JP5417866B2 - Humidity control device - Google Patents

Humidity control device Download PDF

Info

Publication number
JP5417866B2
JP5417866B2 JP2009016627A JP2009016627A JP5417866B2 JP 5417866 B2 JP5417866 B2 JP 5417866B2 JP 2009016627 A JP2009016627 A JP 2009016627A JP 2009016627 A JP2009016627 A JP 2009016627A JP 5417866 B2 JP5417866 B2 JP 5417866B2
Authority
JP
Japan
Prior art keywords
heat exchanger
adsorption heat
refrigerant
humidity control
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009016627A
Other languages
Japanese (ja)
Other versions
JP2010175108A (en
Inventor
智 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009016627A priority Critical patent/JP5417866B2/en
Publication of JP2010175108A publication Critical patent/JP2010175108A/en
Application granted granted Critical
Publication of JP5417866B2 publication Critical patent/JP5417866B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、吸着剤が担持された吸着熱交換器を備えて空気の湿度を調節する調湿装置に関するものである。   The present invention relates to a humidity control apparatus that includes an adsorption heat exchanger carrying an adsorbent and adjusts the humidity of air.

従来より、水分を吸脱着する吸着剤を用いて空気の湿度を調節する調湿装置が知られている。例えば、特許文献1には、表面に吸着剤を担持する吸着熱交換器を冷媒回路に接続し、冷媒回路の冷媒によって吸着熱交換器の吸着剤を加熱し又は冷却することで、吸着剤に水分の吸脱着を行わせるものが開示されている。   Conventionally, a humidity control apparatus that adjusts the humidity of air using an adsorbent that absorbs and desorbs moisture is known. For example, in Patent Document 1, an adsorption heat exchanger carrying an adsorbent on the surface is connected to a refrigerant circuit, and the adsorbent of the adsorption heat exchanger is heated or cooled by the refrigerant in the refrigerant circuit, thereby A device that allows moisture adsorption and desorption is disclosed.

特許文献1に開示された空気調和システムでは、一台の熱源ユニットに対して複数台の潜熱系統利用ユニットが接続されている。熱源ユニットと潜熱系統利用ユニットは、高圧ガス冷媒が流れる連絡配管と低圧ガス冷媒が流れる連絡配管だけを介して接続されている。この空気調和システムでは、熱源ユニットと潜熱系統利用ユニットとによって調湿装置が構成されている。各潜熱系統利用ユニットには、二つの吸着熱交換器が設けられている。そして、各潜熱系統利用ユニットでは、第1の吸着熱交換器が凝縮器となり且つ第2の吸着熱交換器が蒸発器となる動作と、第2の吸着熱交換器が凝縮器となり且つ第1の吸着熱交換器が蒸発器となる動作とが交互に繰り返し行われる。   In the air conditioning system disclosed in Patent Document 1, a plurality of latent heat system utilization units are connected to one heat source unit. The heat source unit and the latent heat system utilization unit are connected only through a communication pipe through which the high-pressure gas refrigerant flows and a communication pipe through which the low-pressure gas refrigerant flows. In this air conditioning system, a humidity control apparatus is configured by the heat source unit and the latent heat system utilization unit. Each latent heat system utilization unit is provided with two adsorption heat exchangers. In each latent heat system use unit, the first adsorption heat exchanger serves as a condenser and the second adsorption heat exchanger serves as an evaporator, the second adsorption heat exchanger serves as a condenser, and the first adsorption heat exchanger serves as a condenser. The operation in which the adsorption heat exchanger becomes an evaporator is repeated alternately.

潜熱系統利用ユニットにおいて、凝縮器として動作する吸着熱交換器では、その表面に担持された吸着剤が冷媒によって加熱され、加熱された吸着剤から水分が脱離してゆく。この吸着熱交換器を通過する空気は、加熱された吸着剤から脱離した水分を付与されて加湿される。一方、蒸発器として動作する吸着熱交換器では、その表面に担持された吸着剤が冷媒によって冷却され、冷却された吸着剤に空気中の水分が吸着されてゆく。この吸着熱交換器を通過する空気は、冷却された吸着剤に水分を奪われて除湿される。   In the latent heat system utilization unit, in the adsorption heat exchanger that operates as a condenser, the adsorbent supported on the surface is heated by the refrigerant, and moisture is desorbed from the heated adsorbent. The air passing through the adsorption heat exchanger is humidified by being given moisture desorbed from the heated adsorbent. On the other hand, in the adsorption heat exchanger operating as an evaporator, the adsorbent carried on the surface is cooled by the refrigerant, and moisture in the air is adsorbed by the cooled adsorbent. The air passing through the adsorption heat exchanger is dehumidified by the moisture absorbed by the cooled adsorbent.

このように、特許文献1に開示された潜熱系統利用ユニットでは、凝縮器として動作する吸着熱交換器を通過する空気が加湿され、蒸発器として動作する吸着熱交換器を通過する空気が除湿される。そして、潜熱系統利用ユニットは、除湿運転中には除湿された空気を室内へ供給して加湿された空気を室外へ排出し、加湿運転中には加湿された空気を室内へ供給して除湿された空気を室外へ排出する。
特開2005−291586号公報
Thus, in the latent heat system utilization unit disclosed in Patent Document 1, the air passing through the adsorption heat exchanger operating as a condenser is humidified, and the air passing through the adsorption heat exchanger operating as an evaporator is dehumidified. The Then, the latent heat system utilization unit supplies the dehumidified air to the room during the dehumidifying operation and discharges the humidified air to the outside, and supplies the humidified air to the room during the humidifying operation and is dehumidified. Exhaust air outside the room.
JP 2005-291586 A

上記特許文献1に開示された潜熱系統利用ユニットは、高圧ガス冷媒が流れる連絡配管と低圧ガス冷媒が流れる連絡配管だけを介して互いに接続されている。また、この潜熱系統利用ユニットでは、第1の吸着熱交換器と膨張弁と第2の吸着熱交換器とが直列に接続されている。従って、潜熱系統利用ユニットでは、各吸着熱交換器を通過する冷媒の質量流量が必ず同じになる。   The latent heat system utilization units disclosed in Patent Document 1 are connected to each other only through a communication pipe through which high-pressure gas refrigerant flows and a communication pipe through which low-pressure gas refrigerant flows. Moreover, in this latent heat system utilization unit, the 1st adsorption heat exchanger, the expansion valve, and the 2nd adsorption heat exchanger are connected in series. Therefore, in the latent heat system utilization unit, the mass flow rate of the refrigerant passing through each adsorption heat exchanger is always the same.

ところが、凝縮器として動作する吸着熱交換器と蒸発器として動作する吸着熱交換器のそれぞれにおける冷媒の質量流量を同じ値にしか設定できないと、凝縮器となった吸着熱交換器における冷媒の放熱量と、蒸発器となった吸着熱交換器における冷媒の吸熱量とを個別に調節することができなくなり、調湿装置の能力の調節範囲が狭くなるという問題がある。   However, if the mass flow rate of the refrigerant in each of the adsorption heat exchanger that operates as a condenser and the adsorption heat exchanger that operates as an evaporator can only be set to the same value, the refrigerant is discharged in the adsorption heat exchanger that has become a condenser. There is a problem that the amount of heat and the amount of heat absorbed by the refrigerant in the adsorption heat exchanger that becomes the evaporator cannot be individually adjusted, and the adjustment range of the capacity of the humidity control device is narrowed.

本発明は、かかる点に鑑みてなされたものであり、その目的は、吸着熱交換器が接続された冷媒回路を備える調湿装置において、その能力の調節範囲を拡大することにある。   This invention is made | formed in view of this point, The objective is to expand the adjustment range of the capability in a humidity control apparatus provided with the refrigerant circuit to which the adsorption heat exchanger was connected.

第1〜第3の各発明は、圧縮機(31)と、それぞれに吸着剤が担持された第1及び第2の吸着熱交換器(41,42)とが接続され、冷媒を循環させて冷凍サイクルを行う冷媒回路(20)を備え、上記第1の吸着熱交換器(41)が放熱器となって空気を加湿し且つ上記第2の吸着熱交換器(42)が蒸発器となって空気を除湿する第1動作と、上記第2の吸着熱交換器(42)が放熱器となって空気を加湿し且つ上記第1の吸着熱交換器(41)が蒸発器となって空気を除湿する第2動作とを交互に繰り返し行い、放熱器となっている上記吸着熱交換器(41,42)を通過する間に加湿された空気と、蒸発器となっている上記吸着熱交換器(42,41)を通過する間に除湿された空気の一方を室内へ供給して他方を室外へ排出する調湿装置を対象とする。そして、上記冷媒回路(20)は、冷媒を室外空気と熱交換させて放熱器または蒸発器として動作する室外熱交換器(33)を備え、放熱器となっている上記吸着熱交換器(41,42)を通過する冷媒の質量流量と、蒸発器となっている上記吸着熱交換器(42,41)を通過する冷媒の質量流量とを異なる値に設定可能に構成されるものである。 In each of the first to third inventions , the compressor (31) and the first and second adsorption heat exchangers (41, 42) each carrying an adsorbent are connected to circulate the refrigerant. A refrigerant circuit (20) for performing a refrigeration cycle is provided, the first adsorption heat exchanger (41) serves as a radiator, humidifies air, and the second adsorption heat exchanger (42) serves as an evaporator. And the first adsorption heat exchanger (42) serves as a heat radiator to humidify the air and the first adsorption heat exchanger (41) serves as an evaporator. The second operation of dehumidifying the air is alternately repeated, and the air that has been humidified while passing through the adsorption heat exchanger (41, 42) serving as a radiator and the adsorption heat exchange serving as an evaporator A humidity control apparatus that supplies one of the dehumidified air while passing through the chambers (42, 41) to the room and discharges the other to the outside is targeted. The refrigerant circuit (20) includes an outdoor heat exchanger (33) that operates as a radiator or an evaporator by exchanging heat between the refrigerant and outdoor air, and the adsorption heat exchanger (41) serving as a radiator. , 42) and the mass flow rate of the refrigerant passing through the adsorption heat exchanger (42, 41) serving as an evaporator can be set to different values.

第1〜第3の各発明の調湿装置(10)では、第1動作と第2動作が交互に繰り返し行われ、第1及び第2の吸着熱交換器(41,42)のうちの一方が放熱器として動作して他方が蒸発器として動作する。放熱器として動作する吸着熱交換器(41,42)では、冷媒によって加熱された吸着剤から水分が脱離し、吸着剤から脱離した水分が空気に付与される。一方、蒸発器として動作する吸着熱交換器(42,41)では、冷媒によって冷却された吸着剤に空気中の水分が吸着される。 In the humidity control apparatus (10) of each of the first to third inventions , the first operation and the second operation are alternately repeated, and one of the first and second adsorption heat exchangers (41, 42). Operates as a radiator and the other operates as an evaporator. In the adsorption heat exchanger (41, 42) operating as a radiator, moisture is desorbed from the adsorbent heated by the refrigerant, and moisture desorbed from the adsorbent is imparted to the air. On the other hand, in the adsorption heat exchanger (42, 41) operating as an evaporator, moisture in the air is adsorbed by the adsorbent cooled by the refrigerant.

第1〜第3の各発明の冷媒回路(20)は、放熱器となっている吸着熱交換器(41,42)を通過する冷媒の質量流量と、蒸発器となっている吸着熱交換器(42,41)を通過する冷媒の質量流量とを異なる値に設定可能に構成されている。放熱器となっている吸着熱交換器(41,42)での冷媒流量と、蒸発器となっている吸着熱交換器(42,41)での冷媒流量とを異なる値に設定できれば、放熱器となっている吸着熱交換器(41,42)における冷媒の放熱量、及び蒸発器となっている吸着熱交換器(42,41)における冷媒の吸着量の調節範囲が拡大する。 The refrigerant circuit (20) of each of the first to third inventions includes a mass flow rate of the refrigerant passing through the adsorption heat exchanger (41, 42) serving as a radiator and an adsorption heat exchanger serving as an evaporator. The mass flow rate of the refrigerant passing through (42, 41) can be set to a different value. If the refrigerant flow rate in the adsorption heat exchanger (41, 42) serving as a radiator and the refrigerant flow rate in the adsorption heat exchanger (42, 41) serving as an evaporator can be set to different values, the radiator The range of adjustment of the heat radiation amount of the refrigerant in the adsorption heat exchanger (41, 42) and the adsorption amount of the refrigerant in the adsorption heat exchanger (42, 41) serving as an evaporator are expanded.

ここで、冷媒回路(20)において、放熱器となっている吸着熱交換器(41,42)での冷媒流量と、蒸発器となっている吸着熱交換器(42,41)での冷媒流量とを異なる値に設定すると、冷媒回路(20)の外部から冷媒へ侵入する熱量(侵入熱量)と冷媒から冷媒回路(20)の外部へ放出される熱量(放出熱量)とが均衡しなくなるおそれがある。それに対し、第1〜第3の各発明の冷媒回路(20)には、室外熱交換器(33)が設けられている。そして、放熱器となっている吸着熱交換器(41,42)での冷媒流量と、蒸発器となっている吸着熱交換器(42,41)での冷媒流量とを異なる値に設定した場合であっても、室外熱交換器(33)を放熱器又は蒸発器として動作させることによって、冷媒回路(20)における侵入熱量と放出熱量のバランスをとることが可能となる。 Here, in the refrigerant circuit (20), the refrigerant flow rate in the adsorption heat exchanger (41, 42) serving as a radiator and the refrigerant flow rate in the adsorption heat exchanger (42, 41) serving as an evaporator. If the values are set to different values, the amount of heat entering the refrigerant from the outside of the refrigerant circuit (20) (invasion heat amount) and the amount of heat released from the refrigerant to the outside of the refrigerant circuit (20) (heat release amount) may not be balanced. There is. On the other hand, the refrigerant circuit (20) of each of the first to third inventions is provided with an outdoor heat exchanger (33). When the refrigerant flow rate in the adsorption heat exchanger (41, 42) serving as a radiator and the refrigerant flow rate in the adsorption heat exchanger (42, 41) serving as an evaporator are set to different values Even so, by operating the outdoor heat exchanger (33) as a radiator or an evaporator, it is possible to balance the amount of heat entering and the amount of heat released in the refrigerant circuit (20).

第1の発明は、上記の構成に加えて、上記冷媒回路(20)では、上記圧縮機(31)及び上記室外熱交換器(33)が設けられた室外回路(30)と、上記第1及び第2の吸着熱交換器(41,42)が設けられた調湿用回路(40)とが、高圧ガス冷媒が流れる高圧ガス配管(21)、低圧ガス冷媒が流れる低圧ガス配管(22)、及び高圧液冷媒が流れる高圧液配管(23)を介して接続され、上記調湿用回路(40)は、上記第1動作中には上記高圧ガス配管(21)から流入した冷媒が順に第1の吸着熱交換器(41)と第2の吸着熱交換器(42)を通過して上記低圧ガス配管(22)へ向けて流出し、上記第2動作中には上記高圧ガス配管(21)から流入した冷媒が順に第2の吸着熱交換器(42)と第1の吸着熱交換器(41)を通過して上記低圧ガス配管(22)へ向けて流出するように構成され、更に、上記調湿用回路(40)は、上記第1動作中と上記第2動作中の何れにおいても、放熱器となっている上記吸着熱交換器(41,42)から流出した冷媒の一部を蒸発器となっている上記吸着熱交換器(42,41)へ、残りを上記高圧液配管(23)へそれぞれ供給可能に構成されるものである。 In the first invention, in addition to the above configuration, the refrigerant circuit (20) includes an outdoor circuit (30) provided with the compressor (31) and the outdoor heat exchanger (33), and the first circuit. And the humidity control circuit (40) provided with the second adsorption heat exchanger (41, 42) are a high-pressure gas pipe (21) through which high-pressure gas refrigerant flows and a low-pressure gas pipe (22) through which low-pressure gas refrigerant flows. And the high-pressure liquid pipe (23) through which the high-pressure liquid refrigerant flows, and the humidity control circuit (40) is configured so that the refrigerant flowing in from the high-pressure gas pipe (21) is in order during the first operation. 1 passes through the first adsorption heat exchanger (41) and the second adsorption heat exchanger (42) and flows out toward the low-pressure gas pipe (22). During the second operation, the high-pressure gas pipe (21 ) Flows in order through the second adsorption heat exchanger (42) and the first adsorption heat exchanger (41) to the low-pressure gas pipe (22). Further, the humidity adjustment circuit (40) is a heat radiator in both the first operation and the second operation. The adsorption heat exchanger (41, 42) A part of the refrigerant flowing out from the refrigerant can be supplied to the adsorption heat exchanger (42, 41) serving as an evaporator, and the rest can be supplied to the high-pressure liquid pipe (23).

第2の発明は、上記の構成に加えて、上記冷媒回路(20)では、上記圧縮機(31)及び上記室外熱交換器(33)が設けられた室外回路(30)と、上記第1及び第2の吸着熱交換器(41,42)が設けられた調湿用回路(40)とが、高圧ガス冷媒が流れる高圧ガス配管(21)、低圧ガス冷媒が流れる低圧ガス配管(22)、及び高圧液冷媒が流れる高圧液配管(23)を介して接続され、上記調湿用回路(40)は、上記第1動作中には上記高圧ガス配管(21)から流入した冷媒が順に第1の吸着熱交換器(41)と第2の吸着熱交換器(42)を通過して上記低圧ガス配管(22)へ向けて流出し、上記第2動作中には上記高圧ガス配管(21)から流入した冷媒が順に第2の吸着熱交換器(42)と第1の吸着熱交換器(41)を通過して上記低圧ガス配管(22)へ向けて流出するように構成され、更に、上記調湿用回路(40)は、上記第1動作中と上記第2動作中の何れにおいても、放熱器となっている上記吸着熱交換器(41,42)から流出した冷媒と、上記高圧液配管(23)から該調湿用回路(40)へ流入した冷媒とを蒸発器となっている上記吸着熱交換器(42,41)へ供給可能に構成されるものである。 In the second aspect of the invention, in addition to the above configuration, the refrigerant circuit (20) includes an outdoor circuit (30) provided with the compressor (31) and the outdoor heat exchanger (33), and the first circuit. And the humidity control circuit (40) provided with the second adsorption heat exchanger (41, 42) are a high-pressure gas pipe (21) through which high-pressure gas refrigerant flows and a low-pressure gas pipe (22) through which low-pressure gas refrigerant flows. And the high-pressure liquid pipe (23) through which the high-pressure liquid refrigerant flows, and the humidity control circuit (40) is configured so that the refrigerant flowing in from the high-pressure gas pipe (21) is in order during the first operation. 1 passes through the first adsorption heat exchanger (41) and the second adsorption heat exchanger (42) and flows out toward the low-pressure gas pipe (22). During the second operation, the high-pressure gas pipe (21 ) Flows in order through the second adsorption heat exchanger (42) and the first adsorption heat exchanger (41) to the low-pressure gas pipe (22). Further, the humidity adjustment circuit (40) is a heat radiator in both the first operation and the second operation. The adsorption heat exchanger (41, 42) The refrigerant flowing out from the high-pressure liquid pipe (23) and the refrigerant flowing into the humidity control circuit (40) can be supplied to the adsorption heat exchanger (42, 41) serving as an evaporator. Is.

第1及び第2の各発明では、冷媒回路(20)を構成する室外回路(30)と調湿用回路(40)が、高圧ガス配管(21)、低圧ガス配管(22)、及び高圧液配管(23)によって互いに接続される。調湿装置(10)の第1動作中において、調湿用回路(40)では、高圧ガス配管(21)から流入した冷媒が放熱器として動作する第1の吸着熱交換器(41)へ流入し、蒸発器として動作する第2の吸着熱交換器(42)を通過した冷媒が低圧ガス配管(22)へ流出してゆく。一方、調湿装置(10)の第2動作中において、調湿用回路(40)では、高圧ガス配管(21)から流入した冷媒が放熱器として動作する第2の吸着熱交換器(42)へ流入し、蒸発器として動作する第1の吸着熱交換器(41)を通過した冷媒が低圧ガス配管(22)へ流出してゆく。 In each of the first and second inventions, the outdoor circuit (30) and the humidity control circuit (40) constituting the refrigerant circuit (20) include a high-pressure gas pipe (21), a low-pressure gas pipe (22), and a high-pressure liquid. They are connected to each other by a pipe (23). During the first operation of the humidity controller (10), in the humidity control circuit (40), the refrigerant flowing from the high-pressure gas pipe (21) flows into the first adsorption heat exchanger (41) operating as a radiator. Then, the refrigerant that has passed through the second adsorption heat exchanger (42) operating as an evaporator flows out into the low-pressure gas pipe (22). On the other hand, during the second operation of the humidity control apparatus (10), the second adsorption heat exchanger (42) in which the refrigerant flowing from the high pressure gas pipe (21) operates as a radiator in the humidity control circuit (40). The refrigerant that has passed through the first adsorption heat exchanger (41) operating as an evaporator flows out into the low-pressure gas pipe (22).

第1の発明において、調湿用回路(40)は、第1動作中と第2動作中の何れにおいても、放熱器となっている吸着熱交換器(41,42)から流出した冷媒の一部を蒸発器となっている吸着熱交換器(42,41)へ、残りを高圧液配管(23)へそれぞれ供給可能に構成される。放熱器となっている吸着熱交換器(41,42)から流出した冷媒の一部が蒸発器となっている吸着熱交換器(42,41)へ、残りが高圧液配管(23)へそれぞれ供給される状態では、蒸発器となっている吸着熱交換器(42,41)における冷媒の質量流量が、放熱器となっている吸着熱交換器(41,42)における冷媒の質量流量よりも少なくなる。 In the first invention, the humidity control circuit (40) is a part of the refrigerant that has flowed out of the adsorption heat exchanger (41, 42) serving as a radiator during both the first operation and the second operation. The part can be supplied to the adsorption heat exchanger (42, 41) serving as an evaporator, and the rest to the high-pressure liquid pipe (23). Part of the refrigerant flowing out from the adsorption heat exchanger (41, 42), which is a radiator, is transferred to the adsorption heat exchanger (42, 41), which is an evaporator, and the rest to the high-pressure liquid pipe (23). In the supplied state, the mass flow rate of the refrigerant in the adsorption heat exchanger (42, 41) serving as the evaporator is larger than the mass flow rate of the refrigerant in the adsorption heat exchanger (41, 42) serving as the radiator. Less.

第2の発明において、調湿用回路(40)は、第1動作中と第2動作中の何れにおいても、放熱器となっている吸着熱交換器(41,42)から流出した冷媒と、高圧液配管(23)から該調湿用回路(40)へ流入した冷媒とを蒸発器となっている吸着熱交換器(42,41)へ供給可能に構成される。放熱器となっている吸着熱交換器(41,42)から流出した冷媒と、高圧液配管(23)から該調湿用回路(40)へ流入した冷媒との両方が蒸発器となっている吸着熱交換器(42,41)へ供給される状態では、蒸発器となっている吸着熱交換器(42,41)における冷媒の質量流量が、放熱器となっている吸着熱交換器(41,42)における冷媒の質量流量よりも多くなる。 In the second invention, the humidity control circuit (40) includes a refrigerant that has flowed out of the adsorption heat exchanger (41, 42) serving as a radiator during both the first operation and the second operation; The refrigerant flowing into the humidity control circuit (40) from the high pressure liquid pipe (23) can be supplied to the adsorption heat exchanger (42, 41) serving as an evaporator. Both the refrigerant flowing out from the adsorption heat exchanger (41, 42) serving as a radiator and the refrigerant flowing into the humidity control circuit (40) from the high-pressure liquid pipe (23) serve as an evaporator. In the state of being supplied to the adsorption heat exchanger (42, 41), the mass flow rate of the refrigerant in the adsorption heat exchanger (42, 41) serving as an evaporator is the adsorption heat exchanger (41 serving as a radiator). , 42) is greater than the mass flow rate of the refrigerant.

第3の発明は、上記の構成に加えて、上記冷媒回路(20)では、上記圧縮機(31)及び上記室外熱交換器(33)が設けられた室外回路(30)と、上記第1及び第2の吸着熱交換器(41,42)が設けられた調湿用回路(40)とが、高圧ガス冷媒が流れる高圧ガス配管(21)、低圧ガス冷媒が流れる低圧ガス配管(22)、及び高圧液冷媒が流れる高圧液配管(23)を介して接続され、上記調湿用回路(40)には、上記第1動作中に上記第1の吸着熱交換器(41)のガス側の端部を上記高圧ガス配管(21)に連通させ且つ上記第2の吸着熱交換器(42)のガス側の端部を上記低圧ガス配管(22)に連通させる第1状態となり、上記第2動作中に上記第2の吸着熱交換器(42)のガス側の端部を上記高圧ガス配管(21)に連通させ且つ上記第1の吸着熱交換器(41)のガス側の端部を上記低圧ガス配管(22)に連通させる第2状態となるガス側切換機構(45)が設けられ、上記調湿用回路(40)では、互いに接続された上記第1の吸着熱交換器(41)の液側の端部と上記第2の吸着熱交換器(42)の液側の端部との間の部分に第1の膨張弁(43)と第2の膨張弁(44)とが直列に設けられると共に、上記第1の膨張弁(43)と上記第2の膨張弁(44)の間の部分が上記高圧液配管(23)に接続されるものである。 In the third aspect of the invention, in addition to the above configuration, the refrigerant circuit (20) includes an outdoor circuit (30) provided with the compressor (31) and the outdoor heat exchanger (33), and the first circuit. And the humidity control circuit (40) provided with the second adsorption heat exchanger (41, 42) are a high-pressure gas pipe (21) through which high-pressure gas refrigerant flows and a low-pressure gas pipe (22) through which low-pressure gas refrigerant flows. And the high pressure liquid pipe (23) through which the high pressure liquid refrigerant flows, and the humidity control circuit (40) is connected to the gas side of the first adsorption heat exchanger (41) during the first operation. Is connected to the high-pressure gas pipe (21) and the gas-side end of the second adsorption heat exchanger (42) is connected to the low-pressure gas pipe (22). During the two operations, the gas side end of the second adsorption heat exchanger (42) is communicated with the high pressure gas pipe (21) and the first adsorption heat exchanger (41). A gas-side switching mechanism (45) in a second state is provided that communicates the gas-side end of the gas-side end to the low-pressure gas pipe (22). The first expansion valve (43) and the second expansion valve (41) are arranged at a portion between the liquid side end of the adsorption heat exchanger (41) and the liquid side end of the second adsorption heat exchanger (42). An expansion valve (44) is provided in series, and a portion between the first expansion valve (43) and the second expansion valve (44) is connected to the high-pressure liquid pipe (23). is there.

第3の発明では、冷媒回路(20)を構成する室外回路(30)と調湿用回路(40)が、高圧ガス配管(21)、低圧ガス配管(22)、及び高圧液配管(23)によって互いに接続される。調湿用回路(40)に設けられたガス側切換機構(45)は、調湿装置(10)の第1動作中には第1状態に設定され、調湿装置(10)の第2動作中には第2状態に設定される。調湿装置(10)の第1動作中において、高圧ガス配管(21)から調湿用回路(40)へ流入した冷媒は、第1の吸着熱交換器(41)において放熱した後に第1の膨張弁(43)と第2の膨張弁(44)を通過し、その後に第2の吸着熱交換器(42)において吸熱して蒸発してから低圧ガス配管(22)へ流出してゆく。一方、調湿装置(10)の第2動作中において、高圧ガス配管(21)から調湿用回路(40)へ流入した冷媒は、第2の吸着熱交換器(42)において放熱した後に第2の膨張弁(44)と第1の膨張弁(43)を通過し、その後に第1の吸着熱交換器(41)において吸熱して蒸発してから低圧ガス配管(22)へ流出してゆく。 In the third invention, the outdoor circuit (30) and the humidity control circuit (40) constituting the refrigerant circuit (20) are a high pressure gas pipe (21), a low pressure gas pipe (22), and a high pressure liquid pipe (23). Are connected to each other. The gas side switching mechanism (45) provided in the humidity control circuit (40) is set to the first state during the first operation of the humidity control device (10), and the second operation of the humidity control device (10). Some are set to the second state. During the first operation of the humidity control apparatus (10), the refrigerant flowing into the humidity control circuit (40) from the high-pressure gas pipe (21) radiates heat in the first adsorption heat exchanger (41) and then the first operation. After passing through the expansion valve (43) and the second expansion valve (44), the heat is absorbed and evaporated in the second adsorption heat exchanger (42) and then flows out to the low-pressure gas pipe (22). On the other hand, during the second operation of the humidity control apparatus (10), the refrigerant flowing into the humidity control circuit (40) from the high-pressure gas pipe (21) is radiated in the second adsorption heat exchanger (42) and then discharged. 2 passes through the first expansion valve (44) and the first expansion valve (43), then absorbs heat and evaporates in the first adsorption heat exchanger (41) and then flows out into the low-pressure gas pipe (22). go.

第3の発明の調湿用回路(40)では、第1の膨張弁(43)と第2の膨張弁(44)の間の部分が高圧液配管(23)に接続される。この調湿用回路(40)では、第1及び第2の膨張弁(43,44)の開度を調節することによって、第1の膨張弁(43)と第2の膨張弁(44)の間の部分を流れる冷媒の圧力を調節できる。 In the humidity control circuit (40) of the third invention, the portion between the first expansion valve (43) and the second expansion valve (44) is connected to the high-pressure liquid pipe (23). In the humidity control circuit (40), the first expansion valve (43) and the second expansion valve (44) are adjusted by adjusting the opening degree of the first and second expansion valves (43, 44). It is possible to adjust the pressure of the refrigerant flowing through the portion in between.

第3の発明の調湿用回路(40)において、第1の膨張弁(43)と第2の膨張弁(44)の間の部分を流れる冷媒の圧力が高圧液配管(23)を流れる冷媒の圧力よりも高い状態では、放熱器となっている吸着熱交換器(41,42)から流出した冷媒の一部が高圧液配管(23)へ流出してゆく。従って、この状態では、蒸発器となっている吸着熱交換器(42,41)における冷媒流量が放熱器となっている吸着熱交換器(41,42)における冷媒流量よりも少なくなる。 In the humidity control circuit (40) according to the third aspect of the present invention, the pressure of the refrigerant flowing through the portion between the first expansion valve (43) and the second expansion valve (44) flows through the high-pressure liquid pipe (23). When the pressure is higher than the pressure, a part of the refrigerant flowing out from the adsorption heat exchanger (41, 42) serving as a radiator flows out into the high-pressure liquid pipe (23). Therefore, in this state, the refrigerant flow rate in the adsorption heat exchanger (42, 41) serving as an evaporator is smaller than the refrigerant flow rate in the adsorption heat exchanger (41, 42) serving as a radiator.

また、第3の発明の調湿用回路(40)において、第1の膨張弁(43)と第2の膨張弁(44)の間の部分を流れる冷媒の圧力が高圧液配管(23)を流れる冷媒の圧力よりも低い状態では、高圧液配管(23)から調湿用回路(40)へ冷媒が流入してくる。従って、この状態では、放熱器となっている吸着熱交換器(41,42)から流出した冷媒と高圧液配管(23)から流入した冷媒の両方が蒸発器となっている吸着熱交換器(42,41)へ流入することとなり、蒸発器となっている吸着熱交換器(42,41)における冷媒流量が放熱器となっている吸着熱交換器(41,42)における冷媒流量よりも多くなる。 In the humidity control circuit (40) according to the third aspect of the present invention, the pressure of the refrigerant flowing through the portion between the first expansion valve (43) and the second expansion valve (44) passes through the high-pressure liquid pipe (23). In a state lower than the pressure of the flowing refrigerant, the refrigerant flows into the humidity control circuit (40) from the high-pressure liquid pipe (23). Therefore, in this state, both the refrigerant flowing out from the adsorption heat exchanger (41, 42) serving as a radiator and the refrigerant flowing into the high-pressure liquid pipe (23) from the adsorption heat exchanger ( 42, 41), the refrigerant flow rate in the adsorption heat exchanger (42, 41) serving as an evaporator is greater than the refrigerant flow rate in the adsorption heat exchanger (41, 42) serving as a radiator. Become.

第4の発明は、上記第3の発明において、上記調湿用回路(40)には、上記第1の膨張弁(43)と上記第2の膨張弁(44)の間に配置されて冷媒を膨張させる膨張機構(47)と、上記第1の膨張弁(43)と上記膨張機構(47)の間の部分に上記高圧液配管(23)を連通させる第1状態と、上記第2の膨張弁(44)と上記膨張機構(47)の間の部分に上記高圧液配管(23)を連通させる第2状態とに切り換わる液側切換機構(48)とが設けられるものである。 A fourth invention is the refrigerant according to the third invention, wherein the humidity adjusting circuit (40) is disposed between the first expansion valve (43) and the second expansion valve (44). An expansion mechanism (47) that expands the first high pressure liquid pipe (23) in communication with a portion between the first expansion valve (43) and the expansion mechanism (47), and the second state A liquid-side switching mechanism (48) that switches to a second state in which the high-pressure liquid pipe (23) communicates with the portion between the expansion valve (44) and the expansion mechanism (47) is provided.

第4の発明では、調湿用回路(40)に膨張機構(47)が設けられる。調湿用回路(40)では、放熱器となっている吸着熱交換器(41,42)から蒸発器となっている吸着熱交換器(42,41)へ向かって流れる冷媒が膨張機構(47)において減圧されるため、膨張機構(47)の下流側の冷媒圧力が膨張機構(47)の上流側の冷媒圧力よりも低くなる。このため、第1動作と第2動作の切り換えに連動して液側切換機構(48)を切り換えることによって、調湿用回路(40)における膨張機構(47)の上流側の部分を高圧液配管(23)に連通させれば、調湿用回路(40)から高圧液配管(23)へ冷媒が確実に流出してゆく。また、第1動作と第2動作の切り換えに連動して液側切換機構(48)を切り換えることによって、調湿用回路(40)における膨張機構(47)の下流側の部分を高圧液配管(23)に連通させれば、高圧液配管(23)から調湿用回路(40)へ冷媒が確実に流入してくる。 In the fourth invention, the humidity adjusting circuit (40) is provided with the expansion mechanism (47). In the humidity control circuit (40), the refrigerant flowing from the adsorption heat exchanger (41, 42) serving as a radiator toward the adsorption heat exchanger (42, 41) serving as an evaporator expands (47 ), The refrigerant pressure on the downstream side of the expansion mechanism (47) becomes lower than the refrigerant pressure on the upstream side of the expansion mechanism (47). Therefore, by switching the liquid side switching mechanism (48) in conjunction with the switching between the first operation and the second operation, the upstream portion of the expansion mechanism (47) in the humidity control circuit (40) is connected to the high pressure liquid piping. When communicating with (23), the refrigerant surely flows out from the humidity control circuit (40) to the high-pressure liquid pipe (23). Further, by switching the liquid side switching mechanism (48) in conjunction with the switching between the first operation and the second operation, the downstream portion of the expansion mechanism (47) in the humidity control circuit (40) is connected to the high pressure liquid pipe ( 23), the refrigerant surely flows from the high-pressure liquid pipe (23) into the humidity control circuit (40).

本発明では、冷媒回路(20)を、放熱器となっている吸着熱交換器(41,42)での冷媒流量と蒸発器となっている吸着熱交換器(42,41)での冷媒流量とを異なる値に設定可能に構成している。このため、放熱器となっている吸着熱交換器(41,42)における冷媒の放熱量、及び蒸発器となっている吸着熱交換器(42,41)における冷媒の吸熱量の調節範囲が拡大する。その結果、放熱器となっている吸着熱交換器(41,42)から脱離する水分量、及び蒸発器となっている吸着熱交換器(42,41)へ吸着される水分量の調節範囲を拡大させることができ、調湿装置(10)の能力の調節範囲を拡大させることができる。   In the present invention, the refrigerant circuit (20) includes the refrigerant flow rate in the adsorption heat exchanger (41, 42) serving as a radiator and the refrigerant flow rate in the adsorption heat exchanger (42, 41) serving as an evaporator. And can be set to different values. For this reason, the adjustment range of the heat dissipation amount of the refrigerant in the adsorption heat exchanger (41, 42) serving as a radiator and the heat absorption amount of the refrigerant in the adsorption heat exchanger (42, 41) serving as an evaporator is expanded. To do. As a result, the amount of moisture desorbed from the adsorption heat exchanger (41, 42) serving as a radiator and the adjustment range of the amount of moisture adsorbed to the adsorption heat exchanger (42, 41) serving as an evaporator The range of adjustment of the capacity of the humidity control device (10) can be expanded.

また、本発明では、冷媒回路(20)に室外熱交換器(33)を設けた上で、冷媒回路(20)を、放熱器となっている吸着熱交換器(41,42)での冷媒流量と蒸発器となっている吸着熱交換器(42,41)での冷媒流量とを異なる値に設定可能に構成している。このため、冷媒回路(20)への侵入熱量と冷媒回路(20)からの放出熱量とのバランスをとって安定した冷凍サイクルを行いつつ、放熱器となっている吸着熱交換器(41,42)での冷媒流量と蒸発器となっている吸着熱交換器(42,41)での冷媒流量とを異なる値に設定することができる。   Moreover, in this invention, after providing an outdoor heat exchanger (33) in a refrigerant circuit (20), the refrigerant circuit (20) is made into the refrigerant | coolant in the adsorption heat exchanger (41,42) used as a radiator. The flow rate and the refrigerant flow rate in the adsorption heat exchanger (42, 41) serving as an evaporator can be set to different values. Therefore, the adsorption heat exchanger (41, 42) serving as a radiator while performing a stable refrigeration cycle by balancing the amount of heat entering the refrigerant circuit (20) and the amount of heat released from the refrigerant circuit (20). ) And the refrigerant flow rate in the adsorption heat exchanger (42, 41) serving as an evaporator can be set to different values.

上記第1の発明において、調湿用回路(40)は、放熱器となっている吸着熱交換器(41,42)から流出した冷媒の一部を蒸発器となっている吸着熱交換器(42,41)へ、残りを高圧液配管(23)へそれぞれ供給可能に構成される。従って、この発明によれば、蒸発器となっている吸着熱交換器(42,41)における冷媒の質量流量を、放熱器となっている吸着熱交換器(41,42)における冷媒の質量流量よりも少なくすることが可能となる。その結果、蒸発器となっている吸着熱交換器(42,41)における冷媒の吸熱量を、放熱器となっている吸着熱交換器(41,42)における冷媒の放熱量よりも少なくすることが可能となる。 In the first aspect of the invention, the humidity control circuit (40) is configured to absorb part of the refrigerant flowing out of the adsorption heat exchanger (41, 42) serving as a radiator, 42, 41) and the rest can be supplied to the high pressure liquid pipe (23). Therefore, according to the present invention, the mass flow rate of the refrigerant in the adsorption heat exchanger (42, 41) serving as the evaporator is the mass flow rate of the refrigerant in the adsorption heat exchanger (41, 42) serving as the radiator. Can be reduced. As a result, the heat absorption amount of the refrigerant in the adsorption heat exchanger (42, 41) serving as the evaporator should be less than the heat release amount of the refrigerant in the adsorption heat exchanger (41, 42) serving as the heat radiator. Is possible.

上記第2の発明において、調湿用回路(40)は、放熱器となっている吸着熱交換器(41,42)から流出した冷媒と、高圧液配管(23)から該調湿用回路(40)へ流入した冷媒とを蒸発器となっている吸着熱交換器(42,41)へ供給可能に構成される。従って、この発明によれば、蒸発器となっている吸着熱交換器(42,41)での冷媒の質量流量を、放熱器となっている吸着熱交換器(41,42)での冷媒の質量流量よりも多くすることが可能となる。その結果、蒸発器となっている吸着熱交換器(42,41)における冷媒の吸熱量を、放熱器となっている吸着熱交換器(41,42)における冷媒の放熱量よりも多くすることが可能となる。 In the second aspect of the invention, the humidity control circuit (40) includes the refrigerant flowing out from the adsorption heat exchanger (41, 42) serving as a radiator and the humidity control circuit (23) from the high-pressure liquid pipe (23). The refrigerant flowing into 40) can be supplied to the adsorption heat exchanger (42, 41) serving as an evaporator. Therefore, according to the present invention, the mass flow rate of the refrigerant in the adsorption heat exchanger (42, 41) serving as an evaporator is set to the refrigerant flow rate in the adsorption heat exchanger (41, 42) serving as a radiator. It is possible to increase the mass flow rate. As a result, the heat absorption amount of the refrigerant in the adsorption heat exchanger (42, 41) serving as an evaporator should be larger than the heat dissipation amount of the refrigerant in the adsorption heat exchanger (41, 42) serving as a heat radiator. Is possible.

上記第3の発明によれば、調湿用回路(40)に第1及び第2の膨張弁(43,44)を直列に設け、調湿用回路(40)における第1の膨張弁(43)と第2の膨張弁(44)の間の部分を高圧液配管(23)に接続することで、調湿用回路(40)から高圧液配管(23)へ冷媒が流出してゆく状態と、高圧液配管(23)から調湿用回路(40)へ冷媒が流入してくる状態とを実現することができる。 According to the third aspect , the first and second expansion valves (43, 44) are provided in series with the humidity control circuit (40), and the first expansion valve (43 in the humidity control circuit (40)). ) And the second expansion valve (44) are connected to the high pressure liquid pipe (23), so that the refrigerant flows out from the humidity control circuit (40) to the high pressure liquid pipe (23). Thus, it is possible to realize a state in which the refrigerant flows from the high-pressure liquid pipe (23) into the humidity control circuit (40).

上記第4の発明では、調湿用回路(40)における第1の膨張弁(43)と第2の膨張弁(44)の間に膨張機構(47)を設け、調湿用回路(40)に対する高圧液配管(23)の接続位置を液側切換機構(48)によって切り換え可能としている。このため、調湿用回路(40)と高圧液配管(23)の圧力差を確実に形成することができ、調湿用回路(40)から高圧液配管(23)へ冷媒が流出してゆく状態と、高圧液配管(23)から調湿用回路(40)へ冷媒が流入してくる状態とを確実に実現することができる。 In the fourth aspect of the invention, the expansion mechanism (47) is provided between the first expansion valve (43) and the second expansion valve (44) in the humidity control circuit (40), and the humidity control circuit (40) The connection position of the high-pressure liquid pipe (23) with respect to can be switched by the liquid side switching mechanism (48). For this reason, the pressure difference between the humidity control circuit (40) and the high pressure liquid pipe (23) can be formed reliably, and the refrigerant flows out from the humidity control circuit (40) to the high pressure liquid pipe (23). It is possible to reliably realize the state and the state where the refrigerant flows from the high-pressure liquid pipe (23) into the humidity control circuit (40).

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

《発明の実施形態1》
本発明の実施形態1について説明する。
Embodiment 1 of the Invention
A first embodiment of the present invention will be described.

図1に示すように、本実施形態の空調システム(10)は、一台の室外ユニット(11)と、二台の調湿ユニット(12,13)とを備え、調湿装置を構成している。また、この空調システム(10)は、二台の空調ユニット(14,15)と、各空調ユニット(14,15)に対して一台ずつ接続される接続ユニット(16,17)とを備えている。なお、ここで示した各ユニット(11,12,13,…)の台数は、単なる一例である。   As shown in FIG. 1, the air conditioning system (10) of the present embodiment includes one outdoor unit (11) and two humidity control units (12, 13), and constitutes a humidity control device. Yes. The air conditioning system (10) includes two air conditioning units (14, 15) and a connection unit (16, 17) connected to each air conditioning unit (14, 15). Yes. The number of units (11, 12, 13,...) Shown here is merely an example.

室外ユニット(11)には、室外回路(30)が収容されている。第1調湿ユニット(12)には、第1調湿用回路(40)が収容され、第2調湿ユニット(13)には、第2調湿用回路(50)が収容されている。第1空調ユニット(14)には、第1空調用回路(60)が収容され、第2空調ユニット(15)には、第2空調用回路(70)が収容されている。各接続ユニット(16,17)には、空調側三方弁(65,75)が一つずつ収容されている。   An outdoor circuit (30) is accommodated in the outdoor unit (11). The first humidity control unit (12) houses the first humidity control circuit (40), and the second humidity control unit (13) houses the second humidity control circuit (50). The first air conditioning unit (14) houses the first air conditioning circuit (60), and the second air conditioning unit (15) houses the second air conditioning circuit (70). Each connection unit (16, 17) accommodates one air-conditioning side three-way valve (65, 75).

空調システム(10)では、一つの室外回路(30)と、二つの調湿用回路(40,50)と、二つの空調用回路(60,70)と、二つの空調側三方弁(65,75)とを連絡配管(21,22,23)によって接続することによって冷媒回路(20)が形成されている。   In the air conditioning system (10), one outdoor circuit (30), two humidity control circuits (40, 50), two air conditioning circuits (60, 70), two air conditioning side three-way valves (65, 75) is connected by connecting pipes (21, 22, 23) to form a refrigerant circuit (20).

冷媒回路(20)において、連絡配管である高圧ガス配管(21)は、その一端が室外回路(30)に接続されている。この高圧ガス配管(21)は、その他端側が複数に分岐されて各調湿用回路(40,50)と各空調側三方弁(65,75)のそれぞれに接続されている。また、連絡配管である低圧ガス配管(22)は、その一端が室外回路(30)に接続されている。この低圧ガス配管(22)は、その他端側が複数に分岐されて各調湿用回路(40,50)と各空調側三方弁(65,75)のそれぞれに接続されている。また、連絡配管である高圧液配管(23)は、その一端が室外回路(30)に接続されている。この高圧液配管(23)は、その他端側が複数に分岐されて各調湿用回路(40,50)と各空調用回路(60,70)のそれぞれに接続されている。   In the refrigerant circuit (20), one end of the high-pressure gas pipe (21) which is a communication pipe is connected to the outdoor circuit (30). The other end side of the high-pressure gas pipe (21) is branched into a plurality and connected to each of the humidity control circuits (40, 50) and each of the air-conditioning side three-way valves (65, 75). One end of the low-pressure gas pipe (22) which is a communication pipe is connected to the outdoor circuit (30). The other end of the low-pressure gas pipe (22) is branched into a plurality and connected to each of the humidity control circuits (40, 50) and each of the air conditioning side three-way valves (65, 75). One end of the high-pressure liquid pipe (23) which is a communication pipe is connected to the outdoor circuit (30). The other end side of the high-pressure liquid pipe (23) is branched into a plurality and connected to the humidity control circuits (40, 50) and the air conditioning circuits (60, 70).

室外回路(30)には、圧縮機(31)と、室外三方弁(32)と、室外熱交換器(33)と、室外膨張弁(34)と、レシーバ(35)とが設けられている。圧縮機(31)は、その吸入側が配管を介して低圧ガス配管(22)に接続されている。室外三方弁(32)は、その第1のポートが圧縮機(31)の吐出側に、その第2のポートが圧縮機(31)の吸入側に、その第3のポートが室外熱交換器(33)のガス側の端部に、それぞれ接続されている。室外熱交換器(33)は、その液側の端部が室外膨張弁(34)の一端に接続されている。室外膨張弁(34)は、その他端がレシーバ(35)を介して高圧液配管(23)に接続されている。また、室外回路(30)では、圧縮機(31)の吐出側と室外三方弁(32)の第1のポートとの間の部分が、配管を介して高圧ガス配管(21)に接続されている。   The outdoor circuit (30) is provided with a compressor (31), an outdoor three-way valve (32), an outdoor heat exchanger (33), an outdoor expansion valve (34), and a receiver (35). . The suction side of the compressor (31) is connected to the low-pressure gas pipe (22) via a pipe. The outdoor three-way valve (32) has a first port on the discharge side of the compressor (31), a second port on the suction side of the compressor (31), and a third port on the outdoor heat exchanger. (33) are connected to the gas side ends. The outdoor heat exchanger (33) has an end on the liquid side connected to one end of the outdoor expansion valve (34). The other end of the outdoor expansion valve (34) is connected to the high-pressure liquid pipe (23) via the receiver (35). In the outdoor circuit (30), a portion between the discharge side of the compressor (31) and the first port of the outdoor three-way valve (32) is connected to the high-pressure gas pipe (21) via a pipe. Yes.

圧縮機(31)は、全密閉型圧縮機である。室外三方弁(32)は、第3のポートが第1のポートだけに連通する第1状態(図1に実線で示す状態)と、第3のポートが第2のポートだけに連通する第2状態(図1に破線で示す状態)とに切り換わる。室外熱交換器(33)は、冷媒を室外空気と熱交換させるフィン・アンド・チューブ型熱交換器である。室外膨張弁(34)は、開度可変の電子膨張弁である。   The compressor (31) is a hermetic compressor. The outdoor three-way valve (32) includes a first state in which the third port communicates only with the first port (state indicated by a solid line in FIG. 1), and a second state in which the third port communicates only with the second port. The state is switched to a state (a state indicated by a broken line in FIG. 1). The outdoor heat exchanger (33) is a fin-and-tube heat exchanger that exchanges heat between the refrigerant and outdoor air. The outdoor expansion valve (34) is an electronic expansion valve with a variable opening.

図示しないが、室外ユニット(11)には、室外熱交換器(33)へ室外空気を送るための室外ファンが設けられている。室外ファンによって室外熱交換器(33)へ送られた室外空気は、室外熱交換器(33)を通過後に室外へ排出される。   Although not shown, the outdoor unit (11) is provided with an outdoor fan for sending outdoor air to the outdoor heat exchanger (33). The outdoor air sent to the outdoor heat exchanger (33) by the outdoor fan passes through the outdoor heat exchanger (33) and is discharged to the outside.

各調湿用回路(40,50)には、第1吸着熱交換器(41,51)と、第2吸着熱交換器(42,52)と、第1膨張弁(43,53)と、第2膨張弁(44,54)と、ガス側切換機構である四方切換弁(45,55)と、液流通管(46,56)とが一つずつ設けられている。   Each humidity control circuit (40, 50) includes a first adsorption heat exchanger (41, 51), a second adsorption heat exchanger (42, 52), a first expansion valve (43, 53), The second expansion valve (44, 54), the four-way switching valve (45, 55) which is a gas side switching mechanism, and the liquid flow pipe (46, 56) are provided one by one.

四方切換弁(45,55)は、その第1のポートが配管を介して高圧ガス配管(21)に接続され、その第2のポートが配管を介して低圧ガス配管(22)に接続されている。また、四方切換弁(45,55)は、その第3のポートが第1吸着熱交換器(41,51)のガス側の端部に接続され、その第4のポートが第2吸着熱交換器(42,52)のガス側の端部に接続されている。   The four-way switching valve (45, 55) has a first port connected to the high-pressure gas pipe (21) via a pipe, and a second port connected to the low-pressure gas pipe (22) via a pipe. Yes. The four-way switching valve (45, 55) has a third port connected to the gas side end of the first adsorption heat exchanger (41, 51), and the fourth port is a second adsorption heat exchange. Connected to the gas side end of the vessel (42, 52).

調湿用回路(40,50)では、四方切換弁(45,55)の第3のポートから第4のポートへ向かって順に、第1吸着熱交換器(41,51)と、第1膨張弁(43,53)と、第2膨張弁(44,54)と、第2吸着熱交換器(42,52)とが直列に接続されている。つまり、調湿用回路(40,50)では、第1吸着熱交換器(41,51)の液側の端部と第2吸着熱交換器(42,52)の液側の端部とが互いに接続され、両者の間に第1膨張弁(43,53)と第2膨張弁(44,54)とが配置されている。液流通管(46,56)は、その一端が第1膨張弁(43,53)と第2膨張弁(44,54)の間に接続され、その他端が配管を介して高圧液配管(23)に接続されている。   In the humidity control circuit (40, 50), the first adsorption heat exchanger (41, 51) and the first expansion are sequentially performed from the third port to the fourth port of the four-way switching valve (45, 55). The valve (43, 53), the second expansion valve (44, 54), and the second adsorption heat exchanger (42, 52) are connected in series. That is, in the humidity control circuit (40, 50), the liquid side end of the first adsorption heat exchanger (41, 51) and the liquid side end of the second adsorption heat exchanger (42, 52) are connected to each other. The first expansion valve (43, 53) and the second expansion valve (44, 54) are arranged between the two. One end of the liquid circulation pipe (46, 56) is connected between the first expansion valve (43, 53) and the second expansion valve (44, 54), and the other end is connected to the high-pressure liquid pipe (23 )It is connected to the.

第1吸着熱交換器(41,51)と第2吸着熱交換器(42,52)のそれぞれは、冷媒を空気と熱交換させるフィン・アンド・チューブ型熱交換器の表面にゼオライト等の吸着剤を担持させたものである。四方切換弁(45,55)は、第1のポートと第3のポートが連通し且つ第2のポートと第4のポートが連通する第1状態(図1に実線で示す状態)と、第1のポートと第4のポートが連通し且つ第2のポートと第3のポートが連通する第2状態(図1に破線で示す状態)とに切り換わる。第1膨張弁と第2膨張弁のそれぞれは、開度可変の電子膨張弁である。   Each of the first adsorption heat exchanger (41, 51) and the second adsorption heat exchanger (42, 52) adsorbs zeolite or the like on the surface of a fin-and-tube heat exchanger that exchanges heat between the refrigerant and air. The agent is supported. The four-way switching valve (45, 55) has a first state (state indicated by a solid line in FIG. 1) in which the first port and the third port communicate and the second port and the fourth port communicate, The first port and the fourth port communicate with each other, and the second port and the third port communicate with each other. Each of the first expansion valve and the second expansion valve is an electronic expansion valve having a variable opening.

図示しないが、各調湿ユニット(12,13)には、給気ファンと排気ファンとが一つずつ設けられている。給気ファンを運転すると、調湿ユニット(12,13)に吸い込まれた室外空気が第1吸着熱交換器(41,51)と第2吸着熱交換器(42,52)の一方を通過後に室内へ供給される。また、排気ファンを運転すると、調湿ユニット(12,13)に吸い込まれた室内空気が第1吸着熱交換器(41,51)と第2吸着熱交換器(42,52)の他方を通過後に室外へ排出される。   Although not shown, each of the humidity control units (12, 13) is provided with one supply fan and one exhaust fan. When the air supply fan is operated, the outdoor air sucked into the humidity control unit (12, 13) passes through one of the first adsorption heat exchanger (41, 51) and the second adsorption heat exchanger (42, 52). Supplied indoors. When the exhaust fan is operated, the indoor air sucked into the humidity control unit (12, 13) passes through the other of the first adsorption heat exchanger (41, 51) and the second adsorption heat exchanger (42, 52). Later it is discharged out of the room.

各空調用回路(60,70)には、室内熱交換器(61,71)と、室内膨張弁(62,72)とが一つずつ設けられている。空調用回路(60,70)では、室内熱交換器(61,71)と室内膨張弁(62,72)が直列に接続されている。空調用回路(60,70)の室内膨張弁(62,72)側の端部は、高圧液配管(23)に接続されている。空調用回路(60,70)の室内熱交換器(61,71)側の端部は、配管を介して対応する接続ユニット(16,17)の空調側三方弁(65,75)に接続されている。   Each of the air conditioning circuits (60, 70) is provided with one indoor heat exchanger (61, 71) and one indoor expansion valve (62, 72). In the air conditioning circuit (60, 70), the indoor heat exchanger (61, 71) and the indoor expansion valve (62, 72) are connected in series. The end of the air conditioning circuit (60, 70) on the indoor expansion valve (62, 72) side is connected to the high pressure liquid pipe (23). The end of the air conditioning circuit (60, 70) on the indoor heat exchanger (61, 71) side is connected to the air conditioning side three-way valve (65, 75) of the corresponding connection unit (16, 17) via a pipe. ing.

各室内熱交換器(61,71)は、冷媒を室内空気と熱交換させるフィン・アンド・チューブ型熱交換器である。各室内膨張弁(62,72)は、開度可変の電子膨張弁である。   Each indoor heat exchanger (61, 71) is a fin-and-tube heat exchanger that exchanges heat between the refrigerant and room air. Each indoor expansion valve (62, 72) is an electronic expansion valve with variable opening.

図示しないが、室内ユニットには、室内熱交換器(61,71)へ室内空気を送るための室内ファンが設けられている。室内ファンによって室内熱交換器(61,71)へ送られた室内空気は、室内熱交換器(61,71)を通過後に室内へ送り返される。   Although not shown, the indoor unit is provided with an indoor fan for sending indoor air to the indoor heat exchanger (61, 71). The room air sent to the indoor heat exchanger (61, 71) by the indoor fan is sent back into the room after passing through the indoor heat exchanger (61, 71).

空調側三方弁(65,75)は、その第1のポートが低圧ガス配管(22)に、その第2のポートが高圧ガス配管(21)に、その第3のポートが対応する空調用回路(60,70)に、それぞれ接続されている。空調側三方弁(65,75)は、第3のポートが第1のポートだけに連通する第1状態(図1に実線で示す状態)と、第3のポートが第2のポートだけに連通する第2状態(図1に破線で示す状態)とに切り換わる。   The air conditioning side three-way valve (65, 75) has a first port corresponding to the low pressure gas pipe (22), a second port corresponding to the high pressure gas pipe (21), and a third port corresponding to the third port. (60, 70), respectively. The air-conditioning side three-way valve (65,75) has a first port where the third port communicates only with the first port (shown by a solid line in FIG. 1) and a third port which communicates only with the second port. To the second state (the state indicated by the broken line in FIG. 1).

−運転動作−
空調システム(10)の運転動作について説明する。本実施形態の空調システム(10)は、冷房用運転と暖房用運転とを切り換えて行う。また、この空調システム(10)において、各調湿ユニット(12,13)は、冷房用運転中の暖房用運転中の何れにおいても、除湿運転と加湿運転とを切り換えて行う。
-Driving action-
The operation of the air conditioning system (10) will be described. The air conditioning system (10) of the present embodiment performs switching between a cooling operation and a heating operation. In the air conditioning system (10), each humidity control unit (12, 13) switches between a dehumidifying operation and a humidifying operation during any heating operation during cooling operation.

〈冷房用運転〉
冷房用運転中の冷媒回路(20)では、室外三方弁(32)が第1状態(図2,図3に示す状態)に設定され、室外膨張弁(34)が全開状態に設定される。この状態において圧縮機(31)を駆動すると、冷媒回路(20)内を冷媒が循環して冷凍サイクルが行われる。その際、室外熱交換器(33)は、凝縮器(即ち、冷媒が空気に対して放熱する放熱器)として動作する。
<Cooling operation>
In the refrigerant circuit (20) during the cooling operation, the outdoor three-way valve (32) is set to the first state (the state shown in FIGS. 2 and 3), and the outdoor expansion valve (34) is set to the fully open state. When the compressor (31) is driven in this state, the refrigerant circulates in the refrigerant circuit (20) and a refrigeration cycle is performed. At that time, the outdoor heat exchanger (33) operates as a condenser (that is, a radiator in which the refrigerant dissipates heat to the air).

冷房用運転中の空調システム(10)において、各空調ユニット(14,15)は、冷房動作と暖房動作のどちらを実行することも可能である。ただし、冷房用運転中の空調システム(10)では、少なくとも一台の空調ユニット(14,15)が必ず冷房動作を行う。   In the air conditioning system (10) during the cooling operation, each air conditioning unit (14, 15) can perform either a cooling operation or a heating operation. However, in the air conditioning system (10) during the cooling operation, at least one air conditioning unit (14, 15) always performs the cooling operation.

先ず、冷房用運転中に全ての空調ユニット(14,15)が冷房動作を行う場合について、図2を参照しながら説明する。   First, the case where all the air conditioning units (14, 15) perform the cooling operation during the cooling operation will be described with reference to FIG.

この場合は、各空調側三方弁(65,75)が第1状態(図2に示す状態)に設定され、各室内熱交換器(61,71)が蒸発器として動作する。また、各室内膨張弁(62,72)の開度は、対応する室内熱交換器(61,71)の出口における冷媒の過熱度が一定となるように調節される。   In this case, each air-conditioning side three-way valve (65, 75) is set to the first state (the state shown in FIG. 2), and each indoor heat exchanger (61, 71) operates as an evaporator. The opening degree of each indoor expansion valve (62, 72) is adjusted so that the degree of superheat of the refrigerant at the outlet of the corresponding indoor heat exchanger (61, 71) becomes constant.

冷媒回路(20)において、圧縮機(31)から吐出された高圧ガス冷媒は、その一部が高圧ガス配管(21)へ流入し、残りが室外熱交換器(33)へ流入する。高圧ガス配管(21)を流れる高圧ガス冷媒は、調湿ユニット(12,13)の調湿用回路(40,50)へ流入する。調湿ユニット(12,13)の動作については、後述する。室外熱交換器(33)へ流入した高圧ガス冷媒は、室外空気へ放熱して凝縮し、その後に室外膨張弁(34)とレシーバ(35)を通って高圧液配管(23)へ流入する。高圧液配管(23)を流れる高圧液冷媒は、各空調用回路(60,70)へ供給される。   In the refrigerant circuit (20), part of the high-pressure gas refrigerant discharged from the compressor (31) flows into the high-pressure gas pipe (21), and the rest flows into the outdoor heat exchanger (33). The high-pressure gas refrigerant flowing through the high-pressure gas pipe (21) flows into the humidity control circuit (40, 50) of the humidity control unit (12, 13). The operation of the humidity control unit (12, 13) will be described later. The high-pressure gas refrigerant that has flowed into the outdoor heat exchanger (33) dissipates heat to the outdoor air, condenses, and then flows into the high-pressure liquid pipe (23) through the outdoor expansion valve (34) and the receiver (35). The high-pressure liquid refrigerant flowing through the high-pressure liquid pipe (23) is supplied to each air conditioning circuit (60, 70).

各空調用回路(60,70)へ流入した高圧液冷媒は、室内膨張弁(62,72)を通過する際に膨張して気液二相状態の低圧冷媒となり、その後に室内熱交換器(61,71)へ流入する。室内熱交換器(61,71)では、流入した冷媒が室内空気から吸熱して蒸発し、室内空気が冷却される。空調ユニット(14,15)は、室内熱交換器(61,71)において冷却された室内空気を室内へ送り返す。室内熱交換器(61,71)から流出した低圧ガス冷媒は、空調側三方弁(65,75)を通って低圧ガス配管(22)へ流入する。低圧ガス配管(22)を流れる低圧ガス冷媒は、圧縮機(31)へ吸入されて圧縮される。   The high-pressure liquid refrigerant flowing into each air conditioning circuit (60, 70) expands into a low-pressure refrigerant in a gas-liquid two-phase state when passing through the indoor expansion valve (62, 72), and then the indoor heat exchanger ( 61, 71). In the indoor heat exchanger (61, 71), the refrigerant that has flowed in absorbs heat from the indoor air and evaporates, and the indoor air is cooled. The air conditioning unit (14, 15) sends the indoor air cooled in the indoor heat exchanger (61, 71) back into the room. The low-pressure gas refrigerant flowing out of the indoor heat exchanger (61, 71) flows into the low-pressure gas pipe (22) through the air-conditioning side three-way valve (65, 75). The low-pressure gas refrigerant flowing through the low-pressure gas pipe (22) is sucked into the compressor (31) and compressed.

次に、冷房用運転中に一部の空調ユニット(15)が暖房動作を行う場合について説明する。ここでは、第1空調ユニット(14)が冷房動作を行って第2空調ユニット(15)が暖房動作を行う場合について、図3を参照しながら説明する。   Next, a case where some air conditioning units (15) perform the heating operation during the cooling operation will be described. Here, the case where the first air conditioning unit (14) performs the cooling operation and the second air conditioning unit (15) performs the heating operation will be described with reference to FIG.

この場合は、第1接続ユニット(16)の空調側三方弁(65)が第1状態(図3に示す状態)に設定される。そして、第1空調ユニット(14)では、室内熱交換器(61)が蒸発器として動作し、室内膨張弁(62)の開度が室内熱交換器(61)の出口における冷媒の過熱度が一定となるように調節される。また、この場合は、第2接続ユニット(17)の空調側三方弁(75)が第2状態(図3に示す状態)に設定される。そして、第2空調ユニット(15)では、室内熱交換器(71)が凝縮器として動作し、室内膨張弁(72)が全開状態に設定される。   In this case, the air-conditioning side three-way valve (65) of the first connection unit (16) is set to the first state (the state shown in FIG. 3). In the first air conditioning unit (14), the indoor heat exchanger (61) operates as an evaporator, and the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger (61) depends on the degree of opening of the indoor expansion valve (62). It is adjusted to be constant. In this case, the air-conditioning side three-way valve (75) of the second connection unit (17) is set to the second state (the state shown in FIG. 3). In the second air conditioning unit (15), the indoor heat exchanger (71) operates as a condenser, and the indoor expansion valve (72) is set to a fully open state.

冷媒回路(20)において、圧縮機(31)から吐出された高圧ガス冷媒は、その一部が高圧ガス配管(21)へ流入し、残りが室外熱交換器(33)へ流入する。高圧ガス配管(21)を流れる高圧ガス冷媒は、その一部が調湿ユニット(12,13)の調湿用回路(40,50)へ流入し、残りが空調側三方弁(75)を通って第2空調用回路(70)へ流入する。室外熱交換器(33)へ流入した高圧ガス冷媒は、室外空気へ放熱して凝縮し、その後に室外膨張弁(34)とレシーバ(35)を通って高圧液配管(23)へ流入する。一方、第2空調用回路(70)の室内熱交換器(71)へ流入した高圧ガス冷媒は、室内空気へ放熱して凝縮し、その後に室内膨張弁(72)を通って高圧液配管(23)へ流入する。第2空調ユニット(15)は、室内熱交換器(71)において加熱された室内空気を室内へ送り返す。   In the refrigerant circuit (20), part of the high-pressure gas refrigerant discharged from the compressor (31) flows into the high-pressure gas pipe (21), and the rest flows into the outdoor heat exchanger (33). Part of the high-pressure gas refrigerant flowing through the high-pressure gas pipe (21) flows into the humidity control circuit (40, 50) of the humidity control unit (12, 13), and the rest passes through the air-conditioning side three-way valve (75). Flow into the second air conditioning circuit (70). The high-pressure gas refrigerant that has flowed into the outdoor heat exchanger (33) dissipates heat to the outdoor air, condenses, and then flows into the high-pressure liquid pipe (23) through the outdoor expansion valve (34) and the receiver (35). On the other hand, the high-pressure gas refrigerant flowing into the indoor heat exchanger (71) of the second air conditioning circuit (70) dissipates heat to the indoor air and condenses, and then passes through the indoor expansion valve (72) to the high-pressure liquid pipe ( 23). The second air conditioning unit (15) sends the indoor air heated in the indoor heat exchanger (71) back into the room.

高圧液配管(23)を流れる高圧液冷媒は、第1空調用回路(60)へ供給される。第1空調用回路(60)へ流入した高圧液冷媒は、室内膨張弁(62)を通過する際に膨張して気液二相状態の低圧冷媒となり、その後に室内熱交換器(61)へ流入する。室内熱交換器(61)では、流入した冷媒が室内空気から吸熱して蒸発し、室内空気が冷却される。第1空調ユニット(14)は、室内熱交換器(61)において冷却された室内空気を室内へ送り返す。室内熱交換器(61)から流出した低圧ガス冷媒は、空調側三方弁(65)を通って低圧ガス配管(22)へ流入する。低圧ガス配管(22)を流れる低圧ガス冷媒は、圧縮機(31)へ吸入されて圧縮される。   The high-pressure liquid refrigerant flowing through the high-pressure liquid pipe (23) is supplied to the first air conditioning circuit (60). The high-pressure liquid refrigerant that has flowed into the first air conditioning circuit (60) expands to become a low-pressure refrigerant in a gas-liquid two-phase state when passing through the indoor expansion valve (62), and then to the indoor heat exchanger (61). Inflow. In the indoor heat exchanger (61), the refrigerant that has flowed in absorbs heat from the room air and evaporates, thereby cooling the room air. The first air conditioning unit (14) sends the indoor air cooled in the indoor heat exchanger (61) back into the room. The low pressure gas refrigerant that has flowed out of the indoor heat exchanger (61) flows into the low pressure gas pipe (22) through the air conditioning side three-way valve (65). The low-pressure gas refrigerant flowing through the low-pressure gas pipe (22) is sucked into the compressor (31) and compressed.

〈暖房用運転〉
暖房用運転中の冷媒回路(20)では、室外三方弁(32)が第2状態(図4,図5に示す状態)に設定される。この状態において圧縮機(31)を駆動すると、冷媒回路(20)内を冷媒が循環して冷凍サイクルが行われる。その際、室外熱交換器(33)は、蒸発器として動作する。また、室外膨張弁(34)の開度は、室外熱交換器(33)の出口における冷媒の過熱度が一定となるように調節される。
<Heating operation>
In the refrigerant circuit (20) during the heating operation, the outdoor three-way valve (32) is set to the second state (the state shown in FIGS. 4 and 5). When the compressor (31) is driven in this state, the refrigerant circulates in the refrigerant circuit (20) and a refrigeration cycle is performed. At that time, the outdoor heat exchanger (33) operates as an evaporator. The opening degree of the outdoor expansion valve (34) is adjusted so that the degree of superheat of the refrigerant at the outlet of the outdoor heat exchanger (33) is constant.

暖房用運転中の空調システム(10)において、各空調ユニット(14,15)は、冷房動作と暖房動作のどちらを実行することも可能である。ただし、暖房用運転中の空調システム(10)では、少なくとも一台の空調ユニット(14,15)が必ず暖房動作を行う。   In the air conditioning system (10) during heating operation, each air conditioning unit (14, 15) can perform either a cooling operation or a heating operation. However, in the air conditioning system (10) during heating operation, at least one air conditioning unit (14, 15) always performs the heating operation.

先ず、暖房用運転中に全ての空調ユニット(14,15)が暖房動作を行う場合について、図4を参照しながら説明する。   First, the case where all the air conditioning units (14, 15) perform the heating operation during the heating operation will be described with reference to FIG.

この場合は、各空調側三方弁(65,75)が第2状態(図4に示す状態)に設定され、各室内熱交換器(61,71)が凝縮器として動作する。また、各室内膨張弁(62,72)は、全開状態に設定される。   In this case, each air-conditioning side three-way valve (65, 75) is set to the second state (the state shown in FIG. 4), and each indoor heat exchanger (61, 71) operates as a condenser. Each indoor expansion valve (62, 72) is set to a fully open state.

冷媒回路(20)において、圧縮機(31)から吐出された高圧ガス冷媒は、その全部が高圧ガス配管(21)へ流入する。高圧ガス配管(21)を流れる高圧ガス冷媒は、その一部が調湿ユニット(12,13)の調湿用回路(40,50)へ流入し、残りが空調側三方弁(65,75)を通って空調用回路(60,70)へ流入する。各空調用回路(60,70)へ流入した高圧ガス冷媒は、室内熱交換器(61,71)において室内空気へ放熱して凝縮し、その後に室内膨張弁(62,72)を通って高圧液配管(23)へ流入する。空調ユニット(14,15)は、室内熱交換器(61,71)において加熱された室内空気を室内へ送り返す。   In the refrigerant circuit (20), all of the high-pressure gas refrigerant discharged from the compressor (31) flows into the high-pressure gas pipe (21). Part of the high-pressure gas refrigerant flowing through the high-pressure gas pipe (21) flows into the humidity control circuit (40, 50) of the humidity control unit (12, 13), and the rest is the air-conditioning side three-way valve (65, 75) And flows into the air conditioning circuit (60, 70). The high-pressure gas refrigerant flowing into each air conditioning circuit (60, 70) dissipates heat and condenses in the indoor heat exchanger (61, 71) and then passes through the indoor expansion valve (62, 72). It flows into the liquid pipe (23). The air conditioning unit (14, 15) sends indoor air heated in the indoor heat exchanger (61, 71) back into the room.

高圧液配管(23)を流れる高圧液冷媒は、室外回路(30)へ流入する。室外回路(30)へ流入した高圧液冷媒は、レシーバ(35)を通って室外膨張弁(34)へ送られ、室外膨張弁(34)を通過する際に膨張して気液二相状態の低圧冷媒となる。その後、低圧冷媒は、室外熱交換器(33)へ流入し、室外空気から吸熱して蒸発する。室外熱交換器(33)から流出した冷媒は、低圧ガス配管(22)を流れる低圧ガス冷媒と共に圧縮機(31)へ吸入されて圧縮される。   The high-pressure liquid refrigerant flowing through the high-pressure liquid pipe (23) flows into the outdoor circuit (30). The high-pressure liquid refrigerant that has flowed into the outdoor circuit (30) is sent to the outdoor expansion valve (34) through the receiver (35), expands when passing through the outdoor expansion valve (34), and is in a gas-liquid two-phase state. It becomes a low-pressure refrigerant. Thereafter, the low-pressure refrigerant flows into the outdoor heat exchanger (33), absorbs heat from the outdoor air, and evaporates. The refrigerant flowing out of the outdoor heat exchanger (33) is sucked into the compressor (31) and compressed together with the low-pressure gas refrigerant flowing through the low-pressure gas pipe (22).

次に、暖房用運転中に一部の空調ユニット(15)が冷房動作を行う場合について説明する。ここでは、第1空調ユニット(14)が暖房動作を行って第2空調ユニット(15)が冷房動作を行う場合について、図5を参照しながら説明する。   Next, a case where some air conditioning units (15) perform the cooling operation during the heating operation will be described. Here, the case where the first air conditioning unit (14) performs the heating operation and the second air conditioning unit (15) performs the cooling operation will be described with reference to FIG.

この場合は、第1接続ユニット(16)の空調側三方弁(65)が第2状態(図5に示す状態)に設定される。そして、第1空調ユニット(14)では、室内熱交換器(61)が凝縮器として動作し、室内膨張弁(62)が全開状態に設定される。また、この場合は、第2接続ユニット(17)の空調側三方弁(75)が第1状態(図5に示す状態)に設定される。そして、第2空調ユニット(15)では、室内熱交換器(71)が蒸発器として動作し、室内膨張弁(72)の開度が室内熱交換器(71)の出口における冷媒の過熱度が一定となるように調節される。   In this case, the air-conditioning side three-way valve (65) of the first connection unit (16) is set to the second state (the state shown in FIG. 5). In the first air conditioning unit (14), the indoor heat exchanger (61) operates as a condenser, and the indoor expansion valve (62) is set to a fully open state. In this case, the air-conditioning side three-way valve (75) of the second connection unit (17) is set to the first state (the state shown in FIG. 5). In the second air conditioning unit (15), the indoor heat exchanger (71) operates as an evaporator, and the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger (71) is determined by the degree of opening of the indoor expansion valve (72). It is adjusted to be constant.

冷媒回路(20)において、圧縮機(31)から吐出された高圧ガス冷媒は、その全部が高圧ガス配管(21)へ流入する。高圧ガス配管(21)を流れる高圧ガス冷媒は、その一部が調湿ユニット(12,13)の調湿用回路(40,50)へ流入し、残りが空調側三方弁(65)を通って第1空調用回路(60)へ流入する。第1空調用回路(60)へ流入した高圧ガス冷媒は、室内熱交換器(61)において室内空気へ放熱して凝縮し、その後に室内膨張弁(62)を通って高圧液配管(23)へ流入する。第1空調ユニット(14)は、室内熱交換器(61)において加熱された室内空気を室内へ送り返す。   In the refrigerant circuit (20), all of the high-pressure gas refrigerant discharged from the compressor (31) flows into the high-pressure gas pipe (21). Part of the high-pressure gas refrigerant flowing through the high-pressure gas pipe (21) flows into the humidity control circuit (40, 50) of the humidity control unit (12, 13), and the rest passes through the air-conditioning side three-way valve (65). Flow into the first air conditioning circuit (60). The high-pressure gas refrigerant flowing into the first air conditioning circuit (60) dissipates heat and condenses in the indoor heat exchanger (61) to the indoor air, and then passes through the indoor expansion valve (62) to the high-pressure liquid pipe (23). Flow into. The first air conditioning unit (14) sends the indoor air heated in the indoor heat exchanger (61) back into the room.

高圧液配管(23)を流れる高圧液冷媒は、その一部が第2空調用回路(70)へ流入し、残りが室外回路(30)へ流入する。第2空調用回路(70)へ流入した高圧液冷媒は、室内膨張弁(72)を通過する際に膨張して気液二相状態の低圧冷媒となり、その後に室内熱交換器(71)へ流入する。室内熱交換器(71)では、流入した冷媒が室内空気から吸熱して蒸発し、室内空気が冷却される。第2空調ユニット(15)は、室内熱交換器(71)において冷却された室内空気を室内へ送り返す。室内熱交換器(71)から流出した低圧ガス冷媒は、空調側三方弁(75)を通って低圧ガス配管(22)へ流入する。一方、室外回路(30)へ流入した高圧液冷媒は、レシーバ(35)を通って室外膨張弁(34)へ送られ、室外膨張弁(34)を通過する際に膨張して気液二相状態の低圧冷媒となる。その後、低圧冷媒は、室外熱交換器(33)へ流入し、室外空気から吸熱して蒸発する。室外熱交換器(33)から流出した冷媒は、低圧ガス配管(22)を流れる低圧ガス冷媒と共に圧縮機(31)へ吸入されて圧縮される。   Part of the high-pressure liquid refrigerant flowing through the high-pressure liquid pipe (23) flows into the second air conditioning circuit (70), and the rest flows into the outdoor circuit (30). The high-pressure liquid refrigerant that has flowed into the second air conditioning circuit (70) expands into a low-pressure refrigerant in a gas-liquid two-phase state when passing through the indoor expansion valve (72), and then enters the indoor heat exchanger (71). Inflow. In the indoor heat exchanger (71), the refrigerant that has flowed in absorbs heat from the room air and evaporates, thereby cooling the room air. The second air conditioning unit (15) sends the indoor air cooled in the indoor heat exchanger (71) back into the room. The low-pressure gas refrigerant flowing out of the indoor heat exchanger (71) flows into the low-pressure gas pipe (22) through the air-conditioning side three-way valve (75). On the other hand, the high-pressure liquid refrigerant that has flowed into the outdoor circuit (30) is sent to the outdoor expansion valve (34) through the receiver (35) and expands when passing through the outdoor expansion valve (34). It becomes a low-pressure refrigerant in a state. Thereafter, the low-pressure refrigerant flows into the outdoor heat exchanger (33), absorbs heat from the outdoor air, and evaporates. The refrigerant flowing out of the outdoor heat exchanger (33) is sucked into the compressor (31) and compressed together with the low-pressure gas refrigerant flowing through the low-pressure gas pipe (22).

〈調湿ユニットの動作〉
調湿ユニット(12,13)の動作について説明する。ここでは、第1調湿ユニット(12)の動作について、図6を参照しながら説明する。第2調湿ユニット(13)の動作は、第1調湿ユニット(12)の動作と同じである。また、ここでは、第1吸着熱交換器(41)と第2吸着熱交換器(42)のそれぞれにおける冷媒の質量流量が同じであると仮定して、第1調湿ユニット(12)の動作を説明する。第1吸着熱交換器(41)と第2吸着熱交換器(42)のそれぞれにおける冷媒の質量流量を互いに相違させるための冷媒流量調節動作については、後述する。
<Operation of humidity control unit>
The operation of the humidity control unit (12, 13) will be described. Here, the operation of the first humidity control unit (12) will be described with reference to FIG. The operation of the second humidity control unit (13) is the same as the operation of the first humidity control unit (12). Here, the operation of the first humidity control unit (12) is assumed on the assumption that the mass flow rates of the refrigerant in the first adsorption heat exchanger (41) and the second adsorption heat exchanger (42) are the same. Will be explained. The refrigerant flow rate adjustment operation for making the mass flow rate of the refrigerant different in each of the first adsorption heat exchanger (41) and the second adsorption heat exchanger (42) will be described later.

除湿運転中と加湿運転中の何れにおいても、第1調湿ユニット(12)は、第1動作と第2動作とを、所定の時間毎(例えば、3分毎)に交互に切り換えて行う。   In both the dehumidifying operation and the humidifying operation, the first humidity control unit (12) performs the first operation and the second operation by alternately switching at predetermined time intervals (for example, every 3 minutes).

先ず、第1調湿ユニット(12)の第1動作について、図6(A)を参照しながら説明する。   First, the first operation of the first humidity control unit (12) will be described with reference to FIG.

第1動作中の第1調湿用回路(40)では、四方切換弁(45)が第1状態(図6(A)に示す状態)に設定され、第1膨張弁(43)及び第2膨張弁(44)の開度が適宜調節される。この状態において、第1調湿用回路(40)では、第1吸着熱交換器(41)が凝縮器(即ち、冷媒が空気に対して放熱する放熱器)として動作し、第2吸着熱交換器(42)が蒸発器として動作する。   In the first humidity control circuit (40) during the first operation, the four-way switching valve (45) is set to the first state (the state shown in FIG. 6A), and the first expansion valve (43) and the second The opening degree of the expansion valve (44) is adjusted as appropriate. In this state, in the first humidity control circuit (40), the first adsorptive heat exchanger (41) operates as a condenser (that is, a radiator in which the refrigerant dissipates heat to the air), and the second adsorptive heat exchange. The vessel (42) operates as an evaporator.

具体的に、高圧ガス配管(21)から第1調湿用回路(40)へ流入した高圧ガス冷媒は、四方切換弁(45)を通って第1吸着熱交換器(41)へ流入する。第1吸着熱交換器(41)では、流入した高圧ガス冷媒が放熱して凝縮する。そして、第1吸着熱交換器(41)では、表面に担持された吸着剤が冷媒によって加熱され、加熱された吸着剤から水分が脱離する。吸着剤から脱離した水分は、第1吸着熱交換器(41)を通過する空気に付与される。このように、第1吸着熱交換器(41)では、そこを通過する空気が加湿される。また、場合によっては、第1吸着熱交換器(41)を通過する間に空気の温度が上昇する。   Specifically, the high-pressure gas refrigerant that has flowed from the high-pressure gas pipe (21) into the first humidity control circuit (40) flows into the first adsorption heat exchanger (41) through the four-way switching valve (45). In the first adsorption heat exchanger (41), the high-pressure gas refrigerant that has flowed in dissipates heat and condenses. In the first adsorption heat exchanger (41), the adsorbent supported on the surface is heated by the refrigerant, and moisture is desorbed from the heated adsorbent. The moisture desorbed from the adsorbent is given to the air passing through the first adsorption heat exchanger (41). Thus, in the 1st adsorption heat exchanger (41), the air which passes there is humidified. In some cases, the temperature of the air rises while passing through the first adsorption heat exchanger (41).

第1吸着熱交換器(41)から流出した冷媒は、第1膨張弁(43)と第2膨張弁(44)を通過する際に膨張して低圧冷媒となり、その後に第2吸着熱交換器(42)へ流入する。第2吸着熱交換器(42)では、流入した冷媒が吸熱して蒸発し、その表面に担持された吸着剤が冷媒によって冷却される。つまり、第2吸着熱交換器(42)では、そこを通過する空気に含まれる水分が吸着剤に吸着され、その際に生じた吸着熱が冷媒に吸収される。このように、第2吸着熱交換器(42)では、そこを通過する空気が除湿される。また、場合によっては、第2吸着熱交換器(42)を通過する間に空気の温度が低下する。   The refrigerant flowing out of the first adsorption heat exchanger (41) expands to become a low-pressure refrigerant when passing through the first expansion valve (43) and the second expansion valve (44), and then the second adsorption heat exchanger. Flows into (42). In the second adsorption heat exchanger (42), the refrigerant flowing in absorbs heat and evaporates, and the adsorbent carried on the surface is cooled by the refrigerant. That is, in the second adsorption heat exchanger (42), moisture contained in the air passing through the second adsorption heat exchanger (42) is adsorbed by the adsorbent, and adsorption heat generated at that time is absorbed by the refrigerant. Thus, in the 2nd adsorption heat exchanger (42), the air which passes there is dehumidified. In some cases, the temperature of the air decreases while passing through the second adsorption heat exchanger (42).

次に、第1調湿ユニット(12)の第2動作について、図6(B)を参照しながら説明する。   Next, the second operation of the first humidity control unit (12) will be described with reference to FIG.

第2動作中の第1調湿用回路(40)では、四方切換弁(45)が第2状態(図6(B)に示す状態)に設定され、第1膨張弁(43)及び第2膨張弁(44)の開度が適宜調節される。この状態において、第1調湿用回路(40)では、第2吸着熱交換器(42)が凝縮器(即ち、冷媒が空気に対して放熱する放熱器)として動作し、第1吸着熱交換器(41)が蒸発器として動作する。   In the first humidity control circuit (40) during the second operation, the four-way switching valve (45) is set to the second state (the state shown in FIG. 6B), and the first expansion valve (43) and the second The opening degree of the expansion valve (44) is adjusted as appropriate. In this state, in the first humidity control circuit (40), the second adsorptive heat exchanger (42) operates as a condenser (that is, a radiator in which the refrigerant radiates heat to the air), and the first adsorptive heat exchange. The vessel (41) operates as an evaporator.

具体的に、高圧ガス配管(21)から第1調湿用回路(40)へ流入した高圧ガス冷媒は、四方切換弁(45)を通って第2吸着熱交換器(42)へ流入する。第2吸着熱交換器(42)では、流入した高圧ガス冷媒が放熱して凝縮する。そして、第2吸着熱交換器(42)では、表面に担持された吸着剤が冷媒によって加熱され、加熱された吸着剤から水分が脱離する。吸着剤から脱離した水分は、第2吸着熱交換器(42)を通過する空気に付与される。このように、第2吸着熱交換器(42)では、そこを通過する空気が加湿される。また、場合によっては、第2吸着熱交換器(42)を通過する間に空気の温度が上昇する。   Specifically, the high-pressure gas refrigerant that has flowed from the high-pressure gas pipe (21) into the first humidity control circuit (40) flows into the second adsorption heat exchanger (42) through the four-way switching valve (45). In the second adsorption heat exchanger (42), the high-pressure gas refrigerant that has flowed in dissipates heat and condenses. In the second adsorption heat exchanger (42), the adsorbent supported on the surface is heated by the refrigerant, and moisture is desorbed from the heated adsorbent. The moisture desorbed from the adsorbent is given to the air passing through the second adsorption heat exchanger (42). Thus, in the 2nd adsorption heat exchanger (42), the air which passes there is humidified. In some cases, the temperature of the air rises while passing through the second adsorption heat exchanger (42).

第2吸着熱交換器(42)から流出した冷媒は、第1膨張弁(43)と第2膨張弁(44)を通過する際に膨張して低圧冷媒となり、その後に第1吸着熱交換器(41)へ流入する。第1吸着熱交換器(41)では、流入した冷媒が吸熱して蒸発し、その表面に担持された吸着剤が冷媒によって冷却される。つまり、第1吸着熱交換器(41)では、そこを通過する空気に含まれる水分が吸着剤に吸着され、その際に生じた吸着熱が冷媒に吸収される。このように、第2吸着熱交換器(42)では、そこを通過する空気が除湿される。また、場合によっては、第1吸着熱交換器(41)を通過する間に空気の温度が低下する。   The refrigerant flowing out of the second adsorption heat exchanger (42) expands to become a low-pressure refrigerant when passing through the first expansion valve (43) and the second expansion valve (44), and then the first adsorption heat exchanger. Flows into (41). In the first adsorption heat exchanger (41), the refrigerant flowing in absorbs heat and evaporates, and the adsorbent carried on the surface is cooled by the refrigerant. That is, in the first adsorption heat exchanger (41), moisture contained in the air passing through the first adsorption heat exchanger (41) is adsorbed by the adsorbent, and adsorption heat generated at that time is absorbed by the refrigerant. Thus, in the 2nd adsorption heat exchanger (42), the air which passes there is dehumidified. In some cases, the temperature of the air decreases while passing through the first adsorption heat exchanger (41).

除湿運転中の第1調湿ユニット(12)では、第1動作と第2動作の何れにおいても、凝縮器として動作する吸着熱交換器(41,42)へ室内空気が供給され、蒸発器として動作する吸着熱交換器(42,41)へ室外空気が供給される。   In the first humidity control unit (12) during the dehumidifying operation, indoor air is supplied to the adsorption heat exchanger (41, 42) operating as a condenser in both the first operation and the second operation, Outdoor air is supplied to the operating adsorption heat exchanger (42, 41).

除湿運転中の第1動作では、第1吸着熱交換器(41)へ室内空気が供給され、第2吸着熱交換器(42)へ室外空気が供給される(図6(A)を参照)。そして、第1吸着熱交換器(41)を通過する際に加湿された室内空気が室外へ排出され、第2吸着熱交換器(42)を通過する際に除湿された室外空気が室内へ供給される。一方、除湿運転中の第2動作では、第2吸着熱交換器(42)へ室内空気が供給され、第1吸着熱交換器(41)へ室外空気が供給される(図6(B)を参照)。そして、第2吸着熱交換器(42)を通過する際に加湿された室内空気が室外へ排出され、第1吸着熱交換器(41)を通過する際に除湿された室外空気が室内へ供給される。   In the first operation during the dehumidifying operation, room air is supplied to the first adsorption heat exchanger (41) and outdoor air is supplied to the second adsorption heat exchanger (42) (see FIG. 6A). . And the indoor air humidified when passing the 1st adsorption heat exchanger (41) is discharged | emitted outside the room, and the outdoor air dehumidified when passing the 2nd adsorption heat exchanger (42) is supplied indoors. Is done. On the other hand, in the second operation during the dehumidifying operation, room air is supplied to the second adsorption heat exchanger (42), and outdoor air is supplied to the first adsorption heat exchanger (41) (see FIG. 6B). reference). And the indoor air humidified when passing the 2nd adsorption heat exchanger (42) is discharged | emitted outside the room, and the outdoor air dehumidified when passing the 1st adsorption heat exchanger (41) is supplied indoors. Is done.

加湿運転中の第1調湿ユニット(12)では、第1動作と第2動作の何れにおいても、凝縮器として動作する吸着熱交換器(41,42)へ室外空気が供給され、蒸発器として動作する吸着熱交換器(42,41)へ室内空気が供給される。   In the first humidity control unit (12) during the humidification operation, outdoor air is supplied to the adsorption heat exchanger (41, 42) that operates as a condenser in both the first operation and the second operation, and serves as an evaporator. Room air is supplied to the operating adsorption heat exchanger (42, 41).

加湿運転中の第1動作では、第1吸着熱交換器(41)へ室外空気が供給され、第2吸着熱交換器(42)へ室内空気が供給される(図6(A)を参照)。そして、第1吸着熱交換器(41)を通過する際に加湿された室外空気が室内へ供給され、第2吸着熱交換器(42)を通過する際に除湿された室内空気が室外へ排出される。一方、加湿運転中の第2動作では、第2吸着熱交換器(42)へ室外空気が供給され、第1吸着熱交換器(41)へ室内空気が供給される(図6(B)を参照)。そして、第2吸着熱交換器(42)を通過する際に加湿された室外空気が室内へ供給され、第1吸着熱交換器(41)を通過する際に除湿された室内空気が室外へ排出される。   In the first operation during the humidifying operation, outdoor air is supplied to the first adsorption heat exchanger (41), and indoor air is supplied to the second adsorption heat exchanger (42) (see FIG. 6A). . Then, the outdoor air humidified when passing through the first adsorption heat exchanger (41) is supplied to the room, and the indoor air dehumidified when passing through the second adsorption heat exchanger (42) is discharged to the outside. Is done. On the other hand, in the second operation during the humidifying operation, outdoor air is supplied to the second adsorption heat exchanger (42), and indoor air is supplied to the first adsorption heat exchanger (41) (see FIG. 6B). reference). Then, the outdoor air humidified when passing through the second adsorption heat exchanger (42) is supplied to the room, and the indoor air dehumidified when passing through the first adsorption heat exchanger (41) is discharged outside the room. Is done.

〈調湿ユニットの冷媒流量調節動作〉
各調湿ユニット(12,13)では、第1吸着熱交換器(41,51)を通過する冷媒の質量流量と、第2吸着熱交換器(42,52)を通過する冷媒の質量流量とを個別に調節するための冷媒流量調節動作が行われる。ここでは、第1調湿ユニット(12)が行う冷媒流量調節動作について、図6を参照しながら説明する。なお、第2調湿ユニット(13)が行う冷媒流量調節動作は、第1調湿ユニット(12)が行う冷媒流量調節動作と同じである。
<Refrigerant flow adjustment operation of humidity control unit>
In each humidity control unit (12, 13), the mass flow rate of the refrigerant passing through the first adsorption heat exchanger (41, 51) and the mass flow rate of the refrigerant passing through the second adsorption heat exchanger (42, 52) A refrigerant flow rate adjusting operation for individually adjusting the refrigerant flow is performed. Here, the refrigerant | coolant flow volume adjustment operation | movement which a 1st humidity control unit (12) performs is demonstrated, referring FIG. The refrigerant flow rate adjusting operation performed by the second humidity control unit (13) is the same as the refrigerant flow rate adjusting operation performed by the first humidity control unit (12).

第1調湿ユニット(12)は、第1膨張弁(43)及び第2膨張弁(44)の開度を調節することによって第1膨張弁(43)と第2膨張弁(44)の間を流れる冷媒の圧力を調節する動作を、冷媒流量調節動作として行う。   The first humidity control unit (12) is arranged between the first expansion valve (43) and the second expansion valve (44) by adjusting the opening degree of the first expansion valve (43) and the second expansion valve (44). The operation of adjusting the pressure of the refrigerant flowing through the refrigerant is performed as the refrigerant flow rate adjusting operation.

=== 凝縮器の冷媒流量 > 蒸発器の冷媒流量 ===
第1調湿用回路(40)のうち第1膨張弁(43)と第2膨張弁(44)の間の部分を流れる冷媒の圧力が高圧液配管(23)を流れる高圧液冷媒の圧力よりも高い状態では、凝縮器として動作する吸着熱交換器(41,42)から流出した冷媒の一部が高圧液配管(23)へ向かって流出してゆく。従って、この状態では、蒸発器として動作する吸着熱交換器(42,41)を通過する冷媒の質量流量が、凝縮器として動作する吸着熱交換器(41,42)を通過する冷媒の質量流量よりも少なくなる。また、第1膨張弁(43)と第2膨張弁の間を流れる冷媒の圧力を変化させると、第1調湿用回路(40)から高圧液冷媒へ向かって流出してゆく冷媒の流量が変化し、蒸発器として動作する吸着熱交換器(42,41)を通過する冷媒の質量流量と、凝縮器として動作する吸着熱交換器(41,42)を通過する冷媒の質量流量との差が変化する。
=== Refrigerant flow rate of condenser> Refrigerant flow rate of evaporator ===
The pressure of the refrigerant flowing through the portion between the first expansion valve (43) and the second expansion valve (44) in the first humidity control circuit (40) is higher than the pressure of the high-pressure liquid refrigerant flowing through the high-pressure liquid pipe (23). In a higher state, part of the refrigerant flowing out from the adsorption heat exchanger (41, 42) operating as a condenser flows out toward the high-pressure liquid pipe (23). Therefore, in this state, the mass flow rate of the refrigerant passing through the adsorption heat exchanger (42, 41) operating as an evaporator is the mass flow rate of the refrigerant passing through the adsorption heat exchanger (41, 42) operating as a condenser. Less than. Further, when the pressure of the refrigerant flowing between the first expansion valve (43) and the second expansion valve is changed, the flow rate of the refrigerant flowing out from the first humidity control circuit (40) toward the high-pressure liquid refrigerant is increased. The difference between the mass flow rate of the refrigerant that changes and passes through the adsorption heat exchanger (42, 41) operating as an evaporator and the mass flow rate of the refrigerant that passes through the adsorption heat exchanger (41, 42) operating as a condenser Changes.

具体的に、第1膨張弁(43)と第2膨張弁(44)のうち凝縮器として動作する吸着熱交換器(41,42)の直後に位置する方の開度を大きめに設定すると、その膨張弁(43,44)を通過する際の冷媒の圧力低下量が小さくなり、第1膨張弁(43)と第2膨張弁(44)の間を流れる冷媒の圧力が比較的高くなる。このため、第1動作中に第1膨張弁(43)の開度を大きめに設定すれば、第1吸着熱交換器(41)から流出した冷媒の一部が液流通管(46)を通って高圧液配管(23)へ流出してゆくこととなり、その結果、第2吸着熱交換器(42)を通過する冷媒の質量流量が、第1吸着熱交換器(41)を通過する冷媒の質量流量よりも少なくなる。また、第2動作中に第2膨張弁(44)の開度を大きめに設定すれば、第2吸着熱交換器(42)から流出した冷媒の一部が液流通管(46)を通って高圧液配管(23)へ流出してゆくこととなり、その結果、第1吸着熱交換器(41)を通過する冷媒の質量流量が、第2吸着熱交換器(42)を通過する冷媒の質量流量よりも少なくなる。   Specifically, when the opening degree of the first expansion valve (43) and the second expansion valve (44) located immediately after the adsorption heat exchanger (41, 42) operating as a condenser is set larger, The pressure drop amount of the refrigerant when passing through the expansion valve (43, 44) becomes small, and the pressure of the refrigerant flowing between the first expansion valve (43) and the second expansion valve (44) becomes relatively high. For this reason, if the opening degree of the first expansion valve (43) is set larger during the first operation, a part of the refrigerant flowing out from the first adsorption heat exchanger (41) passes through the liquid circulation pipe (46). As a result, the mass flow rate of the refrigerant passing through the second adsorption heat exchanger (42) becomes smaller than that of the refrigerant passing through the first adsorption heat exchanger (41). Less than the mass flow rate. Also, if the opening of the second expansion valve (44) is set larger during the second operation, a part of the refrigerant flowing out of the second adsorption heat exchanger (42) passes through the liquid circulation pipe (46). As a result, the mass flow rate of the refrigerant passing through the first adsorption heat exchanger (41) becomes the mass of the refrigerant passing through the second adsorption heat exchanger (42). Less than the flow rate.

この場合には、凝縮器として動作する吸着熱交換器(41,42)を通過する冷媒の質量流量が、蒸発器として動作する吸着熱交換器(42,41)を通過する冷媒の質量流量に対して相対的に多くなる。このため、加湿運転中に凝縮器として動作する吸着熱交換器(41,42)を通過する冷媒の質量流量を蒸発器として動作する吸着熱交換器(42,41)に比べて多くすれば、凝縮器として動作する吸着熱交換器(41,42)を通過する際に空気の温度を確実に上昇させることが可能となる。   In this case, the mass flow rate of the refrigerant passing through the adsorption heat exchanger (41, 42) operating as a condenser is changed to the mass flow rate of the refrigerant passing through the adsorption heat exchanger (42, 41) operating as an evaporator. On the other hand, it becomes relatively large. Therefore, if the mass flow rate of the refrigerant that passes through the adsorption heat exchanger (41, 42) that operates as a condenser during the humidifying operation is larger than that of the adsorption heat exchanger (42, 41) that operates as an evaporator, It is possible to reliably raise the temperature of the air when passing through the adsorption heat exchanger (41, 42) operating as a condenser.

=== 凝縮器の冷媒流量 < 蒸発器の冷媒流量 ===
第1調湿用回路(40)のうち第1膨張弁(43)と第2膨張弁(44)の間の部分を流れる冷媒の圧力が高圧液配管(23)を流れる高圧液冷媒の圧力よりも低い状態では、高圧液配管(23)から第1調湿用回路(40)へ向かって冷媒が流入し、この流入した冷媒が蒸発器として動作する吸着熱交換器(42,41)へ供給される。従って、この状態では、蒸発器として動作する吸着熱交換器(42,41)を通過する冷媒の質量流量が、凝縮器として動作する吸着熱交換器(41,42)を通過する冷媒の質量流量よりも多くなる。また、第1膨張弁(43)と第2膨張弁(44)の間を流れる冷媒の圧力を変化させると、高圧液冷媒から第1調湿用回路(40)へ向かって流入してくる冷媒の流量が変化し、蒸発器として動作する吸着熱交換器(42,41)を通過する冷媒の質量流量と、凝縮器として動作する吸着熱交換器(41,42)を通過する冷媒の質量流量との差が変化する。
=== Refrigerant flow rate of condenser <Refrigerant flow rate of evaporator ===
The pressure of the refrigerant flowing through the portion between the first expansion valve (43) and the second expansion valve (44) in the first humidity control circuit (40) is higher than the pressure of the high-pressure liquid refrigerant flowing through the high-pressure liquid pipe (23). In the low state, the refrigerant flows from the high-pressure liquid pipe (23) toward the first humidity control circuit (40), and this refrigerant flows into the adsorption heat exchanger (42, 41) operating as an evaporator. Is done. Therefore, in this state, the mass flow rate of the refrigerant passing through the adsorption heat exchanger (42, 41) operating as an evaporator is the mass flow rate of the refrigerant passing through the adsorption heat exchanger (41, 42) operating as a condenser. More than. Further, when the pressure of the refrigerant flowing between the first expansion valve (43) and the second expansion valve (44) is changed, the refrigerant flows in from the high-pressure liquid refrigerant toward the first humidity control circuit (40). Mass flow rate of refrigerant passing through the adsorption heat exchanger (42, 41) operating as an evaporator and mass flow rate of refrigerant passing through the adsorption heat exchanger (41, 42) operating as a condenser And the difference changes.

具体的に、第1膨張弁(43)と第2膨張弁(44)のうち凝縮器として動作する吸着熱交換器(41,42)の直後に位置する方の開度を小さめに設定すると、その膨張弁(43,44)を通過する際の冷媒の圧力低下量が大きくなり、第1膨張弁(43)と第2膨張弁(44)の間を流れる冷媒の圧力が比較的低くなる。このため、第1動作中に第1膨張弁(43)の開度を小さめに設定すれば、高圧液配管(23)から第1調湿用回路(40)へ冷媒が流れ込む。そして、第1吸着熱交換器(41)から流出した冷媒と高圧液配管(23)から流入した冷媒との両方が第2膨張弁(44)を通って第2吸着熱交換器(42)へ流入することとなり、その結果、第2吸着熱交換器(42)を通過する冷媒の質量流量が、第1吸着熱交換器(41)を通過する冷媒の質量流量よりも多くなる。また、第2動作中に第2膨張弁(44)の開度を小さめに設定すれば、高圧液配管(23)から第1調湿用回路(40)へ冷媒が流れ込む。そして、第2吸着熱交換器(42)から流出した冷媒と高圧液配管(23)から流入した冷媒との両方が第1膨張弁(43)を通って第1吸着熱交換器(41)へ流入することとなり、その結果、第1吸着熱交換器(41)を通過する冷媒の質量流量が、第2吸着熱交換器(42)を通過する冷媒の質量流量よりも多くなる。   Specifically, when the opening degree of the first expansion valve (43) and the second expansion valve (44) located immediately after the adsorption heat exchanger (41, 42) operating as a condenser is set smaller, The pressure drop amount of the refrigerant when passing through the expansion valve (43, 44) becomes large, and the pressure of the refrigerant flowing between the first expansion valve (43) and the second expansion valve (44) becomes relatively low. For this reason, if the opening degree of the first expansion valve (43) is set smaller during the first operation, the refrigerant flows from the high-pressure liquid pipe (23) into the first humidity control circuit (40). Then, both the refrigerant flowing out from the first adsorption heat exchanger (41) and the refrigerant flowing in from the high-pressure liquid pipe (23) pass through the second expansion valve (44) to the second adsorption heat exchanger (42). As a result, the mass flow rate of the refrigerant passing through the second adsorption heat exchanger (42) becomes larger than the mass flow rate of the refrigerant passing through the first adsorption heat exchanger (41). Further, if the opening of the second expansion valve (44) is set to be small during the second operation, the refrigerant flows from the high-pressure liquid pipe (23) into the first humidity control circuit (40). And both the refrigerant | coolant which flowed out from the 2nd adsorption heat exchanger (42) and the refrigerant which flowed in from the high pressure liquid piping (23) pass through the 1st expansion valve (43) to the 1st adsorption heat exchanger (41). As a result, the mass flow rate of the refrigerant passing through the first adsorption heat exchanger (41) becomes larger than the mass flow rate of the refrigerant passing through the second adsorption heat exchanger (42).

この場合には、凝縮器として動作する吸着熱交換器(41,42)を通過する冷媒の質量流量が、蒸発器として動作する吸着熱交換器(42,41)を通過する冷媒の質量流量に対して相対的に少なくなる。このため、加湿運転中に凝縮器として動作する吸着熱交換器(41,42)を通過する冷媒の質量流量を蒸発器として動作する吸着熱交換器(42,41)に比べて少なくすれば、凝縮器として動作する吸着熱交換器(41,42)を通過する際の空気の温度上昇を抑えることができ、室内の温度上昇を抑えつつ室内の加湿を行うことができる。また、除湿運転中に凝縮器として動作する吸着熱交換器(41,42)を通過する冷媒の質量流量を蒸発器として動作する吸着熱交換器(42,41)に比べて少なくすれば、凝縮器として動作する吸着熱交換器(41,42)から脱離する水分の量が減少し、その結果、蒸発器として動作する吸着熱交換器(42,41)に吸着される水分の量も減少するため、蒸発器として動作する吸着熱交換器(42,41)における空気の除湿量を抑えて空気の温度低下幅を拡大することができる。   In this case, the mass flow rate of the refrigerant passing through the adsorption heat exchanger (41, 42) operating as a condenser is changed to the mass flow rate of the refrigerant passing through the adsorption heat exchanger (42, 41) operating as an evaporator. On the other hand, it becomes relatively less. For this reason, if the mass flow rate of the refrigerant that passes through the adsorption heat exchanger (41, 42) that operates as a condenser during the humidifying operation is smaller than that of the adsorption heat exchanger (42, 41) that operates as an evaporator, An increase in the temperature of the air when passing through the adsorption heat exchanger (41, 42) operating as a condenser can be suppressed, and indoor humidification can be performed while suppressing an increase in the indoor temperature. Also, if the mass flow rate of the refrigerant passing through the adsorption heat exchanger (41, 42) that operates as a condenser during dehumidification operation is reduced compared to the adsorption heat exchanger (42, 41) that operates as an evaporator, condensation occurs. The amount of moisture desorbed from the adsorption heat exchanger (41, 42) that operates as an evaporator decreases, and as a result, the amount of moisture that is adsorbed to the adsorption heat exchanger (42, 41) that operates as an evaporator also decreases. Therefore, it is possible to suppress the amount of air dehumidified in the adsorption heat exchanger (42, 41) operating as an evaporator, and to expand the temperature drop width of the air.

また、本実施形態の空調システム(10)では、冷媒回路(20)に調湿ユニット(12,13)と空調ユニット(14,15)の両方が接続されている。このため、空調システム(10)の冷媒回路(20)では、冷凍サイクルの低圧が空調ユニット(14,15)の冷房動作に適した値に設定される場合がある。そして、その場合には、冷凍サイクルの低圧が調湿ユニット(12,13)の除湿運転に適した値よりも低い値になり、蒸発器として動作する吸着熱交換器(42,41)における空気の除湿量が過剰になるおそれがある。そこで、このような場合に凝縮器として動作する吸着熱交換器(41,42)を通過する冷媒の質量流量を蒸発器として動作する吸着熱交換器(42,41)に比べて少なくすれば、上述したように蒸発器として蒸発器として動作する吸着熱交換器(42,41)における空気の除湿量が抑えられ、室内の湿度が低下しすぎるのを回避できる。   In the air conditioning system (10) of the present embodiment, both the humidity control unit (12, 13) and the air conditioning unit (14, 15) are connected to the refrigerant circuit (20). For this reason, in the refrigerant circuit (20) of the air conditioning system (10), the low pressure of the refrigeration cycle may be set to a value suitable for the cooling operation of the air conditioning unit (14, 15). In this case, the low pressure of the refrigeration cycle is lower than the value suitable for the dehumidifying operation of the humidity control unit (12, 13), and the air in the adsorption heat exchanger (42, 41) operating as an evaporator There is a risk that the amount of dehumidification becomes excessive. Therefore, if the mass flow rate of the refrigerant passing through the adsorption heat exchanger (41, 42) operating as a condenser in such a case is reduced compared to the adsorption heat exchanger (42, 41) operating as an evaporator, As described above, the dehumidification amount of air in the adsorption heat exchanger (42, 41) operating as an evaporator as an evaporator can be suppressed, and the indoor humidity can be prevented from excessively decreasing.

===凝縮器の冷媒流量 = 蒸発器の冷媒流量===
第1調湿用回路(40)のうち第1膨張弁(43)と第2膨張弁(44)の間の部分を流れる冷媒の圧力が高圧液配管(23)を流れる高圧液冷媒の圧力と等しい状態では、と第1調湿用回と高圧液配管(23)路を接続する液流通管において冷媒は流通しない。従って、この状態では、蒸発器として動作する吸着熱交換器(42,41)を通過する冷媒の質量流量が、凝縮器として動作する吸着熱交換器(41,42)を通過する冷媒の質量流量と等しくなる。
=== Condenser refrigerant flow rate = Evaporator refrigerant flow rate ===
The pressure of the refrigerant flowing through the portion between the first expansion valve (43) and the second expansion valve (44) in the first humidity control circuit (40) is the pressure of the high-pressure liquid refrigerant flowing through the high-pressure liquid pipe (23). In the same state, the refrigerant does not flow through the liquid flow pipe connecting the first humidity control circuit and the high pressure liquid pipe (23). Therefore, in this state, the mass flow rate of the refrigerant passing through the adsorption heat exchanger (42, 41) operating as an evaporator is the mass flow rate of the refrigerant passing through the adsorption heat exchanger (41, 42) operating as a condenser. Is equal to

−実施形態1の効果−
本実施形態の空調システム(10)において、冷媒回路(20)の調湿用回路(40,50)は、凝縮器として動作する吸着熱交換器(41,42,51,52)を通過する冷媒の質量流量と、蒸発器として動作する吸着熱交換器(42,41,52,51)を通過する冷媒の質量流量とを異なる値に設定可能に構成されている。このため、凝縮器として動作する吸着熱交換器(41,42,51,52)を通過する冷媒の質量流量と、蒸発器として動作する吸着熱交換器(42,41,52,51)を通過する冷媒の質量流量とを同じ値にしか設定できない場合に比べ、凝縮器となっている吸着熱交換器(41,42,51,52)における冷媒の放熱量、及び蒸発器となっている吸着熱交換器(42,41,52,51)における冷媒の吸着量の調節範囲が拡大する。その結果、凝縮器となっている吸着熱交換器(41,42,51,52)から脱離する水分量、及び蒸発器となっている吸着熱交換器(42,41,52,51)へ吸着される水分量の調節範囲を拡大させることができ、調湿ユニット(12,13)の能力の調節範囲を拡大させることができる。
-Effect of Embodiment 1-
In the air conditioning system (10) of the present embodiment, the humidity control circuit (40, 50) of the refrigerant circuit (20) is a refrigerant that passes through the adsorption heat exchanger (41, 42, 51, 52) operating as a condenser. The mass flow rate of the refrigerant and the mass flow rate of the refrigerant passing through the adsorption heat exchanger (42, 41, 52, 51) operating as an evaporator can be set to different values. For this reason, the mass flow rate of the refrigerant passing through the adsorption heat exchanger (41, 42, 51, 52) acting as a condenser and the adsorption heat exchanger (42, 41, 52, 51) acting as an evaporator Compared to the case where the mass flow rate of the refrigerant to be set can only be set to the same value, the heat release of the refrigerant in the adsorption heat exchanger (41, 42, 51, 52) and the adsorption as the evaporator The adjustment range of the refrigerant adsorption amount in the heat exchanger (42, 41, 52, 51) is expanded. As a result, the amount of moisture desorbed from the adsorption heat exchanger (41, 42, 51, 52) serving as a condenser and the adsorption heat exchanger (42, 41, 52, 51) serving as an evaporator The adjustment range of the amount of moisture adsorbed can be expanded, and the adjustment range of the capacity of the humidity control unit (12, 13) can be expanded.

また、本実施形態の空調システム(10)では、冷媒を室外空気と熱交換させて凝縮器と蒸発器の何れとしても動作可能な室外熱交換器(33)が、冷媒回路(20)に設けられている。このため、各調湿用回路(40,50)において凝縮器となっている吸着熱交換器(41,42,51,52)での冷媒流量と蒸発器となっている吸着熱交換器(42,41,52,51)での冷媒流量とを異なる値に設定した場合でも、室外熱交換器(33)を凝縮器または蒸発器として動作させることによって、冷媒回路(20)の外部から冷媒に侵入してくる熱量と、冷媒回路(20)の外部へ冷媒から放出されてゆく熱量とのバランスをとって安定した冷凍サイクルを行うことができる。   In the air conditioning system (10) of the present embodiment, the refrigerant circuit (20) is provided with an outdoor heat exchanger (33) capable of operating as either a condenser or an evaporator by exchanging heat between the refrigerant and outdoor air. It has been. Therefore, the refrigerant flow rate in the adsorption heat exchanger (41, 42, 51, 52) serving as a condenser in each humidity control circuit (40, 50) and the adsorption heat exchanger (42 serving as an evaporator) , 41, 52, 51), even if the refrigerant flow rate is set to a different value, the refrigerant is transferred from the outside of the refrigerant circuit (20) to the refrigerant by operating the outdoor heat exchanger (33) as a condenser or an evaporator. A stable refrigeration cycle can be performed by balancing the amount of heat that enters and the amount of heat released from the refrigerant to the outside of the refrigerant circuit (20).

《発明の実施形態2》
本発明の実施形態2について説明する。本実施形態の空調システム(10)は、上記実施形態1において、調湿ユニット(12,13)の構成を変更したものである。ここでは、本実施形態の調湿ユニット(12,13)について、上記実施形態1と異なる点を説明する。
<< Embodiment 2 of the Invention >>
A second embodiment of the present invention will be described. The air conditioning system (10) of the present embodiment is obtained by changing the configuration of the humidity control unit (12, 13) in the first embodiment. Here, regarding the humidity control unit (12, 13) of the present embodiment, differences from the first embodiment will be described.

図7に示すように、本実施形態の各調湿ユニット(12,13)では、それぞれの調湿用回路(40,50)に、膨張機構であるキャピラリチューブ(47,57)と、液側切換機構である調湿側三方弁(48,58)とが追加されている。キャピラリチューブ(47,57)は、調湿用回路(40,50)における第1膨張弁(43,53)と第2膨張弁(44,54)の間に設けられている。調湿側三方弁(48,58)は、その第1のポートが第1膨張弁(43,53)とキャピラリチューブ(47,57)の間に接続され、その第2のポートが第2膨張弁(44,54)とキャピラリチューブ(47,57)の間に接続されている。また、調湿側三方弁(48,58)の第3のポートは、液流通管(46,56)を介して高圧液配管(23)に接続されている。調湿側三方弁(48,58)は、第3のポートが第1のポートだけに連通する第1状態(図7に実線で示す状態)と、第3のポートが第2のポートだけに連通する第2状態(図7に破線で示す状態)とに切り換わる。   As shown in FIG. 7, in each humidity control unit (12, 13) of this embodiment, each humidity control circuit (40, 50) includes a capillary tube (47, 57) as an expansion mechanism and a liquid side. A humidity control three-way valve (48, 58) as a switching mechanism is added. The capillary tubes (47, 57) are provided between the first expansion valve (43, 53) and the second expansion valve (44, 54) in the humidity control circuit (40, 50). The humidity control side three-way valve (48, 58) has a first port connected between the first expansion valve (43, 53) and the capillary tube (47, 57), and a second port connected to the second expansion valve. It is connected between the valve (44, 54) and the capillary tube (47, 57). The third port of the humidity control side three-way valve (48, 58) is connected to the high-pressure liquid pipe (23) via the liquid circulation pipe (46, 56). The humidity control three-way valve (48,58) has a third port that communicates only with the first port (indicated by a solid line in FIG. 7) and a third port that is connected only with the second port. It switches to the 2nd state (state shown with a broken line in Drawing 7) which communicates.

−運転動作−
本実施形態の調湿ユニット(12,13)が行う動作について、上記実施形態1の調湿ユニット(12,13)が行う動作と異なる点を説明する。ここでは、第1調湿ユニット(12)の動作について説明する。第2調湿ユニット(13)の動作は、第1調湿ユニット(12)の動作と同じである。後述するように、本実施形態の第1調湿ユニット(12)では、四方切換弁(45)の切り換えに連動して調湿側三方弁(48)の切り換えが行われる。
-Driving action-
The operation performed by the humidity control unit (12, 13) of the present embodiment will be described with respect to differences from the operation performed by the humidity control unit (12, 13) of the first embodiment. Here, the operation of the first humidity control unit (12) will be described. The operation of the second humidity control unit (13) is the same as the operation of the first humidity control unit (12). As will be described later, in the first humidity control unit (12) of the present embodiment, the humidity control side three-way valve (48) is switched in conjunction with the switching of the four-way switching valve (45).

=== 凝縮器の冷媒流量 > 蒸発器の冷媒流量 ===
先ず、凝縮器として動作する吸着熱交換器(41,42)を通過する冷媒の質量流量が蒸発器として動作する吸着熱交換器(42,41)に比べて大きな値に設定される場合における第1調湿ユニット(12)の動作について、図8を参照しながら説明する。
=== Refrigerant flow rate of condenser> Refrigerant flow rate of evaporator ===
First, in the case where the mass flow rate of the refrigerant passing through the adsorption heat exchanger (41, 42) operating as a condenser is set to a larger value than that of the adsorption heat exchanger (42, 41) operating as an evaporator. The operation of the humidity control unit (12) will be described with reference to FIG.

この場合において、第1動作中の第1調湿用回路(40)では、図8(A)に示すように、四方切換弁(45)が第1状態に設定され、調湿側三方弁(48)が第1状態に設定される。そして、第1調湿用回路(40)では、第1吸着熱交換器(41)が凝縮器として動作し、第2吸着熱交換器(42)が蒸発器として動作する。また、第1調湿用回路(40)では、第1膨張弁(43)とその下流側に位置するキャピラリチューブ(47)との間の部分が、調湿側三方弁(48)と液流通管(46)とを介して高圧液配管(23)に連通する。   In this case, in the first humidity control circuit (40) during the first operation, as shown in FIG. 8 (A), the four-way switching valve (45) is set to the first state, and the humidity control side three-way valve ( 48) is set to the first state. In the first humidity control circuit (40), the first adsorption heat exchanger (41) operates as a condenser, and the second adsorption heat exchanger (42) operates as an evaporator. In the first humidity control circuit (40), the portion between the first expansion valve (43) and the capillary tube (47) located downstream thereof is connected to the humidity control side three-way valve (48). The high pressure liquid pipe (23) communicates with the pipe (46).

この状態の第1調湿用回路(40)において、第1膨張弁(43)の開度を大きめに設定すると、第1膨張弁(43)とキャピラリチューブ(47)の間を流れる冷媒の圧力が、高圧液配管(23)を流れる高圧液冷媒の圧力よりも高くなる。このため、第1吸着熱交換器(41)から流出した冷媒の一部が調湿側三方弁(48)と液流通管(46)を通って高圧液配管(23)へ流出してゆくこととなり、その結果、第2吸着熱交換器(42)を通過する冷媒の質量流量が、第1吸着熱交換器(41)を通過する冷媒の質量流量よりも少なくなる。   In the first humidity control circuit (40) in this state, if the opening of the first expansion valve (43) is set to be large, the pressure of the refrigerant flowing between the first expansion valve (43) and the capillary tube (47) However, it becomes higher than the pressure of the high-pressure liquid refrigerant flowing through the high-pressure liquid pipe (23). For this reason, a part of the refrigerant flowing out from the first adsorption heat exchanger (41) flows out to the high-pressure liquid pipe (23) through the humidity control side three-way valve (48) and the liquid circulation pipe (46). As a result, the mass flow rate of the refrigerant passing through the second adsorption heat exchanger (42) becomes smaller than the mass flow rate of the refrigerant passing through the first adsorption heat exchanger (41).

一方、第2動作中の第1調湿用回路(40)では、図8(B)に示すように、四方切換弁(45)が第2状態に設定され、調湿側三方弁(48)が第2状態に設定される。そして、第1調湿用回路(40)では、第2吸着熱交換器(42)が凝縮器として動作し、第1吸着熱交換器(41)が蒸発器として動作する。また、第1調湿用回路(40)では、第2膨張弁(44)とその下流に位置するキャピラリチューブ(47)との部分が、調湿側三方弁(48)と液流通管(46)を介して高圧液配管(23)に連通する。   On the other hand, in the first humidity control circuit (40) during the second operation, as shown in FIG. 8 (B), the four-way switching valve (45) is set to the second state, and the humidity control side three-way valve (48). Is set to the second state. In the first humidity control circuit (40), the second adsorption heat exchanger (42) operates as a condenser, and the first adsorption heat exchanger (41) operates as an evaporator. Further, in the first humidity control circuit (40), the portion of the second expansion valve (44) and the capillary tube (47) located downstream thereof is connected to the humidity control side three-way valve (48) and the liquid flow pipe (46 ) To the high-pressure liquid pipe (23).

この状態の第1調湿用回路(40)において、第2膨張弁(44)の開度を大きめに設定すると、第2膨張弁(44)とキャピラリチューブ(47)の間を流れる冷媒の圧力が、高圧液配管(23)を流れる高圧液冷媒の圧力よりも高くなる。このため、第2吸着熱交換器(42)から流出した冷媒の一部が調湿側三方弁(48)と液流通管(46)を通って高圧液配管(23)へ流出してゆくこととなり、その結果、第1吸着熱交換器(41)を通過する冷媒の質量流量が、第2吸着熱交換器(42)を通過する冷媒の質量流量よりも少なくなる。   In the first humidity control circuit (40) in this state, if the opening of the second expansion valve (44) is set to be large, the pressure of the refrigerant flowing between the second expansion valve (44) and the capillary tube (47) However, it becomes higher than the pressure of the high-pressure liquid refrigerant flowing through the high-pressure liquid pipe (23). For this reason, a part of the refrigerant flowing out from the second adsorption heat exchanger (42) flows out to the high-pressure liquid pipe (23) through the humidity control side three-way valve (48) and the liquid flow pipe (46). As a result, the mass flow rate of the refrigerant passing through the first adsorption heat exchanger (41) becomes smaller than the mass flow rate of the refrigerant passing through the second adsorption heat exchanger (42).

=== 凝縮器の冷媒流量 < 蒸発器の冷媒流量 ===
次に、凝縮器として動作する吸着熱交換器(41,42)を通過する冷媒の質量流量が蒸発器として動作する吸着熱交換器(42,41)に比べて小さな値に設定される場合における第1調湿ユニット(12)の動作について、図9を参照しながら説明する。
=== Refrigerant flow rate of condenser <Refrigerant flow rate of evaporator ===
Next, in the case where the mass flow rate of the refrigerant passing through the adsorption heat exchanger (41, 42) operating as a condenser is set to a smaller value than the adsorption heat exchanger (42, 41) operating as an evaporator The operation of the first humidity control unit (12) will be described with reference to FIG.

この場合において、第1動作中の第1調湿用回路(40)では、図9(A)に示すように、四方切換弁(45)が第1状態に設定され、調湿側三方弁(48)が第2状態に設定される。そして、第1調湿用回路(40)では、第1吸着熱交換器(41)が凝縮器として動作し、第2吸着熱交換器(42)が蒸発器として動作する。また、第1調湿用回路(40)では、キャピラリチューブ(47)とその下流に位置する第2膨張弁(44)との間の部分が、調湿側三方弁(48)と液流通管(46)とを介して高圧液配管(23)に連通する。   In this case, in the first humidity control circuit (40) during the first operation, as shown in FIG. 9 (A), the four-way switching valve (45) is set to the first state, and the humidity control side three-way valve ( 48) is set to the second state. In the first humidity control circuit (40), the first adsorption heat exchanger (41) operates as a condenser, and the second adsorption heat exchanger (42) operates as an evaporator. Further, in the first humidity control circuit (40), the portion between the capillary tube (47) and the second expansion valve (44) positioned downstream thereof is a humidity control side three-way valve (48) and a liquid flow pipe. (46) to the high-pressure liquid pipe (23).

この状態の第1調湿用回路(40)において、第1吸着熱交換器(41)から流出した冷媒は、第1膨張弁(43)とキャピラリチューブ(47)を通過する際に膨張するため、キャピラリチューブ(47)と第2膨張弁(44)の間を流れる冷媒の圧力が、高圧液配管(23)を流れる高圧液冷媒の圧力よりも低くなる。このため、高圧液配管(23)から第1調湿用回路(40)へ冷媒が流入し、キャピラリチューブ(47)を通過した冷媒と高圧液配管(23)から流入した冷媒の両方が第2膨張弁(44)を通って第2吸着熱交換器(42)へ流入する。その結果、第2吸着熱交換器(42)を通過する冷媒の質量流量が、第1吸着熱交換器(41)を通過する冷媒の質量流量よりも多くなる。   In the first humidity control circuit (40) in this state, the refrigerant flowing out of the first adsorption heat exchanger (41) expands when passing through the first expansion valve (43) and the capillary tube (47). The pressure of the refrigerant flowing between the capillary tube (47) and the second expansion valve (44) becomes lower than the pressure of the high-pressure liquid refrigerant flowing through the high-pressure liquid pipe (23). Therefore, the refrigerant flows into the first humidity control circuit (40) from the high-pressure liquid pipe (23), and both the refrigerant that has passed through the capillary tube (47) and the refrigerant that has flowed in from the high-pressure liquid pipe (23) are the second. It flows into the second adsorption heat exchanger (42) through the expansion valve (44). As a result, the mass flow rate of the refrigerant passing through the second adsorption heat exchanger (42) becomes larger than the mass flow rate of the refrigerant passing through the first adsorption heat exchanger (41).

一方、第2動作中の第1調湿用回路(40)では、図9(B)に示すように、四方切換弁(45)が第2状態に設定され、調湿側三方弁(48)が第1状態に設定される。そして、第1調湿用回路(40)では、第2吸着熱交換器(42)が凝縮器として動作し、第1吸着熱交換器(41)が蒸発器として動作する。また、第1調湿用回路(40)では、キャピラリチューブ(47)とその下流に位置する第1膨張弁(43)との間の部分が、調湿側三方弁(48)と液流通管(46)とを介して高圧液配管(23)に連通する。   On the other hand, in the first humidity control circuit (40) during the second operation, as shown in FIG. 9B, the four-way switching valve (45) is set to the second state, and the humidity control side three-way valve (48). Is set to the first state. In the first humidity control circuit (40), the second adsorption heat exchanger (42) operates as a condenser, and the first adsorption heat exchanger (41) operates as an evaporator. Further, in the first humidity control circuit (40), the portion between the capillary tube (47) and the first expansion valve (43) located downstream thereof is the humidity control side three-way valve (48) and the liquid circulation pipe. (46) to the high-pressure liquid pipe (23).

この状態の第1調湿用回路(40)において、第2吸着熱交換器(42)から流出した冷媒は、第2膨張弁(44)とキャピラリチューブ(47)を通過する際に膨張するため、キャピラリチューブ(47)と第1膨張弁(43)の間を流れる冷媒の圧力が、高圧液配管(23)を流れる高圧液冷媒の圧力よりも低くなる。このため、高圧液配管(23)から第1調湿用回路(40)へ冷媒が流入し、キャピラリチューブ(47)を通過した冷媒と高圧液配管(23)から流入した冷媒の両方が第1膨張弁(43)を通って第1吸着熱交換器(41)へ流入する。その結果、第1吸着熱交換器(41)を通過する冷媒の質量流量が、第2吸着熱交換器(42)を通過する冷媒の質量流量よりも多くなる。   In the first humidity control circuit (40) in this state, the refrigerant flowing out of the second adsorption heat exchanger (42) expands when passing through the second expansion valve (44) and the capillary tube (47). The pressure of the refrigerant flowing between the capillary tube (47) and the first expansion valve (43) becomes lower than the pressure of the high-pressure liquid refrigerant flowing through the high-pressure liquid pipe (23). Therefore, the refrigerant flows into the first humidity control circuit (40) from the high pressure liquid pipe (23), and both the refrigerant that has passed through the capillary tube (47) and the refrigerant that has flowed in from the high pressure liquid pipe (23) are the first. It flows into the first adsorption heat exchanger (41) through the expansion valve (43). As a result, the mass flow rate of the refrigerant passing through the first adsorption heat exchanger (41) becomes larger than the mass flow rate of the refrigerant passing through the second adsorption heat exchanger (42).

−実施形態2の効果−
本実施形態の調湿ユニット(12,13)では、調湿用回路(40,50)における第1膨張弁(43,53)と第2膨張弁(44,54)の間にキャピラリチューブ(47,57)を設け、調湿用回路(40,50)に対する高圧液配管(23)の接続位置を調湿側三方弁(48,58)によって切り換え可能としている。このため、調湿用回路(40,50)と高圧液配管(23)の圧力差を確実に形成することができ、調湿用回路(40,50)から高圧液配管(23)へ冷媒が流出してゆく状態と、高圧液配管(23)から調湿用回路(40,50)へ冷媒が流入してくる状態とを確実に実現することができる。
-Effect of Embodiment 2-
In the humidity control unit (12, 13) of the present embodiment, the capillary tube (47) is provided between the first expansion valve (43, 53) and the second expansion valve (44, 54) in the humidity control circuit (40, 50). , 57), and the connection position of the high pressure liquid pipe (23) to the humidity control circuit (40, 50) can be switched by the humidity control side three-way valve (48, 58). For this reason, the pressure difference between the humidity control circuit (40, 50) and the high-pressure liquid pipe (23) can be formed reliably, and the refrigerant flows from the humidity control circuit (40, 50) to the high-pressure liquid pipe (23). The state where the refrigerant flows out and the state where the refrigerant flows into the humidity control circuit (40, 50) from the high-pressure liquid pipe (23) can be reliably realized.

《その他の実施形態》
上記の各実施形態では、室外ユニット(11)と調湿ユニット(12,13)と空調ユニット(14,15)とによって空調システム(10)を構成しているが、図10に示すように、室外ユニット(11)調湿ユニット(12,13)とによって空調システム(10)を構成してもよい。つまり、空調ユニット(14,15)を空調システム(10)から省略してもよい。この場合、空調システム(10)の冷媒回路(20)では、室外回路(30)と各調湿用回路(40,50)とが、高圧ガス配管(21)と低圧ガス配管(22)と高圧液配管(23)とを介して互いに接続される。
<< Other Embodiments >>
In each of the above embodiments, the outdoor unit (11), the humidity control unit (12, 13), and the air conditioning unit (14, 15) constitute the air conditioning system (10), but as shown in FIG. The air conditioning system (10) may be configured by the outdoor unit (11) and the humidity control unit (12, 13). That is, the air conditioning unit (14, 15) may be omitted from the air conditioning system (10). In this case, in the refrigerant circuit (20) of the air conditioning system (10), the outdoor circuit (30) and each humidity control circuit (40, 50) are connected to the high pressure gas pipe (21), the low pressure gas pipe (22), and the high pressure circuit (20). They are connected to each other via a liquid pipe (23).

また、上記の各実施形態の空調システム(10)において、冷媒回路(20)は、高圧が冷媒の臨界圧力よりも高い値に設定される冷凍サイクル(いわゆる超臨界冷凍サイクル)を行うように構成されていてもよい。この場合、暖房専用運転中の室外熱交換器(33)、第1動作中の第1吸着熱交換器(41,51)、第2動作中の第2吸着熱交換器(42,52)等の冷媒が空気に対して放熱する熱交換器は、ガスクーラとして動作する。   In the air conditioning system (10) of each of the above embodiments, the refrigerant circuit (20) is configured to perform a refrigeration cycle (so-called supercritical refrigeration cycle) in which the high pressure is set to a value higher than the critical pressure of the refrigerant. May be. In this case, the outdoor heat exchanger (33) during heating only operation, the first adsorption heat exchanger (41,51) during the first operation, the second adsorption heat exchanger (42,52) during the second operation, etc. The heat exchanger that radiates heat to the air operates as a gas cooler.

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、吸着熱交換器が接続された冷媒回路を備える調湿装置について有用である。   As described above, the present invention is useful for a humidity control apparatus including a refrigerant circuit to which an adsorption heat exchanger is connected.

実施形態1の空調システムの概略構成を示す冷媒回路図である。It is a refrigerant circuit figure showing the schematic structure of the air-conditioning system of Embodiment 1. 冷房用運転中に全ての空調ユニットが冷房動作を行う状態での実施形態1の冷媒回路における冷媒の流通経路を示す冷媒回路図である。FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow path in the refrigerant circuit of the first embodiment in a state where all the air conditioning units perform a cooling operation during the cooling operation. 冷房用運転中に第2空調ユニットが暖房動作を行う状態での実施形態1の冷媒回路における冷媒の流通経路を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the distribution route of the refrigerant | coolant in the refrigerant circuit of Embodiment 1 in the state which a 2nd air conditioning unit performs heating operation during the driving | operation for cooling. 暖房用運転中に全ての空調ユニットが暖房動作を行う状態での実施形態1の冷媒回路における冷媒の流通経路を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the distribution route of the refrigerant | coolant in the refrigerant circuit of Embodiment 1 in the state in which all the air conditioning units perform heating operation during the driving | operation for heating. 暖房用運転中に第2空調ユニットが冷房動作を行う状態での実施形態1の冷媒回路における冷媒の流通経路を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the distribution route of the refrigerant | coolant in the refrigerant circuit of Embodiment 1 in the state which a 2nd air conditioning unit performs air_conditionaing | cooling operation during the driving | operation for heating. 実施形態1の調湿ユニットの概略構成を示す冷媒回路図であって、(A)は第1動作中の状態を示し、(B)は第2動作中の状態を示す。It is a refrigerant circuit figure which shows schematic structure of the humidity control unit of Embodiment 1, Comprising: (A) shows the state in 1st operation | movement, (B) shows the state in 2nd operation | movement. 実施形態2の空調システムの概略構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows schematic structure of the air conditioning system of Embodiment 2. 実施形態2の調湿ユニットの概略構成を示す冷媒回路図であって、(A)は第1動作中に調湿用回路から液冷媒が流出する状態を示し、(B)は第2動作中に調湿用回路から液冷媒が流出する状態を示す。FIG. 5 is a refrigerant circuit diagram illustrating a schematic configuration of a humidity control unit according to a second embodiment, where (A) illustrates a state in which liquid refrigerant flows out of the humidity control circuit during the first operation, and (B) illustrates a second operation. Shows the state in which the liquid refrigerant flows out from the humidity control circuit. 実施形態2の調湿ユニットの概略構成を示す冷媒回路図であって、(A)は第1動作中に調湿用回路へ液冷媒が流入する状態を示し、(B)は第2動作中調湿用回路へ液冷媒が流入する状態を示す。It is a refrigerant circuit diagram which shows schematic structure of the humidity control unit of Embodiment 2, Comprising: (A) shows the state which a liquid refrigerant flows in into the circuit for humidity control in 1st operation | movement, (B) is in 2nd operation | movement. The state which a liquid refrigerant flows in into the circuit for humidity control is shown. その他の実施形態の空調システムの概略構成を示す冷媒回路図である。It is a refrigerant circuit figure which shows schematic structure of the air conditioning system of other embodiment.

10 空調システム(調湿装置)
20 冷媒回路
21 高圧ガス配管(連絡配管)
22 低圧ガス配管(連絡配管)
23 高圧液配管(連絡配管)
30 室外回路
31 圧縮機
33 室外熱交換器
40 第1調湿用回路
41 第1吸着熱交換器(第1の吸着熱交換器)
42 第2吸着熱交換器(第2の吸着熱交換器)
43 第1膨張弁(第1の膨張弁)
44 第2膨張弁(第2の膨張弁)
45 四方切換弁(ガス側切換機構)
47 キャピラリチューブ(膨張機構)
48 調湿側三方弁(液側切換機構)
50 第2調湿用回路
51 第1吸着熱交換器(第1の吸着熱交換器)
52 第2吸着熱交換器(第2の吸着熱交換器)
53 第1膨張弁(第1の膨張弁)
54 第2膨張弁(第2の膨張弁)
55 四方切換弁(ガス側切換機構)
57 キャピラリチューブ(膨張機構)
58 調湿側三方弁(液側切換機構)
10 Air conditioning system (humidity control device)
20 Refrigerant circuit
21 High-pressure gas piping (connection piping)
22 Low pressure gas piping (connecting piping)
23 High-pressure liquid piping (connecting piping)
30 Outdoor circuit
31 Compressor
33 Outdoor heat exchanger
40 First humidity control circuit
41 First adsorption heat exchanger (first adsorption heat exchanger)
42 Second adsorption heat exchanger (second adsorption heat exchanger)
43 First expansion valve (first expansion valve)
44 Second expansion valve (second expansion valve)
45 Four-way selector valve (gas side switching mechanism)
47 Capillary tube (expansion mechanism)
48 Humidity control three-way valve (liquid side switching mechanism)
50 Second humidity control circuit
51 First adsorption heat exchanger (first adsorption heat exchanger)
52 Second adsorption heat exchanger (second adsorption heat exchanger)
53 First expansion valve (first expansion valve)
54 Second expansion valve (second expansion valve)
55 Four-way switching valve (Gas side switching mechanism)
57 Capillary tube (expansion mechanism)
58 Humidity control side three-way valve (liquid side switching mechanism)

Claims (4)

圧縮機(31)と、それぞれに吸着剤が担持された第1及び第2の吸着熱交換器(41,42)とが接続され、冷媒を循環させて冷凍サイクルを行う冷媒回路(20)を備え、
上記第1の吸着熱交換器(41)が放熱器となって空気を加湿し且つ上記第2の吸着熱交換器(42)が蒸発器となって空気を除湿する第1動作と、上記第2の吸着熱交換器(42)が放熱器となって空気を加湿し且つ上記第1の吸着熱交換器(41)が蒸発器となって空気を除湿する第2動作とを交互に繰り返し行い、
放熱器となっている上記吸着熱交換器(41,42)を通過する間に加湿された空気と、蒸発器となっている上記吸着熱交換器(42,41)を通過する間に除湿された空気の一方を室内へ供給して他方を室外へ排出する調湿装置であって、
上記冷媒回路(20)は、冷媒を室外空気と熱交換させて放熱器または蒸発器として動作する室外熱交換器(33)を備え、放熱器となっている上記吸着熱交換器(41,42)を通過する冷媒の質量流量と、蒸発器となっている上記吸着熱交換器(42,41)を通過する冷媒の質量流量とを異なる値に設定可能に構成され、
上記冷媒回路(20)では、上記圧縮機(31)及び上記室外熱交換器(33)が設けられた室外回路(30)と、上記第1及び第2の吸着熱交換器(41,42)が設けられた調湿用回路(40)とが、高圧ガス冷媒が流れる高圧ガス配管(21)、低圧ガス冷媒が流れる低圧ガス配管(22)、及び高圧液冷媒が流れる高圧液配管(23)を介して接続され、
上記調湿用回路(40)は、上記第1動作中には上記高圧ガス配管(21)から流入した冷媒が順に第1の吸着熱交換器(41)と第2の吸着熱交換器(42)を通過して上記低圧ガス配管(22)へ向けて流出し、上記第2動作中には上記高圧ガス配管(21)から流入した冷媒が順に第2の吸着熱交換器(42)と第1の吸着熱交換器(41)を通過して上記低圧ガス配管(22)へ向けて流出するように構成され、
更に、上記調湿用回路(40)は、上記第1動作中と上記第2動作中の何れにおいても、放熱器となっている上記吸着熱交換器(41,42)から流出した冷媒の一部を蒸発器となっている上記吸着熱交換器(42,41)へ、残りを上記高圧液配管(23)へそれぞれ供給可能に構成されていることを特徴とする調湿装置。
A compressor (31) is connected to the first and second adsorption heat exchangers (41, 42) each carrying an adsorbent, and a refrigerant circuit (20) for performing a refrigeration cycle by circulating refrigerant is provided. Prepared,
A first operation in which the first adsorption heat exchanger (41) serves as a radiator to humidify air and the second adsorption heat exchanger (42) serves as an evaporator to dehumidify the air; The second adsorption heat exchanger (42) serves as a heat radiator to humidify the air, and the first adsorption heat exchanger (41) serves as an evaporator to perform the second operation of dehumidifying the air alternately. ,
Air that has been humidified while passing through the adsorption heat exchanger (41, 42) that is a radiator and dehumidified while it is passing through the adsorption heat exchanger (42, 41) that is an evaporator A humidity control device that supplies one of the air to the room and discharges the other to the outside,
The refrigerant circuit (20) includes an outdoor heat exchanger (33) that operates as a radiator or an evaporator by exchanging heat between the refrigerant and outdoor air, and the adsorption heat exchanger (41, 42) serving as a radiator. ) And the mass flow rate of the refrigerant passing through the adsorption heat exchanger (42, 41) serving as an evaporator can be set to different values.
The refrigerant circuit (20) includes an outdoor circuit (30) provided with the compressor (31) and the outdoor heat exchanger (33), and the first and second adsorption heat exchangers (41, 42). The high-pressure gas pipe (21) through which the high-pressure gas refrigerant flows, the low-pressure gas pipe (22) through which the low-pressure gas refrigerant flows, and the high-pressure liquid pipe (23) through which the high-pressure liquid refrigerant flows Connected through
In the humidity control circuit (40), during the first operation, the refrigerant flowing in from the high-pressure gas pipe (21) sequentially receives the first adsorption heat exchanger (41) and the second adsorption heat exchanger (42). ) And flows out toward the low-pressure gas pipe (22), and during the second operation, the refrigerant flowing in from the high-pressure gas pipe (21) is sequentially supplied to the second adsorption heat exchanger (42) and the second 1 is configured to pass through the adsorption heat exchanger (41) and flow out toward the low-pressure gas pipe (22),
In addition, the humidity control circuit (40) is a part of the refrigerant that has flowed out of the adsorption heat exchanger (41, 42) serving as a radiator during both the first operation and the second operation. A humidity control apparatus, characterized in that a part can be supplied to the adsorption heat exchanger (42, 41) serving as an evaporator and the rest to the high-pressure liquid pipe (23).
圧縮機(31)と、それぞれに吸着剤が担持された第1及び第2の吸着熱交換器(41,42)とが接続され、冷媒を循環させて冷凍サイクルを行う冷媒回路(20)を備え、
上記第1の吸着熱交換器(41)が放熱器となって空気を加湿し且つ上記第2の吸着熱交換器(42)が蒸発器となって空気を除湿する第1動作と、上記第2の吸着熱交換器(42)が放熱器となって空気を加湿し且つ上記第1の吸着熱交換器(41)が蒸発器となって空気を除湿する第2動作とを交互に繰り返し行い、
放熱器となっている上記吸着熱交換器(41,42)を通過する間に加湿された空気と、蒸発器となっている上記吸着熱交換器(42,41)を通過する間に除湿された空気の一方を室内へ供給して他方を室外へ排出する調湿装置であって、
上記冷媒回路(20)は、冷媒を室外空気と熱交換させて放熱器または蒸発器として動作する室外熱交換器(33)を備え、放熱器となっている上記吸着熱交換器(41,42)を通過する冷媒の質量流量と、蒸発器となっている上記吸着熱交換器(42,41)を通過する冷媒の質量流量とを異なる値に設定可能に構成され、
上記冷媒回路(20)では、上記圧縮機(31)及び上記室外熱交換器(33)が設けられた室外回路(30)と、上記第1及び第2の吸着熱交換器(41,42)が設けられた調湿用回路(40)とが、高圧ガス冷媒が流れる高圧ガス配管(21)、低圧ガス冷媒が流れる低圧ガス配管(22)、及び高圧液冷媒が流れる高圧液配管(23)を介して接続され、
上記調湿用回路(40)は、上記第1動作中には上記高圧ガス配管(21)から流入した冷媒が順に第1の吸着熱交換器(41)と第2の吸着熱交換器(42)を通過して上記低圧ガス配管(22)へ向けて流出し、上記第2動作中には上記高圧ガス配管(21)から流入した冷媒が順に第2の吸着熱交換器(42)と第1の吸着熱交換器(41)を通過して上記低圧ガス配管(22)へ向けて流出するように構成され、
更に、上記調湿用回路(40)は、上記第1動作中と上記第2動作中の何れにおいても、放熱器となっている上記吸着熱交換器(41,42)から流出した冷媒と、上記高圧液配管(23)から該調湿用回路(40)へ流入した冷媒とを蒸発器となっている上記吸着熱交換器(42,41)へ供給可能に構成されていることを特徴とする調湿装置。
A compressor (31) is connected to the first and second adsorption heat exchangers (41, 42) each carrying an adsorbent, and a refrigerant circuit (20) for performing a refrigeration cycle by circulating refrigerant is provided. Prepared,
A first operation in which the first adsorption heat exchanger (41) serves as a radiator to humidify air and the second adsorption heat exchanger (42) serves as an evaporator to dehumidify the air; The second adsorption heat exchanger (42) serves as a heat radiator to humidify the air, and the first adsorption heat exchanger (41) serves as an evaporator to perform the second operation of dehumidifying the air alternately. ,
Air that has been humidified while passing through the adsorption heat exchanger (41, 42) that is a radiator and dehumidified while it is passing through the adsorption heat exchanger (42, 41) that is an evaporator A humidity control device that supplies one of the air to the room and discharges the other to the outside,
The refrigerant circuit (20) includes an outdoor heat exchanger (33) that operates as a radiator or an evaporator by exchanging heat between the refrigerant and outdoor air, and the adsorption heat exchanger (41, 42) serving as a radiator. ) And the mass flow rate of the refrigerant passing through the adsorption heat exchanger (42, 41) serving as an evaporator can be set to different values.
The refrigerant circuit (20) includes an outdoor circuit (30) provided with the compressor (31) and the outdoor heat exchanger (33), and the first and second adsorption heat exchangers (41, 42). The high-pressure gas pipe (21) through which the high-pressure gas refrigerant flows, the low-pressure gas pipe (22) through which the low-pressure gas refrigerant flows, and the high-pressure liquid pipe (23) through which the high-pressure liquid refrigerant flows Connected through
In the humidity control circuit (40), during the first operation, the refrigerant flowing in from the high-pressure gas pipe (21) sequentially receives the first adsorption heat exchanger (41) and the second adsorption heat exchanger (42). ) And flows out toward the low-pressure gas pipe (22), and during the second operation, the refrigerant flowing in from the high-pressure gas pipe (21) is sequentially supplied to the second adsorption heat exchanger (42) and the second 1 is configured to pass through the adsorption heat exchanger (41) and flow out toward the low-pressure gas pipe (22),
Further, the humidity control circuit (40) includes a refrigerant that has flowed out of the adsorption heat exchanger (41, 42) serving as a radiator during both the first operation and the second operation; The refrigerant flowing into the humidity control circuit (40) from the high pressure liquid pipe (23) can be supplied to the adsorption heat exchanger (42, 41) serving as an evaporator. Humidity control device.
圧縮機(31)と、それぞれに吸着剤が担持された第1及び第2の吸着熱交換器(41,42)とが接続され、冷媒を循環させて冷凍サイクルを行う冷媒回路(20)を備え、
上記第1の吸着熱交換器(41)が放熱器となって空気を加湿し且つ上記第2の吸着熱交換器(42)が蒸発器となって空気を除湿する第1動作と、上記第2の吸着熱交換器(42)が放熱器となって空気を加湿し且つ上記第1の吸着熱交換器(41)が蒸発器となって空気を除湿する第2動作とを交互に繰り返し行い、
放熱器となっている上記吸着熱交換器(41,42)を通過する間に加湿された空気と、蒸発器となっている上記吸着熱交換器(42,41)を通過する間に除湿された空気の一方を室内へ供給して他方を室外へ排出する調湿装置であって、
上記冷媒回路(20)は、冷媒を室外空気と熱交換させて放熱器または蒸発器として動作する室外熱交換器(33)を備え、放熱器となっている上記吸着熱交換器(41,42)を通過する冷媒の質量流量と、蒸発器となっている上記吸着熱交換器(42,41)を通過する冷媒の質量流量とを異なる値に設定可能に構成され、
上記冷媒回路(20)では、上記圧縮機(31)及び上記室外熱交換器(33)が設けられた室外回路(30)と、上記第1及び第2の吸着熱交換器(41,42)が設けられた調湿用回路(40)とが、高圧ガス冷媒が流れる高圧ガス配管(21)、低圧ガス冷媒が流れる低圧ガス配管(22)、及び高圧液冷媒が流れる高圧液配管(23)を介して接続され、
上記調湿用回路(40)には、上記第1動作中に上記第1の吸着熱交換器(41)のガス側の端部を上記高圧ガス配管(21)に連通させ且つ上記第2の吸着熱交換器(42)のガス側の端部を上記低圧ガス配管(22)に連通させる第1状態となり、上記第2動作中に上記第2の吸着熱交換器(42)のガス側の端部を上記高圧ガス配管(21)に連通させ且つ上記第1の吸着熱交換器(41)のガス側の端部を上記低圧ガス配管(22)に連通させる第2状態となるガス側切換機構(45)が設けられ、
上記調湿用回路(40)では、互いに接続された上記第1の吸着熱交換器(41)の液側の端部と上記第2の吸着熱交換器(42)の液側の端部との間の部分に第1の膨張弁(43)と第2の膨張弁(44)とが直列に設けられると共に、上記第1の膨張弁(43)と上記第2の膨張弁(44)の間の部分が上記高圧液配管(23)に接続されていることを特徴とする調湿装置。
A compressor (31) is connected to the first and second adsorption heat exchangers (41, 42) each carrying an adsorbent, and a refrigerant circuit (20) for performing a refrigeration cycle by circulating refrigerant is provided. Prepared,
A first operation in which the first adsorption heat exchanger (41) serves as a radiator to humidify air and the second adsorption heat exchanger (42) serves as an evaporator to dehumidify the air; The second adsorption heat exchanger (42) serves as a heat radiator to humidify the air, and the first adsorption heat exchanger (41) serves as an evaporator to perform the second operation of dehumidifying the air alternately. ,
Air that has been humidified while passing through the adsorption heat exchanger (41, 42) that is a radiator and dehumidified while it is passing through the adsorption heat exchanger (42, 41) that is an evaporator A humidity control device that supplies one of the air to the room and discharges the other to the outside,
The refrigerant circuit (20) includes an outdoor heat exchanger (33) that operates as a radiator or an evaporator by exchanging heat between the refrigerant and outdoor air, and the adsorption heat exchanger (41, 42) serving as a radiator. ) And the mass flow rate of the refrigerant passing through the adsorption heat exchanger (42, 41) serving as an evaporator can be set to different values.
The refrigerant circuit (20) includes an outdoor circuit (30) provided with the compressor (31) and the outdoor heat exchanger (33), and the first and second adsorption heat exchangers (41, 42). The high-pressure gas pipe (21) through which the high-pressure gas refrigerant flows, the low-pressure gas pipe (22) through which the low-pressure gas refrigerant flows, and the high-pressure liquid pipe (23) through which the high-pressure liquid refrigerant flows Connected through
In the humidity control circuit (40), the gas-side end of the first adsorption heat exchanger (41) is communicated with the high-pressure gas pipe (21) during the first operation, and the second operation is performed. The gas-side end of the adsorption heat exchanger (42) communicates with the low-pressure gas pipe (22) to enter a first state, and the gas-side end of the second adsorption heat exchanger (42) is in the second operation. Gas-side switching in a second state in which the end communicates with the high-pressure gas pipe (21) and the gas-side end of the first adsorption heat exchanger (41) communicates with the low-pressure gas pipe (22) Mechanism (45) is provided,
In the humidity control circuit (40), the liquid-side end of the first adsorption heat exchanger (41) and the liquid-side end of the second adsorption heat exchanger (42) connected to each other The first expansion valve (43) and the second expansion valve (44) are provided in series at a portion between the first expansion valve (43) and the second expansion valve (44). A humidity control apparatus characterized in that a portion in between is connected to the high-pressure liquid pipe (23).
請求項3において、
上記調湿用回路(40)には、
上記第1の膨張弁(43)と上記第2の膨張弁(44)の間に配置されて冷媒を膨張させる膨張機構(47)と、
上記第1の膨張弁(43)と上記膨張機構(47)の間の部分に上記高圧液配管(23)を連通させる第1状態と、上記第2の膨張弁(44)と上記膨張機構(47)の間の部分に上記高圧液配管(23)を連通させる第2状態とに切り換わる液側切換機構(48)とが設けられている
ことを特徴とする調湿装置。
In claim 3 ,
The humidity control circuit (40)
An expansion mechanism (47) disposed between the first expansion valve (43) and the second expansion valve (44) to expand the refrigerant;
A first state in which the high-pressure liquid pipe (23) is communicated with a portion between the first expansion valve (43) and the expansion mechanism (47); the second expansion valve (44); and the expansion mechanism ( 47) A humidity control apparatus, characterized in that a liquid side switching mechanism (48) for switching to a second state in which the high pressure liquid pipe (23) is communicated is provided in a portion between 47).
JP2009016627A 2009-01-28 2009-01-28 Humidity control device Expired - Fee Related JP5417866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009016627A JP5417866B2 (en) 2009-01-28 2009-01-28 Humidity control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009016627A JP5417866B2 (en) 2009-01-28 2009-01-28 Humidity control device

Publications (2)

Publication Number Publication Date
JP2010175108A JP2010175108A (en) 2010-08-12
JP5417866B2 true JP5417866B2 (en) 2014-02-19

Family

ID=42706258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009016627A Expired - Fee Related JP5417866B2 (en) 2009-01-28 2009-01-28 Humidity control device

Country Status (1)

Country Link
JP (1) JP5417866B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761205B2 (en) 2011-01-24 2015-08-12 富士通株式会社 Adsorber and adsorption heat pump
CN103353147B (en) * 2013-06-28 2016-05-25 青岛海信日立空调系统有限公司 The full heat treatment multi-online air-conditioning system of three control and humiture method for independently controlling
CN112710101B (en) * 2019-10-24 2024-06-21 广东美的制冷设备有限公司 Air conditioner and control method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3668763B2 (en) * 2003-10-09 2005-07-06 ダイキン工業株式会社 Air conditioner
JP4513382B2 (en) * 2004-03-31 2010-07-28 ダイキン工業株式会社 Air conditioning system
JP4075950B2 (en) * 2006-08-02 2008-04-16 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2010175108A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP4321650B2 (en) Humidity control device
JP4466774B2 (en) Humidity control device
JP5822931B2 (en) Humidity control apparatus, air conditioning system, and control method of humidity control apparatus
JP4835688B2 (en) Air conditioner, air conditioning system
JP5868416B2 (en) Refrigeration air conditioner and humidity control device
JP5018402B2 (en) Humidity control device
JP5396705B2 (en) Humidity control device
JP4525465B2 (en) Air conditioning system
JP5061929B2 (en) Dehumidification unit and air conditioner
JP2018115821A (en) Air conditioning system
JP3695417B2 (en) Humidity control device
JP5594030B2 (en) Controller, humidity controller and air conditioning system
JP5417866B2 (en) Humidity control device
JP5145872B2 (en) Humidity control device
JP2007327684A (en) Desiccant air conditioner
JP2005283041A (en) Humidity controller
JP2019027683A (en) Humidity control device
JP2010127522A (en) Air conditioning system
JP2010133612A (en) Air conditioning system
JP3807409B2 (en) Humidity control device
JP2013137151A (en) Air conditioner
JP2010078246A (en) Air conditioning system
JP2010084970A (en) Air conditioning system and heat exchange unit
JP5082775B2 (en) Ventilation equipment
JP5811729B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

LAPS Cancellation because of no payment of annual fees