JP5417605B2 - Rotating device and foam generating device having the same - Google Patents

Rotating device and foam generating device having the same Download PDF

Info

Publication number
JP5417605B2
JP5417605B2 JP2008140411A JP2008140411A JP5417605B2 JP 5417605 B2 JP5417605 B2 JP 5417605B2 JP 2008140411 A JP2008140411 A JP 2008140411A JP 2008140411 A JP2008140411 A JP 2008140411A JP 5417605 B2 JP5417605 B2 JP 5417605B2
Authority
JP
Japan
Prior art keywords
peripheral surface
rotating
magnets
fixed portion
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008140411A
Other languages
Japanese (ja)
Other versions
JP2009112187A (en
Inventor
克己 三浦
和彦 榊原
將夫 玉貫
勝興 河西
Original Assignee
株式会社ビーエルダイナミクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ビーエルダイナミクス filed Critical 株式会社ビーエルダイナミクス
Priority to JP2008140411A priority Critical patent/JP5417605B2/en
Publication of JP2009112187A publication Critical patent/JP2009112187A/en
Application granted granted Critical
Publication of JP5417605B2 publication Critical patent/JP5417605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Description

本発明は、磁場を利用した回転装置及びそれを備えた泡発生装置に関するものである。   The present invention relates to a rotating device using a magnetic field and a foam generating device including the rotating device.

従来、磁場を利用した回転装置としては、特許第3977860号公報(特許文献1)に記載されたように、固定部の内周面と回転部の外周面とにそれぞれ対向する磁石が複数対配置されたものが提案されている。また、特開平11−168873号公報(特許文献2)の図1には内側の磁石と外側の磁石の数を異なるように設けたものが提案され、更に図3には内側の磁石と外側の磁石の長手方向が回転軸に対して同じ方向に傾斜したものが提案されている。   Conventionally, as a rotating device using a magnetic field, as described in Japanese Patent No. 397860 (Patent Document 1), a plurality of pairs of magnets facing the inner peripheral surface of the fixed portion and the outer peripheral surface of the rotating portion are arranged. What has been proposed is proposed. Further, FIG. 1 of Japanese Patent Application Laid-Open No. 11-168873 (Patent Document 2) proposes a configuration in which the number of inner and outer magnets is different, and FIG. A magnet in which the longitudinal direction of the magnet is inclined in the same direction with respect to the rotation axis has been proposed.

一方、池、堀、運河、湖沼、河川、湾岸水等々に係る水質浄化処理、水槽、川、内海等々を利用した養殖漁場に係る水質浄化処理、または飲料水(例えば水道水やミネラルウォーター)に係る水質浄化処理に利用される種々の水質浄化処理装置が提案されている。   On the other hand, for water purification treatment for ponds, moats, canals, lakes, rivers, bay waters, etc., water purification treatment for aquaculture fisheries using aquariums, rivers, inland seas, etc., or for drinking water (eg tap water or mineral water) Various water purification treatment apparatuses used for such water purification treatment have been proposed.

例えば、特許第3227567号公報(特許文献3)には、回転式散水板と導水板とにより遠心ポンプを構成し、外部筒に設けられた吸気孔から空気を、吸水口から処理対象水をそれぞれ吸引し、内部筒の高速回転により激しい渦流により空気を処理対象水に混合して無数の微小な気泡を発生させ、更に散水板の回転により分割、微小化させ、更に散水板や外部筒内面、内部筒外面等に設けた永久磁石によるポンピング作用と電磁作用との相乗作用によりサブミクロン(10,000分の1ミリメートル;10−7)オーダーの極微細気泡を処理対象水中に生成し、気泡中の酸素成分をより多く処理対象水中に溶け込ませることで水質浄化を図ることが記載されている。 For example, in Japanese Patent No. 3227567 (Patent Document 3), a centrifugal pump is constituted by a rotary water spray plate and a water guide plate, air is supplied from an intake hole provided in an external cylinder, and water to be treated is supplied from a water intake port. Suction, air is mixed with the water to be treated by vigorous vortex due to high-speed rotation of the inner cylinder, generating countless minute bubbles, further divided and miniaturized by rotation of the watering plate, and further, the inner surface of the watering plate and outer cylinder, Submicron (1 / 10,000 millimeters; 10 −7 ) order ultrafine bubbles are generated in the water to be treated by the synergistic action of the pumping action and the electromagnetic action by the permanent magnet provided on the outer surface of the inner cylinder, etc. It is described that water quality purification is achieved by dissolving more oxygen component in the water to be treated.

また、特開2003−053373号公報(特許文献4)には、固定筒の内周面と回転筒の外周面とにそれぞれ断面略台形状の突条を該固定筒ないし回転筒の長さ方向に複数本形成することにより、これら各突条間を断面略逆台形状の溝とし、これら各溝内に永久磁石を配設したものが提案されている。   Japanese Patent Application Laid-Open No. 2003-053373 (Patent Document 4) discloses protrusions having a substantially trapezoidal cross section on the inner peripheral surface of the fixed cylinder and the outer peripheral surface of the rotary cylinder, respectively, in the length direction of the fixed cylinder or the rotary cylinder. By forming a plurality of them, a groove having a substantially inverted trapezoidal cross section between these protrusions and a permanent magnet disposed in each groove has been proposed.

特許第3977860号公報Japanese Patent No. 397860 特開平11−168873号公報JP 11-168873 A 特許第3227567号公報Japanese Patent No. 32227567 特開2003−053373号公報JP 2003-053373 A

しかしながら、前述の特許文献1、3、4の技術では、固定部の内周面と回転部の外周面とにそれぞれ対向する磁石が複数対配置されるため磁石同士の吸引力或いは反発力に抗して回転させるための駆動力がその磁石対の数の分だけ余分に必要となり回転起動時及び連続回転時に大きな駆動力が必要となっていた。これが回転装置の駆動部にとって大きな負荷となるため回転不良の原因となったり、或いは、過大な駆動容量が必要となり、特に起動トルクが大きくなり、停止時にも急激な停止を招き、機械的にも過大な負荷を与えるものとなっていた。   However, in the techniques of Patent Documents 1, 3, and 4 described above, a plurality of pairs of magnets facing each other on the inner peripheral surface of the fixed portion and the outer peripheral surface of the rotating portion are arranged, so that they resist the attractive force or repulsive force between the magnets. Accordingly, an extra driving force is required for the rotation of the magnet pairs, and a large driving force is required at the time of starting rotation and continuous rotation. This causes a large load on the drive unit of the rotating device, which may cause a rotation failure, or requires an excessive drive capacity, particularly a large starting torque, causing a sudden stop even when stopped, and mechanically. The load was excessive.

また、特許文献2の技術は、当該特許公開公報の国際特許分類(Int. Cl.)にも明示されたように「永久運動を行なう回転電機であると主張するもの」であり、内側の磁石と外側の磁石の数を異なるように設けたこと、内側の磁石と外側の磁石の長手方向が回転軸に対して同じ方向に傾斜したことの作用効果も不明確である。   Further, the technique of Patent Document 2 is “assuming that it is a rotating electric machine that performs permanent motion” as clearly shown in the International Patent Classification (Int. Cl.) Of the patent publication, and the inner magnet It is also unclear whether the number of the outer magnets is different from that of the outer magnet, and that the longitudinal direction of the inner magnet and the outer magnet is inclined in the same direction with respect to the rotation axis.

本発明は前記課題を解決するものであり、その目的とするところは、固定部の内周面と回転部の外周面にそれぞれ設けられた第1、第2の磁石のうち互いに対向しない磁石を1組以上設けることで、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない回転装置及びそれを備えた泡発生装置を提供せんとするものである。   The present invention solves the above-described problems, and an object of the present invention is to provide magnets that are not opposed to each other among the first and second magnets provided on the inner peripheral surface of the fixed portion and the outer peripheral surface of the rotating portion, respectively. By providing one or more sets, it is intended to provide a rotating device that does not require a large driving force during rotation start-up and continuous rotation and a bubble generator equipped with the same, by reducing the attractive force or repulsive force between magnets. is there.

前記目的を達成するための本発明に係る回転装置の第1の構成は、回転駆動力を付与する回転駆動源が設けられた固定部と、前記固定部の内部で回転可能に設けられ、前記回転駆動源からの回転力が伝達される回転部と、前記固定部の前記回転部の外周面に対向する内周面で該固定部の軸方向に1つ以上の所定のピッチで配置された第1の磁石と、前記回転部の前記固定部の内周面に対向する外周面で該回転部の軸方向に1つ以上の所定のピッチで配置された第2の磁石と、を有し、前記第1、第2の磁石同士は、互いに対向する側が斥力が作用する同極磁石、或いは互いに対向する側が引力が作用する異極磁石で構成され、該第1、第2の磁石のうち互いに対向しない磁石が1組以上設けられ、前記固定部の前記回転部の外周面に対向する内周面が該固定部の軸方向に複数に分割され、該分割されたそれぞれの内周面に設けられた前記第1の磁石が配置される位相を該固定部の軸方向に複数に分割されたそれぞれの内周面毎に該内周面の周方向にずらして配置したことを特徴とする。 A first configuration of the rotating device according to the present invention for achieving the above object is provided with a fixed portion provided with a rotation drive source for applying a rotation driving force, and provided rotatably in the fixed portion, A rotating part to which a rotational force from a rotational drive source is transmitted, and an inner peripheral surface of the fixed part facing the outer peripheral surface of the rotating part, are arranged at one or more predetermined pitches in the axial direction of the fixed part. A first magnet, and a second magnet disposed at an outer peripheral surface facing the inner peripheral surface of the fixed portion of the rotating portion at one or more predetermined pitches in the axial direction of the rotating portion. The first and second magnets are composed of homopolar magnets where repulsive forces act on opposite sides, or heteropolar magnets on opposite sides where attractive forces act, and the first and second magnets are magnets are provided one or more pairs that do not face each other, to face the outer peripheral surface of the rotating portion of the fixed portion A peripheral surface is divided into a plurality of portions in the axial direction of the fixed portion, and a phase where the first magnet provided on each of the divided inner peripheral surfaces is arranged is divided into a plurality of portions in the axial direction of the fixed portion. Further, each inner peripheral surface is arranged so as to be shifted in the circumferential direction of the inner peripheral surface .

また、本発明に係る回転装置の第の構成は、回転駆動力を付与する回転駆動源が設けられた固定部と、前記固定部の内部で回転可能に設けられ、前記回転駆動源からの回転力が伝達される回転部と、前記固定部の前記回転部の外周面に対向する内周面で該固定部の軸方向に1つ以上の所定のピッチで配置された第1の磁石と、前記回転部の前記固定部の内周面に対向する外周面で該回転部の軸方向に1つ以上の所定のピッチで配置された第2の磁石と、を有し、前記第1、第2の磁石同士は、互いに対向する側が斥力が作用する同極磁石、或いは互いに対向する側が引力が作用する異極磁石で構成され、該第1、第2の磁石のうち互いに対向しない磁石が1組以上設けられ、前記回転部の前記固定部の内周面に対向する外周面が該回転部の軸方向に複数に分割され、該分割されたそれぞれの外周面に設けられた前記第2の磁石が配置される位相を該回転部の軸方向に複数に分割されたそれぞれの外周面毎に該外周面の周方向にずらして配置したことを特徴とする。 Further, the second configuration of the rotating device according to the present invention includes a fixed portion provided with a rotation drive source for applying a rotation driving force, a rotation portion provided inside the fixed portion, and rotatable from the rotation drive source. A rotating portion to which a rotational force is transmitted, and a first magnet arranged at one or more predetermined pitches in the axial direction of the fixed portion on the inner peripheral surface of the fixed portion facing the outer peripheral surface of the rotating portion. A second magnet disposed at an outer peripheral surface facing the inner peripheral surface of the fixed portion of the rotating portion at one or more predetermined pitches in the axial direction of the rotating portion, the first, The second magnets are composed of homopolar magnets where repulsive forces act on opposite sides, or different-polar magnets on opposite sides where attractive forces act, and magnets that do not oppose each other among the first and second magnets. It provided one or more pairs, the outer peripheral surface opposed to the inner peripheral surface of the fixed portion of the rotating part of the rotating part Divided into a plurality of directions, and the phase at which the second magnet provided on each of the divided outer peripheral surfaces is arranged is divided into a plurality of outer peripheral surfaces divided into a plurality of portions in the axial direction of the rotating portion. It is characterized by being shifted in the circumferential direction of the surface.

また、本発明に係る回転装置の第の構成は、回転駆動力を付与する回転駆動源が設けられた固定部と、前記固定部の内部で回転可能に設けられ、前記回転駆動源からの回転力が伝達される回転部と、前記固定部の前記回転部の外周面に対向する内周面で該固定部の軸方向に1つ以上の所定のピッチで配置された第1の磁石と、前記回転部の前記固定部の内周面に対向する外周面で該回転部の軸方向に1つ以上の所定のピッチで配置された第2の磁石と、を有し、前記第1、第2の磁石同士は、互いに対向する側が斥力が作用する同極磁石、或いは互いに対向する側が引力が作用する異極磁石で構成され、該第1、第2の磁石のうち互いに対向しない磁石が1組以上設けられ、前記固定部は該固定部の軸方向に分割された複数の環状ブロック体を有して構成され、該環状ブロック体の内周面が前記回転部の外周面に対向すると共に、該環状ブロック体の内周面で前記固定部の軸方向に所定のピッチで前記第1の磁石が配置され、前記環状ブロック体を固定するための固定部材を前記固定部の軸方向に複数に分割されたそれぞれの環状ブロック体毎に前記固定部の周方向にずらして配置したことを特徴とする。 Further, a third configuration of the rotating device according to the present invention includes a fixed portion provided with a rotation drive source for applying a rotation driving force, a rotation portion provided inside the fixed portion, and a rotation portion provided from the rotation drive source. A rotating portion to which a rotational force is transmitted, and a first magnet arranged at one or more predetermined pitches in the axial direction of the fixed portion on the inner peripheral surface of the fixed portion facing the outer peripheral surface of the rotating portion. A second magnet disposed at an outer peripheral surface facing the inner peripheral surface of the fixed portion of the rotating portion at one or more predetermined pitches in the axial direction of the rotating portion, the first, The second magnets are composed of homopolar magnets where repulsive forces act on opposite sides, or different-polar magnets on opposite sides where attractive forces act, and magnets that do not oppose each other among the first and second magnets. provided one or more pairs, the fixing unit includes a plurality of annular blocks divided in the axial direction of the fixing part And the inner peripheral surface of the annular block body is opposed to the outer peripheral surface of the rotating portion, and the first inner surface of the annular block body has a predetermined pitch in the axial direction of the fixed portion. The fixing member for fixing the annular block body is shifted in the circumferential direction of the fixing portion for each of the annular block bodies divided into a plurality in the axial direction of the fixing portion. Features.

また、本発明に係る回転装置の第の構成は、回転駆動力を付与する回転駆動源が設けられた固定部と、前記固定部の内部で回転可能に設けられ、前記回転駆動源からの回転力が伝達される回転部と、前記固定部の前記回転部の外周面に対向する内周面で該固定部の軸方向に1つ以上の所定のピッチで配置された第1の磁石と、前記回転部の前記固定部の内周面に対向する外周面で該回転部の軸方向に1つ以上の所定のピッチで配置された第2の磁石と、を有し、前記第1、第2の磁石同士は、互いに対向する側が斥力が作用する同極磁石、或いは互いに対向する側が引力が作用する異極磁石で構成され、該第1、第2の磁石のうち互いに対向しない磁石が1組以上設けられ、前記固定部の筒体ケース内に該固定部の軸方向に分割された複数の環状ブロック体が収容され、該環状ブロック体の内周面が前記回転部の外周面に対向すると共に、該環状ブロック体の内周面で前記固定部の軸方向に所定のピッチで前記第1の磁石が配置され、前記筒体ケース内に収容される前記環状ブロック体を固定するために該筒体ケースに設けられる固定穴を前記固定部の軸方向に複数に分割されたそれぞれの環状ブロック体毎に前記筒体ケースの周方向にずらして配置したことを特徴とする。 In addition, a fourth configuration of the rotating device according to the present invention includes a fixed portion provided with a rotation drive source for applying a rotation driving force, a rotation portion provided inside the fixed portion, and rotatable from the rotation drive source. A rotating portion to which a rotational force is transmitted, and a first magnet arranged at one or more predetermined pitches in the axial direction of the fixed portion on the inner peripheral surface of the fixed portion facing the outer peripheral surface of the rotating portion. A second magnet disposed at an outer peripheral surface facing the inner peripheral surface of the fixed portion of the rotating portion at one or more predetermined pitches in the axial direction of the rotating portion, the first, The second magnets are composed of homopolar magnets where repulsive forces act on opposite sides, or different-polar magnets on opposite sides where attractive forces act, and magnets that do not oppose each other among the first and second magnets. It provided one or more pairs, more divided in the axial direction of the fixing portion in the cylindrical body casing of the fixed unit An annular block body is accommodated, and an inner peripheral surface of the annular block body is opposed to an outer peripheral surface of the rotating portion, and the first inner portion of the annular block body has a predetermined pitch in the axial direction of the fixed portion. Each annular block in which a fixing hole provided in the cylindrical case for fixing the annular block body accommodated in the cylindrical case is divided into a plurality of portions in the axial direction of the fixing portion. It is characterized in that each body is shifted in the circumferential direction of the cylindrical case.

また、本発明に係る回転装置の第の構成は、回転駆動力を付与する回転駆動源が設けられた固定部と、前記固定部の内部で回転可能に設けられ、前記回転駆動源からの回転力が伝達される回転部と、前記固定部の前記回転部の外周面に対向する内周面で該固定部の軸方向に1つ以上の所定のピッチで配置された第1の磁石と、前記回転部の前記固定部の内周面に対向する外周面で該回転部の軸方向に1つ以上の所定のピッチで配置された第2の磁石と、を有し、前記第1、第2の磁石同士は、互いに対向する側が斥力が作用する同極磁石、或いは互いに対向する側が引力が作用する異極磁石で構成され、該第1、第2の磁石のうち互いに対向しない磁石が1組以上設けられ、前記回転部は該回転部の軸方向に分割された複数の柱状ブロック体を有して構成され、該柱状ブロック体の外周面が前記固定部の内周面に対向すると共に、該柱状ブロック体の外周面で前記回転部の軸方向に所定のピッチで前記第2の磁石が配置され、前記柱状ブロック体を固定するための固定部材を前記回転部の軸方向に複数に分割されたそれぞれの柱状ブロック体毎に前記回転部の周方向にずらして配置したことを特徴とする。 Further, a fifth configuration of the rotating device according to the present invention is provided with a fixed portion provided with a rotational drive source for applying a rotational driving force, and provided rotatably in the fixed portion, A rotating portion to which a rotational force is transmitted, and a first magnet arranged at one or more predetermined pitches in the axial direction of the fixed portion on the inner peripheral surface of the fixed portion facing the outer peripheral surface of the rotating portion. A second magnet disposed at an outer peripheral surface facing the inner peripheral surface of the fixed portion of the rotating portion at one or more predetermined pitches in the axial direction of the rotating portion, the first, The second magnets are composed of homopolar magnets where repulsive forces act on opposite sides, or different-polar magnets on opposite sides where attractive forces act, and magnets that do not oppose each other among the first and second magnets. provided one or more pairs, the rotating portion includes a plurality of columnar blocks divided in the axial direction of the rotating portion The columnar block body has an outer peripheral surface opposed to an inner peripheral surface of the fixed portion, and the columnar block body has an outer peripheral surface at a predetermined pitch in the axial direction of the rotating portion. A magnet is disposed, and a fixing member for fixing the columnar block body is arranged so as to be shifted in the circumferential direction of the rotating portion for each columnar block body divided into a plurality of portions in the axial direction of the rotating portion. And

また、本発明に係る回転装置の第の構成は、前記第1〜第5の構成の回転装置において、前記固定部の前記回転部の外周面に対向する内周面に設けられた第1の磁石と、前記回転部の前記固定部の内周面に対向する外周面に設けられた第2の磁石との取り付け数が異なることを特徴とする。 According to a sixth configuration of the rotating device according to the present invention, in the rotating devices having the first to fifth configurations, the first configuration is provided on the inner peripheral surface of the fixed portion facing the outer peripheral surface of the rotating portion. The number of attachments of the second magnet is different from that of the second magnet provided on the outer peripheral surface facing the inner peripheral surface of the fixed portion of the rotating portion.

また、本発明に係る回転装置の第の構成は、前記第1〜第5の構成の回転装置において、前記固定部の前記回転部の外周面に対向する内周面に設けられた第1の磁石相互の離間ピッチ、或いは前記回転部の前記固定部の内周面に対向する外周面に設けられた第2の磁石相互の離間ピッチのうち少なくとも1つが異なることを特徴とする。 According to a seventh configuration of the rotating device according to the present invention, in the rotating device having the first to fifth configurations, the first configuration is provided on the inner peripheral surface of the fixed portion that faces the outer peripheral surface of the rotating portion. At least one of the pitches between the magnets or the pitch between the second magnets provided on the outer peripheral surface facing the inner peripheral surface of the fixed portion of the rotating portion is different.

また、本発明に係る回転装置の第の構成は、前記第1〜第5の構成の回転装置において、前記固定部側、前記回転部側にそれぞれ設けられる前記第1、第2の磁石の長手方向の少なくとも一方を前記回転部の回転軸方向に対して傾斜させると共に、該回転部の回転に伴って該第1、第2の磁石が長手方向に互いに交差して対向することを特徴とする。 Further, an eighth configuration of the rotating device according to the present invention is the rotating device having the first to fifth configurations, wherein the first and second magnets provided on the fixed portion side and the rotating portion side, respectively. At least one of the longitudinal directions is inclined with respect to the rotational axis direction of the rotating portion, and the first and second magnets cross each other in the longitudinal direction and face each other as the rotating portion rotates. To do.

また、本発明に係る泡発生装置の第1の構成は、前記第1〜第の構成の回転装置を備え、前記回転部と連結されて該回転部と一体的に回転する回転翼と、前記回転翼の回転により発生する負圧により前記固定部と前記回転部との間に形成される間隙に処理液を吸入する吸液口と、前記回転翼の回転により発生する負圧により前記固定部と前記回転部との間に形成される間隙に気体を吸入する吸気口と、前記吸液口から吸入された処理液と、前記吸気口から吸入された気体とが前記固定部と前記回転部との間に形成される間隙内で混合され、その混合液を外部に排出する排出口とを有することを特徴とする。 Further, the first configuration of the foam generating apparatus according to the present invention includes the rotating devices of the first to eighth configurations, and is connected to the rotating unit and rotates integrally with the rotating unit, The liquid suction port for sucking the processing liquid into the gap formed between the fixed portion and the rotating portion by the negative pressure generated by the rotation of the rotating blade, and the fixing by the negative pressure generated by the rotation of the rotating blade. A suction port for sucking gas into a gap formed between the rotating portion and the rotating portion, a processing liquid sucked from the suction port, and a gas sucked from the suction port are connected to the fixed portion and the rotation And a discharge port for discharging the mixed solution to the outside.

また、本発明に係る泡発生装置の第2の構成は、前記第1の構成の泡発生装置において、前記固定部と前記回転部との間に形成される間隙に処理液を吸入する管が設けられ、前記管に交差して接続して連通された合流管から前記固定部と前記回転部との間に形成される間隙に気体を吸入することを特徴とする。   Further, a second configuration of the foam generating apparatus according to the present invention is the foam generating apparatus of the first configuration, wherein a pipe for sucking a processing liquid into a gap formed between the fixed portion and the rotating portion. Gas is sucked into a gap formed between the fixed portion and the rotating portion from a merging tube that is provided and communicated by crossing and connecting to the tube.

また、本発明に係る泡発生装置の第3の構成は、前記第2の構成の泡発生装置において、前記管の前記合流管が交差する位置の近傍上流側に小径部が設けられ、該管の小径部から大径部に向けて流れ込む処理液の流速を大きくして前記合流管から吸入される気体の吸入力を大きくする負圧を発生させることを特徴とする。   Further, a third configuration of the foam generating apparatus according to the present invention is the foam generating apparatus of the second configuration, wherein a small diameter portion is provided on the upstream side in the vicinity of the position where the merging pipe intersects the pipe. A negative pressure is generated to increase the flow rate of the processing liquid flowing from the small diameter portion toward the large diameter portion to increase the suction force of the gas sucked from the junction pipe.

また、本発明に係る泡発生装置の第4の構成は、前記第1の構成の泡発生装置において、前記吸液口から吸入された処理液と、前記吸気口から吸入された気体とが前記固定部と前記回転部との間に形成される間隙の近傍上流側に該間隙に流れ込む処理液の流速を大きくして前記吸気口から吸入される気体の吸入力を大きくする負圧を発生させると共に気体の混合を促進させる挟隙流路が形成されたことを特徴とする。   Further, a fourth configuration of the foam generating device according to the present invention is the foam generating device of the first configuration, wherein the treatment liquid sucked from the liquid suction port and the gas sucked from the suction port are A negative pressure is generated on the upstream side in the vicinity of the gap formed between the fixed portion and the rotating portion to increase the flow rate of the processing liquid flowing into the gap and increase the suction of the gas sucked from the intake port. In addition, a gap channel for promoting gas mixing is formed.

本発明に係る回転装置の第1の構成によれば、固定部の内周面と回転部の外周面にそれぞれ設けられた第1、第2の磁石のうち同時に互いに対向しない磁石を1組以上設けることで、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない。   According to the first configuration of the rotating device according to the present invention, one or more sets of magnets that are not simultaneously opposed to each other among the first and second magnets respectively provided on the inner peripheral surface of the fixed portion and the outer peripheral surface of the rotating portion. By providing, the attraction force or the repulsive force between the magnets is relieved, and a large driving force is not required at the time of starting rotation and continuous rotation.

また、固定部の内周面を該固定部の軸方向に複数に分割し、その分割された内周面毎に第1の磁石の配置位相を該内周面の周方向にずらして配置したことで、同時に互いに対向しない磁石を1組以上設けることができ、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない。 The arrangement of the inner circumferential surface of the fixed part is divided into a plurality in the axial direction of the fixed portion, each inner peripheral surface that is the divided placement phase of the first magnet is shifted in the circumferential direction of the inner circumferential surface As a result, one or more sets of magnets that do not face each other at the same time can be provided, and the attractive force or repulsive force between the magnets is alleviated so that a large driving force is not required at the time of starting rotation and continuous rotation.

また、本発明に係る回転装置の第の構成によれば、回転部の外周面を該回転部の軸方向に複数に分割し、その分割された外周面毎に第2の磁石の配置位相を該外周面の周方向にずらして配置したことで、同時に互いに対向しない磁石を1組以上設けることができ、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない。 Moreover, according to the 2nd structure of the rotating apparatus which concerns on this invention, the outer peripheral surface of a rotation part is divided | segmented into plurality in the axial direction of this rotation part, and the arrangement | positioning phase of a 2nd magnet is divided for every divided | segmented outer peripheral surface. Are arranged in the circumferential direction of the outer peripheral surface, so that one or more sets of magnets that are not opposed to each other can be provided at the same time. Does not require power.

また、本発明に係る回転装置の第の構成によれば、固定部の軸方向に複数に分割して設けられた環状ブロック体を固定するための固定部材を該環状ブロック体毎に該固定部の周方向にずらして配置したことで、同時に互いに対向しない磁石を1組以上設けることができ、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない。 Moreover, according to the 3rd structure of the rotating apparatus which concerns on this invention, the fixing member for fixing the annular block body divided | segmented into plurality in the axial direction of the fixing | fixed part is fixed to this each annular block body By disposing the parts in the circumferential direction, one or more pairs of magnets that do not face each other can be provided at the same time, reducing the attractive force or repulsive force between the magnets and requiring a large driving force at the time of rotation start and continuous rotation And not.

また、本発明に係る回転装置の第の構成によれば、固定部の筒体ケース内に収容され、該固定部の軸方向に複数に分割して設けられた環状ブロック体を固定するための固定穴を該環状ブロック体毎に該筒体ケースの周方向にずらして配置したことで、同時に互いに対向しない磁石を1組以上設けることができ、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない。 Moreover, according to the 4th structure of the rotating apparatus which concerns on this invention, In order to fix the cyclic | annular block body accommodated in the cylindrical case of the fixing | fixed part and divided | segmented into plurality in the axial direction of this fixing | fixed part Since the fixing holes are shifted in the circumferential direction of the cylindrical case for each annular block body, one or more sets of magnets that are not opposed to each other can be provided at the same time, thereby reducing the attractive force or repulsive force between the magnets. Therefore, a large driving force is not required at the time of starting rotation and continuous rotation.

また、本発明に係る回転装置の第の構成によれば、回転部の軸方向に複数に分割して設けられた柱状ブロック体を固定するための固定部材を該柱状ブロック体毎に該回転部の周方向にずらして配置したことで、同時に互いに対向しない磁石を1組以上設けることができ、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない。 Moreover, according to the 5th structure of the rotating apparatus which concerns on this invention, the fixing member for fixing the columnar block body divided and provided in the axial direction of the rotation part for every columnar block body is this rotation. By disposing the parts in the circumferential direction, one or more pairs of magnets that do not face each other can be provided at the same time, reducing the attractive force or repulsive force between the magnets and requiring a large driving force at the time of rotation start and continuous rotation And not.

また、本発明に係る回転装置の第の構成によれば、固定部の内周面と回転部の外周面にそれぞれ設けられた第1、第2の磁石の取り付け数が異なることで、同時に互いに対向しない磁石を1組以上設けることができ、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない。 Moreover, according to the 6th structure of the rotating apparatus which concerns on this invention, since the attachment number of the 1st, 2nd magnet respectively provided in the inner peripheral surface of a fixing | fixed part and the outer peripheral surface of a rotating part differs, One or more sets of magnets that are not opposed to each other can be provided, and the attraction force or the repulsive force between the magnets is alleviated so that a large driving force is not required at the time of starting rotation and continuous rotation.

また、本発明に係る回転装置の第の構成によれば、固定部の内周面と回転部の外周面にそれぞれ設けられた第1、第2の磁石のそれぞれの磁石相互の離間ピッチのうち少なくとも1つが異なることで、同時に互いに対向しない磁石を1組以上設けることができ、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない。 Further, according to the seventh configuration of the rotating device according to the present invention, the spacing between the magnets of the first and second magnets provided on the inner peripheral surface of the fixed portion and the outer peripheral surface of the rotating portion, respectively. Since at least one of them is different, it is possible to provide one or more sets of magnets that are not opposed to each other at the same time, so that the attraction force or the repulsive force between the magnets is alleviated and a large driving force is not required at the time of starting rotation and continuous rotation.

また、本発明に係る回転装置の第の構成によれば、固定部側、回転部側にそれぞれ設けられる第1、第2の磁石の長手方向の少なくとも一方を回転部の回転軸方向に対して傾斜させて配置し、該回転部の回転に伴って該第1、第2の磁石が長手方向に互いに交差して対向するように配置することで、第1、第2の磁石の互いに対向する側が斥力が作用する同極磁石による互いに近付く際の回転方向に対する抑止力、或いは第1、第2の磁石の互いに対向する側が引力が作用する異極磁石による互いに遠退く際の回転方向に対する抑止力における力の分散が出来、それらの回転抑止力を低減させることが出来る。 Moreover, according to the 8th structure of the rotating apparatus which concerns on this invention, at least one of the longitudinal direction of the 1st, 2nd magnet provided in the fixed part side and the rotating part side is respectively with respect to the rotating shaft direction of a rotating part. The first and second magnets are opposed to each other by being arranged so that the first and second magnets cross each other in the longitudinal direction and face each other as the rotating part rotates. Suppressing force in the rotation direction when the revolving force is approached by the same-polar magnet on which the repulsive force acts, or depressing in the rotational direction when the first and second magnets are opposite to each other by the opposite-polarity magnet on which the opposing sides act on each other The force can be dispersed in the force, and their rotation deterring force can be reduced.

即ち、固定部側、回転部側にそれぞれ設けられる第1、第2の磁石の長手方向は、互いに異なった角度に傾斜しており、例えば、第1、第2の磁石の長手方向を線として考えると、N極−N極が対向する場合、或いはN極−S極が対向する場合にその瞬間が線接触ではなく点接触となり回転抑止力の低減が可能となるものである。   That is, the longitudinal directions of the first and second magnets provided on the fixed portion side and the rotating portion side are inclined at different angles, for example, the longitudinal directions of the first and second magnets are taken as lines. Considering this, when the N pole-N pole face each other, or when the N pole-S pole face each other, the moment becomes a point contact instead of a line contact, and the rotation inhibition force can be reduced.

一方、回転部の回転により固定部と回転部との間に形成される間隙内を流れる処理液は斜行して流れるため、例えば、第1、第2の磁石の長手方向が回転部の回転軸方向に平行である場合、斜行して流れる処理液に対して第1、第2の磁石が向き合うのは瞬間的となるため磁力の作用も瞬間的であるが、本発明のように第1、第2の磁石の長手方向を傾斜させた場合には、長手方向を傾斜させた第1、第2の磁石との交点が連続移動し、斜行して流れる処理液に対して連続的に磁力が作用することとなる。このことにより、固定部と回転部との間に形成される間隙内の処理液は微小気泡の数と溶解気体の量とを増加させながら第1の磁石と第2の磁石による電磁作用との相乗作用を受けて該間隙内に流入した処理液中の微小気泡について分割と再分割とがより効果的になされ、極微細気泡がより多く生成されると共に、該各極微細気泡中の気体成分が処理液中に更に溶解される。   On the other hand, since the processing liquid flowing in the gap formed between the fixed part and the rotating part by the rotation of the rotating part flows obliquely, for example, the longitudinal direction of the first and second magnets rotates the rotating part. In the case of being parallel to the axial direction, the first and second magnets face each other with respect to the treatment liquid flowing obliquely, so the action of the magnetic force is instantaneous. 1. When the longitudinal direction of the second magnet is tilted, the intersections with the first and second magnets tilted in the longitudinal direction are continuously moved and continuously with respect to the treatment liquid flowing obliquely. Magnetic force will act on this. As a result, the treatment liquid in the gap formed between the fixed part and the rotating part increases the number of microbubbles and the amount of dissolved gas, and the electromagnetic action by the first magnet and the second magnet. The microbubbles in the treatment liquid that have flowed into the gap due to the synergistic action are more effectively divided and subdivided to generate more microbubbles, and the gas components in the microbubbles Is further dissolved in the processing solution.

また、本発明に係る泡発生装置の第1の構成によれば、回転翼の回転により発生する負圧により吸液口から吸入された処理液と、吸気口から吸入された気体とを固定部と回転部との間に形成される間隙内で混合して処理液中に微細な気泡を発生させると共に包含させ、その混合液を排出口から外部に排出することが出来る。   Further, according to the first configuration of the foam generating apparatus of the present invention, the fixing portion is configured to fix the processing liquid sucked from the liquid suction port by the negative pressure generated by the rotation of the rotor blades and the gas sucked from the suction port. And a fine bubble is generated and contained in the processing liquid by mixing in a gap formed between the rotating part and the rotating part, and the mixed liquid can be discharged to the outside from the discharge port.

また、本発明に係る泡発生装置の第2の構成によれば、固定部と回転部との間に形成される間隙に処理液を吸入する管に交差して接続して連通された合流管から固定部と回転部との間に形成される間隙に気体を吸入することができ、管を流れる処理液の流速により合流管に負圧を発生させて吸気口から気体を吸入することが出来る。   Further, according to the second configuration of the foam generating apparatus according to the present invention, the junction pipe that is connected to and communicated with the pipe that sucks the processing liquid into the gap formed between the fixed part and the rotating part. Gas can be sucked into the gap formed between the fixed portion and the rotating portion, and negative pressure can be generated in the merging pipe by the flow rate of the processing liquid flowing through the pipe, and the gas can be sucked from the inlet port. .

また、本発明に係る泡発生装置の第3の構成によれば、合流管が交差する位置の近傍上流側に設けられた管の小径部を流れる処理液の流速が大きくなり、該管の小径部を流れる処理液の流速により合流管に更に大きな負圧を発生させて吸気口から気体を吸入することが出来る。   Further, according to the third configuration of the foam generating apparatus according to the present invention, the flow velocity of the processing liquid flowing through the small diameter portion of the pipe provided on the upstream side in the vicinity of the position where the merge pipe intersects increases, and the small diameter of the pipe A larger negative pressure can be generated in the junction pipe by the flow rate of the processing liquid flowing through the section, and the gas can be sucked from the intake port.

また、本発明に係る泡発生装置の第4の構成によれば、固定部と回転部との間に形成される間隙の近傍上流側に形成された挟隙流路を流れる処理液の流速が大きくなり、該挟隙流路を流れる処理液の流速により大きな負圧を発生させて吸気口から気体を吸入することが出来、気体の混合を促進させることが出来る。   Further, according to the fourth configuration of the foam generating apparatus of the present invention, the flow rate of the processing liquid flowing in the gap channel formed on the upstream side in the vicinity of the gap formed between the fixed part and the rotating part is It becomes large, a large negative pressure can be generated by the flow rate of the processing liquid flowing through the gap channel, and the gas can be sucked from the intake port, and the mixing of the gas can be promoted.

図により本発明に係る回転装置及びそれを備えた泡発生装置の一実施形態を具体的に説明する。図1は本発明に係る回転装置及びそれを備えた泡発生装置の第1実施形態の構成を示す断面説明図、図2は本発明に係る回転装置の第1実施形態の固定部の内周面に設けられる第1の磁石と、回転部の外周面に設けられる第2の磁石との配置構成を示す断面説明図、図3は固定部の筒体ケースの構成を示す断面説明図、図4は筒体ケース内に収容される環状ブロック体の構成を示す断面説明図、図5は筒体ケース内に複数の環状ブロック体が周方向に10度づつずらして配置された様子を示す図、図6は回転部の構成を示す断面説明図、図7〜図10は本発明に係る回転装置の作用効果を説明する図である。   An embodiment of a rotating device according to the present invention and a foam generating device including the same will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional explanatory view showing a configuration of a first embodiment of a rotating device and a foam generating device having the same according to the present invention, and FIG. 2 is an inner periphery of a fixed portion of the first embodiment of the rotating device according to the present invention. Cross-sectional explanatory drawing showing the arrangement configuration of the first magnet provided on the surface and the second magnet provided on the outer peripheral surface of the rotating portion, FIG. 3 is a cross-sectional explanatory drawing showing the configuration of the cylindrical case of the fixed portion, FIG. 4 is a cross-sectional explanatory view showing a configuration of an annular block body accommodated in the cylindrical case, and FIG. 5 is a diagram showing a state in which a plurality of annular block bodies are arranged in the cylindrical case while being shifted by 10 degrees in the circumferential direction. FIG. 6 is a cross-sectional explanatory view showing the configuration of the rotating part, and FIGS. 7 to 10 are views for explaining the operational effects of the rotating device according to the present invention.

図1〜図6において、1は回転駆動力を付与する回転駆動源となるモータであり、円筒状の固定部2に設けられている。固定部2の内部には回転部3が回転可能に設けられており該回転部3には回転駆動源となるモータ1からの回転力がモーターシャフト1a、連結部材4、回転部3の回転軸3aを介して該回転部3に伝達される。   In FIG. 1 to FIG. 6, reference numeral 1 denotes a motor serving as a rotational drive source for applying a rotational drive force, and is provided on the cylindrical fixing portion 2. A rotating unit 3 is rotatably provided inside the fixed unit 2, and a rotating force from the motor 1 serving as a rotation driving source is applied to the rotating unit 3. The rotating shaft of the motor shaft 1 a, the connecting member 4, and the rotating unit 3. It is transmitted to the rotating part 3 through 3a.

尚、モーターシャフト1a及び回転軸3aは、該回転軸3aの図示しない一方の軸受部材及び他方の軸受部材6により回転可能に軸支されている。   The motor shaft 1a and the rotating shaft 3a are rotatably supported by one bearing member (not shown) and the other bearing member 6 of the rotating shaft 3a.

本実施形態の固定部2は、図3に示す筒体ケース7と、図4に示すように、該筒体ケース7内に収容され、該固定部2の軸方向(図1(a)の左右方向)に分割された複数の環状ブロック体8とを有して構成され、複数段の環状ブロック体8が軸方向に直線状に配列される。   The fixing part 2 of the present embodiment is accommodated in the cylindrical case 7 shown in FIG. 3 and the cylindrical case 7 as shown in FIG. 4, and the axial direction of the fixing part 2 (in FIG. 1A) A plurality of annular block bodies 8 divided in the left-right direction), and the plurality of stages of annular block bodies 8 are linearly arranged in the axial direction.

各環状ブロック体8の内周面8aは回転部3の外周面3bに対向すると共に、該環状ブロック体8の内周面8aで固定部2の軸方向(図1(a)の左右方向)に所定のピッチで第1の磁石9が配置されている。   The inner peripheral surface 8a of each annular block body 8 is opposed to the outer peripheral surface 3b of the rotating portion 3, and the axial direction of the fixed portion 2 on the inner peripheral surface 8a of the annular block body 8 (the left-right direction in FIG. 1A). The first magnets 9 are arranged at a predetermined pitch.

図3に示すように、筒体ケース7内に収容される環状ブロック体8を固定するために該筒体ケース7に設けられる固定穴7aは固定部2の軸方向(図3(b)の左右方向)に複数に分割されたそれぞれの環状ブロック体8毎に筒体ケース7の周方向にずらして配置されている。   As shown in FIG. 3, the fixing hole 7a provided in the cylindrical case 7 for fixing the annular block body 8 accommodated in the cylindrical case 7 is formed in the axial direction of the fixing portion 2 (see FIG. 3B). Each annular block body 8 divided into a plurality in the (left-right direction) is arranged so as to be shifted in the circumferential direction of the cylindrical case 7.

このように、第1の磁石9は、図4に示すように、固定部2の回転部3の外周面3bに対向する環状ブロック体8の内周面8aで該固定部2の軸方向(図1(a)の左右方向)に所定のピッチで配置されている。   Thus, as shown in FIG. 4, the first magnet 9 has an axial direction of the fixed portion 2 on the inner peripheral surface 8 a of the annular block body 8 facing the outer peripheral surface 3 b of the rotating portion 3 of the fixed portion 2. They are arranged at a predetermined pitch in the left-right direction in FIG.

一方、第2の磁石10は、図5及び図6に示すように、回転部3の固定部2の環状ブロック体8の内周面8aに対向する外周面3bで該回転部3の軸方向(図1(a)の左右方向)に所定のピッチで配置されている。   On the other hand, as shown in FIGS. 5 and 6, the second magnet 10 has an outer peripheral surface 3 b facing the inner peripheral surface 8 a of the annular block body 8 of the fixed portion 2 of the rotating portion 3 in the axial direction of the rotating portion 3. They are arranged at a predetermined pitch (in the left-right direction in FIG. 1A).

ここで、第1、第2の磁石9,10同士は、互いに対向する側が斥力が作用する同極磁石(例えば、第1、第2の磁石9,10の互いに対向する側の双方がN極か、第1、第2の磁石9,10の互いに対向する側の双方がS極)、或いは互いに対向する側が引力が作用する異極磁石(例えば、第1の磁石9の対面する側がN極で第2の磁石10の対面する側がS極、或いは第1の磁石9の対面する側がS極で第2の磁石10の対面する側がN極)で構成され、該第1、第2の磁石9,10のうち互いに対向しない磁石が1組以上設けられている。   Here, the first and second magnets 9 and 10 are homopolar magnets whose repulsive forces act on opposite sides (for example, both opposite sides of the first and second magnets 9 and 10 are N poles). Alternatively, the opposite sides of the first and second magnets 9 and 10 are S poles, or the opposite sides of the opposite magnets on which the attractive forces act (for example, the opposite side of the first magnet 9 is the N pole). The facing side of the second magnet 10 is S pole, or the facing side of the first magnet 9 is S pole, and the facing side of the second magnet 10 is N pole), the first and second magnets. One or more sets of magnets 9 and 10 that are not opposed to each other are provided.

また、図4及び図6に示すように、固定部2の回転部3の外周面3bに対向する環状ブロック体8の内周面8aに設けられた第1の磁石9は6個配置されており、回転部3の固定部2の環状ブロック体8の内周面8aに対向する外周面3bに設けられた第2の磁石10は8個配置されており、第1、第2の磁石9,10の取り付け数が異なるように構成されている。   As shown in FIGS. 4 and 6, six first magnets 9 provided on the inner peripheral surface 8 a of the annular block body 8 facing the outer peripheral surface 3 b of the rotating portion 3 of the fixed portion 2 are arranged. In addition, eight second magnets 10 provided on the outer peripheral surface 3b facing the inner peripheral surface 8a of the annular block body 8 of the fixed portion 2 of the rotating portion 3 are arranged, and the first and second magnets 9 are provided. , 10 are configured to have different numbers.

図1及び図5に示すように、固定部2の回転部3の外周面3bに対向する環状ブロック体8の内周面8aが該固定部2の軸方向(図1(a)の左右方向)に複数に分割され、該分割されたそれぞれの環状ブロック体8の内周面8aに設けられた第1の磁石9が配置される位相を該固定部2の軸方向(図1(a)の左右方向)に複数に分割されたそれぞれの環状ブロック体8の内周面8a毎に該内周面8aの周方向にずらして配置している。   As shown in FIGS. 1 and 5, the inner peripheral surface 8a of the annular block body 8 facing the outer peripheral surface 3b of the rotating portion 3 of the fixed portion 2 is the axial direction of the fixed portion 2 (the left-right direction in FIG. 1A). ), And the phase in which the first magnet 9 provided on the inner peripheral surface 8a of each of the divided annular block bodies 8 is arranged is the axial direction of the fixed portion 2 (FIG. 1A). Of each annular block body 8 divided into a plurality of (in the left and right directions), the inner peripheral surface 8a is shifted in the circumferential direction of the inner peripheral surface 8a.

即ち、本実施形態では、図1及び図5に示すように、固定部2は該固定部2の軸方向(図1(a)の左右方向)に分割された複数の環状ブロック体8を有して構成され、該環状ブロック体8の内周面8aが回転部3の外周面3bに対向すると共に、該環状ブロック体8の内周面8aで固定部2の軸方向(図1(a)の左右方向)に所定のピッチで第1の磁石9が配置され、環状ブロック体8を固定するための固定部材となる筒体ケース7の固定穴7aに挿通され、環状ブロック体8の径方向に所定ピッチで設けられた固定ネジ孔8bに螺合締結される固定ネジ11を固定部2の軸方向(図1(a)の左右方向)に複数に分割されたそれぞれの環状ブロック体8毎に固定部2の周方向にずらして配置したものである。   That is, in this embodiment, as shown in FIGS. 1 and 5, the fixing portion 2 has a plurality of annular block bodies 8 divided in the axial direction of the fixing portion 2 (the left-right direction in FIG. 1A). The inner peripheral surface 8a of the annular block body 8 is opposed to the outer peripheral surface 3b of the rotating part 3, and the inner peripheral surface 8a of the annular block body 8 is in the axial direction of the fixed part 2 (FIG. ) In the left-right direction), the first magnets 9 are arranged at a predetermined pitch, and are inserted into the fixing holes 7a of the cylindrical case 7 serving as a fixing member for fixing the annular block body 8, and the diameter of the annular block body 8 is Each of the annular block bodies 8 is divided into a plurality of fixing screws 11 which are screwed and fastened to fixing screw holes 8b provided at a predetermined pitch in the direction in the axial direction of the fixing portion 2 (left and right direction in FIG. 1A). They are arranged so as to be shifted in the circumferential direction of the fixed portion 2 every time.

図7〜図9は本発明に係る回転装置の作用効果を説明する図である。先ず、図7〜図9における前提条件として、第1、第2の磁石9,10が相対した時に「1」という力を発揮するものとする。中間点では磁力は「0(ゼロ)」とする。他の磁石の影響はないものとする。固定部2及び回転部3の円周方向及び径方向とも同じ考えとする。   7-9 is a figure explaining the effect of the rotating apparatus based on this invention. First, as a precondition in FIGS. 7 to 9, a force “1” is exhibited when the first and second magnets 9 and 10 face each other. At the midpoint, the magnetic force is “0 (zero)”. There shall be no influence of other magnets. The same idea applies to the circumferential direction and the radial direction of the fixed portion 2 and the rotating portion 3.

図7では考え方を容易にするため、回転部3の外周面3b或いは固定部2の環状ブロック体8の内周面8aの円周長を「10」とし、固定部2の環状ブロック体8の内周面8a側に配置する第1の磁石9を5個とし、回転部3の外周面3b側に配置する第2の磁石10を4個とした場合の簡易計算例を示す。即ち、第1の磁石9はピッチ「2」で、第2の磁石10はピッチ「2.5」の配置とした例である。図7の最上段では第1の磁石9は「0」、「2」、「4」、「6」、「8」の位置に配置され、第2の磁石10は「0」、「2.5」、「5」、「7.5」の位置に配置されている。また、磁力は距離に反比例するとして計算したものである。   In FIG. 7, in order to facilitate the idea, the circumferential length of the outer peripheral surface 3 b of the rotating portion 3 or the inner peripheral surface 8 a of the annular block body 8 of the fixed portion 2 is set to “10”, and the annular block body 8 of the fixed portion 2 An example of simple calculation in the case where the number of the first magnets 9 arranged on the inner peripheral surface 8a side is five and the number of the second magnets 10 arranged on the outer peripheral surface 3b side of the rotating unit 3 is four is shown. That is, in this example, the first magnet 9 has a pitch “2” and the second magnet 10 has a pitch “2.5”. In the uppermost stage of FIG. 7, the first magnet 9 is arranged at the positions “0”, “2”, “4”, “6”, “8”, and the second magnet 10 is “0”, “2. 5 ”,“ 5 ”, and“ 7.5 ”. The magnetic force is calculated as being inversely proportional to the distance.

21は回転部3の外周面3b或いは固定部2の環状ブロック体8の内周面8aの円周長を「10」とした時の回転角度を示しており、第2の磁石10が「0.25」、「0.5」、「0.75」、「1.0」、「1.25」、「1.5」、「1.75」回転した状態を示している。   Reference numeral 21 denotes a rotation angle when the circumferential length of the outer peripheral surface 3b of the rotating portion 3 or the inner peripheral surface 8a of the annular block body 8 of the fixed portion 2 is "10". .25 ”,“ 0.5 ”,“ 0.75 ”,“ 1.0 ”,“ 1.25 ”,“ 1.5 ”,“ 1.75 ”.

図7(a)は、第1、第2の磁石9,10の向きは互いに対向する側が同極(斥力)とした場合の一例を示し、第1、第2の磁石9,10の向きは互いに対向する側が異極(引力)では23に示す回転力の方向(±)が逆になる。   FIG. 7A shows an example of the directions of the first and second magnets 9 and 10 when the opposite sides have the same polarity (repulsive force), and the directions of the first and second magnets 9 and 10 are as follows. If the sides facing each other are of different polarities (attraction), the direction (±) of the rotational force shown in 23 is reversed.

図7(a)の回転角度21に示すように、「−α」は相対する第1、第2の磁石9,10が近づく時の方向を示し、「+α」は相対する第1、第2の磁石9,10が遠ざかる時の方向を示す。そして、回転力23は最大でも「−α」の時には「−1」(回転阻害力)、「+α」の時に「1」(反発力)でしかない。第1、第2の磁石9,10が5個の同数の場合には回転力は最大「5」となることは明らかである。尚、回転力23が「0(ゼロ)」となる位置は回転角度「0.25」、「0.75」、「1.25」、「1.75」である。   As shown at the rotation angle 21 in FIG. 7A, “−α” indicates the direction when the first and second magnets 9 and 10 facing each other approach, and “+ α” indicates the first and second opposing surfaces. The direction when the magnets 9 and 10 move away is shown. The rotational force 23 is at most “−1” (rotation inhibiting force) when “−α”, and only “1” (repulsive force) when “+ α”. Obviously, when the number of the first and second magnets 9 and 10 is the same, the maximum rotational force is “5”. The positions at which the rotational force 23 is “0 (zero)” are the rotation angles “0.25”, “0.75”, “1.25”, and “1.75”.

図7(b)に示す円図は、第1、第2の磁石9,10を固定部2及び回転部3の径方向断面で考えた時の力のバランスを示しており、バランスが崩れて「1」という力が働いている様子を示したものである。第1、第2の磁石9,10が均等配置されているような場合には同時に相対する第1、第2の磁石9,10の組数としては例えば1組を避けることで、回転軸3aにかかる合力のバランスを維持することができる。   The circle diagram shown in FIG. 7B shows the balance of force when the first and second magnets 9 and 10 are considered in the radial section of the fixed portion 2 and the rotating portion 3, and the balance is lost. It shows how the power “1” is working. In the case where the first and second magnets 9 and 10 are equally arranged, the number of pairs of the first and second magnets 9 and 10 facing each other at the same time is avoided by, for example, one set, thereby rotating the shaft 3a. The balance of resultant force can be maintained.

本実施形態では、図4及び図6に示すように、固定部2の環状ブロック体8の内周面8a側に第1の磁石9が6個で各第1の磁石9相互は60度づつ均等配置され、回転部3の外周面3b側に第2の磁石10が8個で各第2の磁石10相互は45度づつ均等配置されており、図3及び図5に示すように、筒体ケース7の内部に8段の環状ブロック体8が各段10度づつの位相を設けて取り付け挿入されている。   In this embodiment, as shown in FIGS. 4 and 6, there are six first magnets 9 on the inner peripheral surface 8 a side of the annular block body 8 of the fixing portion 2, and each first magnet 9 is 60 degrees apart. Equally arranged, eight second magnets 10 are arranged on the outer peripheral surface 3b side of the rotating part 3, and the second magnets 10 are equally arranged 45 degrees each other. As shown in FIGS. An eight-stage annular block body 8 is attached and inserted into the body case 7 with a phase of 10 degrees for each stage.

図8(b)は各段の磁石配置を示したものである。即ち、回転部3の外周面3の外周面3b側に設けられた第2の磁石10が「0度」、「45度」、「90度」、「135度」、「180度」、「225度」、「270度」、「315度」にそれぞれ配置され、環状ブロック体8の内周面8a側に設けられた第1の磁石9が、第1段目では#1「45度」、#2「105度」、#3「165度」、#4「225度」、#5「285度」、#6「345度」にそれぞれ配置され、第2段目では#1「55度」、#2「115度」、#3「175度」、#4「235度」、#5「295度」、#6「355度」にそれぞれ配置され、第3段目では#1「5度」、#2「65度」、#3「125度」、#4「185度」、#5「245度」、#6「305度」にそれぞれ配置され、第4段目では#1「15度」、#2「75度」、#3「135度」、#4「195度」、#5「255度」、#6「315度」にそれぞれ配置され、第5段目では#1「25度」、#2「85度」、#3「145度」、#4「205度」、#5「265度」、#6「325度」にそれぞれ配置され、第6段目では#1「35度」、#2「95度」、#3「155度」、#4「215度」、#5「275度」、#6「335度」にそれぞれ配置されていることを示す。   FIG. 8B shows the magnet arrangement at each stage. That is, the second magnet 10 provided on the outer peripheral surface 3b side of the outer peripheral surface 3 of the rotating unit 3 is “0 degree”, “45 degrees”, “90 degrees”, “135 degrees”, “180 degrees”, “180 degrees”, “ The first magnet 9 disposed on the inner peripheral surface 8a side of the annular block body 8 is disposed at 225 degrees, 270 degrees, and 315 degrees, respectively, and is # 1 "45 degrees" in the first stage. , # 2 “105 degrees”, # 3 “165 degrees”, # 4 “225 degrees”, # 5 “285 degrees”, # 6 “345 degrees”, and # 1 “55 degrees” in the second row. ”, # 2“ 115 degrees ”, # 3“ 175 degrees ”, # 4“ 235 degrees ”, # 5“ 295 degrees ”, and # 6“ 355 degrees ”. In the third row, # 1“ 5 ” Degrees ”, # 2“ 65 degrees ”, # 3“ 125 degrees ”, # 4“ 185 degrees ”, # 5“ 245 degrees ”, and # 6“ 305 degrees ”. “5 degrees”, # 2 “75 degrees”, # 3 “135 degrees”, # 4 “195 degrees”, # 5 “255 degrees”, and # 6 “315 degrees”, respectively. “25 degrees”, # 2 “85 degrees”, # 3 “145 degrees”, # 4 “205 degrees”, # 5 “265 degrees”, # 6 “325 degrees”, respectively, It is shown that they are arranged at 1 “35 degrees”, # 2 “95 degrees”, # 3 “155 degrees”, # 4 “215 degrees”, # 5 “275 degrees”, and # 6 “335 degrees”.

図9は、図7と同様に第1、第2の磁石9,10が相対したときに「1」という力を発揮するものとし、中間点では磁力は「0(ゼロ)」とし、他の磁石の影響は無いものとした。但し、距離との関係では図7では距離に反比例としたが、図9では磁力は距離の2乗に反比例するとして計算した結果である。αは図7と同様とし、「−α」の場合についてのみ計算した。また、固定部2にかかる力としての計算であるが、回転部3にはこの力の反作用の力がかかることとなる。「F」は合計した力で「+」は固定部2に回転方向の力が働くことを意味し、「−」は固定部2に回転方向とは逆の力即ち阻害力が働くことを意味する。従って、回転部3にはその反作用として、それぞれ回転方向と逆の力(阻害力)、回転方向の力が作用することとなる。   FIG. 9 shows a force of “1” when the first and second magnets 9 and 10 face each other as in FIG. 7, and the magnetic force is “0 (zero)” at the intermediate point. The magnet was not affected. However, in relation to the distance, FIG. 7 shows an inverse proportion to the distance, but FIG. 9 shows a calculation result assuming that the magnetic force is inversely proportional to the square of the distance. α was the same as in FIG. 7 and was calculated only for the case of “−α”. Further, although the calculation is performed as a force applied to the fixed portion 2, a reaction force of this force is applied to the rotating portion 3. “F” means the total force, “+” means that a force in the rotational direction acts on the fixed portion 2, and “−” means that a force opposite to the rotational direction, that is, an inhibitory force acts on the fixed portion 2. To do. Therefore, as a counteraction, the rotation unit 3 is subjected to a force (inhibition force) opposite to the rotation direction and a force in the rotation direction.

図10(a)は一段目の環状ブロック体8の第1の磁石9の磁石配置と、回転部3の第2の磁石10の磁石配置を示し、図9による計算結果をもとに第1の磁石9にかかる力を図示したものである。一段目環状ブロック体8の第1の磁石9には総合して「2」の力が発生し、回転部3にはこの反作用として「2」の回転阻害力が発生している。図10(b)は一段目の環状ブロック体8の第1の磁石9の磁石配置による固定部2及び回転部3の回転方向に作用する力関係を示し、A、−A、B、−Bは回転部3に作用する力、X、−X、Y、−Yは固定部2に作用する力であり、軸にかかる合力がバランスしていることを示している。即ち、本実施形態のような第1、第2の磁石9,10が均等配置されているような場合には同時に相対する第1、第2の磁石9,10の組数としては例えば1組を避けることで、回転軸3aにかかる合力のバランスを維持することが簡単にでき、特に段数の少ない構成では有効である。   FIG. 10A shows the magnet arrangement of the first magnet 9 of the first-stage annular block body 8 and the magnet arrangement of the second magnet 10 of the rotating unit 3, and the first is based on the calculation result of FIG. The force applied to the magnet 9 is illustrated. A total force of “2” is generated in the first magnet 9 of the first-stage annular block body 8, and a rotation inhibition force of “2” is generated in the rotating portion 3 as a reaction. FIG. 10B shows a force relationship acting in the rotation direction of the fixed portion 2 and the rotating portion 3 by the magnet arrangement of the first magnet 9 of the first-stage annular block body 8, and A, -A, B, -B. Is a force acting on the rotating portion 3, and X, -X, Y, -Y are forces acting on the fixed portion 2, and indicate that the resultant force applied to the shaft is balanced. That is, when the first and second magnets 9 and 10 are equally arranged as in the present embodiment, the number of pairs of the first and second magnets 9 and 10 facing each other at the same time is, for example, one set. By avoiding the above, it is possible to easily maintain the balance of the resultant force applied to the rotating shaft 3a, which is particularly effective in a configuration having a small number of stages.

図7では、固定部2の環状ブロック体8の内周面8a側に設けられる第1の磁石9が5個で、回転部3の外周面3b側に設けられる第2の磁石10が4個の場合で、回転部3の回転力として説明した。図8、図9では固定部2の受ける力として、磁力は距離の2乗に反比例するとして計算した結果で、回転部3に対しては固定部2にかかるこの力の反作用として回転力が生じる。このような条件で計算した最大回転力は前述の実施形態では固定部2に「4.00」の力が発生し、回転部3にはこの反作用として「−4.00」(回転阻害力)が発生することとなる。   In FIG. 7, five first magnets 9 are provided on the inner peripheral surface 8 a side of the annular block body 8 of the fixed portion 2, and four second magnets 10 are provided on the outer peripheral surface 3 b side of the rotating portion 3. In this case, the rotational force of the rotating unit 3 has been described. 8 and 9, the force received by the fixed portion 2 is calculated based on the assumption that the magnetic force is inversely proportional to the square of the distance. A rotational force is generated as a reaction of the force applied to the fixed portion 2 on the rotating portion 3. . In the above-described embodiment, the maximum rotational force calculated under such conditions generates a force of “4.00” in the fixed portion 2, and “-4.00” (rotation inhibiting force) as a reaction in the rotating portion 3. Will occur.

例えば、比較例として、全ての磁石が対向する配置とする固定部2の環状ブロック体8の内周面8a側に設けられる第1の磁石9が8個、回転部3の外周面3b側に設けられる第2の磁石10が8個で筒体ケース7の内部に6段の環状ブロック体8が設けられた場合の最大回転力は「48」となる。また、第1、第2の磁石9,10のどちらかを2つずつ抜いて対向する第1、第2の磁石9,10をそれぞれ8個、6個の各6段とした場合には最大回転力は「36」となる(図8(a)参照)。   For example, as a comparative example, eight first magnets 9 provided on the inner peripheral surface 8a side of the annular block body 8 of the fixed portion 2 arranged so that all the magnets face each other, on the outer peripheral surface 3b side of the rotating portion 3. The maximum rotational force is “48” when eight second magnets 10 are provided and the six-stage annular block body 8 is provided inside the cylindrical case 7. In addition, when either one of the first and second magnets 9 and 10 is removed two by two and the first and second magnets 9 and 10 facing each other are 8 and 6 respectively, the maximum is 6 The rotational force is “36” (see FIG. 8A).

また、上記磁石配置で回転部3の外周面3b側に設けられる第2の磁石10の2個を外して6個とし、固定部2の環状ブロック体8の内周面8a側に設けられる第1の磁石9を8個、筒体ケース7の内部に6段の環状ブロック体8が設けられた場合の最大回転力は36となる(図8参照)。   Further, in the above magnet arrangement, two of the second magnets 10 provided on the outer peripheral surface 3b side of the rotating portion 3 are removed to make six, and the second magnet 10 provided on the inner peripheral surface 8a side of the annular block body 8 of the fixed portion 2 is provided. The maximum rotational force is 36 when eight magnets 9 are provided and the six-stage annular block body 8 is provided inside the cylindrical case 7 (see FIG. 8).

図10(a)は図8(b)に示す磁石配置の環状ブロック体8の1段目の状態を表したものであるが、固定部2の第1の磁石9には回転力「2」の力が総合してかかっていることがわかる。回転体3の第2の磁石10にはこの反作用として「−2」の回転阻害力が作用することとなる。また、図10(b)に示すように、第1、第2の磁石9,10を固定部2及び回転部3の径方向断面で考えた時の力のバランスは円周上で相対する磁石が各2組ずつとなり、全体として(力が「0(ゼロ)」)となってバランスする。   FIG. 10A shows the state of the first stage of the annular block body 8 having the magnet arrangement shown in FIG. 8B. The rotational force “2” is applied to the first magnet 9 of the fixed portion 2. It can be seen that the power of all is applied. As a reaction, the rotation inhibiting force of “−2” acts on the second magnet 10 of the rotating body 3. Further, as shown in FIG. 10B, the balance of force when the first and second magnets 9 and 10 are considered in the radial cross section of the fixed portion 2 and the rotating portion 3 is a magnet opposed on the circumference. Become two sets each, and balance as a whole (force is “0 (zero)”).

また、環状ブロック体8が複数段に及ぶ磁石配置では、各段の環状ブロック体8の内周面8aに設ける第1の磁石9の配置に位相を設ける。位相は環状ブロック体8の内周面8aに設ける第1の磁石9の配置に位相を設けることでも良いし、回転部3の外周面3bに設ける第2の磁石10の配置に位相を設けることでも良いし、第1、第2の磁石9,10の両方の配置に位相を設けることでも良い。   Further, in the magnet arrangement in which the annular block body 8 has a plurality of stages, a phase is provided in the arrangement of the first magnets 9 provided on the inner peripheral surface 8a of the annular block body 8 at each stage. The phase may be provided in the arrangement of the first magnet 9 provided on the inner peripheral surface 8a of the annular block body 8, or the phase may be provided in the arrangement of the second magnet 10 provided on the outer peripheral surface 3b of the rotating portion 3. However, it is also possible to provide a phase in the arrangement of both the first and second magnets 9 and 10.

各段の環状ブロック体8の内周面8aに設ける第1の磁石9の位相、或いは回転部3の外周面3bに設ける第2の磁石10の位相は、円周上の配置数と段数から全体が均等近くになる度数とする。円周上の配置数と段数の組合せを適宜選択すると、位相の効果を最大に出来る。尚、位相の方向は、目的により、進ませるか遅らせるかのどちらでも良い。   The phase of the first magnet 9 provided on the inner peripheral surface 8a of the annular block body 8 of each step or the phase of the second magnet 10 provided on the outer peripheral surface 3b of the rotating part 3 is determined from the number of arrangements on the circumference and the number of steps. The frequency is such that the whole is nearly equal. The phase effect can be maximized by appropriately selecting the combination of the number of arrangements and the number of stages on the circumference. The phase direction may be either advanced or delayed depending on the purpose.

また、第1、第2の磁石9,10が同数配列の場合である場合には対向配置でなく、位置をずらすことが出来る。   When the first and second magnets 9 and 10 are arranged in the same number, the positions can be shifted instead of facing each other.

これにより1段当たりの磁石の総数に関わらず、内外同時に相対し吸引力、反発力を高める磁石配置を、1対あるいは2対に抑制できる。   Thereby, regardless of the total number of magnets per stage, it is possible to reduce the number of magnets that face each other simultaneously and increase the attractive force and the repulsive force to one pair or two pairs.

また、多段の軸方向でも、同時に相対する磁石配置を1段、或いは2段等に抑制できる。   Further, even in multi-stage axial directions, the magnet arrangement facing each other can be suppressed to one stage or two stages.

本実施形態では、磁石配置は、回転部3の外周面3bに第2の磁石10を8列、固定部2の環状ブロック体8の内周面8aに第1の磁石9を6列、環状ブロック体8を固定部2の軸方向(図1(a)の左右方向)に6段で、回転部3をモータ1により回転させている。各段の環状ブロック体8には順次10度の位相を設けて配置している。   In this embodiment, the magnet arrangement is such that eight rows of second magnets 10 are arranged on the outer peripheral surface 3 b of the rotating portion 3, and six rows of first magnets 9 are arranged on the inner peripheral surface 8 a of the annular block body 8 of the fixed portion 2. The block body 8 has six stages in the axial direction of the fixed portion 2 (left and right direction in FIG. 1A), and the rotating portion 3 is rotated by the motor 1. The annular block bodies 8 at each stage are arranged with a phase of 10 degrees sequentially.

このことにより、従来、特許文献1のような回転装置では停止時に回転部3がロック状態になり全く手で回すことができなかったが、本発明では回転部3を指先で容易に回せるようになった。   Thus, conventionally, in the rotating device as in Patent Document 1, the rotating unit 3 is locked and cannot be rotated by hand at all when stopped, but in the present invention, the rotating unit 3 can be easily rotated with a fingertip. became.

また、定常運転時の電流も特許文献1のような回転装置に比べて5%程度抑制されるようになり、停止操作をした時に、特許文献1のような回転装置では急ブレーキがかかったような急停止をするが、本発明では空転するようになり、機械的な無理な停止が抑制できた。   Further, the current during steady operation is also suppressed by about 5% compared to the rotating device as in Patent Document 1, and it seems that sudden braking was applied to the rotating device as in Patent Document 1 when the stop operation was performed. However, in the present invention, the engine is idling and the mechanical stop is suppressed.

このように、目的に合わせて第1、第2の磁石9,10を多数配置しながら、固定部2の環状ブロック体8の内周面8a及び回転部3の外周面3bとも円周上の磁石配置は均等で滑らかな回転負荷を保ち、しかも磁石の回転負荷影響を極力抑制できることで、回転装置の円滑な回転駆動、或いは適正な駆動源容量の回転装置を提供できるものである。   As described above, both the inner peripheral surface 8a of the annular block body 8 of the fixed portion 2 and the outer peripheral surface 3b of the rotating portion 3 are arranged on the circumference while arranging a large number of first and second magnets 9 and 10 in accordance with the purpose. The magnet arrangement can maintain a uniform and smooth rotational load and suppress the influence of the rotational load of the magnet as much as possible, thereby providing a smooth rotational drive of the rotational device or a rotational device having an appropriate drive source capacity.

上記構成によれば、固定部2の環状ブロック体8の内周面8aと回転部3の外周面3bにそれぞれ設けられた第1、第2の磁石9,10のうち同時に互いに対向しない磁石を1組以上設けることで、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない。   According to the above configuration, the first and second magnets 9 and 10 provided on the inner peripheral surface 8a of the annular block body 8 of the fixed portion 2 and the outer peripheral surface 3b of the rotating portion 3 are not opposed to each other at the same time. By providing one or more sets, the attractive force or repulsive force between the magnets is reduced, and a large driving force is not required at the time of rotation start and continuous rotation.

また、固定部2の内周面8aと回転部3の外周面3bにそれぞれ設けられた第1、第2の磁石9,10の取り付け数が異なることで、同時に互いに対向しない磁石を1組以上設けることができ、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない。   Further, the number of first and second magnets 9 and 10 provided on the inner peripheral surface 8a of the fixed portion 2 and the outer peripheral surface 3b of the rotating portion 3 is different, so that one or more sets of magnets that do not face each other at the same time. It can be provided, and the attractive force or repulsive force between the magnets is eased so that a large driving force is not required at the time of starting rotation and continuous rotation.

また、固定部2の環状ブロック体8の内周面8aを該固定部2の軸方向(図1(a)の左右方向)に複数に分割し、その分割された環状ブロック体8の内周面8a毎に第1の磁石9の配置位相を該内周面8aの周方向にずらして配置したことで、同時に互いに対向しない磁石を1組以上設けることができ、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない。   Further, the inner peripheral surface 8a of the annular block body 8 of the fixed portion 2 is divided into a plurality of parts in the axial direction of the fixed portion 2 (left and right direction in FIG. 1A), and the inner periphery of the divided annular block body 8 is divided. By disposing the arrangement phase of the first magnets 9 for each surface 8a in the circumferential direction of the inner peripheral surface 8a, it is possible to provide one or more pairs of magnets that are not opposed to each other at the same time. The force is relaxed and a large driving force is not required at the time of rotation start and continuous rotation.

また、固定部2の軸方向(図1(a)の左右方向)に複数に分割して設けられた環状ブロック体8を固定するための固定部2材を該環状ブロック体8毎に該固定部2の周方向にずらして配置したことで、同時に互いに対向しない磁石を1組以上設けることができ、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない。   Moreover, the fixing part 2 material for fixing the annular block body 8 divided into a plurality of parts in the axial direction of the fixing part 2 (left and right direction in FIG. 1A) is fixed to each annular block body 8. By disposing the parts 2 in the circumferential direction, it is possible to provide one or more pairs of magnets that are not opposed to each other at the same time. do not need.

また、固定部2の筒体ケース7内に収容され、該固定部2の軸方向(図1(a)の左右方向)に複数に分割して設けられた環状ブロック体8を固定するための固定穴7aを該環状ブロック体8毎に該筒体ケース7の周方向にずらして配置したことで、同時に互いに対向しない磁石を1組以上設けることができ、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない。   Moreover, it accommodates in the cylindrical case 7 of the fixing | fixed part 2, and fixes the cyclic | annular block body 8 divided | segmented into plurality in the axial direction (left-right direction of Fig.1 (a)) of this fixing | fixed part 2. By disposing the fixing holes 7a in the annular block body 8 so as to be shifted in the circumferential direction of the cylindrical case 7, it is possible to provide one or more sets of magnets that are not opposed to each other at the same time. It relaxes and does not require a large driving force at the time of starting rotation and continuous rotation.

尚、前記実施形態では、筒体ケース7の内部に複数の環状ブロック体8を挿入して構成した場合の一例について説明したが、筒体ケース7を省略して複数の環状ブロック体8をそれぞれピンやビス等により締結する種々の固定方法により連結することで、前述と同様に分割されたそれぞれの環状ブロック体8の内周面8a毎に第1の磁石9が配置される位相を該内周面8aの周方向にずらして配置することも出来る。   In the above-described embodiment, an example in which a plurality of annular block bodies 8 are inserted into the cylindrical case 7 has been described. However, the cylindrical case 7 is omitted, and a plurality of annular block bodies 8 are respectively provided. By connecting by various fixing methods that are fastened by pins, screws, etc., the phase in which the first magnet 9 is arranged for each inner peripheral surface 8a of each annular block body 8 divided in the same manner as described above is included in the phase. It can also be arranged shifted in the circumferential direction of the peripheral surface 8a.

前記実施形態では、第1、第2の磁石9,10のそれぞれの離間ピッチを同ピッチとしたが、他の構成として、固定部2の回転部3の外周面3bに対向する環状ブロック体8の内周面8aに設けられた第1の磁石9相互の離間ピッチ、或いは回転部3の固定部2の環状ブロック体8の内周面8aに対向する外周面3bに設けられた第2の磁石10相互の離間ピッチのうち少なくとも1つが異なるような構成にすることも出来る。   In the said embodiment, although the separation pitch of each of the 1st, 2nd magnets 9 and 10 was made into the same pitch, as another structure, the cyclic | annular block body 8 which opposes the outer peripheral surface 3b of the rotation part 3 of the fixing | fixed part 2 is used. Of the first magnets 9 provided on the inner peripheral surface 8a of each of the first and second magnets 9, or a second pitch provided on the outer peripheral surface 3b facing the inner peripheral surface 8a of the annular block body 8 of the fixed portion 2 of the rotating portion 3. It is also possible to adopt a configuration in which at least one of the spacing pitches between the magnets 10 is different.

このような構成によれば、固定部2の環状ブロック体8の内周面8aと回転部3の外周面3bにそれぞれ設けられた第1、第2の磁石9,10のそれぞれの磁石相互の離間ピッチのうち少なくとも1つが異なることで、同時に互いに対向しない磁石を1組以上設けることができ、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない。   According to such a configuration, the magnets of the first and second magnets 9, 10 provided on the inner peripheral surface 8 a of the annular block body 8 of the fixed portion 2 and the outer peripheral surface 3 b of the rotating portion 3, respectively. Since at least one of the spacing pitches is different, it is possible to provide one or more pairs of magnets that do not face each other at the same time, and it is necessary to relieve the attractive force or repulsive force between the magnets and require a large driving force at the time of starting rotation and continuous rotation. do not do.

また、前記実施形態では、固定部2の回転部3の外周面3bに対向する環状ブロック体8の内周面8aが固定部2の軸方向に複数に分割された場合の一例について説明したが、他の構成として、回転部3の固定部2の環状ブロック体8の内周面8aに対向する外周面3bが該回転部3の軸方向(図1(a)の左右方向)に複数に分割され、該分割されたそれぞれの回転部3の外周面3bに設けられた第2の磁石10が配置される位相を該回転部3の軸方向(図1(a)の左右方向)に複数に分割されたそれぞれの外周面3b毎に該外周面3bの周方向にずらして配置した構成とすることも出来る。   Moreover, although the said embodiment demonstrated the example when the internal peripheral surface 8a of the annular block body 8 which opposes the outer peripheral surface 3b of the rotation part 3 of the fixing | fixed part 2 was divided | segmented into plurality in the axial direction of the fixing | fixed part 2. As another configuration, there are a plurality of outer peripheral surfaces 3b facing the inner peripheral surface 8a of the annular block body 8 of the fixed portion 2 of the rotating portion 3 in the axial direction of the rotating portion 3 (left and right direction in FIG. 1A). A plurality of phases are arranged in the axial direction of the rotating unit 3 (left and right direction in FIG. 1A). It can also be set as the structure which shifted and arrange | positioned for each outer peripheral surface 3b divided | segmented into this to the circumferential direction of this outer peripheral surface 3b.

このような構成によれば、回転部3の外周面3bを該回転部3の軸方向に複数に分割し、その分割された外周面3b毎に第2の磁石10の配置位相を該外周面3bの周方向にずらして配置したことで、同時に互いに対向しない磁石を1組以上設けることができ、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない。   According to such a configuration, the outer peripheral surface 3b of the rotating portion 3 is divided into a plurality of portions in the axial direction of the rotating portion 3, and the arrangement phase of the second magnet 10 is set to the outer peripheral surface for each of the divided outer peripheral surfaces 3b. By shifting the arrangement in the circumferential direction of 3b, it is possible to provide one or more pairs of magnets that do not face each other at the same time, reducing the attractive force or repulsive force between the magnets, and requiring a large driving force at the time of rotation start and continuous rotation And not.

また、前記実施形態では固定部2の軸方向に分割された複数の環状ブロック体8を有する構成としたが、他の構成として、回転部3は該回転部3の軸方向(図1(a)の左右方向)に分割された図示しない複数の柱状ブロック体を有して構成され、該柱状ブロック体の外周面3bが固定部2の内周面8aに対向すると共に、該柱状ブロック体の外周面3bで回転部3の軸方向に所定のピッチで第2の磁石10が配置され、該柱状ブロック体を固定するための固定部2材を回転部3の軸方向(図1(a)の左右方向)に複数に分割されたそれぞれの柱状ブロック体毎に回転部3の周方向にずらして配置した構成とすることも出来る。   In the above-described embodiment, the plurality of annular block bodies 8 are divided in the axial direction of the fixed portion 2. However, as another configuration, the rotating portion 3 is configured in the axial direction of the rotating portion 3 (FIG. ) In the left-right direction), and the outer peripheral surface 3b of the columnar block body is opposed to the inner peripheral surface 8a of the fixing portion 2, and the columnar block body The second magnets 10 are arranged at a predetermined pitch in the axial direction of the rotating part 3 on the outer peripheral surface 3b, and two fixing parts for fixing the columnar block body are used in the axial direction of the rotating part 3 (FIG. 1A). It is also possible to adopt a configuration in which the columnar block bodies divided into a plurality of (left and right directions) are shifted in the circumferential direction of the rotating portion 3.

このような構成によれば、回転部3の軸方向(図1(a)の左右方向)に複数に分割して設けられた図示しない柱状ブロック体を固定するための固定部材を該柱状ブロック体毎に該回転部3の周方向にずらして配置したことで、同時に互いに対向しない磁石を1組以上設けることができ、磁石同士の吸引力或いは反発力を緩和して回転起動時及び連続回転時に大きな駆動力を必要としない。   According to such a configuration, the columnar block body is provided with a fixing member for fixing a columnar block body (not shown) that is divided into a plurality of parts in the axial direction of the rotating portion 3 (left and right direction in FIG. 1A). By disposing the rotating unit 3 in the circumferential direction every time, it is possible to provide one or more pairs of magnets that are not opposed to each other at the same time, and relieve the attraction force or repulsive force between the magnets to start rotation and during continuous rotation. Does not require a large driving force.

尚、図1に示すモータ1は水中モータ1で構成され、該水中モータ1が取り付けられた側と反対側には吸液口となる吸液管12と吸気口となる吸気管13が設けられており、本発明に係る回転装置が泡発生装置として構成された一例である。   The motor 1 shown in FIG. 1 is composed of a submersible motor 1, and a suction pipe 12 serving as a suction inlet and a suction pipe 13 serving as a suction inlet are provided on the side opposite to the side where the submersible motor 1 is attached. The rotating device according to the present invention is an example configured as a foam generating device.

水中モータ1のモーターシャフト1aには連結部材4が取り付けられており、該連結部材4には回転翼となるポンプ羽根14が取り付けられている。また、連結部材4には固定部2の他端部に設けられた軸受部材6により回転自在に軸支された回転軸3aが取り付けられている。また、回転軸3aの軸方向(図1(a)の左右方向)において、連結部材4から回転部3の軸方向(図1(a)の左右方向)の全長に対応する位置には拘束部材15が取り付けられており、これにより水中モータ1のモーターシャフト1a、連結部材4、ポンプ羽根14、回転軸3a及び拘束部材15が一体的に回転するように構成されている。   A connecting member 4 is attached to the motor shaft 1a of the submersible motor 1, and a pump blade 14 serving as a rotary blade is attached to the connecting member 4. A rotating shaft 3 a that is rotatably supported by a bearing member 6 provided at the other end of the fixed portion 2 is attached to the connecting member 4. Further, in the axial direction of the rotating shaft 3a (left and right direction in FIG. 1A), a restraining member is located at a position corresponding to the entire length in the axial direction of the rotating portion 3 (left and right direction in FIG. 1A) from the connecting member 4. The motor shaft 1a, the connecting member 4, the pump blade 14, the rotating shaft 3a, and the restraining member 15 of the submersible motor 1 are configured to rotate integrally.

前述した構成を有する泡発生装置は、例えば、処理対象水内に設置して水質浄化装置として作用させることが出来る。吸気管13は外気に連通されて固定部2内に気体の一例として空気を取り入れ、吸液管12は泡発生装置が設置される処理液となる処理対象水を取り入れる。吸気管13としては長尺且つ可撓性の管体(ホース)を用いて構成することが出来、外気に連通する剛性の管体を用いて構成することも出来る。吸気管13の数は1個或いは複数設けることが出来る。   The foam generating apparatus having the above-described configuration can be installed in the water to be treated, for example, and can act as a water purification device. The intake pipe 13 communicates with the outside air and takes in air as an example of gas into the fixed portion 2, and the liquid suction pipe 12 takes in water to be treated as a treatment liquid in which the foam generating device is installed. The intake pipe 13 can be configured using a long and flexible tube (hose), and can also be configured using a rigid tube communicating with the outside air. One or a plurality of intake pipes 13 can be provided.

吸気管13は固定部2への接続口の吸入口径を大きくし、泡発生装置が水没して設置される場合に吸気管13の口径を液面以上まで大きく構成されている。また、図1(b)に示すように、吸気管13は固定部2への接続口の吸入口を固定部2内における液の流れ方向に対して接線方向になるように設けられている。   The intake pipe 13 is configured such that the diameter of the intake port of the connection port to the fixed portion 2 is increased, and the diameter of the intake pipe 13 is increased beyond the liquid level when the foam generating device is installed under water. Further, as shown in FIG. 1B, the intake pipe 13 is provided so that the suction port of the connection port to the fixed part 2 is tangential to the liquid flow direction in the fixed part 2.

これにより、泡発生装置が水没して設置される水中の縣濁物質が吸気管13に逆流しても大きな吸引力が作用して縣濁物質を吸気管13から排除することが出来、該吸気管13の詰まりを防止することが出来る。特許文献1の吸込圧は数十cmAq(水柱圧)程度であったが、本実施形態の吸込圧は1.5mAq(水柱圧)程度まで向上することが出来た。   As a result, even if the suspended matter in the water installed with the foam generating device submerged flows back to the intake pipe 13, a large suction force can be applied to remove the suspended substance from the intake pipe 13. The clogging of the tube 13 can be prevented. Although the suction pressure of Patent Document 1 is about several tens of cmAq (water column pressure), the suction pressure of the present embodiment can be improved to about 1.5 mAq (water column pressure).

固定部2のポンプ羽根14に対応する部位には図示しない排出口が設けられており、ポンプ羽根14により送り出された極微細気泡を含有する処理対象水が外部に送出される。   A discharge port (not shown) is provided at a portion corresponding to the pump blade 14 of the fixed portion 2, and the water to be treated containing ultrafine bubbles sent out by the pump blade 14 is sent to the outside.

吸液管12の先端12aは水中モータ1側に配置され、水中モータ1と吸液管12の先端12aは、不測のゴミ流入防止のために、フィルターとしての金網等のゴミ除(よ)け16が設けられている。   The tip 12a of the suction pipe 12 is disposed on the submersible motor 1 side, and the tip 12a of the submersible motor 1 and the suction pipe 12 is designed to remove dust such as a wire mesh as a filter in order to prevent unintended dust inflow. 16 is provided.

回転部3の外周面3bに設けられた第2の磁石10は、図6に示すように、該回転部3の円周方向に所定のピッチで設けられた断面台形状の突起部3cの傾斜面に取り付けられており、この突起部3cが遠心ポンプにおける回転羽根の役割も兼ねる。   As shown in FIG. 6, the second magnet 10 provided on the outer peripheral surface 3 b of the rotating portion 3 is inclined by a trapezoidal projection 3 c having a trapezoidal cross section provided at a predetermined pitch in the circumferential direction of the rotating portion 3. It is attached to the surface, and this protrusion 3c also serves as a rotary blade in the centrifugal pump.

回転部3の外周面3bと固定部2の環状ブロック体8の内周面8aとの間に形成された間隙17において吸気管13から吸入した空気を吸液管12から吸入した処理対象水に混合させて無数の微小な気泡を生成させると共に、該各気泡中の酸素成分を該処理対象水中に溶解させる。   The air sucked from the intake pipe 13 in the gap 17 formed between the outer peripheral surface 3b of the rotating part 3 and the inner peripheral face 8a of the annular block body 8 of the fixed part 2 becomes the water to be treated sucked from the liquid suction pipe 12. The mixture is mixed to generate countless minute bubbles, and the oxygen component in each bubble is dissolved in the water to be treated.

水中モータ1を回転させると、モーターシャフト1aに接続された連結部材4、ポンプ羽根14、回転軸3a及び拘束部材15に回転駆動力が伝達され、水中モータ1と回転部3とが一体的に回転する。   When the submersible motor 1 is rotated, the rotational driving force is transmitted to the connecting member 4 connected to the motor shaft 1a, the pump blade 14, the rotating shaft 3a, and the restraining member 15, so that the submersible motor 1 and the rotating unit 3 are integrated. Rotate.

一方、水中モータ1と一体的に回転するポンプ羽根14により遠心ポンプと同様な役割を果たす。即ち、ポンプ羽根14が回転すると、間隙17に連通された隙間18内の処理対象水がポンプ羽根14により図1(a)の上下方向に掻き出されて図示しない排出口から外部に放出され、隙間18内の水圧が低下して大気圧以下(負圧)となる。   On the other hand, the pump blade 14 that rotates integrally with the submersible motor 1 plays the same role as the centrifugal pump. That is, when the pump blade 14 rotates, the water to be treated in the gap 18 communicated with the gap 17 is scraped up and down in FIG. 1A by the pump blade 14 and discharged to the outside from a discharge port (not shown). The water pressure in the gap 18 is reduced to atmospheric pressure or lower (negative pressure).

そのため、隙間18に連通する間隙17内も負圧となって固定部2内の水面が降下し、吸気管13から空気が流入すると共に、吸液管12から処理対象水が流入する。   Therefore, the pressure in the gap 17 communicating with the gap 18 also becomes negative, the water surface in the fixed portion 2 descends, air flows in from the intake pipe 13, and water to be treated flows in from the liquid suction pipe 12.

間隙17内に流入した処理対象水は回転部3の高速回転に引き摺られて高速で回転する。それによって、固定部2内における降下した水面は激しく波立つと同時に泡立ち、当該水面下では2次流れとしての無数の小渦が発生する。この時の渦発生現象はテイラー渦流れ(Taylor Couette Flow或いはTaylor Vortex)と呼ばれている現象である。   The water to be treated that has flowed into the gap 17 is dragged by the high-speed rotation of the rotating unit 3 and rotates at a high speed. As a result, the descending water surface in the fixed portion 2 undulates and foams at the same time, and countless small vortices as secondary flows are generated below the water surface. The vortex generation phenomenon at this time is a phenomenon called Taylor Couette Flow (Taylor Vortex).

ここで、テイラー渦とは、大きな円筒からなる固定部2とその中に小さな円筒或いは円柱からなる回転部3があり、その2つに挟まれた空間である間隙17には処理対象水が満たされており、回転部3の回転により、その付近の処理対象水は遠心力を受けて固定部2方向へ押し出される。そして、状態平衡を保つように処理対象水には作用・反作用力が働き、外側へ押し出される一方で、回転部3側へ戻ってくる作用が起きる。これにより無数の小渦が発生する。   Here, the Taylor vortex has a fixed portion 2 made of a large cylinder and a rotating portion 3 made of a small cylinder or a column therein, and a gap 17 that is a space between the two is filled with water to be treated. Then, due to the rotation of the rotating unit 3, the water to be treated in the vicinity receives the centrifugal force and is pushed out toward the fixing unit 2. Then, an action / reaction force acts on the water to be treated so as to maintain the state equilibrium, and the action water is pushed out, while returning to the rotating unit 3 side. As a result, countless small vortices are generated.

そのため、吸気管13から流入した空気は吸液管12から流入した処理対象水に効率的に混合され、無数の微小な気泡となる。また、発生した各微小気泡中の酸素成分は酸素不足の当該処理対象水中に効率的に溶け込む。   Therefore, the air that has flowed from the intake pipe 13 is efficiently mixed with the water to be treated that has flowed from the liquid suction pipe 12, and becomes innumerable minute bubbles. Further, the oxygen component in each generated microbubble is efficiently dissolved in the water to be treated that is deficient in oxygen.

間隙17内の処理対象水は微小気泡の数と溶解酸素の量とを増加させながら第1の磁石9と第2の磁石10による電磁作用との相乗作用を受けて該間隙17内に流入した処理対象水中の全ての微小気泡について分割と再分割とがなされ、極微細気泡が生成されると共に、該各極微細気泡中の酸素成分が処理対象水中に更に溶解される。   The water to be treated in the gap 17 flows into the gap 17 under the synergistic effect of the electromagnetic action of the first magnet 9 and the second magnet 10 while increasing the number of microbubbles and the amount of dissolved oxygen. All the microbubbles in the water to be treated are divided and subdivided to generate ultrafine bubbles, and the oxygen component in each ultrafine bubble is further dissolved in the water to be treated.

極微細気泡と溶解酸素を含んだ処理対象水は、ポンプ羽根14の回転によるポンピング作用によって、図示しない排出口から図1(a)の上下方向に放出され、泡発生装置が設置された処理対象水域に拡散される。このようにして成る極微細気泡と溶解酸素とは、処理対象水域内から短時間で浮上してしまうことがなく、同水域中に極めて長時間留まっていることが出来、同水域全般に拡散することが出来る。   The water to be treated containing ultrafine bubbles and dissolved oxygen is discharged from the discharge port (not shown) in the vertical direction of FIG. 1A by the pumping action by the rotation of the pump blade 14, and the water to be treated is installed with the foam generating device. Diffused into water. The ultrafine bubbles and dissolved oxygen formed in this way do not float in the water area to be treated in a short time, can stay in the water area for a very long time, and diffuse throughout the water area. I can do it.

各個の水分子は、良く知られているように、水素−酸素−水素の結合状態が、直線的でなく、且つ、電子の確率分布が対称でなく、電気双極子を成している。それ故、それらの水分子は、液相では単体では存在せず、水素結合により幾つかが寄り集まってクラスターを形成している。クラスターの大きさや形は、溶存する不純物の種類や量、それに温度によって、様々に変化する。   As is well known, each of the water molecules has a hydrogen-oxygen-hydrogen bond state that is not linear, and the probability distribution of electrons is not symmetric, thus forming an electric dipole. Therefore, these water molecules do not exist alone in the liquid phase, and some of them gather together by hydrogen bonds to form a cluster. The size and shape of the clusters vary depending on the type and amount of dissolved impurities and the temperature.

電気双極子を成す水分子(イオン水)は、固定部2の環状ブロック体8の内周面8aと回転部3の外周面3bとにそれぞれ設けられた第1の磁石9及び第2の磁石10による磁界との相対運動、更にはその相対運動が与えられると、それによってエネルギー(主に分子の回転運動のエネルギー、それに伸縮運動や並進運動のエネルギー)が与えられ、エネルギー準位が引き上げられる。   The water molecules (ionic water) forming the electric dipoles are a first magnet 9 and a second magnet provided on the inner peripheral surface 8a of the annular block body 8 of the fixed portion 2 and the outer peripheral surface 3b of the rotating portion 3, respectively. When the relative motion with the magnetic field by 10 and the relative motion are given, energy (mainly the energy of the rotational motion of the molecule, and the energy of the stretching and translational motion) is given, and the energy level is raised. .

即ち、水分子が活性化された結果、当該水分子のクラスターはより小さくなり、従って、極微細気泡中の酸素がクラスター間に溶け込み易くなり、また、極微細気泡が分割され易くなる。更に、導電性流体である処理対象水と磁場とが相対運動をすると、処理対象水中に電流が誘起する。同時に、B2/2μの等方的な圧力(磁気圧)と、B2/μの磁力線の方向(ここでは垂直方向)への張力とが発生する。尚、Bは磁力の強さ、μは磁束の透磁率である。これらの現象もまた、水分子のクラスターをより小さくする。   That is, as a result of the water molecules being activated, the clusters of the water molecules become smaller, so that oxygen in the ultrafine bubbles easily dissolves between the clusters, and the ultrafine bubbles are easily divided. Furthermore, when the water to be treated, which is a conductive fluid, and the magnetic field move relative to each other, an electric current is induced in the water to be treated. At the same time, an isotropic pressure (magnetic pressure) of B2 / 2μ and a tension in the direction of the magnetic field lines of B2 / μ (here, the vertical direction) are generated. B is the strength of the magnetic force, and μ is the magnetic permeability of the magnetic flux. These phenomena also make water molecule clusters smaller.

一方、酸素分子は磁気双極子を成す常磁性であるから第1の磁石9と第2の磁石10とにより形成される磁界との相対運動が与えられると、それによってエネルギー(主に分子の回転運動のエネルギー、それに並進運動のエネルギー)が与えられエネルギー準位が引き上げられる。その結果、磁界内の酸素分子は活性化され、気泡表面の酸素分子は水の境界面を突破してその中に溶け込み易くなる。   On the other hand, since oxygen molecules are paramagnets that form a magnetic dipole, when given relative motion with the magnetic field formed by the first magnet 9 and the second magnet 10, energy (mainly rotation of the molecules) is thereby generated. Kinetic energy and translational energy) are given to raise the energy level. As a result, the oxygen molecules in the magnetic field are activated, and the oxygen molecules on the bubble surface easily break through the boundary surface of water and dissolve therein.

処理対象水中に放出された極微細気泡の直径が微細化すればするほど全ての極微細気泡が短時間で水面に浮上してしまうことがなく、従ってその滞水時間が限りなく長くなり極微細気泡全体の表面積、即ち極微細気泡全体と処理対象水との接触面積が限りなく大きくなる。   As the diameter of the ultrafine bubbles released into the water to be treated becomes finer, all the ultrafine bubbles do not float on the water surface in a short time, and therefore the water retention time becomes extremely long and extremely fine. The surface area of the entire bubbles, that is, the contact area between the entire ultrafine bubbles and the water to be treated becomes extremely large.

このように、処理対象水中域に拡散されたイオン水は、種々の対象物を効率的に酸化(N極反発)または、アルカリ化(S極反発)する。酸化によって生じたイオン水は、病原菌や微生物だけを殺菌する。アルカリ化によって生じたイオン水は、タンパク質や油脂分の分解をし優れた洗浄力を発揮する。   Thus, the ionic water diffused into the water to be treated efficiently oxidizes (N-polar repulsion) or alkalins (S-polar repulsion) various objects. Ionic water produced by oxidation sterilizes only pathogenic bacteria and microorganisms. Ionized water generated by alkalinization decomposes proteins and oils and fats and exhibits excellent detergency.

また、太陽光が存在するときは浮遊性の藻類(例えばアオコ等)を死滅・凝集させることが出来る。浮遊性藻類の死滅・凝集によって生じた微小浮遊物質は気泡と付着して水面に浮上し、浮上スカム(かす)と成る。更に、この極微細気泡は水底のヘドロ(微生物層)に無数に結合してそれらに浮力を与え、大きな単位で浮上させることも出来る。   In addition, when sunlight is present, planktonic algae (such as blue-green algae) can be killed and aggregated. Micro suspended matter produced by the death and aggregation of planktonic algae adheres to bubbles and floats on the surface of the water, forming floating scum. Furthermore, these microscopic bubbles can be bound innumerably to sludge (microorganism layer) at the bottom of the water to give them buoyancy and float in large units.

尚、浮上スカムは定期的に捕集され、且つ廃棄されることによって対象水域についての水質浄化処理が達成される。   The floating scum is periodically collected and discarded to achieve the water purification process for the target water area.

また、固定部2の環状ブロック体8の内周面8a及び回転部3の外周面3bに設けられた第1の磁石9及び第2の磁石10の働きによって間隙17内の各点において回転部3の半径方向の磁界が発生しており、前述した磁界と水分子との相互作用、誘起電流と水分子との相互作用、並びに磁界と酸素分子との相互作用、そしてそれらの相乗効果によって、より微細な気泡を間隙17内の処理対象水中に生成させ、また、該極微細気泡中の酸素成分をより多く該処理対象水中に溶解させることが出来る。   In addition, the rotating portion at each point in the gap 17 is caused by the action of the first magnet 9 and the second magnet 10 provided on the inner peripheral surface 8a of the annular block body 8 of the fixed portion 2 and the outer peripheral surface 3b of the rotating portion 3. 3 radial magnetic fields are generated, and the aforementioned interaction between the magnetic field and water molecules, the interaction between the induced current and water molecules, and the interaction between the magnetic field and oxygen molecules, and their synergistic effects, Finer bubbles can be generated in the water to be treated in the gap 17, and more oxygen components in the ultrafine bubbles can be dissolved in the water to be treated.

上記泡発生装置に各種気体発生装置を適宜併用することが出来る。例えば、オゾン発生装置または活性空気発生装置は地上に設置され、長尺且つ可撓性の吸気管を介して固定部2の吸気管13に気密且つ水密に接続される。   Various gas generators can be used in combination with the bubble generator. For example, the ozone generator or the active air generator is installed on the ground, and is airtight and watertightly connected to the intake pipe 13 of the fixed portion 2 via a long and flexible intake pipe.

吸気管は処理対象水域景観が損われることがないようにするために、運転時には同水域の水面下に敷設される。それらの装置で発生したオゾン或いは活性空気は可撓性の吸気管から吸気管13を介して固定部2の内部に送り込まれる。   The intake pipe is laid under the surface of the water area during operation so as not to damage the water area landscape to be treated. Ozone or active air generated in these devices is sent from the flexible intake pipe into the fixed portion 2 through the intake pipe 13.

外気の代りに、オゾン入りの空気または活性空気を吸気管13に送り込むことにより、それらと極微細気泡化との相乗作用によって、水質浄化作用を更に増進させることが出来る。   By sending ozone-containing air or active air into the intake pipe 13 instead of outside air, the water purification action can be further enhanced by the synergistic effect of these and ultrafine bubbles.

処理対象水域に雨水等が流入してその水面が変動すると、吸気管13の水深と水圧が変動して処理対象水と空気との最適な混合比が崩れる場合があるため処理対象水域の水面変動に対応して泡発生装置本体を適宜の浮子に結合して水底から浮上させ、水面が変動したときでも同泡発生装置本体の水深位置が変動しないように、また、吸気管13の水深と水圧が変動しないようにすることが出来る。   If rainwater or the like flows into the water area to be treated and its water level fluctuates, the water depth and water pressure in the intake pipe 13 may fluctuate, and the optimal mixing ratio between the water to be treated and air may collapse. Correspondingly, the foam generator body is connected to an appropriate float and floated from the bottom of the water so that the water depth position of the foam generator body does not fluctuate even when the water level fluctuates. Can be prevented from fluctuating.

処理対象水の汚れや酸性化が酷い時は、即時の改善を計るために、初めの期間のみであるが、中和剤及び/または凝集剤等の薬剤を散水または散布することが出来る。これによって有機物が強制浮上され、pH度が改善される。薬剤による改善後は泡発生装置によって水質浄化を続行することが出来る。水質浄化がある程度進んだ段階でバクテリア(好気性バクテリア或いはアンモニア分解バクテリア)を投入する。以上の相乗効果によって処理対象水を十分に水質浄化することが出来る。   When the water to be treated is severely soiled or acidified, in order to make an immediate improvement, it is possible to spray or spray chemicals such as a neutralizing agent and / or a flocculant for the first period only. As a result, the organic matter is forcedly levitated and the pH is improved. After improvement with chemicals, water purification can be continued with a foam generator. Bacteria (aerobic bacteria or ammonia-degrading bacteria) are introduced after water purification has progressed to some extent. The water to be treated can be sufficiently purified by the above synergistic effect.

次に図11及び図12を用いて本発明に係る回転装置及びそれを備えた泡発生装置の第2実施形態について説明する。図11は本発明に係る回転装置及びそれを備えた泡発生装置の第2実施形態の構成を示す断面説明図、図12は第2実施形態の磁石配置を説明する図である。尚、前記第1実施形態と同様に構成したものは同一の符号を付して説明を省略する。   Next, a second embodiment of the rotating device according to the present invention and the foam generating device including the same will be described with reference to FIGS. 11 and 12. FIG. 11 is a cross-sectional explanatory view showing the configuration of the second embodiment of the rotating device and the foam generating device having the same according to the present invention, and FIG. 12 is a view for explaining the magnet arrangement of the second embodiment. In addition, what was comprised similarly to the said 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits description.

本実施形態では、図11及び図12に示すように、回転装置の固定部2側及び回転部3側にそれぞれ設けられる第1、第2の磁石9,10の長手方向(図11の上下方向)の少なくとも一方を回転部3の回転軸3a方向(図11の上下方向)に対して所定角度傾斜させると共に、該回転部3の回転に伴って該第1、第2の磁石9,10が長手方向(図11の上下方向)に互いに交差して対向するように構成されたものである。   In the present embodiment, as shown in FIGS. 11 and 12, the longitudinal directions of the first and second magnets 9 and 10 provided on the fixed unit 2 side and the rotary unit 3 side of the rotating device (the vertical direction in FIG. 11), respectively. ) Is inclined at a predetermined angle with respect to the direction of the rotation axis 3a (the vertical direction in FIG. 11) of the rotating unit 3, and the first and second magnets 9 and 10 are moved along with the rotation of the rotating unit 3. It is configured to cross each other and face each other in the longitudinal direction (vertical direction in FIG. 11).

本実施形態の回転部3は、回転駆動源となるモータ1のモーターシャフト1aに連結部材4により回転軸3aが片持ち支持されて回転される。本実施形態の回転軸3aは、図12に示すように、断面正方形状に形成されており、その4つの側面3a1にそれぞれ第2の磁石10の長手方向(図12(a)の上下方向)が回転軸3a方向(図12(a)の上下方向)に対して所定角度傾斜してビス35により止め付けられている。本実施形態では第2の磁石10の傾斜角度αを回転軸3a方向に対して4.3度程度に設定したものである。尚、本実施形態の固定部2に取り付けられる第1の磁石9の長手方向(図11の上下方向)は回転軸3a方向(図11の上下方向)と同じ方向に設定して固定されている。   The rotating part 3 of the present embodiment is rotated by a rotating shaft 3a being cantilevered by a connecting member 4 on a motor shaft 1a of a motor 1 serving as a rotation drive source. As shown in FIG. 12, the rotary shaft 3a of the present embodiment is formed in a square cross section, and the longitudinal direction of the second magnet 10 on each of its four side surfaces 3a1 (vertical direction in FIG. 12 (a)). Is fixed by screws 35 at a predetermined angle with respect to the direction of the rotating shaft 3a (the vertical direction in FIG. 12A). In this embodiment, the inclination angle α of the second magnet 10 is set to about 4.3 degrees with respect to the direction of the rotation axis 3a. The longitudinal direction (vertical direction in FIG. 11) of the first magnet 9 attached to the fixing portion 2 of the present embodiment is set and fixed in the same direction as the direction of the rotating shaft 3a (vertical direction in FIG. 11). .

回転翼となるポンプ羽根14はモーターシャフト1aに固定され、回転部3と連結されて該回転部3と一体的に回転する。吸液口となる吸液管31は直管で構成され、回転翼となるポンプ羽根14の回転により発生する負圧により固定部2と回転部3との間に形成される間隙17に処理液となる処理対象水を吸入する。吸気口となる吸気管13は、直管で構成される吸液管31に交差(直交)して接続して連通された合流管からなり、回転翼となるポンプ羽根14の回転により発生する負圧により固定部2と回転部3との間に形成される間隙17に気体の一例として空気を吸入する。吸液口となる吸液管31から吸入された処理液と、吸気口となる吸気管13から吸入された空気とが固定部2と回転部3との間に形成される間隙17内で混合され、第1実施形態で前述したように極微細気泡と溶解酸素を含んだ処理対象水からなるその混合液をポンプ羽根14の回転によるポンピング作用によって、排出口36から図11の左右方向に外部に排出する。   The pump blade 14 serving as a rotary blade is fixed to the motor shaft 1a, is connected to the rotary unit 3, and rotates integrally with the rotary unit 3. The liquid suction pipe 31 serving as a liquid suction port is constituted by a straight pipe, and the treatment liquid is placed in a gap 17 formed between the fixed part 2 and the rotary part 3 by the negative pressure generated by the rotation of the pump blade 14 serving as a rotary blade. The target water to be treated is inhaled. An intake pipe 13 serving as an intake port is a confluence pipe that is connected to and communicates with a liquid suction pipe 31 that is a straight pipe, and is negatively generated by the rotation of pump blades 14 that serve as rotor blades. As an example of gas, air is sucked into a gap 17 formed between the fixed portion 2 and the rotating portion 3 by pressure. The processing liquid sucked from the liquid suction pipe 31 serving as the liquid suction port and the air sucked from the suction pipe 13 serving as the suction port are mixed in the gap 17 formed between the fixed portion 2 and the rotating portion 3. Then, as described above in the first embodiment, the liquid mixture composed of the water to be treated containing ultrafine bubbles and dissolved oxygen is externally discharged from the discharge port 36 in the left-right direction of FIG. To discharge.

直管からなる吸液管31の合流管からなる吸気管13が交差する位置の近傍上流側(図11の右側)には吸液管31内に小径管32が挿入されて小径部が設けられており、該直管からなる吸液管31内に設けられた小径管32の内径からなる小径部において吸入される処理液の流速が大きくなって合流管により構成される吸気管13から吸入される空気の吸入力を大きくする負圧を発生させることが出来る。   A small-diameter pipe 32 is inserted into the liquid-absorbing pipe 31 and provided with a small-diameter portion on the upstream side (right side in FIG. 11) in the vicinity of the position where the intake pipe 13 consisting of the confluence pipe of the liquid-absorbing pipe 31 consisting of the straight pipe intersects. The flow rate of the processing liquid sucked in the small-diameter portion formed by the inner diameter of the small-diameter pipe 32 provided in the liquid-absorbing pipe 31 comprising the straight pipe increases, and is sucked from the intake pipe 13 constituted by the confluence pipe. It is possible to generate a negative pressure that increases the air suction input.

固定部2と回転部3との間に形成される間隙17と吸液管31の出口との間の流路には、挟隙ブロック33a,33bが固定部2に対してビス37により着脱可能に取り付けられており、該挟隙ブロック33a,33bにより間隙17の近傍上流側に挟隙流路34が形成されている。尚、挟隙ブロック33bは固定部2の内径に対応する外径を有する環状部材により構成され、ビス37により固定部2に対して着脱可能に取り付けられる。また、固定部2の底板の中央部に取り付けられる挟隙ブロック33aは回転部3の大きさに合わせて上方に向かって小径となる略円錐台形状で構成されているが、狭隙流路34との関係で形状が決められることとなる。 In the flow path between the gap 17 formed between the fixed portion 2 and the rotating portion 3 and the outlet of the liquid absorption pipe 31, the gap blocks 33a and 33b can be attached to and detached from the fixed portion 2 with screws 37. A gap channel 34 is formed on the upstream side in the vicinity of the gap 17 by the gap blocks 33a and 33b. The gap block 33b is formed of an annular member having an outer diameter corresponding to the inner diameter of the fixed portion 2, and is detachably attached to the fixed portion 2 with screws 37. Although Kyosuki block 33a attached to the central portion of the bottom plate of the fixed portion 2 is constituted by a generally frustoconical shape whose diameter upwardly in accordance with the size of the rotary portion 3, narrow gap passage 34 The shape will be determined by the relationship.

このような挟隙流路34を通過する処理液の流速は大きくなるため吸気口となる吸気管13から吸入される空気の吸入力を大きくする負圧を発生させると共に空気の混合を促進させることが出来る。即ち、吸液口となる吸液管31から吸入された処理液と、吸気口となる吸気管13から吸入された空気とが固定部2と回転部3との間に形成される間隙17の近傍上流側に該間隙17に流れ込む処理液の流速を大きくして吸気口となる吸気管13から吸入される空気の吸入力を大きくする負圧を発生させ、空気の混合を促進させることが出来る。   Since the flow rate of the processing liquid passing through the gap channel 34 increases, a negative pressure is generated to increase the suction force of the air sucked from the intake pipe 13 serving as an intake port, and air mixing is promoted. I can do it. That is, the treatment liquid sucked from the liquid suction pipe 31 serving as the liquid suction port and the air sucked from the suction pipe 13 serving as the suction port are formed in the gap 17 formed between the fixed portion 2 and the rotating portion 3. It is possible to increase the flow velocity of the processing liquid flowing into the gap 17 on the upstream side in the vicinity to generate a negative pressure that increases the suction force of the air sucked from the intake pipe 13 serving as an intake port, thereby promoting air mixing. .

上記構成によれば、固定部2側、回転部3側にそれぞれ設けられる第1、第2の磁石9,10の長手方向(図11の上下方向)の少なくとも一方を回転部3の回転軸3a方向に対して所定角度傾斜させて配置し、該回転部3の回転に伴って該第1、第2の磁石9,10が長手方向(図11の上下方向)に互いに交差して対向するように配置することで、第1、第2の磁石9,10の互いに対向する側が斥力が作用する同極磁石による互いに近付く際の回転方向に対する抑止力、或いは第1、第2の磁石9,10の互いに対向する側が引力が作用する異極磁石による互いに遠退く際の回転方向に対する抑止力における力の分散が出来、それらの回転抑止力を低減させることが出来る。   According to the above configuration, at least one of the longitudinal directions (vertical direction in FIG. 11) of the first and second magnets 9 and 10 provided on the fixed portion 2 side and the rotating portion 3 side is used as the rotating shaft 3a of the rotating portion 3, respectively. The first and second magnets 9 and 10 are arranged so as to be opposed to each other in the longitudinal direction (vertical direction in FIG. 11) as the rotating part 3 rotates. By disposing the first and second magnets 9 and 10, the opposite sides of the first and second magnets 9 and 10 are deterred in the rotational direction when they approach each other due to the same-polar magnet on which repulsive force acts, or the first and second magnets 9 and 10 The forces on the opposite sides of the magnets can be distributed in the deterring force with respect to the rotation direction when they move away from each other by the different polarity magnets on which the attractive force acts, and the rotation deterring force can be reduced.

即ち、固定部2側、回転部3側にそれぞれ設けられる第1、第2の磁石9,10の長手方向(図11の上下方向)は、互いに異なった角度に傾斜しており(本実施形態の第1の磁石9の回転部3の回転軸3a方向に対する傾斜角度は0°である。)、例えば、第1、第2の磁石9,10の長手方向(図11の上下方向)を線として考えると、N極−N極が対向する場合、或いはN極−S極が対向する場合にその瞬間が線接触ではなく点接触となり回転抑止力の低減が可能となる。   That is, the longitudinal directions (vertical directions in FIG. 11) of the first and second magnets 9 and 10 provided on the fixed portion 2 side and the rotating portion 3 side are inclined at different angles (this embodiment). The inclination angle of the rotating portion 3 of the first magnet 9 with respect to the direction of the rotation axis 3a is 0 °.) For example, the longitudinal direction (vertical direction in FIG. 11) of the first and second magnets 9 and 10 is drawn. In this case, when the N pole and the N pole face each other, or when the N pole and the S pole face each other, the moment becomes a point contact instead of a line contact, and the rotation inhibition force can be reduced.

一方、固定部2と回転部3との間に形成される間隙17内を流れる処理対象水は回転部3の回転により見かけ上、斜行して流れるため、例えば、第1、第2の磁石9,10の長手方向が回転部3の回転軸3a方向に平行である場合、見かけ上、斜行して流れる処理対象水に対して第1、第2の磁石9,10が向き合うのは瞬間的となるため磁力の作用も瞬間的であるが、上記のように第1、第2の磁石9,10の長手方向を所定角度傾斜させた場合には、長手方向を傾斜させた第1、第2の磁石9,10との交点が連続移動し、見かけ上、斜行して流れる処理対象水に対して連続的に磁力が作用することとなる。このことにより、固定部2と回転部3との間に形成される間隙17内の処理対象水は微小気泡の数と溶解気体の量とを増加させながら第1の磁石9と第2の磁石10による電磁作用との相乗作用を受けて該間隙17内に流入した処理対象水中の微小気泡について分割と再分割とがより効果的になされ、極微細気泡がより多く生成されると共に、該各極微細気泡中の気体成分が処理液中に更に溶解させることが出来る。   On the other hand, since the water to be treated that flows in the gap 17 formed between the fixed portion 2 and the rotating portion 3 apparently flows due to the rotation of the rotating portion 3, for example, the first and second magnets When the longitudinal direction of 9 and 10 is parallel to the direction of the rotation axis 3a of the rotating part 3, the first and second magnets 9 and 10 seem to face the treatment target water flowing obliquely. However, when the longitudinal directions of the first and second magnets 9 and 10 are tilted by a predetermined angle as described above, the first and second tilted longitudinal directions are used. The intersections with the second magnets 9 and 10 continuously move, and apparently, a magnetic force continuously acts on the water to be treated flowing obliquely. As a result, the water to be treated in the gap 17 formed between the fixed portion 2 and the rotating portion 3 increases the number of microbubbles and the amount of dissolved gas while increasing the first magnet 9 and the second magnet. The microbubbles in the water to be treated that have flowed into the gap 17 due to the synergistic action with the electromagnetic action due to 10 are more effectively divided and subdivided, and more microbubbles are generated. The gas component in the ultrafine bubbles can be further dissolved in the treatment liquid.

また、回転翼となるポンプ羽根14の回転により発生する負圧により吸液口となる吸液管31から吸入された処理液と、吸気口となる吸気管13から吸入された空気とを固定部2と回転部3との間に形成される間隙17内で混合して処理液中に微細な気泡を発生させると共に包含させ、その混合液を排出口36から外部に排出することが出来る。   Further, the processing liquid sucked from the liquid suction pipe 31 serving as the liquid suction port by the negative pressure generated by the rotation of the pump blade 14 serving as the rotary blade and the air sucked from the suction pipe 13 serving as the suction port are fixed to the fixing portion. 2 is mixed in the gap 17 formed between the rotating part 3 and the fine bubbles are generated and included in the processing liquid, and the mixed liquid can be discharged to the outside through the discharge port 36.

また、固定部2と回転部3との間に形成される間隙17に処理液を吸入する直管からなる吸液管31に交差して接続して連通された合流管からなる吸気管13から固定部2と回転部3との間に形成される間隙17に空気を吸入することができ、直管からなる吸液管31を流れる処理液の流速により合流管からなる吸気管13に負圧を発生させて吸気口となる吸気管13から空気を吸入することが出来る。   In addition, from an intake pipe 13 consisting of a merging pipe connected to and communicated with a liquid suction pipe 31 consisting of a straight pipe for sucking processing liquid into a gap 17 formed between the fixed part 2 and the rotating part 3 Air can be sucked into a gap 17 formed between the fixed portion 2 and the rotating portion 3, and negative pressure is applied to the intake pipe 13 made of a merging pipe by the flow velocity of the processing liquid flowing through the liquid suction pipe 31 made of a straight pipe. And the air can be sucked from the intake pipe 13 serving as an intake port.

また、合流管からなる吸気管13が交差する位置の近傍上流側に設けられた直管からなる吸液管31内に設けられた小径管32の内壁からなる小径部を流れる処理液の流速が大きくなり、該直管からなる吸液管31の小径管32からなる小径部を流れる処理液の流速により合流管からなる吸気管13に更に大きな負圧を発生させて吸気口となる吸気管13から空気を吸入することが出来る。   Further, the flow rate of the processing liquid flowing through the small diameter portion formed by the inner wall of the small diameter pipe 32 provided in the liquid suction pipe 31 provided in the upstream near the position where the intake pipe 13 formed of the confluence pipe intersects is determined. An intake pipe 13 that becomes larger and generates a larger negative pressure in the intake pipe 13 that is a merging pipe due to the flow velocity of the processing liquid that flows through the small diameter part 32 that is the small diameter pipe 32 of the liquid suction pipe 31 that is a straight pipe. Air can be inhaled from.

また、固定部2と回転部3との間に形成される間隙17の近傍上流側に形成された挟隙流路34を流れる処理液の流速が大きくなり、該挟隙流路34を流れる処理液の流速により大きな負圧を発生させて吸気口となる吸気管13から空気を吸入することが出来る。   Further, the flow rate of the processing liquid flowing in the gap channel 34 formed on the upstream side in the vicinity of the gap 17 formed between the fixed part 2 and the rotating part 3 is increased, and the process flowing in the gap channel 34 is increased. A large negative pressure is generated by the flow rate of the liquid, and air can be sucked from the intake pipe 13 serving as an intake port.

このような構成により、空気の吸入力を大きくすることが出来、泡発生装置が水深深くに設置された場合であっても空気の吸い込みが容易に出来る。   With such a configuration, the air suction input can be increased, and air can be easily sucked even when the foam generating device is installed deep in water.

また、循環水量を維持確保しながら、処理液が隙間17へ流入する前に気泡の予備混合を促進させる。更に空気の吸入力を大きくして、泡発生装置が水深深くに設置された場合であっても空気の吸い込みを容易にし、あるいは処理液によっては極めて重要となる詰まり対策で太い吸気管13を使用しながらも、広い吸気量範囲で安定して気泡を発生することが出来る。さらには、負圧の調整や液流量の調整のために固定部2に液流路としての小孔を設けることができる。   In addition, the premixing of bubbles is promoted before the processing liquid flows into the gap 17 while maintaining and ensuring the circulating water amount. In addition, the air suction force is increased to facilitate air suction even when the foam generator is installed deep in the water, or the thick intake pipe 13 is used to prevent clogging, which is extremely important depending on the processing liquid. However, it is possible to generate bubbles stably over a wide intake air amount range. Furthermore, a small hole as a liquid flow path can be provided in the fixed portion 2 for adjusting the negative pressure and the liquid flow rate.

本実施形態では、処理液を吸入する吸液管31として直管としたが、液流の抵抗を大きく妨げないものであれば曲管とすることも可能である。また吸液管31に交差する合流管を直交させたが、傾斜して取り付けることも可能である。   In the present embodiment, a straight pipe is used as the liquid suction pipe 31 for sucking the processing liquid. However, a curved pipe may be used as long as it does not greatly impede the resistance of the liquid flow. Further, although the junction pipe intersecting with the liquid absorption pipe 31 is made orthogonal, it can also be attached at an inclination.

以下に具体的な実施例A〜Cと比較例の吸気圧の実測結果について説明する。図11に示す定格出力400Wの水中モータ1を有し、固定部2内に挟隙ブロック33a,33bを設けた泡発生装置を水深1mの位置に設置し、吸気管13の水上部に図示しない開閉コック、流量計、圧力計を接続して吸気圧を実測した。以下の表1に示す比較例は、固定部2のハウジングの2箇所に直径16mmの孔を設け、内径直径19mmの吸気管13を固定部2のハウジングに直接連結したものである。また、以下の表1に示す実施例Aは固定部2のハウジングの1箇所に直径16mmの孔を設け、他の1箇所の孔の代わりに固定部2のハウジングに吸液管31が接続され該吸液管31の内部に設けられた小径管32の内径直径を16mmとし、内径直径19mmの吸気管13を合流させたものである。   Hereinafter, actual measurement results of intake air pressure of specific examples A to C and a comparative example will be described. A foam generating apparatus having a submersible motor 1 with a rated output of 400 W shown in FIG. 11 and having sandwiching blocks 33a and 33b in the fixed portion 2 is installed at a water depth of 1 m, and is not shown above the water in the intake pipe 13. Intake pressure was measured by connecting an open / close cock, flow meter, and pressure gauge. In the comparative example shown in Table 1 below, holes with a diameter of 16 mm are provided at two locations on the housing of the fixed portion 2, and an intake pipe 13 with an inner diameter of 19 mm is directly connected to the housing of the fixed portion 2. In Example A shown in Table 1 below, a hole having a diameter of 16 mm is provided at one location of the housing of the fixed portion 2, and the liquid suction pipe 31 is connected to the housing of the fixed portion 2 instead of the other one location. The small diameter pipe 32 provided inside the liquid suction pipe 31 has an inner diameter of 16 mm, and the intake pipe 13 having an inner diameter of 19 mm is merged.

各比較例及び実施例Aにおいて、吸気管13の水上部に設けた図示しない開閉コックを開閉して吸気量をそれぞれ0(リットル/min)、5(リットル/min)、7(リットル/min)、12(リットル/min)に設定した場合で、開閉コックを閉じて吸気量が0(リットル/min)のときの比較例の吸気圧を100としたときの各比較例及び実施例Aの各吸気量における相対的な吸気圧を%で表示したものが以下の表1である。   In each comparative example and example A, an opening / closing cock (not shown) provided on the water top of the intake pipe 13 is opened and closed to reduce the intake air amount to 0 (liter / min), 5 (liter / min), and 7 (liter / min), respectively. , 12 (liter / min), each of the comparative examples and example A when the intake cock of the comparative example when the opening / closing cock is closed and the intake amount is 0 (liter / min) is 100 Table 1 below shows the relative intake pressure in the intake amount expressed in%.

Figure 0005417605
Figure 0005417605

上記表1に示したように、比較例と比べて実施例Aでは吸気量が大きくなっても長い間大きな負圧が維持できることで安定した吸気量が得られるものである。   As shown in Table 1 above, in comparison with the comparative example, in Example A, a stable negative intake amount can be obtained by maintaining a large negative pressure for a long time even if the intake amount increases.

以下の表2は前記実施例Aと同様な構成で、挟隙ブロック33a,33bが有る場合を実施例Bとし、挟隙ブロック33a,33bを除去した場合を実施例Cとして吸気圧を実測したものである。尚、実施例B,Cでは小径管32の内径直径を18mmとした他は、前記実施例Aと同じ構成であり、開閉コックを閉じて吸気量が0(リットル/min)のときの実施例Cの吸気圧を100としたときの実施例Bの吸気量が0(リットル/min)における相対的な吸気圧を%で表示したものが以下の表2である。   Table 2 below has the same configuration as that of Example A, and the intake air pressure was measured as Example B when the gap blocks 33a and 33b were provided, and as Example C when the gap blocks 33a and 33b were removed. Is. In Examples B and C, the configuration is the same as in Example A except that the inner diameter of the small-diameter pipe 32 is 18 mm. The example in which the open / close cock is closed and the intake air amount is 0 (liter / min). Table 2 below shows the relative intake pressure in% when the intake air amount of Example B is 0 (liter / min) when the intake air pressure of C is 100.

Figure 0005417605
Figure 0005417605

上記表2に示したように、挟隙ブロック33a,33bを除去した実施例Cと比較して挟隙ブロック33a,33bを設けた実施例Bでは更に大きな負圧が発生し安定した吸気量が得られることが分かる。   As shown in Table 2 above, in Example B in which the gap blocks 33a and 33b are provided compared to Example C in which the gap blocks 33a and 33b are removed, a larger negative pressure is generated and a stable intake amount is obtained. You can see that

図13は挟隙流路34の他の構成を示す図である。本実施形態では、固定部2側に設けられた複数の挟隙ブロック33によりジグザグ形状の挟隙流路34が形成された一例であり、挟隙ブロック33bは固定部2の内径に対応する外径を有する環状部材により構成され、図示しないビスにより固定部2に対して着脱可能に取り付けられる。他の構成は前記各実施形態と同様に構成され、同様の効果を得ることが出来るものである。   FIG. 13 is a view showing another configuration of the gap channel 34. As shown in FIG. The present embodiment is an example in which a zigzag-shaped gap channel 34 is formed by a plurality of gap blocks 33 provided on the fixed portion 2 side, and the gap block 33b is an outer surface corresponding to the inner diameter of the fixed portion 2. It is comprised by the cyclic | annular member which has a diameter, and is attached to the fixing | fixed part 2 so that attachment or detachment is possible with the bis | screw which is not illustrated. Other configurations are the same as those of the above-described embodiments, and the same effects can be obtained.

本発明の活用例として、モータ等の回転駆動源に取り付けた磁場を利用した回転装置及びそれを備えた泡発生装置に適用出来、水処理装置や液体処理装置において磁場を与えて改質する装置への応用が可能である。   As an example of use of the present invention, a device that can be applied to a rotating device using a magnetic field attached to a rotational drive source such as a motor and a foam generating device including the same, and a device for reforming by applying a magnetic field in a water treatment device or a liquid treatment device Application to is possible.

本発明に係る回転装置及びそれを備えた泡発生装置の第1実施形態の構成を示す断面説明図である。It is a section explanatory view showing composition of a 1st embodiment of a rotation device concerning the present invention, and a foam generating device provided with the same. 本発明に係る回転装置の第1実施形態の固定部の内周面に設けられる第1の磁石と、回転部の外周面に設けられる第2の磁石との配置構成を示す断面説明図である。It is a section explanatory view showing arrangement composition of the 1st magnet provided in the inner peripheral surface of the fixed part of the 1st embodiment of the rotation device concerning the present invention, and the 2nd magnet provided in the outer peripheral surface of a rotation part. . 固定部の筒体ケースの構成を示す断面説明図である。It is sectional explanatory drawing which shows the structure of the cylindrical case of a fixing | fixed part. 筒体ケース内に収容される環状ブロック体の構成を示す断面説明図である。It is sectional explanatory drawing which shows the structure of the annular block body accommodated in a cylinder case. 筒体ケース内に複数の環状ブロック体が周方向に10度づつずらして配置された様子を示す図である。It is a figure which shows a mode that several cyclic | annular block bodies were shifted and arrange | positioned every 10 degree | times in the circumferential direction in the cylindrical case. 回転部の構成を示す断面説明図である。It is sectional explanatory drawing which shows the structure of a rotation part. 本発明に係る回転装置の作用効果を説明する図である。It is a figure explaining the effect of the rotating apparatus which concerns on this invention. 本発明に係る回転装置の作用効果を説明する図である。It is a figure explaining the effect of the rotating apparatus which concerns on this invention. 本発明に係る回転装置の作用効果を説明する図である。It is a figure explaining the effect of the rotating apparatus which concerns on this invention. 本発明に係る回転装置の作用効果を説明する図である。It is a figure explaining the effect of the rotating apparatus which concerns on this invention. 本発明に係る回転装置及びそれを備えた泡発生装置の第2実施形態の構成を示す断面説明図である。It is a section explanatory view showing composition of a 2nd embodiment of a rotation device concerning the present invention, and a foam generating device provided with it. 第2実施形態の磁石配置を説明する図である。It is a figure explaining the magnet arrangement of a 2nd embodiment. 挟隙流路の他の構成を示す図である。It is a figure which shows the other structure of a clearance gap flow path.

1…(水中)モータ
1a…モーターシャフト
2…固定部
3…回転部
3a…回転軸
3a1…側面
3b…外周面
3c…突起部
4…連結部材
6…軸受部材
7…筒体ケース
7a…固定穴
8…環状ブロック体
8a…内周面
8b…固定ネジ孔
9…第1の磁石
10…第2の磁石
11…固定ネジ
12…吸液管
12a…先端
13…吸気管
14…ポンプ羽根
15…拘束部材
16…ゴミ除け
17…間隙
18…隙間
21…回転角度
22…円周方向に10等分した値
23…回転力
31…吸液管
32…小径管
33a,33b…挟隙ブロック
34…挟隙流路
35…ビス
36…排出口
37…ビス
DESCRIPTION OF SYMBOLS 1 ... (Underwater) motor 1a ... Motor shaft 2 ... Fixed part 3 ... Rotating part 3a ... Rotating shaft
3a1 ... side surface 3b ... outer peripheral surface 3c ... protrusion 4 ... connecting member 6 ... bearing member 7 ... cylindrical case 7a ... fixing hole 8 ... annular block body 8a ... inner peripheral surface 8b ... fixing screw hole 9 ... first magnet
10 ... Second magnet
11 ... Fixing screw
12 ... Absorption pipe
12a ... tip
13… Intake pipe
14 ... Pump blade
15 ... restraint member
16 ... Remove trash
17 ... Gap
18 ... Gap
21 ... Rotation angle
22 ... Value divided into 10 equal parts in the circumferential direction
23 ... rotational force
31 ... Liquid absorption pipe
32 ... Small diameter pipe
33a, 33b ... Crevice block
34 ... Narrow channel
35 ... Screw
36… Discharge port
37 ... Screw

Claims (12)

回転駆動力を付与する回転駆動源が設けられた固定部と、
前記固定部の内部で回転可能に設けられ、前記回転駆動源からの回転力が伝達される回転部と、
前記固定部の前記回転部の外周面に対向する内周面で該固定部の軸方向に1つ以上の所定のピッチで配置された第1の磁石と、
前記回転部の前記固定部の内周面に対向する外周面で該回転部の軸方向に1つ以上の所定のピッチで配置された第2の磁石と、
を有し、
前記第1、第2の磁石同士は、互いに対向する側が斥力が作用する同極磁石、或いは互いに対向する側が引力が作用する異極磁石で構成され、該第1、第2の磁石のうち互いに対向しない磁石が1組以上設けられ
前記固定部の前記回転部の外周面に対向する内周面が該固定部の軸方向に複数に分割され、該分割されたそれぞれの内周面に設けられた前記第1の磁石が配置される位相を該固定部の軸方向に複数に分割されたそれぞれの内周面毎に該内周面の周方向にずらして配置したことを特徴とする回転装置。
A fixed portion provided with a rotation drive source for applying a rotation drive force;
A rotating part that is rotatably provided inside the fixed part and to which a rotational force from the rotational drive source is transmitted;
A first magnet arranged at one or more predetermined pitches in the axial direction of the fixed portion on the inner peripheral surface of the fixed portion facing the outer peripheral surface of the rotating portion;
A second magnet disposed at an outer peripheral surface facing the inner peripheral surface of the fixed portion of the rotating portion at one or more predetermined pitches in the axial direction of the rotating portion;
Have
The first and second magnets are composed of homopolar magnets where repulsive forces act on opposite sides, or different polar magnets on opposite sides where attractive forces act, and of the first and second magnets, One or more sets of non-opposing magnets are provided ,
An inner peripheral surface of the fixed portion facing the outer peripheral surface of the rotating portion is divided into a plurality of portions in the axial direction of the fixed portion, and the first magnets provided on the respective divided inner peripheral surfaces are arranged. The rotating device is characterized in that each of the inner peripheral surfaces divided into a plurality of phases in the axial direction of the fixed portion is shifted in the circumferential direction of the inner peripheral surface .
回転駆動力を付与する回転駆動源が設けられた固定部と
前記固定部の内部で回転可能に設けられ、前記回転駆動源からの回転力が伝達される回転部と
前記固定部の前記回転部の外周面に対向する内周面で該固定部の軸方向に1つ以上の所定のピッチで配置された第1の磁石と
前記回転部の前記固定部の内周面に対向する外周面で該回転部の軸方向に1つ以上の所定のピッチで配置された第2の磁石と
を有し
前記第1、第2の磁石同士は、互いに対向する側が斥力が作用する同極磁石、或いは互いに対向する側が引力が作用する異極磁石で構成され、該第1、第2の磁石のうち互いに対向しない磁石が1組以上設けられ、
前記回転部の前記固定部の内周面に対向する外周面が該回転部の軸方向に複数に分割され、該分割されたそれぞれの外周面に設けられた前記第2の磁石が配置される位相を該回転部の軸方向に複数に分割されたそれぞれの外周面毎に該外周面の周方向にずらして配置したことを特徴とする回転装置。
A fixed portion provided with a rotation drive source for applying a rotation drive force ;
A rotating part that is rotatably provided inside the fixed part and to which a rotational force from the rotational drive source is transmitted ;
A first magnet arranged at one or more predetermined pitches in the axial direction of the fixed portion on the inner peripheral surface of the fixed portion facing the outer peripheral surface of the rotating portion ;
A second magnet disposed at an outer peripheral surface facing the inner peripheral surface of the fixed portion of the rotating portion at one or more predetermined pitches in the axial direction of the rotating portion ;
Have
The first and second magnets are composed of homopolar magnets where repulsive forces act on opposite sides, or different polar magnets on opposite sides where attractive forces act, and of the first and second magnets, One or more sets of non-opposing magnets are provided,
An outer peripheral surface of the rotating portion that faces the inner peripheral surface of the fixed portion is divided into a plurality of portions in the axial direction of the rotating portion, and the second magnet provided on each of the divided outer peripheral surfaces is disposed. rotation device you characterized in that phase were staggered in the circumferential direction of the outer circumferential surface to the respective outer peripheral surfaces each divided into a plurality in the axial direction of the rotating portion.
回転駆動力を付与する回転駆動源が設けられた固定部と
前記固定部の内部で回転可能に設けられ、前記回転駆動源からの回転力が伝達される回転部と
前記固定部の前記回転部の外周面に対向する内周面で該固定部の軸方向に1つ以上の所定のピッチで配置された第1の磁石と
前記回転部の前記固定部の内周面に対向する外周面で該回転部の軸方向に1つ以上の所定のピッチで配置された第2の磁石と
を有し
前記第1、第2の磁石同士は、互いに対向する側が斥力が作用する同極磁石、或いは互いに対向する側が引力が作用する異極磁石で構成され、該第1、第2の磁石のうち互いに対向しない磁石が1組以上設けられ、
前記固定部は該固定部の軸方向に分割された複数の環状ブロック体を有して構成され、該環状ブロック体の内周面が前記回転部の外周面に対向すると共に、該環状ブロック体の内周面で前記固定部の軸方向に所定のピッチで前記第1の磁石が配置され、前記環状ブロック体を固定するための固定部材を前記固定部の軸方向に複数に分割されたそれぞれの環状ブロック体毎に前記固定部の周方向にずらして配置したことを特徴とする回転装置。
A fixed portion provided with a rotation drive source for applying a rotation drive force ;
A rotating part that is rotatably provided inside the fixed part and to which a rotational force from the rotational drive source is transmitted ;
A first magnet arranged at one or more predetermined pitches in the axial direction of the fixed portion on the inner peripheral surface of the fixed portion facing the outer peripheral surface of the rotating portion ;
A second magnet disposed at an outer peripheral surface facing the inner peripheral surface of the fixed portion of the rotating portion at one or more predetermined pitches in the axial direction of the rotating portion ;
Have
The first and second magnets are composed of homopolar magnets where repulsive forces act on opposite sides, or different polar magnets on opposite sides where attractive forces act, and of the first and second magnets, One or more sets of non-opposing magnets are provided,
The fixed portion includes a plurality of annular block bodies divided in the axial direction of the fixed portion, and an inner peripheral surface of the annular block body faces an outer peripheral surface of the rotating portion, and the annular block body The first magnets are arranged at a predetermined pitch in the axial direction of the fixing portion on the inner peripheral surface of the fixing member, and a fixing member for fixing the annular block body is divided into a plurality of portions in the axial direction of the fixing portion. rotation device you characterized by being staggered in a circumferential direction of the fixing portion for each annular block body.
回転駆動力を付与する回転駆動源が設けられた固定部と
前記固定部の内部で回転可能に設けられ、前記回転駆動源からの回転力が伝達される回転部と
前記固定部の前記回転部の外周面に対向する内周面で該固定部の軸方向に1つ以上の所定のピッチで配置された第1の磁石と
前記回転部の前記固定部の内周面に対向する外周面で該回転部の軸方向に1つ以上の所定のピッチで配置された第2の磁石と
を有し
前記第1、第2の磁石同士は、互いに対向する側が斥力が作用する同極磁石、或いは互いに対向する側が引力が作用する異極磁石で構成され、該第1、第2の磁石のうち互いに対向しない磁石が1組以上設けられ、
前記固定部の筒体ケース内に該固定部の軸方向に分割された複数の環状ブロック体が収容され、該環状ブロック体の内周面が前記回転部の外周面に対向すると共に、該環状ブロック体の内周面で前記固定部の軸方向に所定のピッチで前記第1の磁石が配置され、前記筒体ケース内に収容される前記環状ブロック体を固定するために該筒体ケースに設けられる固定穴を前記固定部の軸方向に複数に分割されたそれぞれの環状ブロック体毎に前記筒体ケースの周方向にずらして配置したことを特徴とする回転装置。
A fixed portion provided with a rotation drive source for applying a rotation drive force ;
A rotating part that is rotatably provided inside the fixed part and to which a rotational force from the rotational drive source is transmitted ;
A first magnet arranged at one or more predetermined pitches in the axial direction of the fixed portion on the inner peripheral surface of the fixed portion facing the outer peripheral surface of the rotating portion ;
A second magnet disposed at an outer peripheral surface facing the inner peripheral surface of the fixed portion of the rotating portion at one or more predetermined pitches in the axial direction of the rotating portion ;
Have
The first and second magnets are composed of homopolar magnets where repulsive forces act on opposite sides, or different polar magnets on opposite sides where attractive forces act, and of the first and second magnets, One or more sets of non-opposing magnets are provided,
A plurality of annular block bodies divided in the axial direction of the fixed portion are accommodated in the cylindrical case of the fixed portion, the inner peripheral surface of the annular block body faces the outer peripheral surface of the rotating portion, and the annular shape The first magnets are arranged at a predetermined pitch in the axial direction of the fixing portion on the inner peripheral surface of the block body, and the cylindrical case is fixed to the cylindrical case to fix the annular block body accommodated in the cylindrical case. the cylindrical body rotating device you characterized by being staggered in the circumferential direction of the case to the respective annular block bodies each divided into a plurality of fixing holes which are in the axial direction of the fixing portion is provided.
回転駆動力を付与する回転駆動源が設けられた固定部と
前記固定部の内部で回転可能に設けられ、前記回転駆動源からの回転力が伝達される回転部と
前記固定部の前記回転部の外周面に対向する内周面で該固定部の軸方向に1つ以上の所定のピッチで配置された第1の磁石と
前記回転部の前記固定部の内周面に対向する外周面で該回転部の軸方向に1つ以上の所定のピッチで配置された第2の磁石と
を有し
前記第1、第2の磁石同士は、互いに対向する側が斥力が作用する同極磁石、或いは互いに対向する側が引力が作用する異極磁石で構成され、該第1、第2の磁石のうち互いに対向しない磁石が1組以上設けられ、
前記回転部は該回転部の軸方向に分割された複数の柱状ブロック体を有して構成され、該柱状ブロック体の外周面が前記固定部の内周面に対向すると共に、該柱状ブロック体の外周面で前記回転部の軸方向に所定のピッチで前記第2の磁石が配置され、前記柱状ブロック体を固定するための固定部材を前記回転部の軸方向に複数に分割されたそれぞれの柱状ブロック体毎に前記回転部の周方向にずらして配置したことを特徴とする回転装置。
A fixed portion provided with a rotation drive source for applying a rotation drive force ;
A rotating part that is rotatably provided inside the fixed part and to which a rotational force from the rotational drive source is transmitted ;
A first magnet arranged at one or more predetermined pitches in the axial direction of the fixed portion on the inner peripheral surface of the fixed portion facing the outer peripheral surface of the rotating portion ;
A second magnet disposed at an outer peripheral surface facing the inner peripheral surface of the fixed portion of the rotating portion at one or more predetermined pitches in the axial direction of the rotating portion ;
Have
The first and second magnets are composed of homopolar magnets where repulsive forces act on opposite sides, or different polar magnets on opposite sides where attractive forces act, and of the first and second magnets, One or more sets of non-opposing magnets are provided,
The rotating part has a plurality of columnar block bodies divided in the axial direction of the rotating part, the outer peripheral surface of the columnar block body faces the inner peripheral surface of the fixed part, and the columnar block body The second magnets are arranged at a predetermined pitch in the axial direction of the rotating part on the outer peripheral surface of the outer peripheral surface, and a fixing member for fixing the columnar block body is divided into a plurality of parts in the axial direction of the rotating part. rotation device characterized in that arranged in each column block body shifted in the circumferential direction of the rotating portion.
前記固定部の前記回転部の外周面に対向する内周面に設けられた第1の磁石と、前記回転部の前記固定部の内周面に対向する外周面に設けられた第2の磁石との取り付け数が異なることを特徴とする請求項1〜5のいずれか1項に記載の回転装置。 A first magnet provided on the inner peripheral surface of the fixed portion facing the outer peripheral surface of the rotating portion, and a second magnet provided on the outer peripheral surface of the rotating portion facing the inner peripheral surface of the fixed portion. The rotation device according to any one of claims 1 to 5, wherein the number of attachments is different. 前記固定部の前記回転部の外周面に対向する内周面に設けられた第1の磁石相互の離間ピッチ、或いは前記回転部の前記固定部の内周面に対向する外周面に設けられた第2の磁石相互の離間ピッチのうち少なくとも1つが異なることを特徴とする請求項1〜5のいずれか1項に記載の回転装置。 The spaced apart pitch between the first magnets provided on the inner peripheral surface of the fixed portion facing the outer peripheral surface of the rotating portion, or the outer peripheral surface of the rotating portion facing the inner peripheral surface of the fixed portion. 6. The rotating device according to claim 1, wherein at least one of the pitches between the second magnets is different. 前記固定部側、前記回転部側にそれぞれ設けられる前記第1、第2の磁石の長手方向の少なくとも一方を前記回転部の回転軸方向に対して傾斜させると共に、該回転部の回転に伴って該第1、第2の磁石が長手方向に互いに交差して対向することを特徴とする請求項1〜5のいずれか1項に記載の回転装置。 At least one of the longitudinal directions of the first and second magnets provided on the fixed portion side and the rotating portion side is inclined with respect to the rotation axis direction of the rotating portion, and with the rotation of the rotating portion. The rotating device according to any one of claims 1 to 5, wherein the first and second magnets cross each other in the longitudinal direction and face each other. 請求項1〜の何れか1項に記載の回転装置を備え、
前記回転部と連結されて該回転部と一体的に回転する回転翼と、
前記回転翼の回転により発生する負圧により前記固定部と前記回転部との間に形成される間隙に処理液を吸入する吸液口と、
前記回転翼の回転により発生する負圧により前記固定部と前記回転部との間に形成される間隙に気体を吸入する吸気口と、
前記吸液口から吸入された処理液と、前記吸気口から吸入された気体とが前記固定部と前記回転部との間に形成される間隙内で混合され、その混合液を外部に排出する排出口と、
を有することを特徴とする泡発生装置。
The rotating device according to any one of claims 1 to 8 , comprising:
A rotating blade connected to the rotating unit and rotating integrally with the rotating unit;
A liquid suction port for sucking a processing liquid into a gap formed between the fixed part and the rotating part by a negative pressure generated by the rotation of the rotor blade;
An intake port for sucking gas into a gap formed between the fixed portion and the rotating portion by a negative pressure generated by rotation of the rotor blade;
The processing liquid sucked from the liquid suction port and the gas sucked from the suction port are mixed in a gap formed between the fixed part and the rotating part, and the mixed liquid is discharged to the outside. An outlet,
A foam generator characterized by comprising:
前記固定部と前記回転部との間に形成される間隙に処理液を吸入する管が設けられ、前記管に交差して接続して連通された合流管から前記固定部と前記回転部との間に形成される間隙に気体を吸入することを特徴とする請求項に記載の泡発生装置。 A pipe for sucking a processing liquid is provided in a gap formed between the fixed part and the rotating part, and a connecting pipe that is connected to and communicated with the pipe intersects the fixed part and the rotating part. The bubble generating apparatus according to claim 9 , wherein gas is sucked into a gap formed therebetween. 前記管の前記合流管が交差する位置の近傍上流側に小径部が設けられ、該管の小径部から大径部に向けて流れ込む処理液の流速を大きくして前記合流管から吸入される気体の吸入力を大きくする負圧を発生させることを特徴とする請求項1に記載の泡発生装置。 A gas having a small diameter portion provided upstream in the vicinity of the position where the merging pipe of the pipe intersects, and increasing the flow rate of the processing liquid flowing from the small diameter portion of the pipe toward the large diameter portion to be sucked from the merging pipe foam generator as claimed in claim 1 0, characterized in that a negative pressure is generated to increase the suction force. 前記吸液口から吸入された処理液と、前記吸気口から吸入された気体とが前記固定部と前記回転部との間に形成される間隙の近傍上流側に該間隙に流れ込む処理液の流速を大きくして前記吸気口から吸入される気体の吸入力を大きくする負圧を発生させると共に気体の混合を促進させる挟隙流路が形成されたことを特徴とする請求項に記載の泡発生装置。 The flow rate of the processing liquid that the processing liquid sucked from the liquid suction port and the gas sucked from the suction port flow into the gap upstream in the vicinity of the gap formed between the fixed portion and the rotating portion. 10. The bubble according to claim 9 , wherein a gap channel is formed to increase a pressure to generate a negative pressure that increases a suction force of a gas sucked from the intake port and to promote gas mixing. Generator.
JP2008140411A 2007-10-09 2008-05-29 Rotating device and foam generating device having the same Active JP5417605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008140411A JP5417605B2 (en) 2007-10-09 2008-05-29 Rotating device and foam generating device having the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007263220 2007-10-09
JP2007263220 2007-10-09
JP2008140411A JP5417605B2 (en) 2007-10-09 2008-05-29 Rotating device and foam generating device having the same

Publications (2)

Publication Number Publication Date
JP2009112187A JP2009112187A (en) 2009-05-21
JP5417605B2 true JP5417605B2 (en) 2014-02-19

Family

ID=40780053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008140411A Active JP5417605B2 (en) 2007-10-09 2008-05-29 Rotating device and foam generating device having the same

Country Status (1)

Country Link
JP (1) JP5417605B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106186145B (en) * 2016-09-26 2022-11-04 大庆市海油庆石油科技有限公司 Settling tank type automatic flushing dissolved air flotation device
WO2018064689A1 (en) 2016-09-28 2018-04-05 Botha Quartus Paulus Nano-bubble generator and method of generating nano-bubbles
KR102334227B1 (en) * 2019-12-02 2021-12-02 이상훈 Multistage type magnetic resonance apparatus for water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177859A (en) * 1988-01-03 1989-07-14 Tadahiro Yuki Rotating method for shaft utilizing magnet and traveling method for truck
JP3977860B2 (en) * 2005-08-05 2007-09-19 株式会社Nsi Rotating device
WO2007023864A1 (en) * 2005-08-24 2007-03-01 Nsi Co., Ltd. Bubble generator

Also Published As

Publication number Publication date
JP2009112187A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
WO2007023864A1 (en) Bubble generator
JP4802154B2 (en) Ultrafine bubble generator
JP2010240562A (en) Apparatus for producing microbubble dispersed water
JP2002136974A (en) Water quality-improving treatment apparatus
JP4335888B2 (en) Liquid purification treatment equipment
CN111565829B (en) Nanometer microbubble generating device
JP5417605B2 (en) Rotating device and foam generating device having the same
KR101947084B1 (en) Nano-micro bubble generator and gas mixed nano-micro bubble generating system using the same
JP5665392B2 (en) Ultra-fine bubble generator
JP2012005947A (en) Pump aeration device
JP4374069B2 (en) Microbubble diffusion device and method
US10532331B2 (en) Artificial-whirlpool generator
JP2005246351A (en) Fine bubble forming apparatus for improving water quality
KR101936519B1 (en) A device that circulates water using wind power in a floating state
WO2007105585A1 (en) Liquid purifying treatment apparatus
KR20180095204A (en) Aerator for water purification
KR102008653B1 (en) Purification device of deceased water including riverbed sediment
JP2011177693A (en) Gas-liquid mixing apparatus
KR20190076819A (en) Nano-micro bubble generator and gas mixed nano-micro bubble generating system using the same
TW200819197A (en) Bubble generation device
JP4980975B2 (en) Water pollution biological treatment equipment
JP2002143856A (en) Water cleaning device
JP3227567B2 (en) Water purification equipment
KR102130543B1 (en) Apparatus for generating nano bubble
JP2001079557A (en) Water quality improvement of river, lake and pond and device therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

R150 Certificate of patent or registration of utility model

Ref document number: 5417605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250