545B2 (en) Piezoelectric transformer
KR200434043Y1 (en) Housing for securing multilayer piezoelectric element generating current and voltage
JP5255290B2 (en) Piezoelectric transformer
JP2016092888A (en) Piezoelectric generator
JP4540544B2 (en) Piezoelectric vibration element
JP2007264095A (en) Vibration plate and vibration wave driving device
JP2014135345A (en) Piezoelectric transformer
JP5318337B2 (en) Piezoelectric transformer and mounting method thereof
JP2006049671A (en) Piezoelectric transformer component
JP5250249B2 (en) Piezoelectric transformer
JP5255194B2 (en) Piezoelectric transformer and mounting method thereof
JP3189109B2 (en) Electrode connection structure of piezoelectric transformer
JP3113273U (en) Electrode connection device for piezoelectric piece
KR200358813Y1 (en) An ultrasonic vibration unit
JP2001156354A (en) Piezoelectric transformer and mounting structure of it

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131120

R150 Certificate of patent or registration of utility model

Ref document number: 5420425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250