JP3784713B2 - Electrolyzed water generator - Google Patents

Electrolyzed water generator Download PDF

Info

Publication number
JP3784713B2
JP3784713B2 JP2001388821A JP2001388821A JP3784713B2 JP 3784713 B2 JP3784713 B2 JP 3784713B2 JP 2001388821 A JP2001388821 A JP 2001388821A JP 2001388821 A JP2001388821 A JP 2001388821A JP 3784713 B2 JP3784713 B2 JP 3784713B2
Authority
JP
Japan
Prior art keywords
electrolyte
valve
water
raw water
electrolyte solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001388821A
Other languages
Japanese (ja)
Other versions
JP2003181452A (en
Inventor
塁 古口
将則 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Corp
Original Assignee
Amano Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Corp filed Critical Amano Corp
Priority to JP2001388821A priority Critical patent/JP3784713B2/en
Publication of JP2003181452A publication Critical patent/JP2003181452A/en
Application granted granted Critical
Publication of JP3784713B2 publication Critical patent/JP3784713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、手指殺菌や食品加工器具殺菌、或は、洗浄分野全般、農作物育成、病害予防等に用いて好適な電解水の生成装置に関するものであって、特に、電解質の再結晶化等に基づく配管経路の詰り防止機能を備えた電解水生成装置に関するものである。
【0002】
【従来の技術】
電解質を一定濃度に溶解する方法として、手動にて電解質と希釈液(水道水等の原水)を混合させて、電解装置内に投入する手動溶解方法と、電解質のみを適量装置内に投入した後、自動で一定濃度に調整する自動溶解方法がある。
手動溶解方法は、単純に電解質(食塩等)を水に入れて、これを人力にてかき混ぜて溶解させるものであるから、精々6%程度の濃度の電解質溶液しか生成することができない。
【0003】
これに対して、自動溶解方法は利便性に優れていて、例えば、特開2000−246248で開示された電解水生成装置では、自動的に高濃度(例えば25%程度)の電解質溶液(食塩水)を簡単に、且つ、自動的に生成することができるものであって、合理的な面を備えている。
【0004】
【発明が解決しようとする課題】
しかし、上記公報に開示されている電解水生成装置では、周囲の環境や温度変化等に影響を受けて、電解質溶液が管路の途中で析出して、管路の閉塞原因に成る等の問題を備えていた。
即ち、上記公報に記載の電解水生成装置では、食塩タンクで生成された飽和食塩水を、ポンプによって複数の管路を経由して電解槽に送る仕組に成っているため、飽和食塩水が水道水と混合される配管経路に至る迄の途中経路に於いて、環境変化に基づく飽和食塩水の温度低下によって食塩の析出現象が発生し、その結果、管路閉塞が発生して、電解水の生成に支障を及ぼす問題があった。
【0005】
尚、上記電解質の析出による管路の閉塞を防止する手段として、従来より、特開平8−66684号公報に記載の、ヒータで水温を上げる手段、及び、特開2000−54178に記載の食塩水の供給量を増すことにより、析出したものを押し流す手段、等が存在するが、前者のヒータを用いる手段には、ヒータが余分になって装置全体のコストアップに繋がる問題があり、また、食塩水の供給量を増す手段に付いては、析出による管路閉塞の問題は依然として残るため、根本的な解決策にはならない問題があった。
【0006】
従って本発明の技術的課題は、飽和電解質溶液を生成して電解槽へ送出するに当って、電解質の結晶が析出しないようにする機能と、析出に基づく管路閉塞を予防する機能を備えた電解水生成装置を提供することである。
【0007】
【課題を解決するための手段】
上記の技術的課題を解決するために講じた手段は以下の通りである。
【0008】
電解質溶解槽の底部送出口から取り出した飽和電解質溶液をポンプによって電解槽側へ送り、且つ、この飽和電解質溶液を電解槽の手前で水道水等の原水で電気分解に適した電解質濃度に希釈した後、電解槽に送り込んで電解水を生成するように構成した電解水生成装置であって、
【0009】
(1) 上記電解質溶解槽の底部送出口とポンプの間を繋ぐ電解質供給経路上に第1開閉弁を設ける一方、水道水等の原水を上記ポンプ側に供給して、上記飽和電解質溶液を希釈する原水供給経路上に第2開閉弁を設けて、上記電解質溶液又は原水の温度に応じて、上記第1開閉弁及び第2開閉弁を開閉制御することにより、上記各開閉弁を通って上記ポンプ側に供給される飽和電解質溶液とこれを希釈する原水の希釈倍率を、所定の比率に調整するように構成すると共に、上記原水によって所定濃度に希釈された飽和電解質溶液を、ポンプによって上記の電解槽へ送って、電解槽の手前で水道水等の原水を用いて電気分解に適した電解質濃度に希釈するように構成すること。(請求項1)
【0010】
(2) 前記第1開閉弁と第2開閉弁を開閉制御することにより、飽和電解質溶液を原水によって所定の濃度に希釈するに当って、その希釈倍率が電解質溶液又は原水の水温に応じて、電解質の0℃に於ける飽和溶解度以下に成るように上記開閉弁を開閉制御せしめること。(請求項2)
【0011】
(3) 上記電解質溶解槽の底部送出口とポンプの間を繋ぐ電解質供給経路上に第1開閉弁を設ける一方、水道水等の原水を上記ポンプ側に供給して、上記飽和電解質溶液を希釈する原水供給経路上に第2開閉弁を設けて、上記第1開閉弁及び第2開閉弁を開閉制御して、上記各開閉弁を通って上記ポンプ側に供給される飽和電解質溶液とこれを希釈する原水の希釈倍率を、上記電解質の0℃に於ける飽和溶解度以下に成るように調整せしめると共に、上記原水によって所定濃度に希釈された飽和電解質溶液を、ポンプによって上記の電解槽へ送って、電解槽の手前で水道水等の原水を用いて電気分解に適した電解質濃度に希釈するように構成すること。(請求項3)
【0012】
(4) 各種電解質の各温度毎の飽和溶解度を記憶したメモリテーブルに基づいて、電解質溶解槽にて生成された電解質溶液の0℃に於ける飽和溶解度に対応する希釈倍率を演算して、この希釈倍率以下の溶解度に成るように前記第1開閉弁と第2開閉弁を、前記ポンプの吸引ショット動作に合せて開閉制御するように構成すること。(請求項4)
【0013】
(5) 前記ポンプと電解槽の間を繋ぐ給水経路上に第3開閉弁を設け、この第3開閉弁と前記第1開閉弁を三方弁を用いて構成し、これ等各三方弁の常閉口 (ノーマルクローズ)同士をバイパス経路で繋いで、前記第2開閉弁を開いて上記第1開閉弁と第3開閉弁の常開口を閉じて各常閉口を開くと、上記ポンプによって吸引された原水が、第3開閉弁よりバイパス経路及び第1開閉弁と前記電解質供給経路を経て、底部の送出口より前記電解質溶解槽の内部に逆流するように構成すること。(請求項5)
【0014】
(6) 前記電解質溶解槽の内部に、水道水等の原水が給水される貯水容器を設け、この貯水容器に前記第2開閉弁に通じる原水供給経路を接続すると共に、上記貯水容器に給水した原水が上記電解質溶解槽内にオーバーフロー自在に構成すること。(請求項6)
【0015】
(7) 使用する電解質を選択する電解質選択操作手段と、選択された電解質に応じて前記第1開閉弁と第2開閉弁を開閉制御し、更に、第3開閉弁を開閉制御する電解質制御手段とを備えて成ること。(請求項7)
【0016】
上記(1)で述べた請求項1に係る手段によれば、第1開閉弁と第2開閉弁を電解質溶液又は原水の温度に応じて開閉制御することによって、高濃度の飽和電解質溶液を、水温が低下した場合でも再結晶が生じない濃度、即ち、各温度に於ける適量の倍率にて析出濃度を越えない電解質濃度に希釈することができる。
即ち、上記電解質溶液又は原水の温度を予めサーミスタ等で検知し、その水温変化による最大飽和溶解度と最低飽和溶解度から希釈倍率を演算し、各温度に於ける適量の倍率にて最低飽和溶解度を下回る濃度に希釈調整することにより、正確に飽和溶解度を制御することができるものであって、その結果、例えば、環境の変化によって水温が0℃等の低温状態に下がったとしても、電解質の結晶が析出して管路を閉塞することがなく、ポンプによる飽和電解質溶液の送出がスムーズに行われて、電解槽に於ける電解水の生成を支障無く行うことを可能にする。
【0017】
上記(2)で述べた請求項2に係る手段によれば、第1開閉弁と第2開閉弁を開閉制御することにより、電解質溶液又は原水の温度に応じて原水による飽和電解質溶液の希釈倍率を、電解質の0℃に於ける飽和溶解度以下になるように調整するため、環境の変化によって水温が0℃等の低温状態に下がったとしても、電解質の結晶が析出して管路を閉塞してしまうことがなく、ポンプによる飽和電解質溶液の送出をスムーズに行うことを可能にする。
【0018】
上記(3)で述べた請求項3に係る手段によれば、第1開閉弁と第2開閉弁の開閉制御に基づく原水による飽和電解質溶液の希釈倍率を、電解質溶液や原水の水温に関係なく、電解質の0℃に於ける飽和溶解度以下になるように調整するため、水温の差異によって多少の誤差が生じるにしても、環境の変化に基づく電解質の再結晶を予防して、電解質の析出による管路の閉塞を防止することを可能にする。
【0019】
上記(4)で述べた請求項4に係る手段によれば、予めメモリに記憶されている各電解質毎の飽和溶解度に従って、第1開閉弁と第2開閉弁の開閉動作が制御されて、飽和電解質溶液の希釈倍率を、電解質の0℃に於ける飽和溶解度以下になるように自動調整することができるものであって、メモリテーブルに記憶された各種電解質の選択的な使用を可能にすると共に、如何なる電解質を用いた場合に於いても、電解質の析出による管路の閉塞を防止することを可能にする。
【0020】
上記(5)で述べた請求項5に係る手段によれば、ポンプによって原水をバイパス経路を通して最終的に底部の送出口より電解質溶解槽に逆流させることができるため、この動作によって各開閉弁とこれを繋ぐ供給経路を水道水等の原水によって洗浄して、電解質の析出による各開閉弁及び各供給経路の閉塞を予防することを可能にする。
【0021】
上記(6)で述べた請求項6に係る手段によれば、飽和電解質溶液の希釈に用いる水道水等の原水を電解質溶解槽内にオーバーフローさせることによって、電解質の溶解にも利用できるものであって、その結果、注水制御用の開閉弁を複数使用する必要が無くなって、装置のコストダウンを可能にする。
【0022】
上記(7)で述べた請求項7に係る手段によれば、電解質選択操作手段によって選択された電解質を用いて、電解質制御手段が各開閉弁を開閉制御しながら、電解に適した濃度に希釈された電解質溶液を、如何なる水温であっても電解質の再結晶による析出によって各配管経路を閉塞することなく、ポンプによって電解槽側にスムーズに送出したり、或は、各配管経路を原水で洗浄したりしながら、電解水の生成を進めることを可能にする。
【0023】
【発明の実施の形態】
以下に、本発明に係る電解水生成装置の実施の形態を図面と共に説明すると、図1は本発明の全体を説明した構成図で、図中、1は電解質溶解槽、2はこの溶解槽1の内底部に設けた溶解槽フイルターで、溶解槽1の内部には未溶解で堆積する程度の電解質(例えば塩化ナトリウムや塩化カリウム等)と、水道水や純水等の原水が収容され、これ等の電解質と原水を溶解槽フイルター2を通うして丁度濾過するように抽出すると、自動的にその電解質の飽和溶解度数に相当する飽和電解質溶液が生成され、この溶液が後述する定量ポンプに吸引されて上記溶解槽1の底部に設けた送出口3′を通って、ホースやパイプ等を用いて構成した電解質供給経路3側に送出される仕組に成っている。
【0024】
4は上記電解質溶解槽1の上部内側に設けた貯水容器、5はこの貯水容器4に水道水や純水のような原水を送り込む給水管、7は貯水容器4に送り込まれた原水を、電解質溶解槽1の外部に取り出すホースやパイプ等を用いて構成した原水供給経路で、上記給水管5を通して貯水容器4に送り込まれる原水は、貯水容器4からオーバーフローして電解質溶解槽1の中に溜り、前記電解質を溶解する仕組に成っている。また、6は上記電解質溶解槽1内の電解質溶液の温度、又は、原水の温度を測定する例えばサーミスタのような水温計を示す。
【0025】
符号8で全体的に示したのは、上記電解質供給経路3の経路上に設けた第1開閉弁で、この第1開閉弁8は常開口8A,8B(COM,NO)と、常閉口8C(NC)を備えた三方弁を用いて構成されていて、上記の電解質供給経路3の先端が一方の常開口8Aに接続され、また、他方の常開口8Bに接続した配管12Bが、吸引管10を通して定量ポンプ9の吸引側に接続されていて、この定量ポンプ9の運転による吸引作用を、第1開閉弁8及び電解質供給経路3を通して上記電解質溶解槽1の送出口3′に及ぼして、前述した飽和電解質溶液を定量ポンプ9側に吸引する仕組に成っている。
【0026】
11は上記原水供給経路7の経路上に設けた第2開閉弁で、この第2開閉弁11の送出側(OUT)に接続されている配管12Aの先端が、前記定量ポンプ9の吸引管10に接続されていて、定量ポンプ9の吸引作用を原水供給経路7を通して貯水容器5に及ぼすことにより、前述した原水を定量ポンプ9側に吸引して、上記飽和電解質溶液を所定の電解質濃度に希釈するように構成されている。
【0027】
13は上記定量ポンプ9の送出側に接続した送出経路、符号14で全体的に示したのはこの送出経路13の経路上に設けた第3開閉弁で、この第3開閉弁14は常開口14A,14B(COM,NO)と、常閉口14C(NC)を備えた三方弁が用いられていて、前記第1開閉弁8とこの第3開閉弁14の常閉口同士8C,14Cが、洗浄用のバイパス経路14′によって接続されている。
【0028】
15Aは上記第3開閉弁14の送出側の常開口14B(NO)に接続した供給経路で、この供給経路15Aはチエックバルブ15を介して水道水等の原水が給水される給水経路16の途中に接続されていて、水量調節バルブ16′によって定量供給される原水に対して、所定濃度(例えば20〜50%)に希釈された飽和電解質溶液を混入して、これを電気分解に適した電解質濃度(例えば0.01〜0.2%程度)の被電解水に希釈した後、この被電解水を上記給水経路16を通して電解槽17に送り込んで、電解水を生成するように構成されている。
【0029】
18は電解質制御基板、19は通信線S6を介して電解質制御基板18に接続した電解質選択操作基板で、電解質制御基板18は、通信線S1,S2,S3,S4,S5,S7を介して上述した第1開閉弁8、第2開閉弁11、水温計6、定量ポンプ9、第3開閉弁14、及び、水量調節バルブ16′に夫々接続されていて、水温計6から送られて来る電解質溶液又は原水の水温に応じて、第1開閉弁8と第2開閉弁11を開閉制御して、飽和電解質溶液の濃度を、電解質の0℃に於ける飽和溶解度以下になるように希釈する希釈調整機能と、各開閉弁8,11,14を開閉して、電解質が通過する配管3,12B,10及び13と、各開閉弁8,11,14と、定量ポンプ9の全てを、原水によって洗浄する洗浄機能を具備している。尚、各開閉弁8,14はいずれも例えば電磁弁を用いて構成されている。
【0030】
飽和電解質溶液の濃度を、電解質の0℃に於ける飽和溶解度以下に希釈する必要性に付いて詳しく説明すると、溶解度とは、一般にある物質(溶質)が他の物質(溶媒)に溶解する限度をいい、飽和溶液中に於ける溶質の濃度で表わされるものであり、一般に温度によって変化する。電解質の中で、溶解度の温度依存性が少い物質の代表例は、塩化ナトリウムであるが「化学便覧・日本化学会編」によれば、以下の表1に示すように0度と100度の溶解度差が1.07倍と差があり、又、炭酸カリウムに於いては1.2倍、塩化カリウムは1.6倍と違う。その結果、この溶解度差が原因となって寒冷地等の実使用例に於いて、管路が再結晶により閉塞する事例が多く発生することが容易に推測出来る。
【表1】

Figure 0003784713
【0031】
そこで飽和電解質溶液を希釈するには、先ず第1開閉弁8を開き、第2開閉弁11を閉じて定量ポンプ9を作動すれば、電解質溶解槽1から飽和電解質溶液が吸引され、次いで、第1開閉弁8を閉じ、第2開閉弁11を開いて定量ポンプ9を作動すれば、原水が貯水容器4から吸引されて飽和電解質溶液が希釈されるため、電解質溶解槽1から吸引される飽和電解質溶液の量と、貯水容器4から吸引される原水の量とを、第1開閉弁8と第2開閉弁11を開閉制御して加減調整することで、所定の電解質濃度を得ることができる。
【0032】
希釈倍率は、使用する電解質の水温変化による最大飽和溶解度と、最小飽和溶解度から算出することができる。表2の記載に基づいて塩化ナトリウムを例にしてその説明を行う。尚、表2は前記表1の中で特に「100℃→0℃」のケースを取り上げたものであって、100℃の飽和電解質溶液を原水で希釈した場合の溶解度と、第1開閉弁8の開放による飽和電解質溶液のショット数と、第2開閉弁11の開放による原水のショット数の関係を示したものである。
【表2】
Figure 0003784713
【0033】
表2に示されているように、塩化ナトリウムの最大飽和溶解度は100℃にて28.2%である。実使用上は溶解する温度は外気温度や溶解水温に左右されるが、考慮される最大溶解度を28.2%と規定する。さらにその状態の溶解水が最小飽和溶解度に達する0℃になることを想定し希釈を行う。
この場合最小飽和溶解度は26.3%であるので、定量ポンプ9を使用した場合9ショット飽和電解質溶液を添加し、1ショット原水を添加するサイクルで制御を行えば、電解質濃度は如何なる水温であっても25.3%となり、上記の26.3%を下回るため、水温差による再結晶化は起きないということになる。
ショットの切替は前述の通り、第1開閉弁8と第2開閉弁11を定量ポンプ9のサイクルに同期させて切替えることとする。このショット数切替を前記メモリテーブルに記憶した電解質の種類毎に可変することにより、多くの電解質に対応することが可能となる。
【0034】
また、電解質が溶解された水温を予めサーミスタ等を用いた水温計6で検知し、その水温における飽和溶解度から最低飽和溶解度の差を演算し、各温度における適量の倍率にて最低飽和溶解度を下回る濃度に調整すると、更に正確に飽和溶解度を制御することが可能となるものであって、上述した全ての希釈動作は、メモリテーブルに記憶したデータと制御プログラムに従って、電解質制御基板18によって自動的に制御される。
【0035】
洗浄動作は、原水を飽和電解質溶液の通過配管と各開閉弁及び定量ポンプの全てに通過させることによって行う。
先ず、第1開閉弁8を一方の常開口8Aと常閉口8Cがオープンした状態(COM−NC)にセットし、第2開閉弁11をオープンに、また、第3開閉弁14を一方の常開口14Aと常閉口14Cがオープンした状態(COM−NC)にセットして、定量ポンプ9を動作させる。
【0036】
定量ポンプ9の動作により原水が吸引され、この原水が定量ポンプ9を通って第3開閉弁14を通過し、その後、バイパス経路14′を通って第1開閉弁8に送られ、最終的には送出口3′より溶解槽フイルター2を通過して電解質溶解槽1の内部に流入する。
【0037】
この原水の通過によって、第1開閉弁8と定量ポンプ9の吸引管10の間を繋ぐ配管12B以外の配管が全て洗浄されたことになる。また、同時にエアー抜きも完了して、その後通常動作に戻る。この時、上記第1開閉弁8と送出口3′の間の電解質供給経路3には原水が残っているが、この原水が第1開閉弁8を通過して定量ポンプ9側に吸引されるため、結果として第1開閉弁8と定量ポンプ9の間の配管12Bが洗浄されるものであって、これ等の洗浄動作は全てメモリテーブルに記憶されたデータと制御プログラムを用いて、電解質制御基板18が自動制御する仕組に成っている。
【0038】
図2は、本発明に係る装置によって被電解水、即ち、電解槽17に供給する飽和電解質溶液の水質(電解質濃度)を設定する場合の操作手順を説明したフローチヤートであって、水質設定に当っては、先ずステップS1にて装置のコントロールパネル(図示省略)に設けた水質選択ボタンを選んで操作する。
水質選択ボタンには、電解質を加えずに原水のみを電解槽17に給水する場合に用いる「SOFT」ボタンと、電解槽17の直前で0.025%の被電解水に調整して給水する場合に用いる「NORMAL」ボタンと、電解槽17の直前で0.05%の被電解水に調整して給水する場合に用いる「HARD」ボタン(いずれも図示せず)が存在する。
【0039】
更に上記の選択ボタンには、電解質溶解槽1から供給される通常使用の電解質(例えば塩化ナトリウムNACL)以外の電解質を用いる場合に操作する「異種電解質」用のボタン(図面の場合は炭酸カリウム用の「K2CO3」ボタン)が設けられていて、これ等各ボタンをステップS2,S3,S4、或は、S5で選択操作した後、次のステップS6に進んで上記の選択状態がロックされると、運転時には前述した電解質制御基板18がメモリテーブルに記憶したプログラムに従って、各開閉弁8,11,13と、定量ポンプ9と、水量調節バルブ16′を制御して、電解槽17に対して水道水等の原水のみを給水したり、或は、例えば0.025%に希釈された食塩水や、0.05%に希釈された食塩水、更には、炭酸カリウム水溶液等が電解槽17側へ給水される仕組に成っている。
【0040】
尚、通常使用以外の電解質(例えば表1、表2に記載の炭酸カリウム、塩化カリウム等)を選択して用いる場合には、メインの電解質溶解槽1以外に他の電解質用の溶解槽(図示省略)を並設する必要があることは勿論である。
【0041】
図3は、電解質として塩化ナトリウム(NACL)を使用し、且つ、前記0.025%の食塩水を供給する「NORMAL」ボタンを操作した場合、及び、0.05%の食塩水を供給する「HARD」ボタンを操作した場合の運転状況を説明したフローチヤートであって、ボタン操作によって上記「NORMAL」運転、又、「HARD」運転のいずれかが設定されると、ステップS10に進んで定量ポンプ9が動作を開始し、次いで、ステップS11に進んで定量ポンプ9の動作カウントがリセットされ、更にステップS12で定量ポンプ9の動作回数のカウントが開始される。
【0042】
次いで、ステップS13に進んで前記電解質制御基板18によって「ルートA」の給水経路、即ち、電解質溶解槽1→第1開閉弁8(COM→NO)→定量ポンプ9→第3開閉弁14(COM→NO)→チェックバルブ15→電解槽17の経路が構成され、次いで、ステップS14に進んで、使用する電解質が塩化ナトリウムである場合は、前記表2に記載の如く、定量ポンプ9を9ショット作動して、飽和塩化ナトリウム溶液を9ショット分吸引し、その後、上記第1開閉弁8を閉じてステップS15に進む。
【0043】
ステップS15では、定量ポンプ9のカウントがリセットされ、次いで、ステップS16に進んで前記電解質制御基板18によって「ルートB」の給水経路、即ち、貯水カップ4(電解質溶解槽)→第2開閉弁11(IN→OUT)→定量ポンプ9→第3開閉弁14(COM→NO)→チェックバルブ15→電解槽17の経路が構成され、次いで、ステップS17に進んで前記表2に記載の如く定量ポンプ9を1ショット作動して、原水を1ショット分吸引する。
【0044】
従って、図示した実施例によれば、飽和塩化ナトリウム溶液を9ショット、原水を1ショットすることで、100℃で28.2%まで溶解されていた塩化ナトリウムが、表2に示すように25.38%の溶解度に希釈されて、環境の変化によって水温が0℃に低下した場合でも、0℃の溶解度26.3%よりも低い値になるため、再結晶による析出が発生することがなく、配管経路の閉塞を防止することができるものであって、最終的には、上記25.38%の溶解度の飽和塩化ナトリウム溶液が、原水によって0.025%(NORMAL)又は0.05%(HARD)の食塩水に再び希釈されて、電解槽17に送り込まれて電解水が生成される仕組に成っている。
【0045】
尚、前記ステップS24とS27に於ける定量ポンプ9のショット数は、電解質として塩化ナトリウム(NACL)を使用した場合の実施例であって、他の電解質を使用した場合に於ける各ショット数は、表2の下欄に示す如く夫々相違する。
【0046】
即ち、図4は電解質として炭酸カリウム(K2CO3)を用いた場合のフローチヤートを示したものであって、ステップS20〜ステップS27の各処理動作は、前記図3に示した塩化ナトリウムを用いた場合の処理手順(ステップS10〜ステップS17)と略同じであるため、その説明を省略するが、但し、ステップS24とS27に於ける定量ポンプ9のショット数が、前記表2の記載に照して夫々8ショットと2ショット(4ショットと1ショット)に変って、0℃の溶解度51.25%よりも低い溶解度48.72%に希釈し、電解質の析出を防止することができる。
【0047】
【発明の効果】
以上述べた次第で、本発明に係る電解水生成装置によれば、飽和電解質溶液の溶解度を、0℃に於ける溶解度を下回る濃度に希釈調整するため、如何なる水温であっても電解質の結晶が析出して管路を閉塞することがなく、ポンプによる電解槽への飽和電解質溶液の送出をスムーズに行って、電解槽による電解水の生成を支障無く行うことができると共に、各開閉弁の切換によって、水道水等の原水のみを各配管や開閉弁及びポンプに送り込んで洗浄できるため、電解質の析出による管路等の閉塞も合せて防止できるものであるから、各種電解質を用いた電解水の生成に用いて、洵に好適なものである。
【図面の簡単な説明】
【図1】本発明に係る電解水生成装置の全体を説明した構成図である。
【図2】本発明に於ける水質設定の処理手順を説明したフローチヤートである。
【図3】電解質として塩化ナトリウムを用いた場合に於ける飽和電解質溶液の希釈処理手順を説明したフローチヤートである。
【図4】電解質として炭酸カリウムを用いた場合に於ける飽和電解質溶液の希釈処理手順を説明したフローチヤートである。
【符号の説明】
1 電解質溶解槽
2 溶解槽フイルター
3 電解質供給経路
3′ 送出口
4 貯水容器
6 水温計
7 原水供給経路
8 第1開閉弁
9 定量ポンプ
11 第2開閉弁
14 第3開閉弁
14′ バイパス経路
15 チエックバルブ
16′ 水量調節バルブ
17 電解槽
18 電解質制御基板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a device for producing electrolyzed water suitable for hand sterilization, food processing equipment sterilization, or general cleaning field, crop cultivation, disease prevention, etc., and particularly for recrystallization of electrolytes, etc. The present invention relates to an electrolyzed water generating device having a function of preventing clogging of a piping path based thereon.
[0002]
[Prior art]
As a method of dissolving the electrolyte at a constant concentration, after manually mixing the electrolyte and diluting liquid (raw water such as tap water) and putting it in the electrolyzer, and after putting only the electrolyte in an appropriate amount in the device There is an automatic dissolution method that automatically adjusts to a constant concentration.
In the manual dissolution method, an electrolyte (salt, etc.) is simply put in water and dissolved by manually stirring, so that only an electrolyte solution having a concentration of about 6% can be produced.
[0003]
On the other hand, the automatic dissolution method is excellent in convenience. For example, in the electrolyzed water generating apparatus disclosed in JP-A-2000-246248, an electrolyte solution (saline solution) having a high concentration (for example, about 25%) is automatically used. ) Can be generated easily and automatically, and has a reasonable aspect.
[0004]
[Problems to be solved by the invention]
However, the electrolyzed water generating device disclosed in the above publication is affected by the surrounding environment, temperature changes, etc., and the electrolyte solution is deposited in the middle of the pipe, causing the blockage of the pipe. It was equipped with.
That is, in the electrolyzed water generating apparatus described in the above publication, the saturated salt water generated in the salt tank is configured to be sent to the electrolytic cell via a plurality of pipes by a pump. On the way to the piping route that is mixed with water, salt precipitation occurs due to a decrease in the temperature of the saturated saline solution due to environmental changes. There was a problem that interfered with the generation.
[0005]
Incidentally, as means for preventing the blockage of the pipe line due to the deposition of the electrolyte, conventionally, means for raising the water temperature with a heater described in JP-A-8-66684 and saline solution described in JP-A-2000-54178 However, the former means of using a heater has a problem that an extra heater is used and the cost of the entire apparatus is increased. As a means for increasing the amount of water supplied, the problem of pipe blockage due to precipitation still remains, so there was a problem that was not a fundamental solution.
[0006]
Therefore, the technical problem of the present invention is to provide a function for preventing electrolyte crystals from precipitating and a function for preventing blockage of the pipe line based on the precipitation when the saturated electrolyte solution is generated and sent to the electrolytic cell. An electrolytic water generating device is provided.
[0007]
[Means for Solving the Problems]
The measures taken to solve the above technical problem are as follows.
[0008]
The saturated electrolyte solution taken out from the bottom outlet of the electrolyte dissolution tank is sent to the electrolytic cell side by a pump, and this saturated electrolyte solution is diluted to an electrolyte concentration suitable for electrolysis with raw water such as tap water before the electrolytic cell. Thereafter, an electrolyzed water generating device configured to generate electrolyzed water by sending it to the electrolyzer,
[0009]
(1) While providing a first on-off valve on the electrolyte supply path that connects between the bottom outlet of the electrolyte dissolution tank and the pump, raw water such as tap water is supplied to the pump side to dilute the saturated electrolyte solution A second on-off valve is provided on the raw water supply path, and the first on-off valve and the second on-off valve are controlled to open and close according to the temperature of the electrolyte solution or raw water, thereby passing through the on-off valves. The dilution ratio of the saturated electrolyte solution supplied to the pump side and the raw water for diluting the saturated electrolyte solution is adjusted to a predetermined ratio, and the saturated electrolyte solution diluted to a predetermined concentration by the raw water is Send to the electrolytic cell, and configure it to dilute to an electrolyte concentration suitable for electrolysis using raw water such as tap water before the electrolytic cell. (Claim 1)
[0010]
(2) By diluting the saturated electrolyte solution to a predetermined concentration with raw water by controlling the opening and closing of the first on-off valve and the second on-off valve, the dilution factor depends on the temperature of the electrolyte solution or raw water, Control the opening and closing of the on-off valve so that the electrolyte is below the saturation solubility at 0 ° C. (Claim 2)
[0011]
(3) While providing the first on-off valve on the electrolyte supply path connecting the bottom outlet of the electrolyte dissolution tank and the pump, raw water such as tap water is supplied to the pump side to dilute the saturated electrolyte solution Providing a second on-off valve on the raw water supply path, controlling the opening and closing of the first on-off valve and the second on-off valve, and supplying the saturated electrolyte solution supplied to the pump side through the on-off valves The dilution rate of the raw water to be diluted is adjusted to be equal to or lower than the saturation solubility of the electrolyte at 0 ° C., and the saturated electrolyte solution diluted to a predetermined concentration with the raw water is sent to the electrolytic cell by a pump. In the front of the electrolyzer, use raw water such as tap water to dilute to an electrolyte concentration suitable for electrolysis. (Claim 3)
[0012]
(4) Based on the memory table storing the saturation solubility of each electrolyte at each temperature, the dilution factor corresponding to the saturation solubility at 0 ° C. of the electrolyte solution generated in the electrolyte dissolution tank is calculated, and this The first on-off valve and the second on-off valve are configured to be controlled to open and close in accordance with the suction shot operation of the pump so that the solubility is equal to or less than the dilution rate. (Claim 4)
[0013]
(5) A third on-off valve is provided on the water supply path connecting the pump and the electrolytic cell, and the third on-off valve and the first on-off valve are configured using three-way valves. When closed (normally closed) are connected to each other by a bypass path, the second on-off valve is opened, the normal opening of the first on-off valve and the third on-off valve is closed, and each normally closed opening is opened. The raw water is configured to flow backward from the third opening / closing valve through the bypass path, the first opening / closing valve and the electrolyte supply path to the inside of the electrolyte dissolution tank from the bottom outlet. (Claim 5)
[0014]
(6) A water storage container to which raw water such as tap water is supplied is provided inside the electrolyte dissolution tank, and a raw water supply path leading to the second on-off valve is connected to the water storage container, and water is supplied to the water storage container. The raw water should be configured to overflow into the electrolyte dissolution tank. (Claim 6)
[0015]
(7) Electrolyte selection operation means for selecting the electrolyte to be used, and electrolyte control means for controlling the opening and closing of the first on-off valve and the second on-off valve according to the selected electrolyte, and further controlling the opening and closing of the third on-off valve And comprising. (Claim 7)
[0016]
According to the means according to claim 1 described in the above (1), the first on-off valve and the second on-off valve are controlled to be opened / closed according to the temperature of the electrolyte solution or raw water, whereby a high concentration saturated electrolyte solution is obtained. Even when the water temperature is lowered, the electrolyte can be diluted to a concentration that does not cause recrystallization, that is, an electrolyte concentration that does not exceed the precipitation concentration at an appropriate amount at each temperature.
That is, the temperature of the electrolyte solution or raw water is detected in advance with a thermistor, etc., and the dilution rate is calculated from the maximum saturation solubility and the minimum saturation solubility due to changes in the water temperature, and is below the minimum saturation solubility at an appropriate amount at each temperature. By adjusting the dilution to a concentration, the saturation solubility can be accurately controlled. As a result, even if the water temperature falls to a low temperature state such as 0 ° C. due to environmental changes, the electrolyte crystals The saturated electrolyte solution is smoothly delivered by the pump without depositing and blocking the pipe line, and it is possible to generate electrolyzed water in the electrolytic cell without any trouble.
[0017]
According to the means according to claim 2 described in (2) above, the first on-off valve and the second on-off valve are controlled to open and close, whereby the dilution rate of the saturated electrolyte solution with the raw water according to the temperature of the electrolyte solution or the raw water Therefore, even if the water temperature falls to a low temperature state such as 0 ° C. due to environmental changes, electrolyte crystals precipitate and block the pipeline. Therefore, the saturated electrolyte solution can be smoothly delivered by the pump.
[0018]
According to the means according to claim 3 described in the above (3), the dilution rate of the saturated electrolyte solution with raw water based on the opening / closing control of the first on-off valve and the second on-off valve can be set regardless of the temperature of the electrolyte solution or the raw water. In order to adjust the electrolyte so that it is less than the saturation solubility at 0 ° C., even if a slight error occurs due to the difference in water temperature, recrystallization of the electrolyte based on environmental changes is prevented and the electrolyte is deposited. It is possible to prevent the blockage of the pipeline.
[0019]
According to the means according to claim 4 described in the above (4), the opening / closing operations of the first on-off valve and the second on-off valve are controlled in accordance with the saturation solubility of each electrolyte stored in the memory in advance, so that saturation is achieved. The dilution ratio of the electrolyte solution can be automatically adjusted so as to be equal to or lower than the saturation solubility of the electrolyte at 0 ° C., and enables selective use of various electrolytes stored in the memory table. Even when any electrolyte is used, it is possible to prevent the blockage of the pipe line due to the deposition of the electrolyte.
[0020]
According to the means according to claim 5 described in the above (5), the raw water can be finally flowed back to the electrolyte dissolution tank from the outlet at the bottom through the bypass path by the pump. The supply path connecting them can be washed with raw water such as tap water to prevent the on-off valves and the supply paths from being blocked due to electrolyte deposition.
[0021]
According to the means according to claim 6 described in the above (6), raw water such as tap water used for diluting the saturated electrolyte solution is overflowed into the electrolyte dissolution tank so that it can be used for dissolving the electrolyte. As a result, it is not necessary to use a plurality of on-off valves for water injection control, and the cost of the apparatus can be reduced.
[0022]
According to the means according to claim 7 described in (7) above, the electrolyte selected by the electrolyte selection operation means is diluted to a concentration suitable for electrolysis while the electrolyte control means controls opening and closing of each on-off valve. The pumped electrolyte solution can be smoothly delivered to the electrolytic cell side by a pump without clogging each piping path due to recrystallization of the electrolyte at any water temperature, or each piping path can be washed with raw water It is possible to proceed with the generation of electrolyzed water.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of an electrolyzed water generating apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram illustrating the whole of the present invention. In the figure, 1 is an electrolyte dissolution tank, 2 is a dissolution tank 1 The dissolution tank filter provided at the inner bottom of the tank contains an electrolyte (for example, sodium chloride, potassium chloride, etc.) that is not dissolved and accumulates raw water such as tap water and pure water. When the electrolyte and raw water are extracted so as to be filtered just through the dissolution tank filter 2, a saturated electrolyte solution corresponding to the saturated solubility number of the electrolyte is automatically generated, and this solution is sucked into a metering pump described later. Then, it passes through a delivery port 3 ′ provided at the bottom of the dissolution tank 1, and is sent to the electrolyte supply path 3 configured using a hose, pipe, or the like.
[0024]
4 is a water storage container provided inside the upper part of the electrolyte dissolution tank 1, 5 is a water supply pipe for supplying raw water such as tap water or pure water to the water storage container 4, and 7 is a raw water supplied to the water storage container 4. The raw water fed into the water storage container 4 through the water supply pipe 5 in the raw water supply path configured by using a hose or pipe taken out from the dissolution tank 1 to the outside overflows from the water storage container 4 and accumulates in the electrolyte dissolution tank 1. , And a mechanism for dissolving the electrolyte. Reference numeral 6 denotes a thermometer such as a thermistor for measuring the temperature of the electrolyte solution in the electrolyte dissolution tank 1 or the temperature of raw water.
[0025]
What is generally indicated by reference numeral 8 is a first on-off valve provided on the electrolyte supply path 3. The first on-off valve 8 is normally open 8A, 8B (COM, NO) and normally closed 8C. (NC) is used, and the tip of the electrolyte supply path 3 is connected to one normal opening 8A, and a pipe 12B connected to the other normal opening 8B is a suction pipe. 10 is connected to the suction side of the metering pump 9, and the suction action by the operation of the metering pump 9 is exerted on the outlet 3 ′ of the electrolyte dissolution tank 1 through the first on-off valve 8 and the electrolyte supply path 3. The above-described saturated electrolyte solution is sucked to the metering pump 9 side.
[0026]
Reference numeral 11 denotes a second opening / closing valve provided on the raw water supply path 7, and the tip of a pipe 12 </ b> A connected to the delivery side (OUT) of the second opening / closing valve 11 is a suction pipe 10 of the metering pump 9. The metering pump 9 is sucked into the water storage container 5 through the raw water supply path 7 by sucking the raw water to the metering pump 9 side, and the saturated electrolyte solution is diluted to a predetermined electrolyte concentration. Is configured to do.
[0027]
Reference numeral 13 denotes a delivery path connected to the delivery side of the metering pump 9, and reference numeral 14 designates a third on-off valve provided on the delivery path 13 as a whole. The third on-off valve 14 is normally open. 14A, 14B (COM, NO) and a three-way valve provided with a normally closed port 14C (NC) are used, and the normally closed ports 8C, 14C of the first on-off valve 8 and the third on-off valve 14 are cleaned. Are connected by a bypass path 14 '.
[0028]
15A is a supply path connected to the normal opening 14B (NO) on the delivery side of the third on-off valve 14, and this supply path 15A is in the middle of the water supply path 16 through which raw water such as tap water is supplied via the check valve 15. Is mixed with a saturated electrolyte solution diluted to a predetermined concentration (for example, 20 to 50%) to the raw water quantitatively supplied by the water amount adjusting valve 16 ', and this is used as an electrolyte suitable for electrolysis. After being diluted to the electrolyzed water having a concentration (for example, about 0.01 to 0.2%), this electrolyzed water is sent to the electrolytic cell 17 through the water supply path 16 to generate electrolyzed water. .
[0029]
18 is an electrolyte control board, 19 is an electrolyte selection operation board connected to the electrolyte control board 18 via a communication line S6, and the electrolyte control board 18 is described above via the communication lines S1, S2, S3, S4, S5, S7. The first on-off valve 8, the second on-off valve 11, the water temperature gauge 6, the metering pump 9, the third on-off valve 14, and the water amount adjustment valve 16 ′ are connected to the electrolyte sent from the water temperature gauge 6. Dilution that dilutes the concentration of the saturated electrolyte solution to be equal to or lower than the saturation solubility of the electrolyte at 0 ° C. by controlling the opening and closing of the first on-off valve 8 and the second on-off valve 11 according to the temperature of the solution or raw water. The adjustment function, the open / close valves 8, 11, 14 are opened and closed, and the pipes 3, 12 B, 10 and 13 through which the electrolyte passes, the open / close valves 8, 11, 14 and the metering pump 9 are all made of raw water. It has a cleaning function for cleaning. Each of the on-off valves 8 and 14 is configured using, for example, an electromagnetic valve.
[0030]
Explaining in detail the necessity of diluting the concentration of the saturated electrolyte solution below the saturation solubility of the electrolyte at 0 ° C. Solubility is generally the limit at which a substance (solute) is soluble in another substance (solvent). It is expressed by the concentration of the solute in the saturated solution, and generally changes with temperature. Among the electrolytes, a representative example of a substance whose solubility is less temperature-dependent is sodium chloride, but according to “Chemical Handbook / Chemical Society of Japan”, as shown in Table 1 below, 0 ° C. and 100 ° C. The difference in solubility is 1.07 times, 1.2 times for potassium carbonate and 1.6 times for potassium chloride. As a result, it can be easily estimated that there are many cases in which pipe lines are blocked by recrystallization in actual use examples in cold districts due to this difference in solubility.
[Table 1]
Figure 0003784713
[0031]
In order to dilute the saturated electrolyte solution, first, the first on-off valve 8 is opened, the second on-off valve 11 is closed, and the metering pump 9 is operated. Then, the saturated electrolyte solution is sucked from the electrolyte dissolution tank 1, and then the first If the on-off valve 8 is closed, the second on-off valve 11 is opened and the metering pump 9 is operated, the raw water is sucked from the water storage container 4 and the saturated electrolyte solution is diluted. A predetermined electrolyte concentration can be obtained by adjusting the amount of the electrolyte solution and the amount of raw water sucked from the water storage container 4 by controlling the opening and closing of the first on-off valve 8 and the second on-off valve 11. .
[0032]
The dilution factor can be calculated from the maximum saturation solubility due to the change in the water temperature of the electrolyte used and the minimum saturation solubility. Based on the description in Table 2, sodium chloride will be described as an example. Table 2 shows the case of “100 ° C. → 0 ° C.” in Table 1. The solubility when the saturated electrolyte solution at 100 ° C. is diluted with raw water, and the first on-off valve 8. 4 shows the relationship between the number of shots of the saturated electrolyte solution due to the opening of the water and the number of shots of raw water due to the opening of the second on-off valve 11.
[Table 2]
Figure 0003784713
[0033]
As shown in Table 2, the maximum saturated solubility of sodium chloride is 28.2% at 100 ° C. In actual use, the melting temperature depends on the outside air temperature and the dissolved water temperature, but the maximum solubility to be considered is defined as 28.2%. Further, dilution is performed assuming that the dissolved water in that state reaches 0 ° C. at which the minimum saturation solubility is reached.
In this case, since the minimum saturation solubility is 26.3%, when the metering pump 9 is used, if the control is performed with a cycle in which a 9-shot saturated electrolyte solution is added and 1-shot raw water is added, the electrolyte concentration can be any water temperature. Even so, it is 25.3%, which is lower than the above 26.3%, so that recrystallization due to a difference in water temperature does not occur.
As described above, the shot switching is performed by switching the first on-off valve 8 and the second on-off valve 11 in synchronization with the cycle of the metering pump 9. By changing the shot number switching for each type of electrolyte stored in the memory table, it is possible to deal with many electrolytes.
[0034]
Further, the water temperature at which the electrolyte is dissolved is detected by a water temperature meter 6 using a thermistor or the like in advance, and the difference in the lowest saturated solubility is calculated from the saturated solubility at the water temperature, and is below the lowest saturated solubility at an appropriate amount of magnification at each temperature. When the concentration is adjusted, the saturation solubility can be controlled more accurately. All the dilution operations described above are automatically performed by the electrolyte control board 18 in accordance with the data stored in the memory table and the control program. Be controlled.
[0035]
The washing operation is performed by allowing the raw water to pass through all of the saturated electrolyte solution passage pipe, each on-off valve, and the metering pump.
First, the first on-off valve 8 is set in a state in which one of the normally open 8A and the normally closed 8C is open (COM-NC), the second on-off valve 11 is opened, and the third on-off valve 14 is connected to one of the normal on-off valves. The metering pump 9 is operated by setting the opening 14A and the normally closed port 14C in an open state (COM-NC).
[0036]
The raw water is sucked by the operation of the metering pump 9, and this raw water passes through the third on-off valve 14 through the metering pump 9, and then is sent to the first on-off valve 8 through the bypass path 14 '. Passes through the dissolution tank filter 2 from the delivery port 3 ′ and flows into the electrolyte dissolution tank 1.
[0037]
By the passage of the raw water, all the pipes other than the pipe 12B connecting the first on-off valve 8 and the suction pipe 10 of the metering pump 9 are washed. At the same time, the air venting is completed, and then the normal operation is resumed. At this time, the raw water remains in the electrolyte supply path 3 between the first on-off valve 8 and the outlet 3 ′, but the raw water passes through the first on-off valve 8 and is sucked into the metering pump 9 side. Therefore, as a result, the pipe 12B between the first on-off valve 8 and the metering pump 9 is cleaned, and these cleaning operations are all performed using the data stored in the memory table and the control program to control the electrolyte. The substrate 18 is automatically controlled.
[0038]
FIG. 2 is a flow chart for explaining the operation procedure when setting the water quality (electrolyte concentration) of the saturated electrolyte solution supplied to the electrolyzed water 17, that is, the electrolytic cell 17 by the apparatus according to the present invention. First, in step S1, a water quality selection button provided on the control panel (not shown) of the apparatus is selected and operated.
The water quality selection button includes a “SOFT” button used when supplying only the raw water to the electrolytic cell 17 without adding an electrolyte, and adjusting the water to be electrolyzed to 0.025% immediately before the electrolytic cell 17 and supplying the water. There is a “NORMAL” button used for the control, and a “HARD” button (both not shown) used for adjusting and supplying 0.05% electrolyzed water just before the electrolytic cell 17.
[0039]
Further, the above selection button includes a button for “heterogeneous electrolyte” which is operated when using an electrolyte other than a normally used electrolyte (for example, sodium chloride NACL) supplied from the electrolyte dissolution tank 1 (in the case of drawing, for potassium carbonate). "K2CO3" buttons) are provided, and after these buttons are selected and operated in steps S2, S3, S4, or S5, the process proceeds to the next step S6, and the selected state is locked. During operation, according to the program stored in the memory table by the electrolyte control board 18 described above, the open / close valves 8, 11, 13, the metering pump 9, and the water amount adjusting valve 16 'are controlled to supply water to the electrolytic cell 17. Supply only raw water such as water, or, for example, saline diluted to 0.025%, saline diluted to 0.05%, and potassium carbonate aqueous solution. It has a mechanism which is water to a solution tank 17 side.
[0040]
When an electrolyte other than normal use (for example, potassium carbonate or potassium chloride described in Tables 1 and 2) is selected and used, a dissolution tank for other electrolytes (not shown) other than the main electrolyte dissolution tank 1 is illustrated. Of course, it is necessary to arrange them in a parallel manner.
[0041]
FIG. 3 shows a case where sodium chloride (NACL) is used as an electrolyte and the “NORMAL” button for supplying 0.025% saline is operated, and 0.05% saline is supplied. When the “NORMAL” operation or the “HARD” operation is set by operating the button, the flow chart explains the operation state when the “HARD” button is operated. Then, the operation starts, and the process proceeds to step S11, where the operation count of the metering pump 9 is reset, and further, the counting of the number of operations of the metering pump 9 is started in step S12.
[0042]
Next, the process proceeds to step S13, where the electrolyte control board 18 supplies the "route A" water supply path, that is, the electrolyte dissolution tank 1 → the first on-off valve 8 (COM → NO) → the metering pump 9 → the third on-off valve 14 (COM → NO) → Check valve 15 → Electrolytic cell 17 path is constructed, and then the process proceeds to step S14, and when the electrolyte to be used is sodium chloride, the metering pump 9 is shot 9 shots as shown in Table 2 above. The operation is performed to suck the saturated sodium chloride solution for nine shots, and then the first on-off valve 8 is closed and the process proceeds to step S15.
[0043]
In step S15, the count of the metering pump 9 is reset, and then the process proceeds to step S16, where the electrolyte control board 18 supplies the water supply path of “Route B”, that is, the water storage cup 4 (electrolyte dissolution tank) → the second on-off valve 11 (IN → OUT) → metering pump 9 → third open / close valve 14 (COM → NO) → check valve 15 → electrolyzer 17 path is constructed, and then the process proceeds to step S17 and the metering pump as shown in Table 2 above. 9 is operated for one shot, and raw water is sucked for one shot.
[0044]
Therefore, according to the illustrated embodiment, the sodium chloride dissolved to 28.2% at 100 ° C. by taking 9 shots of the saturated sodium chloride solution and 1 shot of the raw water is 25. Even when the water temperature is lowered to 0 ° C due to environmental changes after being diluted to a solubility of 38%, since the solubility is lower than 26.3% at 0 ° C, precipitation due to recrystallization does not occur. In the end, the saturated sodium chloride solution having the solubility of 25.38% is 0.025% (NORMAL) or 0.05% (HARD) depending on the raw water. ) Is again diluted with the saline solution and sent to the electrolytic cell 17 to generate electrolyzed water.
[0045]
The number of shots of the metering pump 9 in the steps S24 and S27 is an example when sodium chloride (NACL) is used as an electrolyte, and the number of shots when another electrolyte is used is as follows. As shown in the lower column of Table 2, they are different.
[0046]
That is, FIG. 4 shows a flow chart when potassium carbonate (K2CO3) is used as an electrolyte, and each processing operation of step S20 to step S27 is performed when sodium chloride shown in FIG. 3 is used. The processing procedure (steps S10 to S17) is substantially the same, and the description thereof will be omitted. However, the number of shots of the metering pump 9 in steps S24 and S27 is as described in Table 2 above. Instead of 8 shots and 2 shots (4 shots and 1 shot), respectively, the solubility can be diluted to 48.72%, which is lower than the solubility of 51.25% at 0 ° C., thereby preventing electrolyte deposition.
[0047]
【The invention's effect】
As described above, according to the electrolyzed water generating apparatus according to the present invention, the solubility of the saturated electrolyte solution is adjusted to a concentration lower than the solubility at 0 ° C., so that the electrolyte crystals can be formed at any water temperature. Sediment electrolyte solution can be smoothly delivered to the electrolytic cell by the pump without depositing and blocking the pipe line, and the electrolytic water can be generated by the electrolytic cell without hindrance, and switching of each on-off valve Since only raw water such as tap water can be sent to each pipe, on-off valve, and pump for cleaning, blockage of pipelines due to deposition of electrolyte can be prevented and electrolyzed water using various electrolytes can be prevented. Used for production, suitable for straw.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating the entire electrolyzed water generating apparatus according to the present invention.
FIG. 2 is a flow chart for explaining a processing procedure for setting water quality in the present invention.
FIG. 3 is a flow chart illustrating a procedure for diluting a saturated electrolyte solution when sodium chloride is used as an electrolyte.
FIG. 4 is a flow chart illustrating a procedure for diluting a saturated electrolyte solution when potassium carbonate is used as an electrolyte.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolyte dissolution tank 2 Dissolution tank filter 3 Electrolyte supply path 3 'Outlet 4 Water storage container 6 Water temperature meter 7 Raw water supply path 8 First on-off valve 9 Metering pump 11 Second on-off valve 14 Third on-off valve 14' Bypass path 15 Check Valve 16 'Water volume control valve 17 Electrolysis tank 18 Electrolyte control board

Claims (7)

電解質溶解槽の底部送出口から取り出した飽和電解質溶液をポンプによって電解槽側へ送り、且つ、この飽和電解質溶液を電解槽の手前で水道水等の原水で電気分解に適した電解質濃度に希釈した後、電解槽に送り込んで電解水を生成するように構成した電解水生成装置であって、
上記電解質溶解槽の底部送出口とポンプの間を繋ぐ電解質供給経路上に第1開閉弁を設ける一方、水道水等の原水を上記ポンプ側に供給して、上記飽和電解質溶液を希釈する原水供給経路上に第2開閉弁を設けて、上記電解質溶液又は原水の温度に応じて、上記第1開閉弁及び第2開閉弁を開閉制御することにより、上記各開閉弁を通って上記ポンプ側に供給される飽和電解質溶液とこれを希釈する原水の希釈倍率を、所定の比率に調整するように構成すると共に、上記原水によって所定濃度に希釈された飽和電解質溶液を、ポンプによって上記の電解槽へ送って、電解槽の手前で水道水等の原水を用いて電気分解に適した電解質濃度に希釈するように構成したことを特徴とする電解水生成装置。
The saturated electrolyte solution taken out from the bottom outlet of the electrolyte dissolution tank is sent to the electrolytic cell side by a pump, and this saturated electrolyte solution is diluted to an electrolyte concentration suitable for electrolysis with raw water such as tap water before the electrolytic cell. Thereafter, an electrolyzed water generating device configured to generate electrolyzed water by sending it to the electrolyzer,
A raw water supply for diluting the saturated electrolyte solution while providing a first on-off valve on the electrolyte supply path connecting the bottom outlet of the electrolyte dissolution tank and the pump, while supplying raw water such as tap water to the pump side A second on-off valve is provided on the path, and the first on-off valve and the second on-off valve are controlled to open and close according to the temperature of the electrolyte solution or raw water. The dilution ratio of the supplied saturated electrolyte solution and raw water for diluting the saturated electrolyte solution is adjusted to a predetermined ratio, and the saturated electrolyte solution diluted to a predetermined concentration by the raw water is supplied to the electrolytic cell by a pump. An electrolyzed water generating device characterized in that the electrolyzed water generator is configured to dilute to an electrolyte concentration suitable for electrolysis using raw water such as tap water before the electrolyzer.
前記第1開閉弁と第2開閉弁を開閉制御することにより、飽和電解質溶液を原水によって所定の濃度に希釈するに当って、その希釈倍率が電解質溶液又は原水の水温に応じて、電解質の0℃に於ける飽和溶解度以下に成るように上記開閉弁を開閉制御せしめることを特徴とする請求項1に記載の電解水生成装置。By controlling the opening and closing of the first on-off valve and the second on-off valve, when diluting the saturated electrolyte solution to a predetermined concentration with raw water, the dilution factor is 0 according to the temperature of the electrolyte solution or raw water. 2. The electrolyzed water generating device according to claim 1, wherein the on-off valve is controlled to open and close so as to be equal to or lower than a saturation solubility at ° C. 電解質溶解槽の底部送出口から取り出した飽和電解質溶液をポンプによって電解槽側へ送り、且つ、この飽和電解質溶液を電解槽の手前で水道水等の原水で電気分解に適した電解質濃度に希釈した後、電解槽に送り込んで電解水を生成するように構成した電解水生成装置であって、
上記電解質溶解槽の底部送出口とポンプの間を繋ぐ電解質供給経路上に第1開閉弁を設ける一方、水道水等の原水を上記ポンプ側に供給して、上記飽和電解質溶液を希釈する原水供給経路上に第2開閉弁を設けて、上記第1開閉弁及び第2開閉弁を開閉制御して、上記各開閉弁を通って上記ポンプ側に供給される飽和電解質溶液とこれを希釈する原水の希釈倍率を、上記電解質の0℃に於ける飽和溶解度以下に成るように調整せしめると共に、上記原水によって所定濃度に希釈された飽和電解質溶液を、ポンプによって上記の電解槽へ送って、電解槽の手前で水道水等の原水を用いて電気分解に適した電解質濃度に希釈するように構成したことを特徴とする電解水生成装置。
The saturated electrolyte solution taken out from the bottom outlet of the electrolyte dissolution tank is sent to the electrolytic cell side by a pump, and this saturated electrolyte solution is diluted to an electrolyte concentration suitable for electrolysis with raw water such as tap water before the electrolytic cell. Thereafter, an electrolyzed water generating device configured to generate electrolyzed water by sending it to the electrolyzer,
A raw water supply for diluting the saturated electrolyte solution while providing a first on-off valve on the electrolyte supply path connecting the bottom outlet of the electrolyte dissolution tank and the pump, while supplying raw water such as tap water to the pump side A second on-off valve is provided on the path, and the on-off control of the first on-off valve and the second on-off valve is performed, and the saturated electrolyte solution supplied to the pump side through the on-off valves and the raw water for diluting the saturated electrolyte solution The dilution ratio of the electrolyte is adjusted to be equal to or lower than the saturation solubility of the electrolyte at 0 ° C., and the saturated electrolyte solution diluted to a predetermined concentration with the raw water is sent to the electrolytic cell by a pump, An electrolyzed water generating device characterized in that it is diluted to an electrolyte concentration suitable for electrolysis using raw water such as tap water before the water.
各種電解質の各温度毎の飽和溶解度を記憶したメモリテーブルに基づいて、電解質溶解槽にて生成された電解質溶液の0℃に於ける飽和溶解度に対応する希釈倍率を演算して、この0℃に於ける希釈倍率以下の溶解度に成るように前記第1開閉弁と第2開閉弁を、前記ポンプの吸引ショット動作に合せて開閉制御するように構成したことを特徴とする請求項1、2又は3に記載の電解水生成装置。Based on the memory table storing the saturation solubility of each electrolyte at each temperature, the dilution factor corresponding to the saturation solubility at 0 ° C. of the electrolyte solution generated in the electrolyte dissolution tank is calculated, and this 0 ° C. is obtained. The first on-off valve and the second on-off valve are configured to be controlled to open and close in accordance with the suction shot operation of the pump so as to have a solubility equal to or less than the dilution ratio in claim 1. 3. The electrolyzed water generating device according to 3. 前記ポンプと電解槽の間を繋ぐ給水経路上に第3開閉弁を設け、この第3開閉弁と前記第1開閉弁を三方弁を用いて構成し、これ等各三方弁の常閉口(ノーマルクローズ)同士をバイパス経路で繋いで、前記第2開閉弁を開いて上記第1開閉弁と第3開閉弁の常開口を閉じて各常閉口を開くと、上記ポンプによって吸引された原水が、第3開閉弁よりバイパス経路及び第1開閉弁と前記電解質供給経路を経て、底部の送出口より前記電解質溶解槽の内部に逆流するように構成したことを特徴とする請求項1、2、3又は4に記載の電解水生成装置。A third on-off valve is provided on the water supply path connecting the pump and the electrolytic cell, and the third on-off valve and the first on-off valve are configured using three-way valves. Closed) by connecting each other by a bypass path, opening the second on-off valve, closing the normal opening of the first on-off valve and the third on-off valve, and opening each normally closed opening, the raw water sucked by the pump, The first and the second on-off valves and the electrolyte supply path from the third on-off valve, and back flow from the bottom outlet to the inside of the electrolyte dissolution tank. Or the electrolyzed water generating apparatus of 4. 前記電解質溶解槽の内部に、水道水等の原水が給水される貯水容器を設け、この貯水容器に前記第2開閉弁に通じる原水供給経路を接続すると共に、上記貯水容器に給水した原水が上記電解質溶解槽内にオーバーフロー自在に構成したことを特徴とする請求項1、2、3、4又は5に記載の電解水生成装置。A reservoir for supplying raw water such as tap water is provided inside the electrolyte dissolution tank, and a raw water supply path leading to the second on-off valve is connected to the water storage container, and the raw water supplied to the water storage container is The electrolyzed water generating device according to claim 1, 2, 3, 4, or 5, wherein the electrolysis water tank is configured to freely overflow. 使用する電解質を選択する電解質選択操作手段と、選択された電解質に応じて前記第1開閉弁と第2開閉弁を開閉制御し、更に、第3開閉弁を開閉制御する電解質制御手段とを備えて成ることを特徴とする請求項1、2、3、4、5又は6に記載の電解水生成装置。Electrolyte selection operation means for selecting an electrolyte to be used, and electrolyte control means for controlling opening and closing of the first on-off valve and the second on-off valve according to the selected electrolyte, and further for opening and closing the third on-off valve. The electrolyzed water generating apparatus according to claim 1, 2, 3, 4, 5 or 6.
JP2001388821A 2001-12-21 2001-12-21 Electrolyzed water generator Expired - Lifetime JP3784713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001388821A JP3784713B2 (en) 2001-12-21 2001-12-21 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001388821A JP3784713B2 (en) 2001-12-21 2001-12-21 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JP2003181452A JP2003181452A (en) 2003-07-02
JP3784713B2 true JP3784713B2 (en) 2006-06-14

Family

ID=27597203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001388821A Expired - Lifetime JP3784713B2 (en) 2001-12-21 2001-12-21 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP3784713B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5416647B2 (en) * 2010-04-27 2014-02-12 アマノ株式会社 Electrolyzed water generator with piping path clogging prevention function
KR101568860B1 (en) 2014-03-03 2015-11-13 에이펫(주) Apparatus for providing Electrolyte solution in Semiconductor Cleaning Apparatus

Also Published As

Publication number Publication date
JP2003181452A (en) 2003-07-02

Similar Documents

Publication Publication Date Title
CN102510760B (en) Method for monitoring dialysate concentration and device therefor
US4381999A (en) Automatic ultrafiltration control system
US4371385A (en) Deaerating liquid
US20030168085A1 (en) Detergent dispenser
US4397189A (en) Measuring low flowrates
JP6199037B2 (en) Liquid fertilizer supply system and automatic irrigator
JPWO2019169081A5 (en)
US8372299B2 (en) Substrate treating apparatus and substrate treating method
JPH0373164A (en) Medical care solution preparation device
JPWO2016104720A1 (en) Blood treatment system
CN110475494B (en) Beverage supply device
JP6830887B2 (en) How to calibrate the flow meter of a blood dialysis system
JP3784713B2 (en) Electrolyzed water generator
US4399030A (en) Rinsing, cleaning and disinfecting dialysate preparation and supply apparatus
CN103047539A (en) Chemical liquor supply system
CN107427620A (en) Dialysis liquid supply system
WO2008080789A1 (en) A washing machine with a water supply tank
CN108137356A (en) Ballast water treatment plant and ballast water processing
JP6135230B2 (en) Mixer
KR101702735B1 (en) Water purifier
JP5416647B2 (en) Electrolyzed water generator with piping path clogging prevention function
CN111372621A (en) Apparatus and method for preparing dialysate
JP2008168078A (en) Dialysate supply device
JP3256693B2 (en) Apparatus for producing high-concentration saline and apparatus for producing sterilized water containing hypochlorous acid using the same
US11273244B2 (en) Dialysis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060315

R150 Certificate of patent or registration of utility model

Ref document number: 3784713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8