JP5416647B2 - Electrolyzed water generator with piping path clogging prevention function - Google Patents

Electrolyzed water generator with piping path clogging prevention function Download PDF

Info

Publication number
JP5416647B2
JP5416647B2 JP2010101587A JP2010101587A JP5416647B2 JP 5416647 B2 JP5416647 B2 JP 5416647B2 JP 2010101587 A JP2010101587 A JP 2010101587A JP 2010101587 A JP2010101587 A JP 2010101587A JP 5416647 B2 JP5416647 B2 JP 5416647B2
Authority
JP
Japan
Prior art keywords
flow path
water
electrolyte solution
raw water
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010101587A
Other languages
Japanese (ja)
Other versions
JP2011230041A (en
Inventor
孝司 銀山
正人 東瀬
史織 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Corp
Original Assignee
Amano Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Corp filed Critical Amano Corp
Priority to JP2010101587A priority Critical patent/JP5416647B2/en
Publication of JP2011230041A publication Critical patent/JP2011230041A/en
Application granted granted Critical
Publication of JP5416647B2 publication Critical patent/JP5416647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、手指殺菌や食品加工器具殺菌、或は、洗浄分野全般、農作物育成、病害予防等に用いて好適な電解水を生成するための装置に関するものであって、特に、電解質の再結晶化等に基づく配管経路の詰まりを防止する機能を備えた電解水生成装置に関するものである。   The present invention relates to an apparatus for producing electrolyzed water suitable for use in hand sterilization, food processing equipment sterilization, or the general field of cleaning, crop cultivation, disease prevention, etc. The present invention relates to an electrolyzed water generating apparatus having a function of preventing clogging of a piping path based on conversion.

一般的な飽和電解質溶液を用いて電解水を生成する電解水生成装置では、周囲の環境や温度変化等に影響を受けて、電解質が配管の途中で析出して再結晶化してしまい、管路が詰まってしまう等の問題を抱えている。   In an electrolyzed water generating device that generates electrolyzed water using a general saturated electrolyte solution, the electrolyte is precipitated and recrystallized in the middle of the piping due to the influence of the surrounding environment and temperature change, etc. Have problems such as clogging.

例えば、食塩タンクで生成された飽和食塩水を、ポンプによって複数の管路を経由して電解槽に送る仕組に成っている電解水生成装置の場合、飽和食塩水が水道水と混合される配管経路に至る迄の途中経路に於いて、環境変化に基づく飽和食塩水の温度低下によって食塩の析出現象が発生し、その結果、管路閉塞が発生して、電解水の生成に支障を及ぼす問題があった。   For example, in the case of an electrolyzed water generating device configured to send saturated saline solution generated in a salt tank to an electrolytic cell via a plurality of pipes by a pump, piping in which the saturated salt solution is mixed with tap water On the way to the route, salt precipitation occurs due to a decrease in temperature of the saturated saline solution due to environmental changes, resulting in a blockage of the conduit, which hinders the generation of electrolyzed water. was there.

そこで、電解質の再結晶化等に基づく配管経路の詰まりを防止する機能を備えた電解水生成装置として、例えば特許文献1に記載の「電解水生成装置」が開発された。この生成装置には、定量ポンプによって原水をバイパス経路を通して最終的に底部の送出口より電解質溶解槽に逆流させ、この動作によって各開閉弁とこれを繋ぐ供給経路を水道水等の原水によって洗浄して、電解質の析出による各開閉弁及び各供給経路の閉塞を予防することを可能にした技術が開示されている。   Therefore, for example, an “electrolyzed water generating device” described in Patent Document 1 has been developed as an electrolyzed water generating device having a function of preventing clogging of a piping path based on recrystallization of an electrolyte or the like. In this production device, raw water is finally returned to the electrolyte dissolution tank from the bottom outlet through a bypass path by a metering pump, and the supply path connecting each on-off valve and this is washed with raw water such as tap water by this operation. Thus, there is disclosed a technique that can prevent the on-off valves and the supply paths from being blocked due to the deposition of electrolyte.

特開2003−181452号公報JP 2003-181452 A

ところが、上記特許文献1に開示されている電解水生成装置では、配管経路の洗浄後に電解水を生成すると、バイパス経路に残存している水道水等の原水が定量ポンプを経由して電解槽に供給されるので、一時的に所定濃度の被電解水が供給されない場合があって、その結果、所定性状の電解水が生成できない(電解水のpHが所定の値にはならない)といった問題があった。   However, in the electrolyzed water generating device disclosed in Patent Document 1, when electrolyzed water is generated after washing the piping path, raw water such as tap water remaining in the bypass path is transferred to the electrolytic cell via a metering pump. As a result, there is a case where the electrolyzed water having a predetermined concentration is temporarily not supplied, and as a result, there is a problem that electrolyzed water having a predetermined property cannot be generated (the pH of the electrolyzed water does not reach a predetermined value). It was.

また、装置の構成自体も複雑であり、結果として装置自体が高価なものとなってしまうという、経済的な問題もあった。   In addition, the configuration of the apparatus itself is complicated, and as a result, there is an economical problem that the apparatus itself becomes expensive.

そこで本発明の技術的課題は、電解質の再結晶化等により配管経路が詰まることを防止する為の洗浄作業後においても、所定の濃度の被電解水が供給されることで、所定のpHの電解水が常に生成できるように工夫し、更に、構成が簡素で装置全体を安価に造ることができるように工夫した配管経路の詰まり防止機能を備えた電解水生成装置を提供することである。   Therefore, the technical problem of the present invention is that the electrolyzed water having a predetermined concentration is supplied even after the cleaning operation for preventing the piping path from being clogged due to recrystallization of the electrolyte, etc. It is an object to provide an electrolyzed water generating device that is devised so that electrolyzed water can always be generated, and further has a piping path clogging prevention function that is devised so that the entire device can be made inexpensively.

上記の技術的課題を解決する為に本発明で講じた手段は以下の如くである。
(1) 電解質溶解槽から取り出した飽和電解質溶液を、水道水等の原水で電気分解に適した電解質濃度に希釈しながら電解槽に送り込むことにより、電解水を生成するように構成した電解水生成装置であって、上記電解質溶解槽から取り出した飽和電解質溶液を、ポンプによって電解槽へ送る電解質溶液供給流路の一部分と、上記の飽和電解質溶液を上記のポンプによって上記電解質溶解槽へ循環させる循環流路の一部分とを、流路が共通する共通流路部と成し、上記電解質溶液供給流路と循環流路の途中に流路開閉手段を各々設けて、上記循環流路の流路開閉手段を切換制御すると、上記電解質溶液供給流路に設けた流路開閉手段を切換制御して、上記の飽和電解質溶液を原水供給流路に送り込んで希釈し、この希釈した飽和電解質溶液を上記電解槽へ送り込んで電解水を生成させる一方、上記循環流路の流路開閉手段を切換制御すると、上記供給流路の流路開閉手段が閉じて、上記のポンプが上記電解質溶解槽から取り出した飽和電解質溶液を上記循環流路内に循環させて、上記共通流路部内に残存する原水、若しくは/及び飽和電解質溶液を上記電解質溶解槽へ送り込んで、当該共通流路部の内部を洗浄するように構成したことを特徴としている。
Means taken in the present invention to solve the above technical problems are as follows.
(1) Electrolyzed water generation configured to generate electrolyzed water by feeding the saturated electrolyte solution taken out from the electrolyte dissolving tank to the electrolytic tank while diluting it with raw water such as tap water to an electrolyte concentration suitable for electrolysis An apparatus for circulating a saturated electrolyte solution taken out from the electrolyte dissolution tank to a part of an electrolyte solution supply channel for sending the saturated electrolyte solution to the electrolyte tank by a pump, and circulating the saturated electrolyte solution to the electrolyte dissolution tank by the pump A part of the flow path is formed as a common flow path part having a common flow path, and a flow path opening / closing means is provided in the middle of the electrolyte solution supply flow path and the circulation flow path to open and close the flow path of the circulation flow path. When the means is switched and controlled, the channel opening / closing means provided in the electrolyte solution supply channel is switched and the saturated electrolyte solution is sent to the raw water supply channel to dilute the diluted electrolyte solution. When the flow path opening / closing means of the circulation flow path is switched and controlled while being fed to the electrolytic tank to generate electrolyzed water, the flow path opening / closing means of the supply flow path is closed and the pump is taken out from the electrolyte dissolution tank. The saturated electrolyte solution is circulated in the circulation channel, and the raw water remaining in the common channel part or / and the saturated electrolyte solution is sent to the electrolyte dissolution tank to clean the inside of the common channel part. It is characterized by being configured as described above.

(2) 前記電解質溶解槽には、飽和電解質溶液を送出する送出入口と、再結晶した電解質を溶解し、且つ、その溶液を電解質溶解槽に戻すことができる受入口を設け、これ等送出入口と受入口の間を連通接続して、飽和電解質溶液を循環させる循環流路と成し、且つ、原水取入口と前記送出入口の間を連通接続して、原水を前記電解質溶解槽の送出入口に注入する第1給水流路とし、上記原水取入口と前記電解槽の間を連通接続して、原水を上記電解槽に注入する原水給水流路とすると共に、前記送出入口と前記電解槽の間を連通接続して電解質溶液の供給流路と成し、前記循環流路と前記原水送水流路と上記電解質溶液供給流路の前記送出入口から連続する一部を共用する第1の共通流路部を形成して、前記電解質溶液供給流路と前記循環流路の前記第1の共通流路部から連続する一部を共用して第2の共通流路部を形成する一方、前記原水給水流路と前記電解質溶液供給流路の前記電解槽から連続する一部を共用して第3の共通流路部を形成し、且つ、前記第2の共通流路部には前記のポンプを設け、前記循環流路および前記電解質溶液供給流路の前記第2の共通流路部から前記受入口の間には、循環流路を開閉制御する第1の流路開閉手段としての第1開閉弁を設け、前記電解質溶液供給流路の前記第2の共通流路部から前記第3の共通流路部の間には、一定の水圧により開放する流路開閉手段としての逆止弁を設け、前記原水取入口の近傍には、前記原水送水流路と原水給水流路を切換、及び双方の送水と給水を停止する為の第2、第3の開閉弁を設けて、前記第1開閉弁を開状態として、前記ポンプにより前記第1の共通流路部に残存又は貯留した原水、若しくは/及び、前記電解質溶解槽内の飽和電解質溶液を前記循環流路に循環させて、前記循環流路の配管内を洗浄する配管洗浄動作を可能に構成したことを特徴としたことを特徴としている。 (2) The electrolyte dissolution tank is provided with a delivery inlet for delivering the saturated electrolyte solution, and a reception inlet for dissolving the recrystallized electrolyte and returning the solution to the electrolyte dissolution tank. And a receiving passage through which the saturated electrolyte solution is circulated, and between the raw water intake port and the delivery inlet, the raw water is fed into the delivery port of the electrolyte dissolution tank. A first water supply flow path for injecting into the raw water, communicating between the raw water intake and the electrolytic cell, and forming a raw water supply flow channel for injecting raw water into the electrolytic cell, A first common flow that communicates with each other to form an electrolyte solution supply flow path, and shares a continuous portion from the circulation flow path, the raw water supply flow path, and the electrolyte solution supply flow path from the delivery inlet. A passage is formed, and the electrolyte solution supply channel and the circulation are formed. A part of the flow path that is continuous from the first common flow path portion is shared to form a second common flow path portion, while the raw water supply flow path and the electrolyte solution supply flow path are continuous from the electrolytic cell. A third common flow path portion is formed by sharing a part of the second flow path, and the second common flow path portion is provided with the pump, and the circulation flow path and the electrolyte solution supply flow path A first opening / closing valve serving as a first channel opening / closing means for controlling opening / closing of the circulation channel is provided between the two common channel portions and the receiving port, and the second common channel of the electrolyte solution supply channel is provided. A check valve as a channel opening / closing means that is opened by a constant water pressure is provided between the channel portion and the third common channel portion, and in the vicinity of the raw water intake port, the raw water supply channel and The first on-off valve is provided with second and third on-off valves for switching the raw water supply flow path and stopping both water supply and water supply. In the open state, the raw water remaining or stored in the first common flow path portion by the pump, and / or the saturated electrolyte solution in the electrolyte dissolution tank is circulated in the circulation flow path, and the circulation flow path This is characterized in that the pipe cleaning operation for cleaning the inside of the pipe is made possible.

(3) 前記電解質溶解槽には、飽和電解質溶液を送出する送出入口と、再結晶した電解質を溶解し、その溶液を電解質溶解槽に戻すことができる受入口を設け、これ等送出入口と受入口の間を連通接続して、飽和電解質溶液を循環させる循環流路と成し、且つ、原水取入口と前記送出入口の間を連通接続して原水を前記送出入口に注入する原水送水流路とし、上記原水取入口と前記電解槽の間を連通接続して原水を上記電解槽に注入する原水給水流路とすると共に、前記送出入口と前記電解槽の間を連通接続して電解質溶液供給流路とし、前記循環流路と前記原水送水流路と上記電解質溶液供給流路の前記送出入口から連続する一部を共用する第1の共通流路部を形成して、前記電解質溶液供給流路と前記循環流路の前記第1の共通流路部から連続する一部を共用して第2の共通流路部を形成する一方、前記原水給水流路と前記電解質溶液供給流路の前記電解槽から連続する一部を共用して第3共通流路部を形成し、且つ、前記第2の共通流路部には前記のポンプを設け、前記循環流路および前記電解質溶液供給流路の前記第2の共通流路部から前記受入口の間の分岐箇所には、前記第1流路開閉手段としての流路切換用の三方弁を設け、前記原水取入口近傍には前記原水送水流路と前記原水給水流路を切換制御する為の第2、第3の開閉弁を設けて、前記流路切換用の三方弁を開閉制御して、前記ポンプにより前記第1の共通流路部に残存又は貯留した原水、若しくは前記電解質溶解槽内の飽和電解質溶液を前記循環流路に循環させて、前記電解質溶液供給流路の配管内を洗浄する流路洗浄動作を可能にするように構成したことを特徴としている。 (3) The electrolyte dissolution tank is provided with a delivery inlet for delivering the saturated electrolyte solution and a reception inlet for dissolving the recrystallized electrolyte and returning the solution to the electrolyte dissolution tank. A raw water supply flow path that connects the inlets to form a circulation flow path for circulating the saturated electrolyte solution and that connects the raw water intake and the discharge inlet to inject raw water into the discharge inlet. The raw water inlet and the electrolytic cell are connected in communication to form a raw water supply channel for injecting raw water into the electrolytic cell, and the discharge inlet and the electrolytic cell are connected in communication to supply an electrolyte solution. Forming a first common flow path portion that shares a continuous part from the delivery inlet of the circulation flow path, the raw water supply flow path, and the electrolyte solution supply flow path, thereby forming the electrolyte solution supply flow The first common flow path portion of the path and the circulation flow path The second common flow path portion is formed by sharing a continuous part of the first water flow path, while the third common flow is shared by sharing a continuous part of the raw water supply flow path and the electrolytic solution supply flow path from the electrolytic cell. A passage portion is formed, and the second common flow path portion is provided with the pump, and the circulation flow path and the electrolyte solution supply flow path are provided between the second common flow path portion and the receiving port. Is provided with a three-way valve for switching the channel as the first channel opening / closing means, and a switch for controlling the switching between the raw water feed channel and the raw water supply channel near the raw water intake port. 2, a third on-off valve is provided to control the opening and closing of the three-way valve for switching the flow path, and the raw water remaining or stored in the first common flow path section by the pump, or in the electrolyte dissolution tank A saturated electrolyte solution is circulated through the circulation channel to clean the inside of the electrolyte solution supply channel. The present invention is characterized in that the flow path cleaning operation is enabled.

(4) 前記流路洗浄動作時には、前記第2、第3の開閉弁を切換制御して、前記原水送水流路より原水を前記電解質溶解槽内に注入した後に注入を停止し、引き続いて、前記流路開閉手段としての第1開閉弁若しくは前記三方弁を切換制御して、前記ポンプにより前記第1の共通流路部に残存する原水を前記循環流路に送出させた後、前記電解質溶解槽内の飽和電解質溶液を前記循環流路に循環させて、前記共通流路及びそれに続く前記循環経路の配管内を洗浄するように構成したことを特徴としている。 (4) At the time of the flow path cleaning operation, the second and third on-off valves are switched and controlled, and after the raw water is injected into the electrolyte dissolution tank from the raw water supply flow path, the injection is stopped, and subsequently, The first open / close valve or the three-way valve as the flow path opening / closing means is switched and the raw water remaining in the first common flow path is sent to the circulation flow path by the pump, and then the electrolyte is dissolved. The saturated electrolyte solution in the tank is circulated through the circulation flow path to clean the common flow path and the piping in the circulation path that follows the common flow path.

(5) 前記電解質溶解槽の前記送出入口が前記電解質溶解槽の底部に設けられ、且つ、この送出入口にはメッシュフィルターが取り付けられていることを特徴と している。 (5) The delivery inlet of the electrolyte dissolution tank is provided at the bottom of the electrolyte dissolution tank, and a mesh filter is attached to the delivery inlet.

(6) 前記電解質溶解槽内には、飽和電解質溶液の下位の水位を検知する為の水位検知手段を設けて、低水位検知後、所定の時間若しくは所定の動作後、電解水の生成を停止して、前記流路洗浄動作に切換わるよう制御することを特徴としている。 (6) A water level detection means for detecting the lower water level of the saturated electrolyte solution is provided in the electrolyte dissolution tank, and after the low water level is detected, the generation of the electrolytic water is stopped after a predetermined time or a predetermined operation. And it controls to switch to the said flow-path washing | cleaning operation | movement.

(7) 前記電解槽内の電解電流値を測定する為の電流計を設けて、電流計が異常値を検出した場合、電解水の生成を停止して、前記流路洗浄動作に切換わるよう制御することを特徴としている。 (7) An ammeter for measuring the electrolysis current value in the electrolytic cell is provided, and when the ammeter detects an abnormal value, the generation of electrolyzed water is stopped and the operation is switched to the flow path cleaning operation. It is characterized by control.

(8) 前記電解槽の各電解室に印加される印加電圧の極性を切換えるか、または、前記電解槽に設けたアルカリ性水と酸性水の各送水路に設けられている第1と第2の水路切換用電磁弁を制御することによって、アルカリ性水採水路に付着されている酸化物等を除去するスケールの除去動作を、前記配管洗浄動作の後で連続して動作させることを特徴としている。 (8) The polarity of the applied voltage applied to each electrolysis chamber of the electrolyzer is switched, or first and second provided in each water supply path of alkaline water and acidic water provided in the electrolyzer A scale removing operation for removing oxides and the like adhering to the alkaline water sampling channel is controlled continuously after the pipe cleaning operation by controlling the water channel switching solenoid valve.

(9) 前記原水供給切換手段が、前記原水送水流路に設けた第2開閉弁と、前記原水給水流路に設けた第3開閉弁とで構成されていることをしたことを特徴としている。 (9) The raw water supply switching means is configured by a second on-off valve provided in the raw water supply passage and a third on-off valve provided in the raw water supply passage. .

上記(1)で述べた請求項1に係る手段によれば、電解水生成装置において、電解質溶液供給流路と循環流路に設けた各流路開閉手段の開閉動作に従って、ポンプが飽和電解質溶液を電解槽へ送り込んで、電解水を生成したり、上記のポンプが飽和電解質溶液を循環流路内に循環させて、共通流路内に残存する飽和電解質溶液を電解質溶解槽へ送り込んで、共通流路内を洗浄するため、共通流路内に残存する水道水等の原水がポンプを経由してそのまま電解槽に供給されることが防止されて、常に所定濃度の被電解水を電解槽に共通して、所定性状の電解水を生成することを可能にする。   According to the means according to claim 1 described in the above (1), in the electrolyzed water generating apparatus, the pump is operated in accordance with the opening / closing operation of each channel opening / closing means provided in the electrolyte solution supply channel and the circulation channel. To the electrolytic cell to generate electrolyzed water, or the above-mentioned pump circulates the saturated electrolyte solution in the circulation channel, and sends the saturated electrolyte solution remaining in the common channel to the electrolyte dissolution tank. Since the inside of the flow path is washed, raw water such as tap water remaining in the common flow path is prevented from being supplied as it is to the electrolytic cell via the pump, so that the electrolyzed water having a predetermined concentration is always supplied to the electrolytic cell. In common, it is possible to generate electrolyzed water having a predetermined property.

また、上記(2)で述べた請求項2に係る手段によれば、給水流路と循環流路の一部を共有すると共に、循環流路と電解質溶液供給流路の一部を共有し、逆止弁に一定水圧では開かない負荷を与えたことで、1つの第1開閉弁の開制御のみで流路配管の洗浄動作ができることにより、流路の構成が簡素になって装置全体の製造コストも安価にすることが可能になる。   Further, according to the means according to claim 2 described in the above (2), while sharing a part of the water supply channel and the circulation channel, the circulation channel and a part of the electrolyte solution supply channel are shared, By applying a load that does not open at a constant water pressure to the check valve, the flow path piping can be cleaned only by opening control of one first on-off valve, thereby simplifying the flow path configuration and manufacturing the entire apparatus. Cost can also be reduced.

また、上記(3)で述べた請求項3に係る手段によれば、給水流路と循環流路の一部を共有すると共に、循環流路と電解質溶液供給流路の一部を共有し、三方弁の切換制御のみで配管洗浄動作ができるので、装置全体の構成が簡素化して安価で小型化が可能になる。   Further, according to the means according to claim 3 described in the above (3), while sharing a part of the water supply channel and the circulation channel, the circulation channel and a part of the electrolyte solution supply channel are shared, Since the pipe cleaning operation can be performed only by the switching control of the three-way valve, the configuration of the entire apparatus is simplified, and it is possible to reduce the size and cost.

上記(4)で述べた請求項4に係る手段によれば、原水注入後の配管洗浄動作時の始めには、第1の共通流路部に残存する原水がまず先に循環流路内を循環して配管内の析出物を溶解し、その後電解質溶解槽内の飽和電解質溶液が循環流路を循環する。よって、配管洗浄動作後には、共通流路(電解質溶液供給流路の一部)に飽和電解質溶液が満たされるので、その後の電解生成時には、電解槽に所望の飽和電解質溶液が送られて所定の性状若しくはpHの電解水を支障なく生成することができる。   According to the means according to claim 4 described in the above (4), at the beginning of the pipe cleaning operation after the raw water injection, the raw water remaining in the first common flow path portion first passes through the circulation flow path first. It circulates and dissolves deposits in the piping, and then the saturated electrolyte solution in the electrolyte dissolution tank circulates in the circulation channel. Therefore, after the pipe cleaning operation, the saturated electrolyte solution is filled in the common flow path (a part of the electrolyte solution supply flow path). Therefore, at the time of subsequent electrolysis, a desired saturated electrolyte solution is sent to the electrolytic cell and a predetermined flow is obtained. It is possible to generate electrolyzed water having properties or pH without any trouble.

上記(5)で述べた請求項5に係る手段によれば、電解質溶解槽の底部に設けた送出入口には、メッシュフィルターが取り付けられており、その細かなメッシュには、析出した電解質が付着・堆積しやすく、それらが送出入口及び送出口近くの流路を閉塞させる。しかし、原水注入時には、電解質溶解槽底部に設けた送出入口に原水が流れて、メッシュフィルターに付着した電解質が溶解されるので、流路の詰まりをなくすことができ、よって電解質溶解槽内の飽和電解水が配管内をスムーズに流れるようになり、電解水の生成に支障をきたすことがなくなる。   According to the means according to claim 5 described in (5) above, a mesh filter is attached to the delivery inlet provided at the bottom of the electrolyte dissolution tank, and the deposited electrolyte adheres to the fine mesh. Easy to deposit, they block the flow path near the delivery inlet and delivery outlet. However, when the raw water is injected, the raw water flows to the delivery inlet provided at the bottom of the electrolyte dissolution tank, and the electrolyte adhering to the mesh filter is dissolved. Therefore, the clogging of the flow path can be eliminated, so that the saturation in the electrolyte dissolution tank can be eliminated. The electrolyzed water flows smoothly in the pipe, and the generation of electrolyzed water is not hindered.

更に、原水注入時には、電解質溶解槽の底部から原水を注入するので、電解質溶解槽内の底部に堆積した電解質を攪拌させて溶解しやすくさせることができる。   Furthermore, since the raw water is injected from the bottom of the electrolyte dissolution tank when the raw water is injected, the electrolyte deposited on the bottom of the electrolyte dissolution tank can be stirred and easily dissolved.

上記(6)で述べた請求項6に係る手段によれば、電解質溶液槽内の飽和電解質溶液の下位の水位を検知する下限水位センサーを設けることにより、電解質溶液槽内の飽和電解質溶液が少なくなった場合、下限水位センサーの検知により、電解水の生成を停止し、配管洗浄動作を可能とする。また、下限水位センサーが検知する毎に、配管洗浄動作を行うので、管路の詰まりの発生を防止することができる。   According to the means according to claim 6 described in the above (6), there is less saturated electrolyte solution in the electrolyte solution tank by providing the lower limit water level sensor that detects the lower water level of the saturated electrolyte solution in the electrolyte solution tank. In this case, the detection of the lower limit water level sensor stops the generation of electrolyzed water and enables the pipe cleaning operation. Moreover, since the pipe cleaning operation is performed every time the lower limit water level sensor detects, it is possible to prevent the clogging of the pipe line.

上記(7)で述べた請求項7に係る手段によれば、電解槽内の電解電流値を測定する為の電流計を設けることにより、その電流値が所定値から変化して、決められたしきい値を越えた場合、電解質の析出による電解質供給流路内の管路が詰まってきたことが認識でき、配管洗浄動作に移行することできる。従って、管路が詰まり電解槽内に所定量の飽和電解質溶液が供給されず、所定の性状及びpHのアルカリ水、酸性水を生成することができないといった不具合も防止することができる。   According to the means according to claim 7 described in the above (7), by providing an ammeter for measuring the electrolysis current value in the electrolytic cell, the current value is changed from a predetermined value and determined. When the threshold value is exceeded, it can be recognized that the pipe line in the electrolyte supply flow path is clogged due to the deposition of the electrolyte, and the process can be shifted to the pipe cleaning operation. Accordingly, it is possible to prevent a problem that the pipe line is clogged and a predetermined amount of the saturated electrolyte solution is not supplied into the electrolytic cell, so that alkaline water and acidic water having a predetermined property and pH cannot be generated.

上記(8)で述べた請求項8に係る手段によれば、配管洗浄動作に引き続いて、アルカリ性水採水路に付着している酸化物等のスケールの除去を開始する。配管洗浄動作の後でスケールの除去が連続して動作することにより、極力電解水の生成を停止する時間を省略することができる。   According to the means according to claim 8 described in (8) above, the removal of scales such as oxides adhering to the alkaline water sampling channel is started following the pipe cleaning operation. Since the removal of scale continuously operates after the pipe cleaning operation, the time for stopping the generation of electrolyzed water as much as possible can be omitted.

上記(9)で述べた請求項9に係る手段によれば、送水流路及び給水流路に夫々開閉弁を設けたことにより、比較的簡素な方式で流路を確実に開閉制御することができる。 According to the means according to claim 9 described in (9) above, the opening and closing valves are provided in the water supply channel and the water supply channel, respectively, so that the channel can be reliably controlled to open and close by a relatively simple method. it can.

以上の事より、上記(1)〜(9)で述べた手段によって上述した技術的課題を解決して、前記従来技術の問題点を解消する事ができる。   From the above, the technical problems described above can be solved by the means described in the above (1) to (9), and the problems of the prior art can be solved.

以上述べた次第で、本発明に係る配管経路の詰まり防止機能を備えた電解水生成装置によれば、電解質の再結晶化等により配管経路が詰まることを防止する為の洗浄作業後の電解水生成時においても、電解槽に所望の飽和電解質溶液が送られて所定の性状若しくはpHの電解水を支障なく生成することができる。更に、給水流路と循環流路や、循環流路と電解質溶液供給流路等の各配管の一部を共有したことにより、配管の構成が簡素になって装置全体のコストも安価にすることができる経済性を備えている。   As described above, according to the electrolyzed water generating device having the function of preventing clogging of the piping path according to the present invention, the electrolytic water after the cleaning operation for preventing the piping path from being clogged due to recrystallization of the electrolyte or the like. Even at the time of production, a desired saturated electrolyte solution can be sent to the electrolytic cell to produce electrolyzed water having a predetermined property or pH without any trouble. Furthermore, by sharing a part of each piping such as the water supply channel and the circulation channel, and the circulation channel and the electrolyte solution supply channel, the configuration of the piping is simplified and the cost of the entire apparatus is reduced. It is economical.

本発明に係る配管経路の詰まり防止機能を備えた電解水生成装置の全体を説明した構成図。The block diagram explaining the whole electrolyzed water generating apparatus provided with the clogging prevention function of the piping path | route which concerns on this invention. (a),(b),(c)は本発明による配管洗浄の詳細を順番に説明した説明図。(A), (b), (c) is explanatory drawing which demonstrated the detail of the piping washing | cleaning by this invention in order. (d),(e),(f)は図2Aに示した配管洗浄の続きを順番に説明した説明図。(D), (e), (f) is explanatory drawing which demonstrated the continuation of the piping washing | cleaning shown to FIG. 2A in order. (g),(h)は図2Bに示した配管洗浄の続きを順番に説明した説明図。(G), (h) is explanatory drawing which demonstrated the continuation of piping washing | cleaning shown to FIG. 2B in order. 本発明に係る装置の電気的構成を説明したブロック図。The block diagram explaining the electrical constitution of the device concerning the present invention. 電解水の生成から本発明による配管洗浄動作に移行するまでの工程を説明したフローチャート。The flowchart explaining the process until it transfers to the piping washing operation by this invention from the production | generation of electrolyzed water. 本発明による配管洗浄とスケール洗浄が連動する工程を説明したフローチャート。The flowchart explaining the process which piping washing | cleaning and scale washing | cleaning by this invention interlock | cooperate. 本発明の請求項3に記載の配管経路の詰まり防止機能を備えた電解水生成装置の全体を説明した構成図。The block diagram explaining the whole electrolyzed water generating apparatus provided with the clogging prevention function of the piping path | route of Claim 3 of this invention. 配管洗浄前のメッシュフィルターの図面代用写真。Drawing substitute photo of mesh filter before pipe cleaning. 本発明による配管洗浄後のメッシュフィルターの図面代用写真。The drawing substitute photograph of the mesh filter after piping washing | cleaning by this invention.

以下に、上述した本発明に係る配管経路の詰まり防止機能を備えた電解水生成装置の実施の形態を添付した図面と共に詳細に説明する。尚、これらの実施形態は本発明の好適な具体例であり、技術的に好ましい種々の限定を付している場合もあるが、本発明の技術範囲は、特に本発明を限定する記載がない限りこれらの態様に限定されるものではない。   Hereinafter, an embodiment of an electrolyzed water generating apparatus having a piping path clogging preventing function according to the present invention will be described in detail with reference to the accompanying drawings. These embodiments are preferred specific examples of the present invention, and may have various technically preferable limitations, but the technical scope of the present invention does not particularly limit the present invention. However, the present invention is not limited to these embodiments.

以下に、本発明に係る配管経路の詰まり防止機能を備えた電解水生成装置の実施の形態を図面と共に説明すると、図1は本発明に係る電解水生成装置DSの全体を説明した構成図で、図中、符号10で全体的に示したのは電解質溶解槽で、この電解質溶解槽10の内部には未溶解で堆積する程度の電解質St(例えば塩化ナトリウムや塩化カリウム等)と、水道水等の原水が収容され、これ等の電解質Stと原水により、その電解質の飽和溶解度に相当する飽和電解質溶液WXが生成され、この溶液WXが後述する定量ポンプ13に吸引されて電解質溶解槽10の底部に設けた送出入口10Tを通って、ホースやパイプ等を用いて構成した電解質溶液供給流路PC、即ち、図1において点線Yで示す飽和電解質溶液の供給ラインを経由して、電解槽20に送出される仕組に成っている。   Hereinafter, an embodiment of an electrolyzed water generating apparatus having a piping path clogging preventing function according to the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram illustrating the entire electrolyzed water generating apparatus DS according to the present invention. In the figure, reference numeral 10 generally denotes an electrolyte dissolution tank. An electrolyte St (for example, sodium chloride or potassium chloride) that is not dissolved yet accumulates in the electrolyte dissolution tank 10 and tap water. A saturated electrolyte solution WX corresponding to the saturation solubility of the electrolyte is generated by the electrolyte St and the raw water, and the solution WX is sucked into the metering pump 13 described later and stored in the electrolyte dissolution tank 10. Through the delivery inlet 10T provided at the bottom, through the electrolyte solution supply flow path PC configured using a hose, pipe, etc., that is, via the saturated electrolyte solution supply line indicated by the dotted line Y in FIG. It has a mechanism to be delivered to the solution tank 20.

更に図中、1は水道水等の原水CW(図2の各図参照)の取入口、PAは取り入れた原水CWを電解槽20に送り込むための原水給水流路で、この流路PAには水量調整バルブ2と、開閉弁V3(電磁式の第3開閉弁)と、フローセンサ11が設けられ、また、上記水量調整バルブ2と第3開閉弁V3の間の原水給水流路PAには、取り入れた原水CWを上記電解質溶解槽10の送出入口10Tに向けて送り込むための送水流路PBが、接続部(第3接続部A3)にて分岐接続され、更に、上記フローセンサ11と電解槽20の間の給水流路PAには、上端を上記送水流路PBの一端部に接続した電解質溶液供給流路PCが、接続部(第4接続部A4)にて分岐接続されている。   Further, in the figure, 1 is an inlet for raw water CW such as tap water (see each figure in FIG. 2), PA is a raw water supply flow path for feeding the taken raw water CW into the electrolytic cell 20, and this flow path PA includes A water amount adjusting valve 2, an on-off valve V3 (electromagnetic third on-off valve), and a flow sensor 11 are provided, and a raw water supply flow path PA between the water amount adjusting valve 2 and the third on-off valve V3 is provided in the raw water supply flow path PA. The water supply flow path PB for sending the introduced raw water CW toward the delivery inlet 10T of the electrolyte dissolution tank 10 is branched and connected at the connection portion (third connection portion A3), and further, the flow sensor 11 and the electrolysis are electrolyzed. An electrolyte solution supply flow path PC whose upper end is connected to one end of the water supply flow path PB is branched and connected to the water supply flow path PA between the tanks 20 at a connection portion (fourth connection portion A4).

尚、図中A1は上記送水流路PBに対する上記電解質溶液供給流路PCの一端部が接続された接続部(第1接続部)で、この第1接続部A1と、前記電解質溶解槽10の送出入口10Tの間を結ぶ当該送水流路PBの一端部が、原水と飽和電解質溶液の双方が流通する第1の共通流路部XYを構成している。   In the figure, A1 is a connection part (first connection part) where one end of the electrolyte solution supply flow path PC is connected to the water supply flow path PB. The first connection part A1 and the electrolyte dissolution tank 10 are connected to each other. One end of the water supply flow path PB connecting between the delivery inlets 10T constitutes a first common flow path XY through which both raw water and a saturated electrolyte solution flow.

また、図面上PCaは、上述した電解質溶液供給流路PCの一端流路部であって、この一端流路部PCaの中間部に上述した定量ポンプ13が設けられている。更に、PDは上記電解質溶解槽10の受入口10Sと、上記一端流路部PCaに設けた接続部(第2接続部A2)との間に設けた循環流路であって、この循環流路PDの一部を構成する一端流路部PCaが、電解槽20に対して送られる飽和電解質溶液WXと、上記循環流路PDを循環する原水CWの双方が流通する第2の共通流路部ZYを構成すると共に、前記給水流路PAの第4接続部A4から電解槽20に至る通路が、原水CWと飽和電解質溶液WXの双方が流れる第3の共通流路部WYを構成している。   Moreover, PCa on the drawing is one end flow path portion of the above-described electrolyte solution supply flow path PC, and the above-described metering pump 13 is provided at an intermediate portion of this one end flow path portion PCa. Further, PD is a circulation channel provided between the inlet 10S of the electrolyte dissolution tank 10 and a connection part (second connection part A2) provided in the one-end flow path part PCa. One end flow path portion PCa constituting a part of the PD is a second common flow path portion through which both the saturated electrolyte solution WX sent to the electrolytic cell 20 and the raw water CW circulating in the circulation flow path PD circulate. In addition to constituting ZY, the passage from the fourth connection portion A4 of the feed water passage PA to the electrolytic cell 20 constitutes a third common passage portion WY through which both the raw water CW and the saturated electrolyte solution WX flow. .

尚、図中点線で示したラインXとWは、原水CWの給水ラインで、同じく点線で示したラインYは、飽和電解質溶液WXの供給ラインを示す。   In addition, the lines X and W shown with the dotted line in the figure are the water supply lines of the raw water CW, and the line Y similarly shown with the dotted line shows the supply line of the saturated electrolyte solution WX.

一方、上述した電解質溶解槽10には、溶解槽10内の電解質溶解液WXの水位を検知するための上限と下限の各水位センサー10H,10Lが取付けられていて、上限水位センサー10Hは電解質溶解液WXの上限を検知するセンサーであり、下限水位センサー10Lは電解質溶解液WXの下限を検知するセンサーであって、夫々の信号出力は制御部30に送られる仕組みに成っている。   On the other hand, upper limit and lower limit water level sensors 10H and 10L for detecting the water level of the electrolyte solution WX in the dissolution tank 10 are attached to the electrolyte dissolution tank 10 described above. The lower limit water level sensor 10L is a sensor that detects the lower limit of the electrolyte solution WX, and each signal output is sent to the control unit 30.

また、原水供給切換手段として、前記給水流路PBの接続部A1〜A3 間に第2開閉弁V2を設け、給水流路PAの接続部A3〜A4 間に前述した第3開閉弁V3を設けている。   Further, as the raw water supply switching means, the second on-off valve V2 is provided between the connection parts A1 to A3 of the water supply flow path PB, and the above-described third on-off valve V3 is provided between the connection parts A3 to A4 of the water supply flow path PA. ing.

上記の給水流路PBは、電解質溶解槽10に水道水等の原水CWを送り込むための流路であり、原水注入時には第2開閉弁V2を開制御し、第3開閉弁V3を閉制御する。この状態で原水CWは、原水CWの流量を調整する水量調節バルブ2を経由した後、第2開閉弁V2を経由して電解質溶解槽10の送出入口10Tに送り込まれる。   The feed water flow path PB is a flow path for feeding raw water CW such as tap water into the electrolyte dissolution tank 10, and opens the second on-off valve V2 and closes the third on-off valve V3 when raw water is injected. . In this state, the raw water CW passes through the water amount adjustment valve 2 that adjusts the flow rate of the raw water CW, and then is sent to the delivery inlet 10T of the electrolyte dissolution tank 10 via the second on-off valve V2.

上記の給水流路PAは、電解槽20に水道水等の原水CWを送り込むための流路であり、電解水生成時には上記の第2開閉弁V2を閉制御し、第3開閉弁V3を開制御する。この状態で原水CWは、原水CWの流量を調整する水量調節バルブ2を経由した後、給水流路PBと途中で分岐され、第3開閉弁V3及び原水CWの流量を確認するフローセンサー11を経由した後、電解槽20に送り込まれる。   The water supply flow path PA is a flow path for feeding the raw water CW such as tap water into the electrolytic bath 20, and when the electrolyzed water is generated, the second open / close valve V2 is closed and the third open / close valve V3 is opened. Control. In this state, the raw water CW passes through the water amount adjustment valve 2 that adjusts the flow rate of the raw water CW, and then branches off along the water supply flow path PB, and the flow sensor 11 that confirms the flow rate of the third open / close valve V3 and the raw water CW is provided. After passing through, it is fed into the electrolytic cell 20.

また、循環流路PDは、上記給水流路PBから注入された原水CW及び電解質溶解槽10内の飽和電解質溶液WXを循環させる為の流路であり、給水流路PBの途中から接続部A1で分岐して、定量ポンプ13を経由して、第1開閉弁V1を経由した後、電解質溶解槽10の受入口10Sに接続されている。   The circulation flow path PD is a flow path for circulating the raw water CW injected from the water supply flow path PB and the saturated electrolyte solution WX in the electrolyte dissolution tank 10, and is connected to the connection portion A1 from the middle of the water supply flow path PB. And after passing through the metering pump 13 and the first on-off valve V1, it is connected to the inlet 10S of the electrolyte dissolution tank 10.

符号PCで示した電解質溶液供給流路は、電解質溶解槽10内の飽和電解質溶液WXを電解槽20に送り込むための流路であり、上記循環流路PD内の定量ポンプ13と第1開閉弁V1との間から接続部A2にて分岐していて、途中には逆止弁の一種であるチャッキ弁12を経由した後、上述した給水流路PAのフローセンサー11と電解槽20との間の接続部A4に接続されている。上記のチャッキ弁12は、内部にバネが収納されていて、一定以上の圧力(水圧)が生じた場合、バネ圧が圧力(水圧)に押されて内部の弁体を開動作をする仕組みの弁である。   The electrolyte solution supply flow path indicated by the symbol PC is a flow path for feeding the saturated electrolyte solution WX in the electrolyte dissolution tank 10 into the electrolytic tank 20, and the metering pump 13 and the first on-off valve in the circulation flow path PD. It branches in the connection part A2 from between V1, and after passing through the check valve 12 which is a kind of a check valve in the middle, between the flow sensor 11 and the electrolytic cell 20 in the above-mentioned water supply flow path PA. Are connected to the connection part A4. The check valve 12 has a mechanism in which a spring is housed therein and when the pressure (water pressure) exceeds a certain level, the spring pressure is pushed by the pressure (water pressure) to open the internal valve body. It is a valve.

次に、飽和電解質溶液WXを電解槽20に送水する場合には、定量ポンプ13の押出力によりチャッキ弁12内部の弁体が開動作して、飽和電解質溶液WXを電解槽20側に供給する役目をする。(この際には第1開閉弁V1は閉状態としている。)また、配管洗浄動作時には、第1開閉弁V1が開くが、その際には、原水CW及び飽和電解質溶液WXが電解槽20側に流れないように、チャッキ弁12内部の弁体が閉じるようにバネ圧はポンプ13の押出力とのバランスで決定している。尚、全ての流路PA,PB,PC,PDは、ホースやパイプやジョイント等を用いて構成した配管で構成されている。   Next, when the saturated electrolyte solution WX is fed to the electrolytic cell 20, the valve body inside the check valve 12 is opened by the pushing force of the metering pump 13, and the saturated electrolyte solution WX is supplied to the electrolytic cell 20 side. To play a role. (At this time, the first on-off valve V1 is in a closed state.) Further, during the pipe cleaning operation, the first on-off valve V1 is opened. At that time, the raw water CW and the saturated electrolyte solution WX are on the electrolytic cell 20 side. The spring pressure is determined by the balance with the pushing force of the pump 13 so that the valve body inside the check valve 12 is closed. In addition, all the flow paths PA, PB, PC, and PD are configured by pipes configured using hoses, pipes, joints, and the like.

上述した電解質溶液供給流路PCを通して送られて来る飽和電解質溶液WXと、給水流路PAより供給される原水CWを受入れて、これを電気分解する電解槽20は、隔膜20Tによって左右2室に仕切られた電極室の夫々に、電解水を生成するための電極20A,20B(陽極/陰極)が設けられていて、通常の電解水生成時でも陰極側の電解槽や電極20A,20Bや出水路21,22にスケールを発生させないように、制御部30によって電極20A,20Bの極性は定期的に切換られる仕組みに成っている。   The electrolytic cell 20 that receives the saturated electrolyte solution WX sent through the above-described electrolyte solution supply channel PC and the raw water CW supplied from the water supply channel PA and electrolyzes it is divided into two chambers by the diaphragm 20T. Electrodes 20A and 20B (anode / cathode) for generating electrolyzed water are provided in each of the partitioned electrode chambers, and the electrolyzer on the cathode side, the electrodes 20A and 20B, and the output are provided even during normal electrolyzed water generation. The polarity of the electrodes 20A and 20B is periodically switched by the control unit 30 so as not to generate scale in the water channels 21 and 22.

また、40は電解槽20内の電解電流値を測定する電流計であり、上記の電極20A,20Bと電源装置50の間に接続されている。電解水の生成時において、その電流値が所定値から変化して、決められたしきい値を越えた場合に(電流計40が異常値を検出した場合)、電解質溶液供給流路PC内の配管に詰まりが発生したと判断し、警告を発するなどして強制的に電解水の生成を停止した後、配管洗浄動作を行い、配管の詰まりを除去するような仕組みになっている。   Reference numeral 40 denotes an ammeter for measuring an electrolytic current value in the electrolytic cell 20, and is connected between the electrodes 20 </ b> A and 20 </ b> B and the power supply device 50. When electrolyzed water is generated, if the current value changes from a predetermined value and exceeds a predetermined threshold value (when the ammeter 40 detects an abnormal value), the electrolyte solution supply flow path PC has a current value. It is judged that the clogging has occurred in the pipe, and after generating the electrolyzed water forcibly by issuing a warning or the like, the pipe is washed to remove the clogged pipe.

更に、電解電流値について詳しく説明すると、電解質溶液供給流路PC内の配管に詰まりが発生し始めると、電解槽20内への飽和電解質溶液の供給が徐々に低下し、結果的に電解電流値が決められたしきい値より低くなると、電解質溶液供給流路PC内の配管に詰まりが発生したと判断して、電解水の生成を停止する。また定量ポンプ13の異常な作動などにより、電解槽20内の飽和電解質溶液の供給が異常に増加した場合には、電解電流値が決められたしきい値より高くなり、警告を発するなどして強制的に電解水の生成を停止する。   Further, the electrolytic current value will be described in detail. When clogging starts in the piping in the electrolyte solution supply flow path PC, the supply of the saturated electrolyte solution into the electrolytic cell 20 gradually decreases, resulting in the electrolytic current value. Is lower than the determined threshold value, it is determined that the piping in the electrolyte solution supply flow path PC is clogged, and the generation of the electrolyzed water is stopped. Further, when the supply of the saturated electrolyte solution in the electrolytic cell 20 is abnormally increased due to an abnormal operation of the metering pump 13, the electrolytic current value becomes higher than a predetermined threshold value and a warning is issued. Force the generation of electrolyzed water to stop.

上記の構成において、マイクロコンピュータを搭載した制御部30には、電源装置50が接続され、更に、図1の如く定量ポンプ13や電磁式の開閉弁V1,V2,V3…などが接続されていて、夫々が制御部30を構成するマイクロコンピュータの指示に従って制御作動される仕組みに成っている。   In the above configuration, a power supply device 50 is connected to the control unit 30 equipped with a microcomputer, and a metering pump 13 and electromagnetic on-off valves V1, V2, V3, etc. are connected as shown in FIG. , Each of them is configured to be controlled and operated in accordance with instructions from a microcomputer constituting the control unit 30.

次に電解水の生成動作について説明する。
生成動作は以下のようになる。
(イ) 電解質溶解槽10内では、水道水等の原水CWと電解質Stを混合した飽和電解質溶液WXが、ある程度生成されているものとする。
(ロ) 定量ポンプ13の作動により飽和電解質溶液WXが、電解質溶液供給流路PCに供給される。(第1開閉弁V1は閉じている)
(ハ) 第3開閉弁V3を開制御して給水流路PAに原水CWを供給する。(第2開閉弁V2は閉じている)
(ニ) 給水流路PAと電解質溶液供給流路PCが合流する箇所(接続部A4付近)では、給水流路PAから供給される原水CWと、電解質溶液供給流路PCから供給される飽和電解質溶液WXとが混合されて、電気分解に適した電解質濃度(例えば0.01〜0.2%程度)の被電解水に希釈される。
(ホ) この被電解水を電解槽20の受入口より電解槽20内に送り込んで、電解水を生成する。以上の手順は、上述した制御部30にて制御される。
Next, generation operation of electrolyzed water will be described.
The generation operation is as follows.
(A) In the electrolyte dissolution tank 10, a saturated electrolyte solution WX obtained by mixing raw water CW such as tap water and electrolyte St is generated to some extent.
(B) The saturated electrolyte solution WX is supplied to the electrolyte solution supply channel PC by the operation of the metering pump 13. (The first on-off valve V1 is closed)
(C) The third on-off valve V3 is controlled to open and the raw water CW is supplied to the water supply passage PA. (The second on-off valve V2 is closed)
(D) At the location where the water supply channel PA and the electrolyte solution supply channel PC merge (near the connection portion A4), the raw water CW supplied from the water supply channel PA and the saturated electrolyte supplied from the electrolyte solution supply channel PC The solution WX is mixed and diluted with electrolyzed water having an electrolyte concentration suitable for electrolysis (for example, about 0.01 to 0.2%).
(E) The electrolyzed water is fed into the electrolytic cell 20 from the inlet of the electrolytic cell 20 to generate electrolytic water. The above procedure is controlled by the control unit 30 described above.

次に、電解質(例えば塩化ナトリウムや塩化カリウム等)の析出現象によって電解質溶解槽10の底部のメッシュ状フィルター10F(図7、図8の図面代用写真参照)、定量ポンプ13、及び各配管流路PA,PC,PD…が閉塞してしまうことについて述べる。   Next, due to the precipitation phenomenon of electrolyte (for example, sodium chloride, potassium chloride, etc.), the mesh filter 10F at the bottom of the electrolyte dissolution tank 10 (see the photo substitutes in FIGS. 7 and 8), the metering pump 13, and each piping flow path It will be described that PA, PC, PD.

通常、飽和電解質溶液WXを貯める電解質溶解槽10の底部には、未溶解の電解質が塊状となって堆積する。その為、電解質溶解槽10の底部に設けた送出入口10Tには、図7,図8の図面代用写真に示すようなメッシュ状のフィルター10F等を取付けて、未溶解の電解質が電解質溶液供給流路PCに流れ出さないように防止している。   Normally, undissolved electrolyte is accumulated in a lump at the bottom of the electrolyte dissolution tank 10 that stores the saturated electrolyte solution WX. For this reason, a mesh-like filter 10F as shown in the drawings in FIG. 7 and FIG. 8 is attached to the delivery inlet 10T provided at the bottom of the electrolyte dissolution tank 10, so that the undissolved electrolyte flows into the electrolyte solution supply flow. This prevents it from flowing into the road PC.

ところがフィルター10Fのメッシュは、細かい格子上の網で構成されているので、環境変化に基づく温度低下によって析出した電解質が付着しやすく、閉塞しやすい箇所となっている。同様に定量ポンプ13の内部、及び開閉弁V1や逆止弁12の内部においても、開閉する弁体の機構部の隙間等(図示せず)に析出した電解質が付着・堆積し、閉塞しやすい箇所となっている。   However, since the mesh of the filter 10F is composed of a mesh on a fine lattice, the deposited electrolyte easily adheres due to a temperature decrease based on environmental changes, and is a portion that is easily clogged. Similarly, in the inside of the metering pump 13 and the inside of the on-off valve V1 or the check valve 12, the electrolyte deposited in a gap or the like (not shown) of the mechanism part of the valve body that opens and closes easily adheres and accumulates and is easily blocked. It is a place.

次に、析出した場合に不具合となる電解質溶液槽10送出入口10T及び定量ポンプ13、開閉弁V1の閉塞を防止する配管洗浄動作について説明する。   Next, the pipe cleaning operation for preventing the electrolyte solution tank 10 delivery inlet 10T, the metering pump 13, and the on-off valve V1 from being clogged will be described.

電解水の生成を開始すると、次第に電解質溶解槽10内の飽和電解質溶液WXは減少して、ついには下限水位センサー10LのONを検出した直後、または一定時間後に電解水の生成を停止し、第3開閉弁V3を閉制御する。   When the generation of the electrolyzed water is started, the saturated electrolyte solution WX in the electrolyte dissolution tank 10 gradually decreases, and finally the generation of the electrolyzed water is stopped immediately after detecting the ON of the lower limit water level sensor 10L or after a certain time, 3. Closes the on-off valve V3.

次に、第2開閉弁V2を開制御して、送水流路PBから電解質溶解槽10に原水CWを上限水位センサー10HがONになるまで注入する。(注水後、第2開閉弁V2は閉制御し、第3開閉弁V3は閉状態のままを維持する)特に電解質溶液槽10の送出入口10Tには、電解質が堆積している場合が多いので、通常電解水を生成する水の流れとは逆方向に原水CWを流すことにより、堆積している電解質を溶解・拡散させて閉塞を取り除く効果がある。   Next, the second on-off valve V2 is controlled to open, and the raw water CW is injected from the water supply passage PB into the electrolyte dissolution tank 10 until the upper limit water level sensor 10H is turned on. (After water injection, the second on-off valve V2 is controlled to be closed and the third on-off valve V3 is kept closed.) In particular, electrolyte is often deposited at the delivery inlet 10T of the electrolyte solution tank 10. In addition, by flowing the raw water CW in the direction opposite to the flow of water that normally generates electrolyzed water, there is an effect of dissolving and diffusing the deposited electrolyte to remove clogging.

次に、第1開閉弁V1を開制御して、定量ポンプ13を高速で作動させて第1の共通流路XYに保留してある原水CW、更には電解質溶解槽10の飽和電解質溶液WXを循環流路PDに送り出す。始めに第1の共通流路XYに保留してある原水CWが、定量ポンプ13の内部及び第1開閉弁V1を通過するので、内部の弁体に電解質が付着堆積している場合には、この原水CWにより電解質が拡散・溶解されて閉塞を取り除くことができる。   Next, the first on-off valve V1 is controlled to open, the metering pump 13 is operated at a high speed, and the raw water CW held in the first common flow path XY and further the saturated electrolyte solution WX in the electrolyte dissolution tank 10 are supplied. It sends out to circulation channel PD. First, the raw water CW reserved in the first common flow path XY passes through the inside of the metering pump 13 and the first on-off valve V1, so when the electrolyte adheres to the internal valve body, The electrolyte is diffused and dissolved by the raw water CW, so that the blockage can be removed.

その後も定量ポンプ13を一定時間高速で作動させることにより、循環流路PDには、すぐに電解質溶解槽10内の飽和電解水WXが循環するようになる。一定時間、定量ポンプ13を高速で作動した後、停止して、第1開閉弁V1を閉制御することにより、配管洗浄動作が終了となる。以降は必要に応じて電解水を生成することが可能となる。その際には第3開閉弁V3は必ず開制御しなければならない。上記配管洗浄動作を定期的に行うことにより、夫々の管路閉塞を防止することが可能となる。尚、以上の配管洗浄動作は、全て制御部30にて制御される。   Thereafter, by operating the metering pump 13 at a high speed for a certain time, the saturated electrolytic water WX in the electrolyte dissolution tank 10 immediately circulates in the circulation flow path PD. The pipe cleaning operation is completed by operating the metering pump 13 at a high speed for a certain period of time and then stopping and controlling the first on-off valve V1 to close. Thereafter, electrolyzed water can be generated as necessary. In that case, the third on-off valve V3 must be controlled to open. By periodically performing the above-described pipe cleaning operation, it is possible to prevent the respective pipes from being blocked. The above pipe cleaning operations are all controlled by the control unit 30.

以上により、電解質溶解槽10の送出入口10Tから定量ポンプ13の内部において、環境変化に基づく飽和電解水の温度低下によって電解質の析出現象が発生し、その結果、管路閉塞が発生して、電解水の生成に支障を及ぼす問題があったが、配管洗浄動作を行うことによって配管内の析出物が溶解、剥離されてスムーズに飽和電解水が流れるようになり、電解水の生成に支障を及ぼすことがなくなる。   As described above, an electrolyte precipitation phenomenon occurs due to a decrease in temperature of the saturated electrolyzed water based on the environmental change from the delivery inlet 10T of the electrolyte dissolution tank 10 to the inside of the metering pump 13, and as a result, the pipeline is blocked, Although there was a problem that hinders the generation of water, the pipe cleaning operation dissolves and separates the deposits in the pipe so that the saturated electrolyzed water flows smoothly, which hinders the generation of electrolyzed water. Nothing will happen.

尚、電解質溶液供給流路PCの一部である、接続部A2(図1参照)からチャッキ弁12を通して給水流路PAに接続部A4で接続するまでの流路は、出来る限り流路長を短くすることによって、チャッキ弁12の閉塞を防止する。また、第1の共通流路部XYの配管は、ある程度長くしておくことが望ましい。この理由として、配管が長いことで、配管内に注入された原水CWを十分に貯留させることができて、原水注入後の配管洗浄動作時には、その原水CWによって析出した電解質を速やかに溶解することができるからである。   In addition, the flow path from the connection portion A2 (see FIG. 1), which is a part of the electrolyte solution supply flow path PC, to the connection to the water supply flow path PA through the check valve 12 at the connection portion A4 is as long as possible. By shortening, the check valve 12 is prevented from being blocked. Moreover, it is desirable that the piping of the first common flow path portion XY be made somewhat long. The reason for this is that due to the long piping, the raw water CW injected into the piping can be sufficiently stored, and the electrolyte deposited by the raw water CW can be quickly dissolved during the pipe cleaning operation after the raw water injection. Because you can.

次に、図2A、図2B、図2Cの各図に記載の(a)〜(h)を用いて、配管洗浄動作の仕組みを詳細に説明する。
図2Aの(a)は下限水位センサー10Lが検知して電解水の生成が停止した状態の図である。電解水の生成を開始すると、電解質溶解槽10内の飽和電解質溶液WXは、電解質溶液供給流路PCを通して電解槽20に供給されるため、次第に電解質溶解槽10内の飽和電解質溶液WXの水位が低くなり、ついには下限水位センサー10Lが検知することとなる。
Next, the mechanism of the pipe cleaning operation will be described in detail with reference to (a) to (h) described in each of FIGS. 2A, 2B, and 2C.
(A) of FIG. 2A is a figure of the state which the lower limit water level sensor 10L detected and the production | generation of electrolyzed water stopped. When the generation of the electrolytic water is started, the saturated electrolyte solution WX in the electrolyte dissolution tank 10 is supplied to the electrolytic tank 20 through the electrolyte solution supply flow path PC, so that the water level of the saturated electrolyte solution WX in the electrolyte dissolution tank 10 gradually increases. Finally, the lower limit water level sensor 10L is detected.

下限水位センサー10Lが検知してからも、電解質溶解槽10にはある程度の飽和電解質溶液WXが残っているので、電解水の生成を継続して行なえて、一定時間経過後(飽和電解質溶液WXがなくならない程度の時間)、若しくは、例えば警報を鳴らすなどの一定動作後に、電解水の生成を停止することが可能となっている。尚、この状態では、第1開閉弁V1及び第2開閉弁V2は閉状態であり、定量ポンプ13は停止している。   Even after detection by the lower limit water level sensor 10L, since a certain amount of the saturated electrolyte solution WX remains in the electrolyte dissolution tank 10, the generation of the electrolytic water can be continued, and after a certain period of time (the saturated electrolyte solution WX It is possible to stop the generation of electrolyzed water after a certain amount of time), or after a certain operation such as, for example, sounding an alarm. In this state, the first on-off valve V1 and the second on-off valve V2 are closed, and the metering pump 13 is stopped.

図2Aの(b)は、第2開閉弁V2を開制御して、電解質溶解槽10に送水流路PBから原水CWの注入を開始した状態の図である。
図2Aの(c)は、引き続き第2開閉弁V2を開状態として、電解水溶解槽10に送水流路PBから原水CWの注入を継続している状態の図である。原水CWは電解質溶解槽10の底部の送出入口10Tから電解質溶解槽10内に注入されている。
(B) of FIG. 2A is a figure of the state which inject | poured raw | natural water CW from the water supply flow path PB to the electrolyte dissolution tank 10 by opening-controlling the 2nd on-off valve V2.
(C) of FIG. 2A is a figure of the state which continues inject | pouring the raw water CW from the water supply flow path PB to the electrolyzed water dissolution tank 10 by making the 2nd on-off valve V2 into an open state continuously. The raw water CW is injected into the electrolyte dissolution tank 10 from the delivery inlet 10T at the bottom of the electrolyte dissolution tank 10.

次に、図2Bの(d)は、電解質溶解槽10内の水位が上昇し、上限水位センサー10Hが検知すると、第2開閉弁V2が閉制御し、原水CWの注入を終了した状態の図である。この状態において、第1の共通流路部XYには、送水流路PBから注入された原水CWが残存(貯留)している。
図2Bの(e)は、第1開閉弁V1を開制御し、定量ポンプ13を高速作動させて、第1共通流路部XYに残存(貯留)する原水CWが、循環流路PDに対し循環を開始した状態の図である。
図2Bの(f)は、上記の循環を継続している状態であり、原水CWが第1開閉弁V1を通過している状態を示している。原水CWの通過後は、電解質溶解槽10内の飽和電解質溶液WXが通過する。また、第1の開閉弁V1内部や定量ポンプ13の内部においては、開閉する弁体の機構部の隙間等に析出した電解質が付着・堆積し、閉塞しやすい箇所となっているが、上記原水CWの循環により析出した電解質が溶解されるので、閉塞の防止に繋がる。
Next, (d) of FIG. 2B shows a state in which when the water level in the electrolyte dissolution tank 10 rises and the upper limit water level sensor 10H detects, the second on-off valve V2 is closed and injection of the raw water CW is finished. It is. In this state, the raw water CW injected from the water supply flow path PB remains (stores) in the first common flow path portion XY.
FIG. 2B (e) shows that the raw water CW remaining (stored) in the first common flow path portion XY is controlled with respect to the circulation flow path PD by controlling the opening of the first on-off valve V1 and operating the metering pump 13 at high speed. It is a figure of the state which started the circulation.
(F) of FIG. 2B is a state in which the above circulation is continued, and shows a state in which the raw water CW passes through the first on-off valve V1. After passing the raw water CW, the saturated electrolyte solution WX in the electrolyte dissolution tank 10 passes. Further, in the first on-off valve V1 and the inside of the metering pump 13, the electrolyte deposited in the gap of the mechanism part of the valve body to be opened and closed adheres and accumulates, and is easily clogged. Since the electrolyte deposited by the circulation of CW is dissolved, it leads to prevention of clogging.

次に、図2Cの(g)は、原水CWが循環流路PDを回って電解質溶解槽10内に流入し、その後、循環流路PDには、飽和電解質溶液WXが定量ポンプ13によって一定時間循環している。
図2Cの(h)は、一定時間経過後、第1開閉弁V1を閉制御し、定量ポンプ13を停止した状態、即ち、循環終了の図である。循環流路PDには、飽和電解質溶液WXが残存(貯留)しているので、その後の電解生成時には、電解槽20に飽和電解質溶液WXが送られて、所定の性状若しくはpHの電解水を支障なく生成することできる。
Next, (g) in FIG. 2C shows that the raw water CW goes around the circulation channel PD and flows into the electrolyte dissolution tank 10, and then the saturated electrolyte solution WX is fed into the circulation channel PD by the metering pump 13 for a predetermined time. It is circulating.
(H) of FIG. 2C is a state in which the first on-off valve V1 is closed and the metering pump 13 is stopped after a predetermined time has elapsed, that is, the circulation is finished. Since the saturated electrolyte solution WX remains (stores) in the circulation channel PD, the saturated electrolyte solution WX is sent to the electrolytic cell 20 during the subsequent electrolysis generation, which hinders the electrolyzed water having a predetermined property or pH. Can be generated.

次に図3を用いて、電解水の生成から配管洗浄動作に移行するまでの工程をフローチャートを用いて説明する。
始めのステップS1で生成開始スイッチ(図示省略)をONすると、次のステップS2に進んで、電解水の生成を開始する。
次のステップS3では、第2開閉弁V2を閉制御、第3開閉弁V3を開制御して、次のステップS4では、定量ポンプ13が作動する。
Next, the steps from the generation of electrolyzed water to the pipe cleaning operation will be described using a flowchart with reference to FIG.
When the generation start switch (not shown) is turned on in the first step S1, the process proceeds to the next step S2 to start generation of electrolyzed water.
In the next step S3, the second on-off valve V2 is closed and the third on-off valve V3 is opened, and in the next step S4, the metering pump 13 is operated.

次のステップS5では、電解質溶解槽10内の下限の水位を検知する下限水位センサー10Lが検知するか否かが判定されて、YESの場合(水位が下限を下回った場合)はステップS9に進んで、NOの場合はステップS6に進む。
次のステップS6では、電流計40で電解槽10内の電解電流値Aを測定し、次のステップS7に進んで測定値Aと基準値を比較して、測定値Aが基準値範囲以内(YES)の場合は、ステップS5に戻り、測定値Aが基準値範囲から乖離した(NO)の場合は、ステップS10に進む。なお、上述した基準値及び基準値範囲は、電解水生成装置を操作して決定した所望の電解水のpH、水量、消費電力などの設定により、その設定毎に図4に示すCPUが算出してメモリに記憶しておくものである。
In the next step S5, it is determined whether or not the lower limit water level sensor 10L that detects the lower limit water level in the electrolyte dissolution tank 10 is detected. If YES (if the water level falls below the lower limit), the process proceeds to step S9. If NO, the process proceeds to step S6.
In the next step S6, the electrolysis current value A in the electrolytic cell 10 is measured by the ammeter 40, and the process proceeds to the next step S7 where the measurement value A is compared with the reference value, and the measurement value A is within the reference value range ( If YES, the process returns to step S5, and if the measured value A deviates from the reference value range (NO), the process proceeds to step S10. The above-described reference value and reference value range are calculated by the CPU shown in FIG. 4 for each setting depending on the settings of pH, water amount, power consumption, etc. of desired electrolyzed water determined by operating the electrolyzed water generator. Is stored in the memory.

次のステップ9では、下限水位センサー10Lの検知が一定時間T1経過したか、若しくは一定動作後かが判定されて、YESの場合は、ステップ10に進み、NOの場合は、ステップ9の処理を繰り返す。   In the next step 9, it is determined whether the detection of the lower limit water level sensor 10 </ b> L has passed a certain time T <b> 1 or after a certain operation. If YES, the process proceeds to step 10, and if NO, the process of step 9 is performed. repeat.

ここで上記ステップ9の動作を説明すると、電解水の生成が開始されると、次第に飽和電解質溶液WXが減り始め、ついには下限水位センサー10Lが検知することとなる。すると、電解槽20内の飽和電解質溶液WXが減り始め、水位が下限を下回り、下限水位センサー10Lが検知してからも電解質溶解槽10にはある程度の飽和電解質溶液WXが残っている為、電解水の生成が可能となっているが、しかし、一定時間T1経過後に定量ポンプ13の作動を停止するか、若しくは、例えば警報を鳴らすなどの一定動作後に電解水の生成を停止することとなっている。   Here, the operation of step 9 will be described. When the generation of electrolyzed water is started, the saturated electrolyte solution WX gradually starts to decrease, and finally the lower limit water level sensor 10L detects it. Then, the saturated electrolyte solution WX in the electrolytic bath 20 starts to decrease, the water level falls below the lower limit, and even after the lower limit water level sensor 10L detects, a certain amount of the saturated electrolyte solution WX remains in the electrolytic dissolution bath 10. Water generation is possible, however, the operation of the metering pump 13 is stopped after the lapse of a certain time T1, or the generation of electrolyzed water is stopped after a certain operation such as sounding an alarm, for example. Yes.

次のステップ10では、定量ポンプ13の作動を停止し、次のステップ11に進んで電解水の生成を停止して次のステップS12に進む。次のステップS12では、第2開閉弁V2を開制御し、第3開閉弁V3を閉制御して原水CWを電解質溶解槽10内に供給する。
次のステップS13では、電解質溶解槽10内の上限の水位を検知する上限水位センサー10Hが検知するかが判定されて、YESの場合(水位が上限を上回った)は、次のステップS14に進んで第2開閉弁V2を閉制御にして原水の供給を停止するが、NOの場合は、ステップS13を引き続き監視することになる。
In the next step 10, the operation of the metering pump 13 is stopped, the process proceeds to the next step 11, the generation of the electrolyzed water is stopped, and the process proceeds to the next step S 12. In the next step S12, the second on-off valve V2 is controlled to open, the third on-off valve V3 is controlled to close, and the raw water CW is supplied into the electrolyte dissolution tank 10.
In the next step S13, it is determined whether the upper limit water level sensor 10H that detects the upper limit water level in the electrolyte dissolution tank 10 is detected. If YES (the water level exceeds the upper limit), the process proceeds to the next step S14. Then, the supply of the raw water is stopped by controlling the second on-off valve V2 to be closed, but in the case of NO, step S13 is continuously monitored.

次のステップS15では、第1開閉弁V1を開制御して、次のステップS16では定量ポンプ13を高速作動させて、循環流路PDに原水CW及び飽和電解質溶液WXを循環させることにより、配管洗浄動作を行って、次のステップS17に進む。
次のステップS17では、定量ポンプ13の高速作動時間が一定時間T2経過したかを判定し、YESの場合は次のステップS2に戻って再び電解水の生成を開始し、NOの場合は、ステップS17の処理を繰り返す。
In the next step S15, the first on-off valve V1 is controlled to open, and in the next step S16, the metering pump 13 is operated at a high speed to circulate the raw water CW and the saturated electrolyte solution WX in the circulation flow path PD. The cleaning operation is performed, and the process proceeds to the next step S17.
In the next step S17, it is determined whether the high-speed operation time of the metering pump 13 has elapsed a fixed time T2. If YES, the process returns to the next step S2 to start generation of electrolyzed water again. The process of S17 is repeated.

なお、この配管洗浄動作時の一定時間T2は、定量ポンプ13の高速作動による流水量によって決定すれば良いが、循環流路PD内を始めに原水CWが流通し、その後飽和電解質溶液WXが送水流路PBに一通り充満されれば良いだけであるので、数秒程度の時間を予め設定していればよい。   The fixed time T2 during the pipe cleaning operation may be determined by the amount of flowing water due to the high-speed operation of the metering pump 13, but the raw water CW first circulates in the circulation channel PD, and then the saturated electrolyte solution WX is sent. Since it is only necessary to fill the water flow path PB once, a time of about several seconds may be set in advance.

次に、配管洗浄動作の効果を確認する為、電解質溶解槽10の送出入口10Tに取付けたメッシュフィルター10Fの状態を撮影したものが、図7の図面代用写真1、図8の図面代用写真2である。配管洗浄動作前に撮影した図7の図面代用写真1では、メッシュフィルター10Fのほぼ全面に渡って、再結晶した電解質である食塩が付着していて、流路を塞いでいる状態であったが、これはあえて食塩を再結晶化させた後に、それを増倍させて最悪の状態を作り出したものである。   Next, in order to confirm the effect of the pipe cleaning operation, a photograph of the state of the mesh filter 10F attached to the delivery inlet 10T of the electrolyte dissolution tank 10 is shown in FIG. 7 as a substitute for drawing 1 and as a substitute for drawing 2 in FIG. It is. In the drawing substitute photograph 1 of FIG. 7 taken before the pipe cleaning operation, the recrystallized electrolyte salt was adhered over almost the entire surface of the mesh filter 10F, and the flow path was blocked. This is because the salt was recrystallized and then multiplied to create the worst condition.

この様な最悪の状態であっても、配管洗浄動作後に撮影した図8の図面代用写真2では、メッシュフィルター10Fに付着していた電解質である食塩の結晶が、洗浄により溶解・剥離して残存していないことが分かる。この結果から、定期的に配管洗浄動作を実施することによって、電解質の結晶の生成を防ぎ、また結晶が大きく成長したとしても、配管洗浄動作によって電解質は溶解されて配管の閉塞を防止する事が確認できた。   Even in such a worst state, in the substitute photograph 2 of FIG. 8 taken after the pipe cleaning operation, the salt crystals, which are electrolytes attached to the mesh filter 10F, are dissolved and separated by cleaning and remain. You can see that they are not. From this result, it is possible to prevent the formation of electrolyte crystals by periodically performing the pipe cleaning operation, and even if the crystals grow greatly, the electrolyte is dissolved by the pipe cleaning operation to prevent the clogging of the pipe. It could be confirmed.

図4は、本発明で用いる制御装置を備えた制御部30の電気的構成を説明したブロック図であって、制御装置はCPU31Aを含む。また、図中31Bは流路切換のタイミングや、第1、第2、第3開閉弁V1,V2,V3の切換作動用プログラム、或いは、第1、第2の水路切換用電磁弁21K,22Kの切換作動用プログラムといった、本発明が必要とする各種データやプログラムを格納したメモリ、31Dはこれ等制御装置のCPU31Aとメモリ31Bの間にバス31Cを介して接続したインターフェイスを示す。   FIG. 4 is a block diagram illustrating the electrical configuration of the control unit 30 including the control device used in the present invention, and the control device includes a CPU 31A. In the figure, reference numeral 31B denotes a flow path switching timing, a switching operation program for the first, second and third on-off valves V1, V2 and V3, or first and second water path switching electromagnetic valves 21K and 22K. A memory 31D for storing various data and programs required by the present invention, such as a switching operation program, and an interface connected between the CPU 31A and the memory 31B of these control devices via a bus 31C.

また、上記のインターフェイス31Dには、上述した第1、第2、第3の開閉弁V1,V2,V3と、第1、第2の水路切換用電磁弁21K,22Kや、水量調整バルブ2、フローセンサー11、上限水位センサー10H、下限水位センサー10L、定量ポンプ13、システムにエラーが生じた場合などに作動する警報部10Z、電極20A,20Bを反転させるための電極反転部51、表示部33、入力部34、といった、図1に示されている本発明の構成部(一部記載省略)が接続されていて、上記メモリ31Bに格納されているプログラムに従って制御部30により制御作動される仕組に成っている。   The interface 31D includes the first, second, and third on-off valves V1, V2, and V3, the first and second water passage switching electromagnetic valves 21K and 22K, the water amount adjusting valve 2, and the like. Flow sensor 11, upper limit water level sensor 10H, lower limit water level sensor 10L, metering pump 13, alarm unit 10Z that operates when an error occurs in the system, electrode reversing unit 51 for reversing electrodes 20A and 20B, and display unit 33 1, the input unit 34, etc., to which the components of the present invention shown in FIG. 1 (partially omitted) are connected, and are controlled by the control unit 30 according to the program stored in the memory 31B. It consists of.

次に、請求項8に記載されている配管洗浄動作とスケール除去を連動させる構造について説明する。
始めに、酸性水やアルカリ性水を夫々採水可能な有隔膜方式の電解水生成装置DSに於いて、電解水生成運転時にアルカリ性水を生成や流通させている側の隔膜20Tや電極20A,20B、更に水路には、水道水等の原水に含まれるカルシウムやマグネシウム化合物が析出した成分(スケール)が付着する弊害が生じるが、このスケールの付着による隔膜20Tや電極20A,20Bの故障や破損及び水路の閉塞を防止するための構成を以下に述べる。
Next, a structure that links the pipe cleaning operation and the scale removal described in claim 8 will be described.
First, in a diaphragm membrane electrolyzed water generator DS capable of collecting acidic water and alkaline water, respectively, a diaphragm 20T and electrodes 20A and 20B on the side where alkaline water is generated and circulated during electrolyzed water generation operation. Furthermore, there is a harmful effect that the component (scale) in which calcium and magnesium compounds contained in raw water such as tap water are deposited adheres to the water channel. However, the failure of the diaphragm 20T and the electrodes 20A, 20B due to the adhesion of the scale, A configuration for preventing blockage of the water channel will be described below.

図1に示されているように、20は電解質溶液供給流路PCを通して送られて来る飽和電解質溶液WXと、給水流路PAより供給される原水CWを受入れて、これを電気分解する電解槽、20R…はこの電解槽20に電解電流を供給する電力線、50はこれ等電力線20R…を接続した電源装置であって、電力線20Rの一方には電解電流値を測する電流計40が設けられていて、これ等電流計40と電源装置50の双方が制御部30に接続されている。   As shown in FIG. 1, reference numeral 20 denotes an electrolytic cell that receives a saturated electrolyte solution WX sent through an electrolyte solution supply flow path PC and raw water CW supplied from a feed water flow path PA and electrolyzes it. , 20R... Is a power line that supplies an electrolytic current to the electrolytic cell 20, and 50 is a power supply device to which these power lines 20R are connected, and one of the power lines 20R is provided with an ammeter 40 for measuring an electrolytic current value. In addition, both the ammeter 40 and the power supply device 50 are connected to the control unit 30.

電解槽20の内部は、隔膜20Tによって一方の電極20A又は20Bが設けられた一方の電解室と、他方の電極20B又は20Aが設けられた他方の電解室とに仕切られていて、例えば、一方の電解室が陰電極を備えた陰極室として作用し、他方の電解室が陽電極を備えた陽極室として作用する場合は、電気分解によって一方の電解室では洗浄作用を備えたアルカリ性水が生成され、他方の電解室では殺菌作用を備えた酸性水が生成される仕組みに成っている。   The inside of the electrolytic cell 20 is partitioned by a diaphragm 20T into one electrolytic chamber provided with one electrode 20A or 20B and the other electrolytic chamber provided with the other electrode 20B or 20A. When the electrolysis chamber of the first electrode acts as a cathode chamber with a negative electrode and the other electrolysis chamber acts as an anode chamber with a positive electrode, electrolysis produces alkaline water with a cleaning action in one of the electrolysis chambers. In the other electrolysis chamber, acid water having a bactericidal action is generated.

また、22Eと22Fは上記一方の電解室と他方の電解室の上面に設けた電解水の送水口で、一方及び他方の送水路21,22の下端がこれ等各送水口22E,22Fに連通接続されている。更に図中、21Kと22Kは、各入水口を上記一方の送水路21と他方の送水路22の先端部分に夫々取り付けて成る、水路切替弁としての第1の水路切換用電磁弁と第2の水路切替用電磁弁であって、各水路切換用電磁弁21K,22Kは、開放されている出口側の一方の各出水口に、アルカリ性水の出水路21Aと酸性水の出水路22Aの各根端部を夫々接続して、生成されたアルカリ性水と酸性水を、アルカリ性水採水路21Aを経由してアルカリ性水採水口21Xと、酸性水採水路22Aを経由して酸性水採水口22Xに送水すると共に、他方の送水口を、夫々第1と第2のバイパス水路25を用いて相対向して並設されている上記酸性水採水路22A、及び、上記アルカリ性水採水路21Aの各中間部に連通接続している。更に図中、23と24はアルカリ性水タンクと酸性水タンクである。   Further, 22E and 22F are electrolyzed water feed ports provided on the upper surfaces of the one electrolysis chamber and the other electrolysis chamber, and the lower ends of the one and other water feed channels 21 and 22 communicate with these water feed ports 22E and 22F. It is connected. Further, in the drawing, reference numerals 21K and 22K denote a first waterway switching electromagnetic valve and a second waterway switching valve, each of which has a water inlet attached to the tip of the one water supply path 21 and the other water supply path 22, respectively. Each of the water path switching solenoid valves 21K and 22K is connected to one of the outlets on the outlet side that is open to each of the water discharge path 21A of the alkaline water and the water discharge path 22A of the acidic water. The root ends are connected to each other, and the generated alkaline water and acidic water are supplied to the alkaline water sampling port 21X via the alkaline water sampling channel 21A and to the acidic water sampling port 22X via the acidic water sampling channel 22A. While supplying water, the other water supply ports are respectively arranged in parallel between the acidic water sampling channel 22A and the alkaline water sampling channel 21A arranged opposite to each other using the first and second bypass channels 25, respectively. The unit is connected in communication. Furthermore, in the figure, 23 and 24 are an alkaline water tank and an acidic water tank.

上記の構成において、図4に示すCPU31Aを搭載した制御部30には、前述した電源装置50及び電極反転部51としてのリレー回路が接続され、更に、上述した水量調整バルブ2や定量ポンプ13、各開閉弁V1〜V3及び、第1、第2の水路切換用電磁弁21K,22K等が接続されていて、夫々が制御部30を構成する上記CPU31Aの指示に従って制御作動される仕組みに成っている。   In the above-described configuration, the above-described power supply device 50 and the relay circuit as the electrode reversing unit 51 are connected to the control unit 30 on which the CPU 31A shown in FIG. Each of the on-off valves V1 to V3 and the first and second waterway switching electromagnetic valves 21K and 22K are connected, and each of them is controlled according to the instruction of the CPU 31A constituting the control unit 30. Yes.

また、電源装置50には前述した制御部30を介して前記電解槽20の一方の電極20Aと他方の電極20Bが接続されていて、電気分解によって例えば陽極室となる一方の電解室で酸性水が生成され、陰極室となる他方の電解室でアルカリ性水が生成される仕組に成っている。   In addition, the power supply device 50 is connected to one electrode 20A and the other electrode 20B of the electrolytic cell 20 via the control unit 30 described above, so that acidic water is generated in one electrolytic chamber that becomes, for example, an anode chamber by electrolysis. Is generated, and the alkaline water is generated in the other electrolysis chamber serving as the cathode chamber.

前述した電極反転部50Xを構成する上記の電極反転部51としてのリレー回路は、リレースイッチによって電解槽20の一方と他方の電極20A,20Bの極性を、所定の時間間隔で切換えることによって、アルカリ性水と酸性水とを一方の出水路22Eと他方の出水路22Fに対して交互に切換えて供給して、上述したスケールの発生を防止することができる電極切換用のリレー回路である。   The above-described relay circuit as the electrode reversing unit 51 constituting the electrode reversing unit 50X is made alkaline by switching the polarity of one of the electrolytic cells 20 and the other electrode 20A, 20B at a predetermined time interval by a relay switch. This is an electrode switching relay circuit that can supply water and acidic water alternately to one outlet 22E and the other outlet 22F to prevent the occurrence of the scale described above.

この電極反転部51としてのリレー回路による電極20A,20Bの切換えは、制御部30のメモリ31B(図4参照)に格納されたプログラムに従って実行される仕組みに成っていて、図示の実施例では、前述した第1と第2の水路切換用電磁弁21K,22Kが電極20A,20Bの切換えに同調して切換わって、今まで吐水されていた電解水と同じ酸性水又はアルカリ性水を、夫々の採水口21K,22Kに送り込むように構成されている。   The switching of the electrodes 20A and 20B by the relay circuit as the electrode reversing unit 51 is performed according to a program stored in the memory 31B (see FIG. 4) of the control unit 30, and in the illustrated embodiment, The first and second waterway switching solenoid valves 21K and 22K are switched in synchronism with the switching of the electrodes 20A and 20B, so that the same acidic water or alkaline water as the electrolyzed water that has been discharged up to now can be used. It is comprised so that it may send into the water sampling ports 21K and 22K.

上記の構成において、制御部30の指令に従って電極反転部51としてのリレー回路が電極20A,20Bの極性を切換えると共に、第1、第2の水路切換用電磁弁21K,22Kも切換わるので、流水路を夫々第1、第2のバイパス水路25に切換えるため、電解槽20の電極20A,20Bの極性が電解運転中に切換わったとしても、今迄と同じアルカリ性水と酸性水を各採水路21A,22Aに流し続けることができるため、吐水される電解水と貯水される電解水が洗浄運転の途中で混合することはない。   In the above configuration, the relay circuit as the electrode reversing unit 51 switches the polarities of the electrodes 20A and 20B and the first and second waterway switching electromagnetic valves 21K and 22K in accordance with a command from the control unit 30. Even if the polarity of the electrodes 20A and 20B of the electrolytic cell 20 is switched during the electrolysis operation to switch the path to the first and second bypass water channels 25, the same alkaline water and acidic water as before are used for each sampling channel. Since it can continue to flow into 21A and 22A, the electrolyzed water discharged and the electrolyzed water stored are not mixed in the middle of a washing operation.

しかし、一定時間電解水を生成していると、常時アルカリ性水を送水している配管内(アルカリ性水採水路)にはスケールが付着してしまい、それらを放置しておくと生成に支障が生じる為、この配管内に関しても定期的なスケール除去が必要となってくる。   However, if electrolyzed water is generated for a certain period of time, scale will adhere to the piping (alkaline water sampling channel) that always supplies alkaline water, and if they are left unattended, generation will be hindered. Therefore, it is necessary to periodically remove the scale in the piping.

上記において、スケール除去の必要性を説明したが、請求項8では、スケール除去と配管洗浄動作を連動させており、図5のフローチャートを用いてその連動する工程を説明する。   In the above description, the necessity of scale removal has been described. In claim 8, scale removal and pipe cleaning operation are linked, and the linked process will be described using the flowchart of FIG.

始めのステップS31でスケール除去スイッチ(図示省略)をONすると、次のステップS32に進んで、電解水を生成中であるかを判定し、NOの場合は次のステップS35に進んで、YESの場合は次のステップS33に進んで定量ポンプ13の作動を停止した後、次のステップS34に進んで電解水の生成を停止して、次のステップS35に進む。   When the scale removal switch (not shown) is turned ON in the first step S31, the process proceeds to the next step S32, where it is determined whether electrolyzed water is being generated. If NO, the process proceeds to the next step S35, where YES is determined. In this case, the process proceeds to the next step S33 to stop the operation of the metering pump 13, and then proceeds to the next step S34 to stop the generation of electrolyzed water, and proceeds to the next step S35.

次のステップS35では、電解質溶解槽10内の上限の水位を検知する上限水位センサー10Hが検知したか否かが判定されて、YESの場合は次のステップS36に進んで第1開閉弁V1を開制御とし、第2、第3開閉弁V2,V3を閉制御とするが、NOの場合は、ステップS37に進んで第2開閉弁V2を開制御とし、第3開閉弁V3を閉制御としてステップS35に戻って処理を繰り返す。(給水流路PAから原水CWが供給される)   In the next step S35, it is determined whether or not the upper limit water level sensor 10H that detects the upper limit water level in the electrolyte dissolution tank 10 has been detected. If YES, the process proceeds to the next step S36 and the first on-off valve V1 is set. Open control is performed and the second and third open / close valves V2 and V3 are closed. If NO, the process proceeds to step S37, the second open / close valve V2 is opened, and the third open / close valve V3 is closed. It returns to step S35 and repeats a process. (Raw water CW is supplied from the water supply channel PA)

次のステップS38では、定量ポンプ13を高速作動させて、ステップS39では、定量ポンプ13の作動時間が一定時間T2が(ここでは数秒間程度、循環流路PDに原水CW及び飽和電解質溶液WXを循環させて配管洗浄動作を行う)経過したか否かを判定し、YESの場合は次のステップS40に進み、NOの場合は、ステップS39に戻って処理を繰り返す。   In the next step S38, the metering pump 13 is operated at a high speed. In step S39, the operation time of the metering pump 13 is a fixed time T2 (here, for several seconds, the raw water CW and the saturated electrolyte solution WX are supplied to the circulation channel PD). It is determined whether or not the pipe cleaning operation has been performed). If YES, the process proceeds to the next step S40, and if NO, the process returns to step S39 to repeat the process.

次のステップS40では、第1開閉弁V1を閉制御にして、次のステップS41では、定量ポンプ13の作動スピードを高速作動から通常作動に戻して、次のステップS42に進んで、電解水の生成を開始する。   In the next step S40, the first on-off valve V1 is controlled to be closed, and in the next step S41, the operation speed of the metering pump 13 is returned from the high speed operation to the normal operation, and the process proceeds to the next step S42. Start generation.

次のステップS43では、第1、第2の水路切換用電磁弁21K,22Kを切換えてアルカリ性水採水路21に酸性水を、酸性水採水路22にアルカリ性水を流し、これにより特にアルカリ性水採水路21のスケール除去を行なう。   In the next step S43, the first and second water channel switching solenoid valves 21K and 22K are switched to allow acidic water to flow in the alkaline water sampling channel 21 and alkaline water to flow in the acidic water sampling channel 22, and in particular, alkaline water sampling. The scale of the water channel 21 is removed.

次のステップS44では、スケール除去する時間が一定時間T3(ここでは10分程度)経過したか否かを判定し、YESの場合は次のステップS45に進んで定量ポンプ13の作動を停止し、NOの場合はステップS44に戻って処理を繰り返す。次のステップS46では、第1、第2の水路切換用電磁弁21K,22Kを元に戻すように切換え、次のステップS47で電解水の生成を停止して、フローが終了する。   In the next step S44, it is determined whether or not the time for descaling has passed a certain time T3 (here about 10 minutes). If YES, the process proceeds to the next step S45 to stop the operation of the metering pump 13, If NO, the process returns to step S44 to repeat the process. In the next step S46, the first and second waterway switching electromagnetic valves 21K, 22K are switched back to the original state, and in the next step S47, the generation of the electrolyzed water is stopped, and the flow ends.

以上のように、スケール除去が終了した時点で、電解質溶液供給流路PCの配管内の電解質及びアルカリ性水を送水する送水路のスケールは綺麗に除去されて、電解水生成待機待ちの状態となる。   As described above, when the scale removal is completed, the scale of the water supply path for supplying the electrolyte and the alkaline water in the pipe of the electrolyte solution supply flow path PC is cleanly removed, and the electrolysis water generation standby state is entered. .

よってスケール除去を行なう前に、配管洗浄動作を行なうことで、電解質溶液供給流路PCの詰まりにより、電解槽20に飽和電解質溶液WXが供給されずに電解水の生成が出来ず、結果的にスケール除去が出来ないといった問題を解消できる。また配管洗浄動作の前には必ず電解質溶解槽10に原水CWが上限水位センサ10Hが検知するまで供給されているので、配管洗浄動作の後引き続きスケール除去に移行して動作している間に電解質溶解槽10の水位が下限を検知してしまって、原水CWを供給するためにスケール除去動作が中断される、といった余分な動作が行なわれることが無い。   Therefore, by performing the pipe cleaning operation before removing the scale, the electrolyte solution supply flow path PC is clogged, so that the saturated electrolyte solution WX is not supplied to the electrolytic cell 20 and electrolysis water cannot be generated. The problem that the scale cannot be removed can be solved. In addition, since the raw water CW is always supplied to the electrolyte dissolution tank 10 until the upper limit water level sensor 10H detects it before the pipe cleaning operation, the electrolyte is continuously moved to the scale removal after the pipe cleaning operation. There is no extra operation in which the water level in the dissolution tank 10 detects the lower limit and the scale removal operation is interrupted to supply the raw water CW.

また、スケール除去スイッチ(図示省略)をONすると、制御部において自動的に配管洗浄動作が終了した後、アルカリ性水採水路21内のスケール除去が行なわれるので、極力電解水の生成を停止する時間を省略できる。尚、スケール除去後に配管洗浄動作を行っても構わないし、互いに単独で動作させることも可能であることは言うまでもない。   Further, when the scale removal switch (not shown) is turned on, scale removal in the alkaline water sampling channel 21 is performed after the pipe cleaning operation is automatically completed in the control unit. Can be omitted. Needless to say, the pipe cleaning operation may be performed after the scale is removed, or the pipes may be operated independently from each other.

次に請求項3に記載の構成について図6を用いて説明することにする。尚、これより説明する箇所は図1と異なる箇所のみとし、その他は同一の符号を付して図1の説明と同等とし、その説明を省略する。   Next, the configuration of the third aspect will be described with reference to FIG. It should be noted that only portions different from those in FIG. 1 are described here, and other portions are denoted by the same reference numerals and are the same as those in FIG. 1, and description thereof is omitted.

この実施例では、循環流路PDと電解質溶液供給流路PCの分岐箇所(接続部A2)には、流路切換用の第4の開閉弁、即ち三方弁V4を設けてある。配管洗浄動作時には、この三方弁V4を切換制御して循環流路PD側に原水CW及び飽和電解質溶液WXを流すこととし、電解水生成時には、この三方弁V4を切換制御して電解質溶液供給流路PC側に飽和電解質溶液WXを流すように制御する。この様に流路切換手段に三方弁V4を用いたことにより、部品点数が削減できて装置自体を小型化することが可能となる。   In this embodiment, a fourth switching valve, that is, a three-way valve V4, is provided at a branch point (connecting portion A2) between the circulation channel PD and the electrolyte solution supply channel PC. At the time of pipe cleaning operation, the three-way valve V4 is switched and controlled to flow the raw water CW and the saturated electrolyte solution WX to the circulation flow path PD. When the electrolytic water is generated, the three-way valve V4 is switched and controlled to supply the electrolyte solution. Control is performed so that the saturated electrolyte solution WX flows to the path PC side. Thus, by using the three-way valve V4 for the flow path switching means, the number of parts can be reduced and the apparatus itself can be miniaturized.

DS 電解水生成装置
1 原水取入口
CW 原水
2 水量調整バルブ
10 電解質溶解槽
10F メッシュフィルタ
10T 送出入口
10S 受入口
WX 飽和電解質溶液
St 電解質
11 フローセンサ
12 逆止弁としてのチャッキ弁
13 定量ポンプ
20 電解槽
20A,20B 電極
21,22 送水路
21K,22K 第1と第2の水路切換用電磁弁
30 制御部
40 電流計
50 電源装置
PA 原水給水流路
PB 原水送水流路
PC 電解質溶液供給流路
PCa 一端流路部
PD 循環流路
V1,V2,V3 開閉弁
V4 三方弁
XY 第1の共通流路部
ZY 第2の共通流路部
WY 第3の共通流路部
A1,A2,A3,A4 接続部
X,W 原水の給水ライン
Y 飽和電解質溶液の供給ライン
DS Electrolyzed Water Generation Device 1 Raw Water Intake CW Raw Water 2 Water Volume Adjustment Valve 10 Electrolyte Dissolution Tank 10F Mesh Filter 10T Outlet 10S Inlet WX Saturated Electrolyte Solution St Electrolyte 11 Flow Sensor 12 Check Valve as Check Valve 13 Metering Pump 20 Electrolysis Tanks 20A, 20B Electrodes 21, 22 Water supply channels 21K, 22K First and second water channel switching solenoid valves 30 Control unit 40 Ammeter 50 Power supply device PA Raw water supply channel PB Raw water supply channel PC Electrolyte solution supply channel PCa One end flow path part PD Circulation flow path V1, V2, V3 On-off valve V4 Three-way valve XY First common flow path part ZY Second common flow path part WY Third common flow path part A1, A2, A3, A4 Connection Part X, W Raw water supply line Y Saturated electrolyte solution supply line

Claims (9)

電解質溶解槽から取り出した飽和電解質溶液を、水道水等の原水で電気分解に適した電解質濃度に希釈しながら電解槽に送り込むことにより、電解水を生成するように構成した電解水生成装置であって、
上記電解質溶解槽から取り出した飽和電解質溶液を、ポンプによって電解槽へ送る電解質溶液供給流路の一部分と、上記の飽和電解質溶液を上記のポンプによって上記電解質溶解槽へ循環させる循環流路の一部分とを、流路が共通する共通流路部と成し、
上記電解質溶液供給流路と循環流路の途中に流路開閉手段を各々設けて、上記循環流路の流路開閉手段を切換制御すると、上記電解質溶液供給流路に設けた流路開閉手段を切換制御して、上記の飽和電解質溶液を原水供給流路に送り込んで希釈し、この希釈した飽和電解質溶液を上記電解槽へ送り込んで電解水を生成させる一方、
上記循環流路の流路開閉手段を切換制御すると、上記供給流路の流路開閉手段が閉じて、上記のポンプが上記電解質溶解槽から取り出した飽和電解質溶液を上記循環流路内に循環させて、上記共通流路部内に残存する原水、若しくは/及び飽和電解質溶液を上記電解質溶解槽へ送り込んで、当該共通流路部の内部を洗浄するように構成したことを特徴とする配管経路の詰まり防止機能を備えた電解水生成装置。
This is an electrolyzed water generator configured to generate electrolyzed water by feeding the saturated electrolyte solution taken out from the electrolyte dissolving tank into the electrolyzer while diluting it with raw water such as tap water to an electrolyte concentration suitable for electrolysis. And
A part of an electrolyte solution supply channel for sending the saturated electrolyte solution taken out from the electrolyte dissolution tank to the electrolytic cell by a pump; and a part of a circulation channel for circulating the saturated electrolyte solution to the electrolyte dissolution tank by the pump. Is formed with a common flow path portion having a common flow path,
When the flow path opening / closing means is provided in the middle of the electrolyte solution supply flow path and the circulation flow path, and the flow path opening / closing means of the circulation flow path is controlled to switch, the flow path opening / closing means provided in the electrolyte solution supply flow path While switching control, the saturated electrolyte solution is sent to the raw water supply flow path and diluted, and the diluted saturated electrolyte solution is sent to the electrolytic cell to generate electrolytic water,
When switching control of the flow path opening / closing means of the circulation flow path is performed, the flow path opening / closing means of the supply flow path is closed and the pump circulates the saturated electrolyte solution taken out from the electrolyte dissolution tank into the circulation flow path. The clogged piping path is characterized in that raw water or / and a saturated electrolyte solution remaining in the common flow path portion are sent to the electrolyte dissolution tank to clean the inside of the common flow path portion. Electrolyzed water generator with a prevention function.
前記電解質溶解槽には、飽和電解質溶液を送出する送出入口と、再結晶した電解質を溶解し、且つ、その溶液を電解質溶解槽に戻すことができる受入口を設け、これ等送出入口と受入口の間を連通接続して、飽和電解質溶液を循環させる循環流路と成し、且つ、原水取入口と前記送出入口の間を連通接続して、原水を前記電解質溶解槽の送出入口に注入する第1給水流路とし、上記原水取入口と前記電解槽の間を連通接続して、原水を上記電解槽に注入する原水給水流路とすると共に、
前記送出入口と前記電解槽の間を連通接続して電解質溶液の供給流路と成し、前記循環流路と前記原水送水流路と上記電解質溶液供給流路の前記送出入口から連続する一部を共用する第1の共通流路部を形成して、前記電解質溶液供給流路と前記循環流路の前記第1の共通流路部から連続する一部を共用して第2の共通流路部を形成する一方、前記原水給水流路と前記電解質溶液供給流路の前記電解槽から連続する一部を共用して第3の共通流路部を形成し、
且つ、前記第2の共通流路部には前記のポンプを設け、前記循環流路および前記電解質溶液供給流路の前記第2の共通流路部から前記受入口の間には、循環流路を開閉制御する第1の流路開閉手段としての第1開閉弁を設け、前記電解質溶液供給流路の前記第2の共通流路部から前記第3の共通流路部の間には、一定の水圧により開放する流路開閉手段としての逆止弁を設け、前記原水取入口の近傍には、前記原水送水流路と原水給水流路を切換、及び双方の送水と給水を停止する為の第2、第3の開閉弁を設けて、
前記第1開閉弁を開状態として、前記ポンプにより前記第1の共通流路部に残存又は貯留した原水、若しくは/及び、前記電解質溶解槽内の飽和電解質溶液を前記循環流路に循環させて、前記循環流路の配管内を洗浄する配管洗浄動作を可能に構成したことを特徴とする請求項1に記載の配管経路の詰まり防止機能を備えた電解水生成装置。
The electrolyte dissolution tank is provided with a delivery inlet for delivering a saturated electrolyte solution, and a reception inlet for dissolving the recrystallized electrolyte and returning the solution to the electrolyte dissolution tank. Are connected to each other to form a circulation flow path for circulating the saturated electrolyte solution, and the raw water intake is connected to the delivery inlet to inject the raw water into the delivery inlet of the electrolyte dissolution tank. As a first water supply flow path, a raw water supply flow path for injecting raw water into the electrolytic cell by connecting the raw water intake port and the electrolytic cell in communication with each other,
The delivery inlet and the electrolytic cell are connected in communication to form an electrolyte solution supply channel, and the circulation channel, the raw water supply channel, and a part of the electrolyte solution supply channel that is continuous from the delivery inlet A first common flow path portion that shares the same, and a portion that continues from the first common flow path portion of the electrolyte solution supply flow path and the circulation flow path is shared to form a second common flow path While forming a third common flow path portion by sharing a part of the raw water supply flow path and the electrolyte solution supply flow path that are continuous from the electrolytic cell,
In addition, the pump is provided in the second common flow path portion, and a circulation flow path is provided between the circulation flow path and the second common flow path portion of the electrolyte solution supply flow path to the receiving port. A first on-off valve serving as a first channel opening / closing means for controlling the opening / closing of the electrolyte solution is provided between the second common channel portion and the third common channel portion of the electrolyte solution supply channel. A check valve is provided as a channel opening / closing means that is opened by the water pressure of the water, and in the vicinity of the raw water intake, the raw water supply channel and the raw water supply channel are switched, and both the water supply and water supply are stopped. Second and third on-off valves are provided,
With the first on-off valve opened, the raw water remaining or stored in the first common flow path section by the pump or / and the saturated electrolyte solution in the electrolyte dissolution tank are circulated through the circulation flow path. 2. The electrolyzed water generating device having a piping path clogging prevention function according to claim 1, wherein a piping cleaning operation for cleaning the inside of the piping of the circulation flow path is possible.
前記電解質溶解槽には、飽和電解質溶液を送出する送出入口と、再結晶した電解質を溶解し、その溶液を電解質溶解槽に戻すことができる受入口を設け、これ等送出入口と受入口の間を連通接続して、飽和電解質溶液を循環させる循環流路と成し、且つ、原水取入口と前記送出入口の間を連通接続して原水を前記送出入口に注入する原水送水流路とし、上記原水取入口と前記電解槽の間を連通接続して原水を上記電解槽に注入する原水給水流路とすると共に、
前記送出入口と前記電解槽の間を連通接続して電解質溶液供給流路とし、前記循環流路と前記原水送水流路と上記電解質溶液供給流路の前記送出入口から連続する一部を共用する第1の共通流路部を形成して、前記電解質溶液供給流路と前記循環流路の前記第1の共通流路部から連続する一部を共用して第2の共通流路部を形成する一方、前記原水給水流路と前記電解質溶液供給流路の前記電解槽から連続する一部を共用して第3共通流路部を形成し、
且つ、前記第2の共通流路部には前記のポンプを設け、前記循環流路および前記電解質溶液供給流路の前記第2の共通流路部から前記受入口の間の分岐箇所には、前記第1流路開閉手段としての流路切換用の三方弁を設け、前記原水取入口近傍には前記原水送水流路と前記原水給水流路を切換制御する為の第2、第3の開閉弁を設けて、前記流路切換用の三方弁を開閉制御して、前記ポンプにより前記第1の共通流路部に残存又は貯留した原水、若しくは前記電解質溶解槽内の飽和電解質溶液を前記循環流路に循環させて、前記電解質溶液供給流路の配管内を洗浄する流路洗浄動作を可能にするように構成したことを特徴とする請求項1に記載の配管経路の詰まり防止機能を備えた電解水生成装置。
The electrolyte dissolution tank is provided with a delivery inlet for delivering a saturated electrolyte solution and a reception inlet for dissolving the recrystallized electrolyte and returning the solution to the electrolyte dissolution tank, between the delivery inlet and the reception inlet. Are connected to each other to form a circulation flow path for circulating the saturated electrolyte solution, and a raw water feed flow path for injecting raw water into the delivery inlet by communicating between the raw water intake and the delivery inlet, The raw water intake and the electrolytic cell are connected in communication to form a raw water supply channel for injecting raw water into the electrolytic cell,
The discharge inlet and the electrolytic cell are connected in communication to form an electrolyte solution supply flow path, and the circulation flow path, the raw water supply flow path, and a part of the electrolyte solution supply flow path that is continuous from the discharge inlet are shared. A first common flow path is formed, and a part of the electrolyte solution supply flow path and the circulation flow path that are continuous from the first common flow path is shared to form a second common flow path. On the other hand, a part of the raw water supply flow channel and the electrolyte solution supply flow channel continuous from the electrolytic cell is shared to form a third common flow channel portion,
In addition, the second common flow path portion is provided with the pump, and a branch point between the second common flow path portion and the reception port of the circulation flow path and the electrolyte solution supply flow path is A flow path switching three-way valve is provided as the first flow path opening / closing means, and second and third open / close positions for controlling the switching between the raw water supply flow path and the raw water supply flow path in the vicinity of the raw water intake port. A valve is provided to control the opening and closing of the three-way valve for switching the flow path, and the raw water remaining or stored in the first common flow path portion by the pump or the saturated electrolyte solution in the electrolyte dissolution tank is circulated. The piping path clogging prevention function according to claim 1, wherein the flow path cleaning operation is performed so as to circulate in the flow path and clean the inside of the electrolyte solution supply flow path. Electrolyzed water generator.
前記流路洗浄動作時には、前記第2、第3の開閉弁を切換制御して、前記原水送水流路より原水を前記電解質溶解槽内に注入した後に注入を停止し、引き続いて、前記流路開閉手段としての第1開閉弁若しくは前記三方弁を切換制御して、前記ポンプにより前記第1の共通流路部に残存する原水を前記循環流路に送出させた後、前記電解質溶解槽内の飽和電解質溶液を前記循環流路に循環させて、前記共通流路及びそれに続く前記循環経路の配管内を洗浄するように構成したことを特徴とする請求項1、2又は3に記載の配管経路の詰まり防止機能を備えた電解水生成装置。   At the time of the flow path cleaning operation, the second and third on-off valves are switched and controlled, and after the raw water is injected into the electrolyte dissolution tank from the raw water supply flow path, the injection is stopped, and subsequently, the flow path After switching and controlling the first on-off valve or the three-way valve as the on-off means, the raw water remaining in the first common flow path portion is sent out to the circulation flow path by the pump, and then in the electrolyte dissolution tank The piping path according to claim 1, 2 or 3, wherein a saturated electrolyte solution is circulated through the circulation path to wash the common flow path and the piping in the circulation path that follows the common flow path. Electrolyzed water generator with a function to prevent clogging. 前記電解質溶解槽の前記送出入口が、前記電解質溶解槽の底部に設けられ、且つ、この送出入口にはメッシュフィルターが取り付けられていることを特徴とする請求項1、2、3又は4に記載の配管経路の詰まり防止機能を備えた電解水生成装置。   The said delivery inlet of the said electrolyte dissolution tank is provided in the bottom part of the said electrolyte dissolution tank, and the mesh filter is attached to this delivery inlet, The Claim 1, 2, 3 or 4 characterized by the above-mentioned. An electrolyzed water generator having a function of preventing clogging of the piping path. 前記電解質溶液槽内には、飽和電解質溶液の下位の水位を検知する為の水位検知手段を設けて、低水位検知後、所定の時間若しくは所定の動作後、電解水の生成を停止して、前記流路洗浄動作に切換わるよう制御することを特徴とする請求項1、2、3、4又は5に記載の配管経路の詰まり防止機能を備えた電解水生成装置。   In the electrolyte solution tank, a water level detection means for detecting the lower water level of the saturated electrolyte solution is provided, and after the low water level is detected, after a predetermined time or a predetermined operation, the generation of the electrolytic water is stopped, 6. The electrolyzed water generating apparatus having a piping path clogging prevention function according to claim 1, wherein the control is performed so as to switch to the flow path cleaning operation. 前記電解槽内の電解電流値を測定する為の電流計を設けて、電流計が異常値を検出した場合、電解水の生成を停止して、前記流路洗浄動作に切換わるよう制御することを特徴とする請求項1、2、3、4、5又は6に記載の配管経路の詰まり防止機能を備えた電解水生成装置。   An ammeter for measuring the electrolysis current value in the electrolytic cell is provided, and when the ammeter detects an abnormal value, the generation of electrolyzed water is stopped and control is performed to switch to the flow path cleaning operation. The electrolyzed water generating apparatus provided with the clogging prevention function of the piping path of Claim 1, 2, 3, 4, 5 or 6. 前記電解槽の各電解室に印加される印加電圧の極性を切換えるか、または、前記電解槽に設けたアルカリ性水と酸性水の各送水路に設けられた第1と第2の水路切換用電磁弁を制御することによって、アルカリ性水採水路に付着されている酸化物等を除去するスケールの除去動作を、前記配管洗浄動作の後で連続して動作させることを特徴とする請求項1、2、3、4、5、6又は7に記載の配管経路の詰まり防止機能を備えた電解水生成装置。   The polarity of the applied voltage applied to each electrolysis chamber of the electrolyzer is switched, or the first and second waterway switching electromagnetics provided in each water supply channel of alkaline water and acidic water provided in the electrolyzer. The scale removing operation for removing oxides and the like attached to the alkaline water sampling channel is controlled continuously after the pipe cleaning operation by controlling the valve. The electrolyzed water generating apparatus provided with the clogging prevention function of the piping path of 3, 4, 5, 6 or 7. 前記原水供給切換手段が、前記原水送水流路に設けた第2開閉弁と、前記原水給水流路に設けた第3開閉弁とで構成されていることを特徴とする請求項1又は2に記載の配管経路の詰まり防止機能を備えた電解水生成装置。   The said raw | natural water supply switching means is comprised by the 2nd on-off valve provided in the said raw | natural water water supply flow path, and the 3rd on-off valve provided in the said raw | natural water water supply flow path, The Claim 1 or 2 characterized by the above-mentioned. An electrolyzed water generating device having a function of preventing clogging of the described piping path.
JP2010101587A 2010-04-27 2010-04-27 Electrolyzed water generator with piping path clogging prevention function Active JP5416647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010101587A JP5416647B2 (en) 2010-04-27 2010-04-27 Electrolyzed water generator with piping path clogging prevention function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010101587A JP5416647B2 (en) 2010-04-27 2010-04-27 Electrolyzed water generator with piping path clogging prevention function

Publications (2)

Publication Number Publication Date
JP2011230041A JP2011230041A (en) 2011-11-17
JP5416647B2 true JP5416647B2 (en) 2014-02-12

Family

ID=45319947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010101587A Active JP5416647B2 (en) 2010-04-27 2010-04-27 Electrolyzed water generator with piping path clogging prevention function

Country Status (1)

Country Link
JP (1) JP5416647B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6139761B1 (en) * 2016-07-24 2017-05-31 株式会社テックコーポレーション Electrolyzed water generator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3578888B2 (en) * 1997-04-30 2004-10-20 アマノ株式会社 Salt water generator for electrolyzed water generator
JP3802262B2 (en) * 1999-02-26 2006-07-26 アマノ株式会社 Electrolyzed water generator
JP3784713B2 (en) * 2001-12-21 2006-06-14 アマノ株式会社 Electrolyzed water generator
JP4083061B2 (en) * 2003-04-02 2008-04-30 ホシザキ電機株式会社 Voltage application method and voltage application device for electrodes of electrolyzed water generating device

Also Published As

Publication number Publication date
JP2011230041A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
US6200434B1 (en) Apparatus for producing electrolytic water
US7402252B2 (en) Automated electrolyte addition for salt water pools, spas, and water features
JP3443308B2 (en) Electrolyzed water generator
JP5295753B2 (en) Ozone water generator
CN109311706B (en) Electrolyzed water generation device
KR20020090888A (en) Water treatment apparatus
JP2010156117A (en) Hand finger washing device
JP2010221127A (en) Electrolytic water generator having piping washing function
JP2017169779A (en) Dissolution apparatus
JP5416647B2 (en) Electrolyzed water generator with piping path clogging prevention function
CN109311707A (en) Electrolytic water generating device
JP2014042863A (en) Sterilization water generator
JP2001232371A (en) Cleaning equipment for water storage facility and cleaning process of stored water in the water storage facility
JP2011045802A (en) Method for forming electrolytic water, and apparatus therefor
JP4481047B2 (en) Ionized water generator
JPH1080686A (en) Strong acidic water generating device
JPH07256256A (en) Apparatus for forming electrolytic ionic water
JP2001137853A (en) Production device of diluted electrolytic water
KR100773805B1 (en) Water softner with reduced damages to the softner tank and which supplies water to outlet during regeneration process
JP3784713B2 (en) Electrolyzed water generator
JP7165119B2 (en) Electrolyzed water generation method and electrolyzed water generator
JP2003071449A (en) Method and apparatus for making alkali ion water
JP3474433B2 (en) Electrolyzed water generator
CN219752773U (en) Self-cleaning system of steam equipment
JP3921568B2 (en) Multifunctional electrolyzed water generating apparatus and electrolyzed water generating method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131115

R150 Certificate of patent or registration of utility model

Ref document number: 5416647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250