JP5415483B2 - Steam system - Google Patents

Steam system Download PDF

Info

Publication number
JP5415483B2
JP5415483B2 JP2011138885A JP2011138885A JP5415483B2 JP 5415483 B2 JP5415483 B2 JP 5415483B2 JP 2011138885 A JP2011138885 A JP 2011138885A JP 2011138885 A JP2011138885 A JP 2011138885A JP 5415483 B2 JP5415483 B2 JP 5415483B2
Authority
JP
Japan
Prior art keywords
steam
pressure
prime mover
amount
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011138885A
Other languages
Japanese (ja)
Other versions
JP2013007286A (en
Inventor
重喜 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Kobe Steel Ltd
Original Assignee
Miura Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd, Kobe Steel Ltd filed Critical Miura Co Ltd
Priority to JP2011138885A priority Critical patent/JP5415483B2/en
Publication of JP2013007286A publication Critical patent/JP2013007286A/en
Application granted granted Critical
Publication of JP5415483B2 publication Critical patent/JP5415483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、蒸気を用いて圧縮機やブロワなどを駆動する蒸気システムに関するものである。   The present invention relates to a steam system that uses steam to drive a compressor, a blower, and the like.

下記特許文献1に開示される蒸気システム(1)が知られている。この蒸気システムは、蒸気を用いて動力を起こす原動機(蒸気エンジン2)と、この原動機により駆動される被動機(空気圧縮機3)とを備え、流体負荷(圧縮空気の使用負荷)と蒸気負荷(蒸気の使用負荷)とに基づき原動機への給蒸を制御する。また、原動機にて使用後の蒸気が供給される箇所へは、原動機を介することなくバイパス路(13)を介しても蒸気が供給可能とされ、このバイパス路にはバイパス弁(14)が設けられている。   A steam system (1) disclosed in Patent Document 1 below is known. This steam system includes a prime mover (steam engine 2) that generates power using steam, and a driven machine (air compressor 3) driven by the prime mover, and includes a fluid load (use load of compressed air) and a steam load. The steam supply to the prime mover is controlled based on the (steam usage load). In addition, steam can be supplied to the location where steam after use in the prime mover is supplied via the bypass passage (13) without going through the prime mover, and a bypass valve (14) is provided in the bypass passage. It has been.

この蒸気システムは、次のように制御される。
(a)流体負荷および蒸気負荷がある場合には、原動機への蒸気供給を実行する。
(b)流体負荷および蒸気負荷がない場合には、原動機への蒸気供給を停止する。
(c)流体負荷がないが蒸気負荷がある場合には、原動機への蒸気供給を停止した状態で、バイパス路を介して蒸気を供給する。
(d)流体負荷があるが蒸気負荷がない場合には、前記被動機またはこれと同一機能の第二の被動機を電動機で駆動する。
This steam system is controlled as follows.
(A) When there is a fluid load and a steam load, supply steam to the prime mover.
(B) When there is no fluid load or steam load, the steam supply to the prime mover is stopped.
(C) When there is no fluid load but there is a steam load, the steam is supplied to the prime mover via the bypass passage while the supply of steam to the prime mover is stopped.
(D) When there is a fluid load but no steam load, the driven machine or the second driven machine having the same function is driven by an electric motor.

特許第4240155号公報(請求項1−3,5−7)Japanese Patent No. 4240155 (Claims 1-3, 5-7)

前記特許文献1に開示される発明は、流体負荷と蒸気負荷とに基づき運転するのであるが、より具体的な制御について、出願人はその後も鋭意研究に努めてきた。たとえば、流体負荷および蒸気負荷の双方がある場合に、原動機への蒸気供給を実行するが、その制御を具体的にどのように実行すべきか、すなわち、流体負荷に基づく制御か、蒸気負荷に基づく制御か、いずれを実行すべきか、両制御をどのように切り替えるべきかについて、鋭意研究に努めてきた。   The invention disclosed in Patent Document 1 operates based on a fluid load and a steam load. However, the applicant has been eagerly researching more specific control. For example, when there is both a fluid load and a steam load, the steam supply to the prime mover is executed, but how the control is specifically executed, that is, the control based on the fluid load or the steam load We have been diligently researching whether to control, which to execute, and how to switch between the two controls.

また、原動機への給蒸側に設置するボイラとして、廃熱ボイラや排ガスボイラを用いた場合、発生蒸気量は成り行きになるため、原動機の入口側の蒸気圧力が上下動することになる。そこで、前述した流体負荷に基づく制御や蒸気負荷に基づく制御以外に、原動機の入口側の蒸気圧力に基づき原動機への給蒸を制御したい場合もある。そして、その場合には、三種の制御をどのように切り替えるかがさらなる課題となる。   In addition, when a waste heat boiler or an exhaust gas boiler is used as a boiler installed on the steam supply side to the prime mover, the amount of generated steam becomes unsatisfactory, so the steam pressure on the inlet side of the prime mover moves up and down. Therefore, in addition to the control based on the fluid load and the control based on the steam load described above, there are cases where it is desired to control the steam supply to the prime mover based on the steam pressure on the inlet side of the prime mover. In that case, how to switch the three types of control becomes a further problem.

本発明は、このような事情に鑑みてなされたものであり、蒸気エンジンを用いて圧縮機などを駆動する蒸気システムにおいて、流体負荷に基づく制御、蒸気負荷に基づく制御、さらに所望により原動機の入口側の蒸気圧力に基づく制御も含めて、これら制御を適切に切り替えて、蒸気システムを効率よく運転することを課題とする。   The present invention has been made in view of such circumstances, and in a steam system for driving a compressor or the like using a steam engine, control based on a fluid load, control based on a steam load, and, if desired, an inlet of a prime mover It is an object to efficiently operate the steam system by appropriately switching these controls including the control based on the steam pressure on the side.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、蒸気を用いて動力を起こす原動機と、この原動機により駆動され、流体を吸入して吐出する被動機と、この被動機の吐出側における流体の圧力を検出する第一圧力センサと、前記原動機の排蒸側における蒸気の圧力を検出する第二圧力センサとを備え、前記第一圧力センサの検出圧力が上昇すると前記原動機への給蒸量を減少させる逆作動形の特性で前記第一圧力センサの検出圧力に基づき前記原動機への給蒸量を制御するか、前記第二圧力センサの検出圧力が上昇すると前記原動機への給蒸量を減少させる逆作動形の特性で前記第二圧力センサの検出圧力に基づき前記原動機への給蒸量を制御し、前記第一圧力センサの検出圧力に基づく制御と、前記第二圧力センサの検出圧力に基づく制御との内、前記原動機への給蒸量が少なくなる制御に切り替えることを特徴とする蒸気システムである。   The present invention has been made to solve the above-mentioned problems. The invention according to claim 1 is a motor that generates power using steam, and a driven machine that is driven by the motor and sucks and discharges fluid. A first pressure sensor that detects the pressure of the fluid on the discharge side of the driven machine, and a second pressure sensor that detects the pressure of the steam on the exhaust side of the prime mover, and the detected pressure of the first pressure sensor When the pressure rises, the amount of steam supplied to the prime mover is decreased, and the amount of steam supplied to the prime mover is controlled based on the detected pressure of the first pressure sensor with a reverse operation type characteristic, or the detected pressure of the second pressure sensor is Control of the amount of steam supplied to the prime mover based on the pressure detected by the second pressure sensor and the control based on the pressure detected by the first pressure sensor. And the second pressure Among the control based on the detected pressure of the sensor, a steam system, characterized in that to switch to control the supply 蒸量 decreases to the prime mover.

たとえば、第一圧力センサの検出圧力(被動機の吐出側の流体圧力)に基づき原動機への給蒸量を制御中、原動機の排蒸側の使用蒸気量が減少すると、原動機の排蒸側の蒸気圧力が高まるので、原動機を停止させる必要に迫られる。一方、第二圧力センサの検出圧力(原動機の排蒸側の蒸気圧力)に基づき原動機への給蒸量を制御中、被動機の吐出側の使用流体量が減少すると、被動機の吐出側の流体圧力が高まるので、原動機を停止させる必要に迫られる。ところが、請求項1に記載の発明によれば、第一圧力センサの検出圧力に基づく制御と、第二圧力センサの検出圧力に基づく制御との内、原動機への給蒸量が少なくなる制御に適宜切り替えることで、流体や蒸気の使用量に応じて原動機の運転の継続を図ることができる。   For example, if the amount of steam used on the exhaust side of the prime mover decreases while the amount of steam supplied to the prime mover is being controlled based on the pressure detected by the first pressure sensor (fluid pressure on the discharge side of the driven machine), As the steam pressure increases, it is necessary to stop the prime mover. On the other hand, if the amount of fluid used on the discharge side of the driven machine decreases while the amount of steam supplied to the prime mover is being controlled based on the pressure detected by the second pressure sensor (steam pressure on the exhaust side of the prime mover), the discharge side of the driven machine As the fluid pressure increases, it is necessary to stop the prime mover. However, according to the invention described in claim 1, of the control based on the detection pressure of the first pressure sensor and the control based on the detection pressure of the second pressure sensor, the control for reducing the steam supply amount to the prime mover. By appropriately switching, the operation of the prime mover can be continued according to the amount of fluid and steam used.

請求項2に記載の発明は、前記原動機の給蒸側における蒸気の圧力を検出する第三圧力センサをさらに備え、前記第一圧力センサの検出圧力が上昇すると前記原動機への給蒸量を減少させる逆作動形の特性で前記第一圧力センサの検出圧力に基づき前記原動機への給蒸量を制御するか、前記第二圧力センサの検出圧力が上昇すると前記原動機への給蒸量を減少させる逆作動形の特性で前記第二圧力センサの検出圧力に基づき前記原動機への給蒸量を制御するか、前記第三圧力センサの検出圧力が上昇すると前記原動機への給蒸量を増加させる正作動形の特性で前記第三圧力センサの検出圧力に基づき前記原動機への給蒸量を制御し、前記第一圧力センサの検出圧力に基づく制御と、前記第二圧力センサの検出圧力に基づく制御と、前記第三圧力センサの検出圧力に基づく制御との内、前記原動機への給蒸量が最も少なくなる制御に切り替えることを特徴とする請求項1に記載の蒸気システムである。   The invention according to claim 2 further includes a third pressure sensor for detecting a steam pressure on a steam supply side of the prime mover, and when the detected pressure of the first pressure sensor increases, the steam supply amount to the prime mover is reduced. The amount of steam supplied to the prime mover is decreased when the detected pressure of the second pressure sensor is increased or the amount of steam supplied to the prime mover is controlled based on the detected pressure of the first pressure sensor. A reverse operation type characteristic that controls the amount of steam supplied to the prime mover based on the detected pressure of the second pressure sensor, or increases the amount of steam supplied to the prime mover when the detected pressure of the third pressure sensor increases. Control the amount of steam supplied to the prime mover based on the detected pressure of the third pressure sensor with the characteristics of the operation type, control based on the detected pressure of the first pressure sensor, and control based on the detected pressure of the second pressure sensor And the third pressure Among the control based on the detected pressure of the sensor, a steam system according to claim 1, characterized in that switching to the least becomes controlled feeding 蒸量 is to the prime mover.

請求項2に記載の発明によれば、第一圧力センサの検出圧力(被動機の吐出側の流体圧力)に基づく制御、第二圧力センサの検出圧力(原動機の排蒸側の蒸気圧力)に基づく制御の他、第三圧力センサの検出圧力(原動機の給蒸側の蒸気圧力)に基づく制御の内、原動機への給蒸量が最も少なくなる制御に適宜切り替えることで、流体や蒸気の使用量と蒸気の発生量とに応じて原動機の運転の継続を図ることができる。   According to the second aspect of the present invention, the control based on the detected pressure of the first pressure sensor (the fluid pressure on the discharge side of the driven machine) and the detected pressure of the second pressure sensor (the steam pressure on the exhaust side of the prime mover) In addition to control based on the detection pressure of the third pressure sensor (steam pressure on the steam supply side of the prime mover), the use of fluids and steam is appropriately switched to control that minimizes the amount of steam supply to the prime mover. The operation of the prime mover can be continued according to the amount and the amount of steam generated.

請求項3に記載の発明は、前記原動機への給蒸路に、開度調整されることで前記原動機への給蒸量を調整して前記原動機の出力を調整する給蒸弁が設けられ、前記第一圧力センサの検出圧力が上昇すると前記給蒸弁の開度を小さくする逆作動形の特性で前記第一圧力センサの検出圧力に基づき前記給蒸弁を制御するか、前記第二圧力センサの検出圧力が上昇すると前記給蒸弁の開度を小さくする逆作動形の特性で前記第二圧力センサの検出圧力に基づき前記給蒸弁を制御するか、前記第三圧力センサの検出圧力が上昇すると前記給蒸弁の開度を大きくする正作動形の特性で前記第三圧力センサの検出圧力に基づき前記給蒸弁を制御し、前記第一圧力センサの検出圧力に基づく制御と、前記第二圧力センサの検出圧力に基づく制御と、前記第三圧力センサの検出圧力に基づく制御との内、前記給蒸弁の開度が最も小さくなる制御に切り替えることを特徴とする請求項2に記載の蒸気システムである。   The invention according to claim 3 is provided with a steam supply valve that adjusts an amount of steam supplied to the prime mover by adjusting an opening degree in a steam feed path to the prime mover, and adjusts an output of the prime mover. When the detected pressure of the first pressure sensor rises, the steam supply valve is controlled based on the detected pressure of the first pressure sensor with a reverse operation type characteristic that decreases the opening of the steam supply valve, or the second pressure When the detection pressure of the sensor rises, the steam supply valve is controlled based on the detection pressure of the second pressure sensor with a reverse operation type characteristic that reduces the opening of the steam supply valve, or the detection pressure of the third pressure sensor Control the steam supply valve based on the detected pressure of the third pressure sensor with a positive-acting characteristic that increases the opening of the steam supply valve when the pressure rises, and control based on the detected pressure of the first pressure sensor; Control based on the pressure detected by the second pressure sensor, and the third Among the control based on the detected pressure of the force sensor, a steam system according to claim 2, wherein the switch to control the opening degree of the supply 蒸弁 is minimized.

請求項3に記載の発明によれば、第一圧力センサの検出圧力に基づく制御と、第二圧力センサの検出圧力に基づく制御と、第三圧力センサの検出圧力に基づく制御との切替えを、原動機への給蒸路に設けた給蒸弁の開度調整により簡易に行うことができる。   According to the invention of claim 3, switching between control based on the detection pressure of the first pressure sensor, control based on the detection pressure of the second pressure sensor, and control based on the detection pressure of the third pressure sensor, This can be done simply by adjusting the opening of the steam supply valve provided in the steam supply path to the prime mover.

請求項4に記載の発明は、前記原動機の排蒸側の使用蒸気量と前記原動機の給蒸側の発生蒸気量とが、前記被動機の吐出側の流体圧力に基づく制御で要求される前記原動機の通過蒸気量より多い場合には、前記被動機の吐出側の流体圧力に基づき前記給蒸弁を制御し、前記原動機の排蒸側の使用蒸気量が、前記被動機の吐出側の流体圧力に基づく制御で要求される前記原動機の通過蒸気量より少ないが、前記原動機の給蒸側の発生蒸気量が、前記被動機の吐出側の流体圧力に基づく制御で要求される前記原動機の通過蒸気量より多い場合には、前記原動機の排蒸側の蒸気圧力に基づき前記給蒸弁を制御し、前記原動機の排蒸側の使用蒸気量が、前記被動機の吐出側の流体圧力に基づく制御で要求される前記原動機の通過蒸気量より多いが、前記原動機の給蒸側の発生蒸気量が、前記被動機の吐出側の流体圧力に基づく制御で要求される前記原動機の通過蒸気量より少ない場合には、前記原動機の給蒸側の蒸気圧力に基づき前記給蒸弁を制御し、前記原動機の排蒸側の使用蒸気量と前記原動機の給蒸側の発生蒸気量とが、前記被動機の吐出側の流体圧力に基づく制御で要求される前記原動機の通過蒸気量より少なく、且つ発生蒸気量<使用蒸気量である場合には、前記原動機の給蒸側の蒸気圧力に基づき前記給蒸弁を制御し、前記原動機の排蒸側の使用蒸気量と前記原動機の給蒸側の発生蒸気量とが、前記被動機の吐出側の流体圧力に基づく制御で要求される前記原動機の通過蒸気量より少なく、且つ使用蒸気量<発生蒸気量である場合には、前記原動機の排蒸側の蒸気圧力に基づき前記給蒸弁を制御することを特徴とする請求項3に記載の蒸気システムである。   According to a fourth aspect of the present invention, the amount of steam used on the exhaust side of the prime mover and the amount of steam generated on the steam supply side of the prime mover are required by control based on the fluid pressure on the discharge side of the prime mover. When the amount of steam passing through the prime mover is greater, the steam supply valve is controlled based on the fluid pressure on the discharge side of the driven machine, and the amount of steam used on the exhaust side of the prime mover is the fluid on the discharge side of the driven machine The amount of generated steam on the steam supply side of the prime mover is less than the amount of steam passing through the prime mover required in the control based on the pressure, but the passage of the prime mover required in the control based on the fluid pressure on the discharge side of the driven device When the amount of steam is larger, the steam supply valve is controlled based on the steam pressure on the exhaust side of the prime mover, and the amount of steam used on the exhaust side of the prime mover is based on the fluid pressure on the discharge side of the driven machine More than the amount of steam passing through the prime mover required for control. When the amount of steam generated on the steam supply side of the prime mover is smaller than the amount of passing steam of the prime mover required by the control based on the fluid pressure on the discharge side of the driven device, the steam pressure on the steam supply side of the prime mover The prime mover that controls the steam supply valve, and that the amount of steam used on the exhaust side of the prime mover and the amount of steam generated on the steam supply side of the prime mover are required by control based on the fluid pressure on the discharge side of the prime mover When the generated steam amount is less than the used steam amount, the steam supply valve is controlled based on the steam pressure on the steam supply side of the prime mover, and the steam used on the exhaust side of the prime mover is controlled. And the amount of steam generated on the steam supply side of the prime mover is less than the amount of steam passing through the motor required by the control based on the fluid pressure on the discharge side of the driven device, and the amount of steam used is less than the amount of steam generated Based on the steam pressure on the exhaust side of the prime mover A steam system according to claim 3, characterized in that to control the serial supply 蒸弁.

請求項4に記載の発明によれば、被動機の吐出側の流体圧力に基づく制御で要求される原動機の通過蒸気量と、原動機の排蒸側の使用蒸気量と、原動機の給蒸側の発生蒸気量との関係で場合分けして、第一圧力センサの検出圧力に基づく制御と、第二圧力センサの検出圧力に基づく制御と、第三圧力センサの検出圧力に基づく制御との切替えを行うことになる。この請求項4は、請求項3に記載の発明に基づき達成される内容を明示的に示したものである。   According to the invention described in claim 4, the passing steam amount of the prime mover required in the control based on the fluid pressure on the discharge side of the driven machine, the used steam amount on the exhaust side of the prime mover, and the steam supply side of the prime mover Switching between control based on the detected pressure of the first pressure sensor, control based on the detected pressure of the second pressure sensor, and control based on the detected pressure of the third pressure sensor, depending on the relationship with the amount of generated steam. Will do. The fourth aspect explicitly shows the contents achieved based on the third aspect of the invention.

請求項5に記載の発明は、前記被動機は、空気圧縮機であり、前記第一圧力センサは、前記空気圧縮機から圧縮空気利用機器への空気路またはそれに設けた空気タンク内の圧力を検出し、前記第二圧力センサは、前記原動機から蒸気利用機器への蒸気路またはそれに設けた蒸気ヘッダ内の圧力を検出し、前記第三圧力センサは、ボイラから前記原動機への蒸気路またはそれに設けた蒸気ヘッダ内の圧力を検出することを特徴とする請求項2〜4のいずれか1項に記載の蒸気システムである。   According to a fifth aspect of the present invention, the driven machine is an air compressor, and the first pressure sensor is configured to measure a pressure in an air path from the air compressor to a compressed air utilization device or an air tank provided in the air path. And the second pressure sensor detects a pressure in a steam path from the prime mover to the steam using device or a steam header provided in the steam path, and the third pressure sensor detects a steam path from the boiler to the prime mover or in the steam path. The steam system according to any one of claims 2 to 4, wherein the pressure in the provided steam header is detected.

請求項5に記載の発明によれば、蒸気を駆動源として圧縮空気を製造することができる。また、各センサは、管路だけでなく、空気タンクまたは蒸気ヘッダに設けられてもよい。   According to the fifth aspect of the present invention, compressed air can be produced using steam as a drive source. Moreover, each sensor may be provided not only in a pipe line but in an air tank or a steam header.

請求項6に記載の発明は、前記空気路または前記空気タンクには、前記原動機で駆動される第一空気圧縮機からの圧縮空気と、この第一空気圧縮機とは異なる駆動源で駆動される第二空気圧縮機からの圧縮空気とが供給可能とされ、前記第一空気圧縮機は、前記第一圧力センサの検出圧力に基づく制御において、前記第一圧力センサの検出圧力を第一設定値に維持するよう制御され、前記第二空気圧縮機は、前記第一圧力センサの検出圧力を第二設定値に維持するよう制御され、前記第二設定値は、前記第一設定値よりも低く設定されることを特徴とする請求項5に記載の蒸気システムである。   According to a sixth aspect of the present invention, the air passage or the air tank is driven by compressed air from a first air compressor driven by the prime mover and a driving source different from the first air compressor. Compressed air from the second air compressor can be supplied, and the first air compressor first sets the detected pressure of the first pressure sensor in the control based on the detected pressure of the first pressure sensor. The second air compressor is controlled to maintain the detected pressure of the first pressure sensor at a second set value, and the second set value is greater than the first set value. The steam system according to claim 5, wherein the steam system is set low.

請求項6に記載の発明によれば、第一空気圧縮機からの圧縮空気だけでは足りない場合には、第二空気圧縮機からの圧縮空気を供給することができる。しかも、第二空気圧縮機の設定圧力を、第一空気圧縮機の制御圧力よりも下げておくことで、原動機の運転を優先することができる。   According to the sixth aspect of the present invention, when the compressed air from the first air compressor is not enough, the compressed air from the second air compressor can be supplied. In addition, the operation of the prime mover can be prioritized by lowering the set pressure of the second air compressor below the control pressure of the first air compressor.

請求項7に記載の発明は、前記原動機から蒸気利用機器への蒸気路または蒸気ヘッダには、前記原動機を介した蒸気と、前記原動機を介さずにバイパス弁を介した蒸気とが供給可能とされ、前記原動機は、前記第二圧力センサの検出圧力に基づく制御において、前記第二圧力センサの検出圧力を第三設定値に維持するよう制御され、前記バイパス弁は、前記第二圧力センサの検出圧力を第四設定値に維持するよう開度調整され、前記第四設定値は、前記第三設定値よりも低く設定されることを特徴とする請求項5または請求項6に記載の蒸気システムである。   According to the seventh aspect of the present invention, steam via the prime mover and steam via a bypass valve can be supplied to the steam path or steam header from the prime mover to the steam utilization device without passing through the prime mover. The prime mover is controlled to maintain the detected pressure of the second pressure sensor at a third set value in the control based on the detected pressure of the second pressure sensor, and the bypass valve is controlled by the second pressure sensor. The steam according to claim 5 or 6, wherein the opening degree is adjusted to maintain the detected pressure at a fourth set value, and the fourth set value is set lower than the third set value. System.

請求項7に記載の発明によれば、原動機からの蒸気だけでは足りない場合には、バイパス弁を介した蒸気を供給することができる。しかも、バイパス弁の設定圧力を、原動機の制御圧力よりも下げておくことで、原動機の運転を優先することができる。   According to invention of Claim 7, when only the steam from a motor | power_engine is not enough, the steam via a bypass valve can be supplied. In addition, the operation of the prime mover can be prioritized by setting the set pressure of the bypass valve lower than the control pressure of the prime mover.

さらに、請求項8に記載の発明は、前記原動機への給蒸量は、前記第三圧力センサの検出圧力に基づく制御において、前記第三圧力センサの検出圧力を第五設定値に維持するよう制御され、前記ボイラが、前記第三圧力センサの検出圧力を第六設定値に維持するよう制御されるか、前記原動機の上流側に設けた放蒸弁が、前記第三圧力センサの検出圧力を第六設定値に維持するよう開度調整され、前記第六設定値は、前記第五設定値よりも高く設定されることを特徴とする請求項5〜7のいずれか1項に記載の蒸気システムである。   Furthermore, in the invention according to claim 8, the steam supply amount to the prime mover is such that the detected pressure of the third pressure sensor is maintained at the fifth set value in the control based on the detected pressure of the third pressure sensor. And the boiler is controlled to maintain the detected pressure of the third pressure sensor at a sixth set value, or the evaporating valve provided on the upstream side of the prime mover detects the detected pressure of the third pressure sensor. The opening degree is adjusted so as to be maintained at the sixth set value, and the sixth set value is set to be higher than the fifth set value. It is a steam system.

請求項8に記載の発明によれば、原動機の給蒸側の蒸気圧力は、ボイラまたは放蒸弁で調整される。しかも、ボイラの制御圧力または放蒸弁の設定圧力を、原動機の制御圧力より高くしておくことで、原動機の運転を優先することができる。   According to the eighth aspect of the present invention, the steam pressure on the steam supply side of the prime mover is adjusted by the boiler or the steam release valve. In addition, the operation of the prime mover can be prioritized by setting the control pressure of the boiler or the set pressure of the evaporative valve higher than the control pressure of the prime mover.

本発明によれば、蒸気エンジンを用いて圧縮機などを駆動する蒸気システムにおいて、流体負荷に基づく制御、蒸気負荷に基づく制御、さらに所望により原動機の入口側の蒸気圧力に基づく制御も含めて、これら制御を適切に切り替えて、蒸気システムを効率よく運転することができる。   According to the present invention, in a steam system that drives a compressor or the like using a steam engine, including control based on fluid load, control based on steam load, and control based on steam pressure on the inlet side of the prime mover as desired, By appropriately switching these controls, the steam system can be operated efficiently.

本発明の蒸気システムの一実施例を示す概略図である。It is the schematic which shows one Example of the steam system of this invention. 図1の蒸気システムにおける給蒸弁の制御の切替え状況を示す図である。It is a figure which shows the switching condition of the control of the steam supply valve in the steam system of FIG.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の蒸気システムの一実施例を示す概略図である。本実施例の蒸気システム1は、蒸気を用いて動力を起こす原動機(蒸気エンジン2)と、これにより駆動される被動機(圧縮機3)とを備える。なお、図1において一点鎖線で囲むように、原動機と被動機とをユニット4として構成してもよい。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of the steam system of the present invention. The steam system 1 according to the present embodiment includes a prime mover (steam engine 2) that generates power using steam and a driven machine (compressor 3) driven by the prime mover. In addition, you may comprise a motor and a driven machine as the unit 4 so that it may be enclosed with a dashed-dotted line in FIG.

原動機は、蒸気を受けて動力を起こす蒸気エンジン(スチームモータ)2である。原動機は、その構成を特に問わないが、たとえばスクリュ式蒸気エンジンである。   The prime mover is a steam engine (steam motor) 2 that generates power by receiving steam. The prime mover is not particularly limited in its configuration, but is, for example, a screw-type steam engine.

被動機は、蒸気エンジン2により駆動され、流体を吸入して吐出する装置である。より具体的には、被動機は、圧縮機3またはブロワである。以下、被動機は空気圧縮機として説明するが、これ以外の圧縮機またはブロワの場合も、蒸気システム1の構成および制御は同様である。   The driven machine is a device that is driven by the steam engine 2 and sucks and discharges fluid. More specifically, the driven machine is the compressor 3 or the blower. Hereinafter, although a driven machine is demonstrated as an air compressor, the structure and control of the steam system 1 are the same also in the case of other compressors or blowers.

圧縮機3は、外気を吸入し圧縮して吐出する。圧縮機3からの圧縮空気は、空気路5を介して各種の圧縮空気利用機器(図示省略)へ送られる。なお、空気路5の途中には、所望により、バッファタンクとしての空気タンク(図示省略)を設けてもよい。   The compressor 3 sucks outside air, compresses it, and discharges it. The compressed air from the compressor 3 is sent to various types of compressed air utilization equipment (not shown) via the air path 5. An air tank (not shown) as a buffer tank may be provided in the middle of the air path 5 as desired.

圧縮機(第一空気圧縮機)3から圧縮空気利用機器への空気路5またはそれに設けた空気タンクには、前記圧縮機3とは異なる駆動源で駆動される圧縮機(第二空気圧縮機)からの圧縮空気が供給可能であるのが好ましい。たとえば、蒸気エンジン2で駆動される圧縮機3と、電動機で駆動される圧縮機とを備え、各圧縮機からの圧縮空気が空気タンクを介して、一または複数の圧縮空気利用機器へ供給可能とされる。この際、二つの圧縮機を共通化して、一つの圧縮機を蒸気エンジン2と電動機とで駆動可能としてもよい。   A compressor (second air compressor) driven by a driving source different from the compressor 3 is provided in an air passage 5 from the compressor (first air compressor) 3 to the compressed air utilization device or an air tank provided in the air passage 5. ) Is preferably supplied. For example, a compressor 3 driven by a steam engine 2 and a compressor driven by an electric motor are provided, and compressed air from each compressor can be supplied to one or a plurality of compressed air utilization devices via an air tank. It is said. At this time, two compressors may be shared, and one compressor may be driven by the steam engine 2 and the electric motor.

蒸気エンジン2には、ボイラ6からの蒸気が、給蒸路7を介して供給される。この際、ボイラ6からの蒸気が一旦、蒸気ヘッダ(図示省略)に供給され、この蒸気ヘッダからの蒸気が蒸気エンジン2に供給されてもよい。   Steam from the boiler 6 is supplied to the steam engine 2 via a steam supply path 7. At this time, the steam from the boiler 6 may be temporarily supplied to a steam header (not shown), and the steam from the steam header may be supplied to the steam engine 2.

ボイラ6から蒸気エンジン2への給蒸路7またはそれに設けた蒸気ヘッダには、他の蒸気発生源からの蒸気が供給可能であってもよい。特に、ボイラ6が廃熱ボイラや排ガスボイラである場合、発生蒸気量は成り行きになるため、ボイラ6からの蒸気だけでは足りず蒸気圧力が所定よりも下がれば、他の蒸気発生源からの蒸気が供給されてもよい。この場合、他の蒸気発生源として、好ましくは燃料焚きボイラまたは電気ボイラが用いられる。   Steam from another steam generation source may be supplied to the steam supply path 7 from the boiler 6 to the steam engine 2 or the steam header provided thereto. In particular, when the boiler 6 is a waste heat boiler or an exhaust gas boiler, the amount of generated steam is probable. Therefore, only the steam from the boiler 6 is not sufficient, and if the steam pressure falls below a predetermined level, steam from other steam generating sources. May be supplied. In this case, a fuel-fired boiler or an electric boiler is preferably used as another steam generation source.

蒸気エンジン2への給蒸路7には、給蒸弁8が設けられる。この給蒸弁8の開度を調整することで、蒸気エンジン2の出力すなわち回転数を制御することができる。   A steam supply valve 8 is provided in the steam supply path 7 to the steam engine 2. By adjusting the opening degree of the steam supply valve 8, the output of the steam engine 2, that is, the rotational speed can be controlled.

蒸気エンジン2に供給された蒸気は、蒸気エンジン2にて使用され、膨張して減圧されて吐出される。蒸気エンジン2にて使用後の比較的低圧の蒸気は、蒸気路9を介して各種の蒸気利用機器(図示省略)へ送られる。この際、蒸気エンジン2からの蒸気が一旦、蒸気ヘッダ10に供給され、この蒸気ヘッダ10からの蒸気が蒸気利用機器へ供給されてもよい。   The steam supplied to the steam engine 2 is used in the steam engine 2, expanded, decompressed, and discharged. The relatively low-pressure steam after being used in the steam engine 2 is sent to various steam utilizing devices (not shown) via the steam path 9. At this time, the steam from the steam engine 2 may be once supplied to the steam header 10, and the steam from the steam header 10 may be supplied to the steam utilization device.

蒸気エンジン2から蒸気利用機器への蒸気路9またはそれに設けた蒸気ヘッダ10には、蒸気エンジン2を介さずにバイパス弁(図示省略)を介した蒸気も供給可能であるのが好ましい。たとえば、ボイラ6または他の蒸気発生源からの蒸気が、蒸気エンジン2を介さずにバイパス弁を介して蒸気ヘッダ10に供給される。あるいは、蒸気エンジン2への給蒸路7と、蒸気エンジン2からの蒸気路9とをバイパス路(図示省略)で接続し、そのバイパス路にバイパス弁を設けてもよい。   It is preferable that steam via a bypass valve (not shown) can be supplied to the steam path 9 from the steam engine 2 to the steam-utilizing device or the steam header 10 provided on the steam path. For example, steam from the boiler 6 or other steam generation source is supplied to the steam header 10 via the bypass valve without passing through the steam engine 2. Alternatively, the steam supply path 7 to the steam engine 2 and the steam path 9 from the steam engine 2 may be connected by a bypass path (not shown), and a bypass valve may be provided in the bypass path.

圧縮機3の吐出側には、圧縮空気の圧力を検出する第一圧力センサ11が設けられる。より具体的には、圧縮機3から圧縮空気利用機器への空気路5またはそれに設けた空気タンクに、第一圧力センサ11が設けられる。この第一圧力センサ11の検出圧力により、圧縮空気利用機器における圧縮空気の利用負荷を把握することができる。たとえば、圧縮空気利用機器において使用される圧縮空気量が、圧縮機3により製造される圧縮空気量よりも多ければ、第一圧力センサ11の検出圧力が下がるので、圧縮空気の利用負荷が大きいと分かる。   A first pressure sensor 11 that detects the pressure of compressed air is provided on the discharge side of the compressor 3. More specifically, the first pressure sensor 11 is provided in the air passage 5 from the compressor 3 to the compressed air utilization device or the air tank provided in the air passage 5. Based on the detected pressure of the first pressure sensor 11, the use load of the compressed air in the compressed air utilization device can be grasped. For example, if the amount of compressed air used in the compressed air utilization device is larger than the amount of compressed air produced by the compressor 3, the pressure detected by the first pressure sensor 11 decreases, and therefore the use load of compressed air is large. I understand.

そして、第一圧力センサ11の検出圧力が所定よりも下がり、圧縮機(第一空気圧縮機)3からの圧縮空気だけでは賄いきれないと判断した場合には、前述したように、他の圧縮機(第二空気圧縮機)からの圧縮空気を供給するのが好ましい。その場合、第一空気圧縮機3は、第一圧力センサ11の検出圧力を第一設定値に維持するよう制御され、第二空気圧縮機は、第一圧力センサ11の検出圧力を第二設定値に維持するよう制御され、第二設定値を第一設定値よりも低く設定すればよい。   When the pressure detected by the first pressure sensor 11 falls below a predetermined level and it is determined that the compressed air from the compressor (first air compressor) 3 alone cannot be covered, as described above, other compression is performed. It is preferable to supply compressed air from a compressor (second air compressor). In that case, the first air compressor 3 is controlled to maintain the detected pressure of the first pressure sensor 11 at the first set value, and the second air compressor sets the detected pressure of the first pressure sensor 11 to the second set value. It is controlled to maintain the value, and the second set value may be set lower than the first set value.

蒸気エンジン2の排蒸側には、蒸気の圧力を検出する第二圧力センサ12が設けられる。より具体的には、蒸気エンジン2から蒸気利用機器への蒸気路9またはそれに設けた蒸気ヘッダ10に、第二圧力センサ12が設けられる。この第二圧力センサ12の検出圧力により、蒸気利用機器における蒸気の利用負荷を把握することができる。たとえば、蒸気利用機器における使用蒸気量が、蒸気エンジン2からの吐出蒸気量よりも多ければ、第二圧力センサ12の検出圧力が下がるので、蒸気の利用負荷が大きいと分かる。   A second pressure sensor 12 that detects the pressure of the steam is provided on the steam exhaust side of the steam engine 2. More specifically, the second pressure sensor 12 is provided in the steam path 9 from the steam engine 2 to the steam using device or the steam header 10 provided in the steam path 9. From the detected pressure of the second pressure sensor 12, it is possible to grasp the steam utilization load in the steam utilization device. For example, if the amount of steam used in the steam-utilizing device is larger than the amount of steam discharged from the steam engine 2, the detected pressure of the second pressure sensor 12 decreases, so it can be understood that the steam utilization load is large.

そして、第二圧力センサ12の検出圧力が所定よりも下がり、蒸気エンジン2からの蒸気だけでは賄いきれないと判断した場合には、前述したように、バイパス弁を介した蒸気を供給するのが好ましい。その場合、蒸気エンジン2は、第二圧力センサ12の検出圧力を第三設定値に維持するよう制御され、バイパス弁は、第二圧力センサ12の検出圧力を第四設定値に維持するよう開度調整され、第四設定値は、第三設定値よりも低く設定すればよい。なお、バイパス弁は、第二圧力センサ12の検出圧力に基づき制御される電動弁の他、実質的にこれと同様に作用する自力式の減圧弁であってもよい。   When the pressure detected by the second pressure sensor 12 falls below a predetermined level and it is determined that the steam from the steam engine 2 alone cannot be covered, as described above, the steam is supplied via the bypass valve. preferable. In that case, the steam engine 2 is controlled to maintain the detected pressure of the second pressure sensor 12 at the third set value, and the bypass valve is opened to maintain the detected pressure of the second pressure sensor 12 at the fourth set value. The fourth set value may be set lower than the third set value. The bypass valve may be a self-reducing pressure reducing valve that operates substantially in the same manner as the motor-operated valve controlled based on the pressure detected by the second pressure sensor 12.

蒸気エンジン2の給蒸側には、蒸気の圧力を検出する第三圧力センサ13が設けられる。より具体的には、ボイラ6から蒸気エンジン2への給蒸路7またはそれに設けた蒸気ヘッダに、第三圧力センサ13が設けられる。この第三圧力センサ13の検出圧力により、ボイラ6の発生蒸気量を把握することができる。たとえば、ボイラ6が廃熱ボイラや排ガスボイラである場合、発生蒸気量は成り行きになるが、ボイラ6の発生蒸気量が蒸気エンジン2への給蒸量よりも少なければ、第三圧力センサ13の検出圧力が下がるので、ボイラ6の発生蒸気量が少ないと分かる。一方、ボイラ6が燃料焚きボイラまたは電気ボイラの場合、第三圧力センサ13の検出圧力を所望に維持するように出力を調整することもできる。   A steam supply side of the steam engine 2 is provided with a third pressure sensor 13 that detects steam pressure. More specifically, the third pressure sensor 13 is provided in the steam supply path 7 from the boiler 6 to the steam engine 2 or in the steam header provided therein. From the detected pressure of the third pressure sensor 13, the amount of steam generated by the boiler 6 can be grasped. For example, when the boiler 6 is a waste heat boiler or an exhaust gas boiler, the amount of generated steam is appropriate. Since the detected pressure decreases, it can be seen that the amount of steam generated by the boiler 6 is small. On the other hand, when the boiler 6 is a fuel-fired boiler or an electric boiler, the output can be adjusted so as to maintain the detected pressure of the third pressure sensor 13 as desired.

後述するように、第三圧力センサ13の検出圧力に基づき蒸気エンジン2への給蒸量を制御する場合、蒸気エンジン2への給蒸量は、第三圧力センサ13の検出圧力を第五設定値に維持するよう制御される。一方、ボイラ6は、燃料焚きボイラまたは電気ボイラの場合、第三圧力センサ13の検出圧力を第六設定値に維持するよう制御され、廃熱ボイラや排ガスボイラである場合、給蒸弁8より上流側に設けた外部への放蒸弁(図示省略)が、第三圧力センサ13の検出圧力を第六設定値に維持するよう開度調整される。そして、第六設定値は、第五設定値よりも高く設定される。なお、放蒸弁は、第三圧力センサ13の検出圧力に基づき制御される電動弁の他、実質的にこれと同様に作用する自力式の減圧弁であってもよい。   As will be described later, when the steam supply amount to the steam engine 2 is controlled based on the detected pressure of the third pressure sensor 13, the steam supply amount to the steam engine 2 is set to the fifth detection pressure of the third pressure sensor 13. Controlled to maintain the value. On the other hand, when the boiler 6 is a fuel-fired boiler or an electric boiler, the boiler 6 is controlled to maintain the detection pressure of the third pressure sensor 13 at the sixth set value. When the boiler 6 is a waste heat boiler or an exhaust gas boiler, the steam supply valve 8 An opening degree of an external steaming valve (not shown) provided on the upstream side is adjusted so as to maintain the detected pressure of the third pressure sensor 13 at the sixth set value. The sixth set value is set higher than the fifth set value. The evaporative valve may be a self-reducing pressure reducing valve that operates substantially in the same manner as the motor-operated valve controlled based on the pressure detected by the third pressure sensor 13.

本実施例の蒸気システム1では、第一圧力センサ11、第二圧力センサ12および第三圧力センサ13の検出圧力に基づき給蒸弁8が制御される。より具体的には、第一圧力センサ11の検出圧力に基づき給蒸弁8の開度を調整する第一制御器14と、第二圧力センサ12の検出圧力に基づき給蒸弁8の開度を調整する第二制御器15と、第三圧力センサ13の検出圧力に基づき給蒸弁8の開度を調整する第三制御器16とを備える。但し、これら各制御器14〜16からの出力は、一旦、信号選択器17へ送られ、この信号選択器17において、いずれか一つの制御器からの出力を選択して、それに基づき給蒸弁8の開度を調整する。   In the steam system 1 of the present embodiment, the steam supply valve 8 is controlled based on the detected pressures of the first pressure sensor 11, the second pressure sensor 12, and the third pressure sensor 13. More specifically, the first controller 14 that adjusts the opening of the steam supply valve 8 based on the detected pressure of the first pressure sensor 11 and the opening of the steam supply valve 8 based on the detected pressure of the second pressure sensor 12. And a third controller 16 that adjusts the opening of the steam supply valve 8 based on the pressure detected by the third pressure sensor 13. However, the outputs from these controllers 14 to 16 are once sent to the signal selector 17, and the signal selector 17 selects the output from any one of the controllers and based on that, the steam supply valve Adjust the opening of 8.

第一制御器14は、第一圧力センサ11の検出圧力P1に基づき、蒸気エンジン2への給蒸量を制御する。より具体的には、第一制御器14は、第一圧力センサ11の検出圧力P1が低下すると、給蒸弁8の開度M1を大きくして蒸気エンジン2に通す蒸気量を増加(つまり蒸気エンジン2の回転速度を増加)させる一方、第一圧力センサ11の検出圧力P1が上昇すると、給蒸弁8の開度M1を小さくして蒸気エンジン2に通す蒸気量を減少(つまり蒸気エンジン2の回転速度を減少)させる逆作動形の特性で、第一圧力センサ11の検出圧力P1を所望に維持するように、第一圧力センサ11の検出圧力P1に基づき給蒸弁8を制御(PID制御)する。   The first controller 14 controls the amount of steam supplied to the steam engine 2 based on the detected pressure P <b> 1 of the first pressure sensor 11. More specifically, when the detected pressure P1 of the first pressure sensor 11 decreases, the first controller 14 increases the amount of steam that passes through the steam engine 2 by increasing the opening degree M1 of the steam supply valve 8 (that is, steam When the detected pressure P1 of the first pressure sensor 11 is increased while the rotation speed of the engine 2 is increased), the opening M1 of the steam supply valve 8 is decreased to reduce the amount of steam passing through the steam engine 2 (that is, the steam engine 2). The feed valve 8 is controlled based on the detected pressure P1 of the first pressure sensor 11 (PID) so that the detected pressure P1 of the first pressure sensor 11 is maintained as desired. Control.

第二制御器15は、第二圧力センサ12の検出圧力P2に基づき、蒸気エンジン2への給蒸量を制御する。より具体的には、第二制御器15は、第二圧力センサ12の検出圧力P2が低下すると、給蒸弁8の開度M2を大きくして蒸気エンジン2に通す蒸気量を増加させる一方、第二圧力センサ12の検出圧力P2が上昇すると、給蒸弁8の開度M2を小さくして蒸気エンジン2に通す蒸気量を減少させる逆作動形の特性で、第二圧力センサ12の検出圧力P2を所望に維持するように、第二圧力センサ12の検出圧力P2に基づき給蒸弁8を制御(PID制御)する。   The second controller 15 controls the amount of steam supplied to the steam engine 2 based on the detected pressure P2 of the second pressure sensor 12. More specifically, when the detected pressure P2 of the second pressure sensor 12 decreases, the second controller 15 increases the opening amount M2 of the steam supply valve 8 to increase the amount of steam passed through the steam engine 2, When the detected pressure P2 of the second pressure sensor 12 increases, the opening pressure M2 of the steam supply valve 8 is reduced to reduce the amount of steam passing through the steam engine 2, and the detected pressure of the second pressure sensor 12 The steam supply valve 8 is controlled (PID control) based on the detected pressure P2 of the second pressure sensor 12 so as to maintain P2 as desired.

第三制御器16は、第三圧力センサ13の検出圧力に基づき、蒸気エンジン2への給蒸量を制御する。より具体的には、第三制御器16は、第三圧力センサ13の検出圧力P3が低下すると、給蒸弁8の開度M3を小さくして蒸気エンジン2に通す蒸気量を減少させる一方、第三圧力センサ13の検出圧力P3が上昇すると、給蒸弁8の開度M3を大きくして蒸気エンジン2に通す蒸気量を増加させる正作動形の特性で、第三圧力センサ13の検出圧力P3を所望に維持するように、第三圧力センサ13の検出圧力P3に基づき給蒸弁8を制御(PID制御)する。   The third controller 16 controls the amount of steam supplied to the steam engine 2 based on the detected pressure of the third pressure sensor 13. More specifically, when the detected pressure P3 of the third pressure sensor 13 decreases, the third controller 16 reduces the amount of steam passing through the steam engine 2 by decreasing the opening M3 of the steam supply valve 8, When the detected pressure P3 of the third pressure sensor 13 increases, the opening pressure M3 of the steam supply valve 8 is increased to increase the amount of steam passing through the steam engine 2, and the detected pressure of the third pressure sensor 13 is increased. The steam supply valve 8 is controlled (PID control) based on the detected pressure P3 of the third pressure sensor 13 so as to maintain P3 as desired.

信号選択器17は、上述した第一制御器14、第二制御器15および第三制御器16による給蒸弁8の開度設定信号M1〜M3の内、開度が最小となるものを選択して、給蒸弁8を制御する。つまり、第一制御器14による第一圧力センサ11の検出圧力P1に基づく制御と、第二制御器15による第二圧力センサ12の検出圧力P2に基づく制御と、第三制御器16による第三圧力センサ13の検出圧力P3に基づく制御との内、給蒸弁8の開度が最も小さくなる制御(つまり蒸気エンジン2への給蒸量が最も少なくなる制御)に切り替える。   The signal selector 17 selects the one with the smallest opening degree among the opening setting signals M1 to M3 of the steam supply valve 8 by the first controller 14, the second controller 15 and the third controller 16 described above. Then, the steam supply valve 8 is controlled. That is, control based on the detected pressure P1 of the first pressure sensor 11 by the first controller 14, control based on the detected pressure P2 of the second pressure sensor 12 by the second controller 15, and third control by the third controller 16. Of the control based on the detected pressure P3 of the pressure sensor 13, the control is switched to the control in which the opening degree of the steam supply valve 8 is minimized (that is, the control in which the steam supply amount to the steam engine 2 is minimized).

図2は、本実施例の蒸気システム1における給蒸弁8の制御の切替え状況を示す図である。この図にも示すように、本実施例の蒸気システム1は、下記のとおり動作する。   FIG. 2 is a diagram illustrating a switching state of control of the steam supply valve 8 in the steam system 1 of the present embodiment. As shown in this figure, the steam system 1 of the present embodiment operates as follows.

(1)蒸気エンジン2の排蒸側の使用蒸気量と、蒸気エンジン2の給蒸側の発生蒸気量とが、圧縮機3の吐出側の圧縮空気圧力に基づく制御(つまり第一制御器14による第一圧力センサ11の検出圧力に基づく制御)で要求される蒸気エンジン通過蒸気量より多い場合。
この場合、圧縮機3の吐出側の圧縮空気圧力に基づき給蒸弁8を制御する。より具体的には、蒸気エンジン2の給蒸側の圧力は、ボイラ6による発生蒸気量または放蒸弁による排出蒸気量で調整され、第三制御器16の出力(給蒸弁8の目標開度)M3は、ほぼ上限値に維持される。また、蒸気エンジン2の排蒸側において、蒸気利用機器への蒸気は、他の蒸気系統からの蒸気(バイパス弁を介した蒸気)で賄われ、第二制御器15の出力(給蒸弁の目標開度)M2は、ほぼ上限値に維持される。従って、三つの制御器14〜16からの出力の内、第一制御器14の出力(給蒸弁の目標開度)M1が最小値になり、信号選択器17で第一制御器14の出力M1が選択されて、その信号に基づき給蒸弁8の開度が調整される。
(1) Control based on the compressed air pressure on the discharge side of the compressor 3 (that is, the first controller 14), based on the amount of steam used on the exhaust side of the steam engine 2 and the amount of steam generated on the steam supply side of the steam engine 2. The control is based on the detected pressure of the first pressure sensor 11), and the amount of steam passing through the steam engine is larger.
In this case, the steam supply valve 8 is controlled based on the compressed air pressure on the discharge side of the compressor 3. More specifically, the pressure on the steam supply side of the steam engine 2 is adjusted by the amount of steam generated by the boiler 6 or the amount of steam discharged by the steam release valve, and the output of the third controller 16 (target opening of the steam supply valve 8 is opened). Degree) M3 is maintained substantially at the upper limit. Moreover, on the steaming side of the steam engine 2, steam to the steam utilization equipment is covered by steam from other steam systems (steam through a bypass valve), and the output of the second controller 15 (of the steam supply valve). The target opening degree M2 is maintained at an upper limit value. Therefore, among the outputs from the three controllers 14 to 16, the output (target opening of the steam supply valve) M1 of the first controller 14 becomes the minimum value, and the signal selector 17 outputs the first controller 14 M1 is selected, and the opening degree of the steam supply valve 8 is adjusted based on the signal.

(2)蒸気エンジン2の排蒸側の使用蒸気量が、圧縮機3の吐出側の圧縮空気圧力に基づく制御で要求される蒸気エンジン通過蒸気量より少ないが、蒸気エンジン2の給蒸側の発生蒸気量が、圧縮機3の吐出側の圧縮空気圧力に基づく制御で要求される蒸気エンジン通過蒸気量より多い場合。
この場合、蒸気エンジン2の排蒸側の蒸気圧力に基づき給蒸弁8を制御する。より具体的には、蒸気エンジン通過蒸気量が蒸気エンジン2の排蒸側の使用蒸気量を上回ると、第二圧力センサ12の検出圧力P2が上昇する。そこで、第二制御器15は、第二圧力センサ12の検出圧力P2を低下させために出力M2を減少させ、第一制御器14の出力M1よりも低くなり、信号選択器17では第二制御器15の出力M2が選択されて、その信号に基づき給蒸弁8の開度が調整される。
(2) Although the amount of steam used on the exhaust side of the steam engine 2 is less than the amount of steam passing through the steam engine required by the control based on the compressed air pressure on the discharge side of the compressor 3, When the amount of generated steam is larger than the amount of steam passing through the steam engine required for control based on the compressed air pressure on the discharge side of the compressor 3.
In this case, the steam supply valve 8 is controlled based on the steam pressure on the exhaust steam side of the steam engine 2. More specifically, when the amount of steam passing through the steam engine exceeds the amount of steam used on the exhaust side of the steam engine 2, the detected pressure P2 of the second pressure sensor 12 increases. Therefore, the second controller 15 decreases the output M2 in order to decrease the detected pressure P2 of the second pressure sensor 12, and becomes lower than the output M1 of the first controller 14, and the signal selector 17 performs the second control. The output M2 of the vessel 15 is selected, and the opening degree of the steam supply valve 8 is adjusted based on the signal.

(3)蒸気エンジン2の排蒸側の使用蒸気量が、圧縮機3の吐出側の圧縮空気圧力に基づく制御で要求される蒸気エンジン通過蒸気量より多いが、蒸気エンジン2の給蒸側の発生蒸気量が、圧縮機3の吐出側の圧縮空気圧力に基づく制御で要求される蒸気エンジン通過蒸気量より少ない場合。
この場合、蒸気エンジン2の給蒸側の蒸気圧力に基づき給蒸弁8を制御する。より具体的には、蒸気エンジン通過蒸気量が蒸気エンジン2の給蒸側の発生蒸気量を上回ると、第三圧力センサ13の検出圧力が下降する。そこで、第三制御器16は、第三圧力センサ13の検出圧力P3を上昇させるために出力M3を減少させ、第一制御器14の出力M1よりも低くなり、信号選択器17では第三制御器16の出力M3が選択されて、その信号に基づき給蒸弁8の開度が調整される。
(3) Although the amount of steam used on the exhaust side of the steam engine 2 is larger than the amount of steam passing through the steam engine required by the control based on the compressed air pressure on the discharge side of the compressor 3, When the amount of generated steam is less than the amount of steam passing through the steam engine required by the control based on the compressed air pressure on the discharge side of the compressor 3.
In this case, the steam supply valve 8 is controlled based on the steam pressure on the steam supply side of the steam engine 2. More specifically, when the amount of steam passing through the steam engine exceeds the amount of steam generated on the steam supply side of the steam engine 2, the detected pressure of the third pressure sensor 13 decreases. Therefore, the third controller 16 decreases the output M3 in order to increase the detected pressure P3 of the third pressure sensor 13, and becomes lower than the output M1 of the first controller 14, and the signal selector 17 performs the third control. The output M3 of the vessel 16 is selected, and the opening degree of the steam supply valve 8 is adjusted based on the signal.

(4)蒸気エンジン2の排蒸側の使用蒸気量と、蒸気エンジン2の給蒸側の発生蒸気量とが、圧縮機3の吐出側の圧縮空気圧力に基づく制御で要求される蒸気エンジン通過蒸気量より少なく、且つ発生蒸気量が使用蒸気量より少ない(発生蒸気量<使用蒸気量)場合。
この場合、蒸気エンジン2の給蒸側の蒸気圧力に基づき給蒸弁8を制御する。より具体的には、蒸気エンジン2の給蒸側の発生蒸気は全量蒸気エンジン2に供給される。また、蒸気エンジン2の排蒸側において、蒸気利用機器への蒸気は、他の蒸気系統からの蒸気(バイパス弁を介した蒸気)で賄われるが、第二制御器15の出力M2はほぼ上限値に維持される。一方、第三制御器16は、蒸気エンジン2への供給圧力を維持するために出力M3が減少し、三つの制御器14〜16からの出力M1〜M3の内、第三制御器16の出力M3が最小値になり、信号選択器17で第三制御器16の出力M3が選択されて、その信号に基づき給蒸弁8の開度が調整される。
(4) The amount of steam used on the exhaust steam side of the steam engine 2 and the amount of steam generated on the steam supply side of the steam engine 2 are required to pass through the steam engine required for control based on the compressed air pressure on the discharge side of the compressor 3. When the amount of generated steam is less than the amount of steam used and less than the amount of steam used (the amount of steam generated <the amount of steam used).
In this case, the steam supply valve 8 is controlled based on the steam pressure on the steam supply side of the steam engine 2. More specifically, the generated steam on the steam supply side of the steam engine 2 is supplied to the steam engine 2 in its entirety. Further, on the exhaust steam side of the steam engine 2, steam to the steam utilization equipment is covered by steam from other steam systems (steam through a bypass valve), but the output M2 of the second controller 15 is almost the upper limit. Maintained at the value. On the other hand, in the third controller 16, the output M3 decreases in order to maintain the supply pressure to the steam engine 2, and the output of the third controller 16 among the outputs M1 to M3 from the three controllers 14 to 16. M3 becomes the minimum value, the output M3 of the third controller 16 is selected by the signal selector 17, and the opening degree of the steam supply valve 8 is adjusted based on the signal.

(5)蒸気エンジン2の排蒸側の使用蒸気量と、蒸気エンジン2の給蒸側の発生蒸気量とが、圧縮機3の吐出側の圧縮空気圧力に基づく制御で要求される蒸気エンジン通過蒸気量より少なく、且つ使用蒸気量が発生蒸気量より少ない(使用蒸気量<発生蒸気量)場合。
この場合、蒸気エンジン2の排蒸側の蒸気圧力に基づき給蒸弁8を制御する。より具体的には、蒸気エンジン通過蒸気量が蒸気エンジン2の排蒸側の使用蒸気量を上回ると、第二圧力センサ12の検出圧力P2が上昇し、第二圧力センサ12および第三圧力センサ13の各検出圧力P2,P3が上昇する。蒸気エンジン2の給蒸側の圧力は、ボイラ6による発生蒸気量または放蒸弁による排出蒸気量で調整されるなどして、第三制御器の出力はほぼ上限値に維持される。また、第二制御器15は、第二圧力センサ12の検出圧力の上昇を抑えるために出力が減少し、三つの制御器14〜16からの出力M1〜M3の内では最小となり、信号選択器17では第二制御器15の出力M2が選択されて、その信号に基づき給蒸弁8の開度が調整される。
(5) The steam engine passage required for the amount of steam used on the exhaust side of the steam engine 2 and the amount of steam generated on the steam supply side of the steam engine 2 based on the compressed air pressure on the discharge side of the compressor 3 When the amount of steam used is less than the amount of steam generated and less than the amount of steam generated (the amount of steam used <the amount of steam generated).
In this case, the steam supply valve 8 is controlled based on the steam pressure on the exhaust steam side of the steam engine 2. More specifically, when the amount of steam passing through the steam engine exceeds the amount of steam used on the exhaust side of the steam engine 2, the detected pressure P2 of the second pressure sensor 12 increases, and the second pressure sensor 12 and the third pressure sensor Each of the 13 detected pressures P2, P3 increases. The pressure on the steam supply side of the steam engine 2 is adjusted by the amount of steam generated by the boiler 6 or the amount of steam discharged by the steaming valve, so that the output of the third controller is maintained almost at the upper limit. Further, the second controller 15 has an output that decreases in order to suppress an increase in the detected pressure of the second pressure sensor 12, and is the smallest among the outputs M1 to M3 from the three controllers 14 to 16, and the signal selector In 17, the output M2 of the second controller 15 is selected, and the opening degree of the steam supply valve 8 is adjusted based on the signal.

以上のようにして、本実施例の蒸気システム1によれば、たとえば、蒸気エンジン2の給蒸側の発生蒸気量が不足する場合には、給蒸側の蒸気圧力に基づく制御に切り替えて、給蒸側の圧力を所望に維持しつつ、それによる蒸気エンジン2への供給蒸気量で吐出できるだけの圧縮空気量を吐出する。また、蒸気エンジン2の排蒸側の使用蒸気量が低下した場合には、排蒸側の蒸気圧力に基づく制御に切り替えて、それによる蒸気エンジン2への供給蒸気量で吐出できるだけの圧縮空気を吐出する。このようにして、状況に応じて自動的に制御を切り替えて、蒸気エンジン2の給蒸側の蒸気圧力の低下と、蒸気エンジン2の排蒸側の蒸気圧力の上昇とを抑制しつつ、蒸気エンジン2の給蒸側の発生蒸気量や、蒸気エンジン2の排蒸側の使用蒸気量の制限内で、蒸気エンジン2を制御することができる。さらに、圧縮空気の使用量の変化にも追従して、無駄に蒸気エンジン2を駆動して圧縮空気を製造することもない。従って、圧縮空気の使用量、蒸気の使用量および発生量を考慮して、最適な制御に切り替えることができる。   As described above, according to the steam system 1 of the present embodiment, for example, when the amount of steam generated on the steam supply side of the steam engine 2 is insufficient, the control is switched to the control based on the steam pressure on the steam supply side, While maintaining the steam supply side pressure as desired, an amount of compressed air that can be discharged with the amount of steam supplied to the steam engine 2 is discharged. In addition, when the amount of steam used on the exhaust side of the steam engine 2 decreases, the control is switched to the control based on the steam pressure on the exhaust side, and compressed air that can be discharged with the amount of steam supplied to the steam engine 2 is thereby switched. Discharge. In this way, the control is automatically switched according to the situation to suppress the steam pressure decrease on the steam supply side of the steam engine 2 and the steam pressure increase on the exhaust steam side of the steam engine 2 while suppressing the steam. The steam engine 2 can be controlled within the limits of the amount of steam generated on the steam supply side of the engine 2 and the amount of steam used on the exhaust steam side of the steam engine 2. Furthermore, following the change in the amount of compressed air used, the steam engine 2 is not driven to produce compressed air. Therefore, it is possible to switch to the optimum control in consideration of the amount of compressed air used, the amount of steam used, and the amount generated.

本発明の蒸気システム1は、前記実施例の構成に限らず適宜変更可能である。たとえば、前記実施例では、蒸気エンジン2で圧縮機3を駆動したが、圧縮機3に代えてブロワを駆動してもよい。その場合も、圧縮機3の場合と同様に制御できる。   The steam system 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. For example, in the above embodiment, the compressor 3 is driven by the steam engine 2, but a blower may be driven instead of the compressor 3. In that case, the same control as in the case of the compressor 3 can be performed.

また、前記実施例では、第一制御器14、第二制御器15および第三制御器16の出力M1〜M3を信号選択器17で受けて蒸気エンジン2への給蒸量が最小(給蒸弁8の開度が最小)となる制御に適宜切り替える例について説明したが、第三制御器16を省略して、第一制御器14と第二制御器15の出力M1,M2を信号選択器17で受けて蒸気エンジン2への給蒸量が最小となる制御に切り替えるようにしてもよい。   Moreover, in the said Example, the output M1-M3 of the 1st controller 14, the 2nd controller 15, and the 3rd controller 16 is received by the signal selector 17, and the steam supply amount to the steam engine 2 is the minimum (steam supply). Although the example which switches suitably to control in which the opening degree of the valve 8 is the minimum) was demonstrated, the 3rd controller 16 was abbreviate | omitted and the output M1, M2 of the 1st controller 14 and the 2nd controller 15 was a signal selector. You may make it switch to the control which receives in 17 and the steam supply amount to the steam engine 2 becomes the minimum.

さらに、前記実施例では、蒸気エンジン2への給蒸路7に給蒸弁8を設け、この開度を調整する例について説明したが、これに代えてまたはこれに加えて、蒸気エンジン2への給蒸路7と蒸気エンジン2からの蒸気路9とをバイパス路で接続しそのバイパス路に設けたバイパス弁の開度を調整してもよい。この場合も、第一圧力センサ11による制御と、第二圧力センサ12による制御と、さらに所望により第三圧力センサ13による制御との内、蒸気エンジン2への給蒸量が少なくなる制御に切り替えればよい。   Further, in the above embodiment, the steam supply valve 8 is provided in the steam supply path 7 to the steam engine 2 and the opening degree is adjusted. However, instead of or in addition to this, to the steam engine 2 The steam supply path 7 and the steam path 9 from the steam engine 2 may be connected by a bypass path, and the opening degree of the bypass valve provided in the bypass path may be adjusted. Also in this case, the control by the first pressure sensor 11, the control by the second pressure sensor 12, and the control by the third pressure sensor 13 can be switched to the control that reduces the steam supply amount to the steam engine 2 as desired. That's fine.

1 蒸気システム
2 蒸気エンジン(原動機)
3 圧縮機(被動機)
4 ユニット
5 空気路
6 ボイラ
7 給蒸路
8 給蒸弁
9 蒸気路
10 蒸気ヘッダ
11 第一圧力センサ
12 第二圧力センサ
13 第三圧力センサ
14 第一制御器
15 第二制御器
16 第三制御器
17 信号選択器
P1 第一圧力センサの検出圧力
P2 第二圧力センサの検出圧力
P3 第三圧力センサの検出圧力
M1 第一制御器の出力(給蒸弁の開度設定信号)
M2 第二制御器の出力(給蒸弁の開度設定信号)
M3 第三制御器の出力(給蒸弁の開度設定信号)
1 Steam system 2 Steam engine (motor)
3 Compressor (driven machine)
4 unit 5 air path 6 boiler 7 steam supply path 8 steam supply valve 9 steam path 10 steam header 11 first pressure sensor 12 second pressure sensor 13 third pressure sensor 14 first controller 15 second controller 16 third control 17 Signal selector P1 Detection pressure of first pressure sensor P2 Detection pressure of second pressure sensor P3 Detection pressure of third pressure sensor M1 Output of first controller (opening setting signal of steam supply valve)
M2 Second controller output (steaming valve opening setting signal)
M3 Output of third controller (opening setting signal of steam supply valve)

Claims (8)

蒸気を用いて動力を起こす原動機と、
この原動機により駆動され、流体を吸入して吐出する被動機と、
この被動機の吐出側における流体の圧力を検出する第一圧力センサと、
前記原動機の排蒸側における蒸気の圧力を検出する第二圧力センサとを備え、
前記第一圧力センサの検出圧力が上昇すると前記原動機への給蒸量を減少させる逆作動形の特性で前記第一圧力センサの検出圧力に基づき前記原動機への給蒸量を制御するか、前記第二圧力センサの検出圧力が上昇すると前記原動機への給蒸量を減少させる逆作動形の特性で前記第二圧力センサの検出圧力に基づき前記原動機への給蒸量を制御し、
前記第一圧力センサの検出圧力に基づく制御と、前記第二圧力センサの検出圧力に基づく制御との内、前記原動機への給蒸量が少なくなる制御に切り替える
ことを特徴とする蒸気システム。
A prime mover that uses steam to generate power,
Driven by this prime mover and sucking and discharging fluid;
A first pressure sensor for detecting the pressure of the fluid on the discharge side of the driven machine;
A second pressure sensor for detecting the pressure of steam on the exhaust side of the prime mover,
When the detected pressure of the first pressure sensor rises, the steam supply amount to the prime mover is controlled based on the detected pressure of the first pressure sensor with a reverse operation type characteristic that reduces the steam supply amount to the prime mover, or When the detection pressure of the second pressure sensor rises, the steam supply amount to the prime mover is controlled based on the detection pressure of the second pressure sensor with a reverse operation type characteristic that reduces the steam supply amount to the prime mover,
A steam system, wherein the control is based on a control based on a pressure detected by the first pressure sensor and a control based on a pressure detected by the second pressure sensor, so that the amount of steam supplied to the prime mover is reduced.
前記原動機の給蒸側における蒸気の圧力を検出する第三圧力センサをさらに備え、
前記第一圧力センサの検出圧力が上昇すると前記原動機への給蒸量を減少させる逆作動形の特性で前記第一圧力センサの検出圧力に基づき前記原動機への給蒸量を制御するか、前記第二圧力センサの検出圧力が上昇すると前記原動機への給蒸量を減少させる逆作動形の特性で前記第二圧力センサの検出圧力に基づき前記原動機への給蒸量を制御するか、前記第三圧力センサの検出圧力が上昇すると前記原動機への給蒸量を増加させる正作動形の特性で前記第三圧力センサの検出圧力に基づき前記原動機への給蒸量を制御し、
前記第一圧力センサの検出圧力に基づく制御と、前記第二圧力センサの検出圧力に基づく制御と、前記第三圧力センサの検出圧力に基づく制御との内、前記原動機への給蒸量が最も少なくなる制御に切り替える
ことを特徴とする請求項1に記載の蒸気システム。
A third pressure sensor for detecting the pressure of steam on the steam supply side of the prime mover;
When the detected pressure of the first pressure sensor rises, the steam supply amount to the prime mover is controlled based on the detected pressure of the first pressure sensor with a reverse operation type characteristic that reduces the steam supply amount to the prime mover, or When the detection pressure of the second pressure sensor increases, the steam supply amount to the prime mover is controlled based on the detection pressure of the second pressure sensor with a reverse operation type characteristic that decreases the steam supply amount to the prime mover, or the first When the detected pressure of the three pressure sensors rises, the steam supply amount to the prime mover is controlled based on the detected pressure of the third pressure sensor with the characteristic of the positive action type that increases the steam supply amount to the prime mover,
Of the control based on the detection pressure of the first pressure sensor, the control based on the detection pressure of the second pressure sensor, and the control based on the detection pressure of the third pressure sensor, the amount of steam supplied to the prime mover is the largest. The steam system according to claim 1, wherein the control is switched to less control.
前記原動機への給蒸路に、開度調整されることで前記原動機への給蒸量を調整して前記原動機の出力を調整する給蒸弁が設けられ、
前記第一圧力センサの検出圧力が上昇すると前記給蒸弁の開度を小さくする逆作動形の特性で前記第一圧力センサの検出圧力に基づき前記給蒸弁を制御するか、前記第二圧力センサの検出圧力が上昇すると前記給蒸弁の開度を小さくする逆作動形の特性で前記第二圧力センサの検出圧力に基づき前記給蒸弁を制御するか、前記第三圧力センサの検出圧力が上昇すると前記給蒸弁の開度を大きくする正作動形の特性で前記第三圧力センサの検出圧力に基づき前記給蒸弁を制御し、
前記第一圧力センサの検出圧力に基づく制御と、前記第二圧力センサの検出圧力に基づく制御と、前記第三圧力センサの検出圧力に基づく制御との内、前記給蒸弁の開度が最も小さくなる制御に切り替える
ことを特徴とする請求項2に記載の蒸気システム。
The steam supply path to the prime mover is provided with a steam supply valve that adjusts the amount of steam supplied to the prime mover by adjusting the opening degree to adjust the output of the prime mover,
When the detected pressure of the first pressure sensor rises, the steam supply valve is controlled based on the detected pressure of the first pressure sensor with a reverse operation type characteristic that decreases the opening of the steam supply valve, or the second pressure When the detection pressure of the sensor rises, the steam supply valve is controlled based on the detection pressure of the second pressure sensor with a reverse operation type characteristic that reduces the opening of the steam supply valve, or the detection pressure of the third pressure sensor The steam valve is controlled based on the pressure detected by the third pressure sensor with a positive operating characteristic that increases the opening of the steam valve as
Of the control based on the detection pressure of the first pressure sensor, the control based on the detection pressure of the second pressure sensor, and the control based on the detection pressure of the third pressure sensor, the opening of the steam supply valve is the most. The steam system according to claim 2, wherein the control is switched to a smaller control.
前記原動機の排蒸側の使用蒸気量と前記原動機の給蒸側の発生蒸気量とが、前記被動機の吐出側の流体圧力に基づく制御で要求される前記原動機の通過蒸気量より多い場合には、前記被動機の吐出側の流体圧力に基づき前記給蒸弁を制御し、
前記原動機の排蒸側の使用蒸気量が、前記被動機の吐出側の流体圧力に基づく制御で要求される前記原動機の通過蒸気量より少ないが、前記原動機の給蒸側の発生蒸気量が、前記被動機の吐出側の流体圧力に基づく制御で要求される前記原動機の通過蒸気量より多い場合には、前記原動機の排蒸側の蒸気圧力に基づき前記給蒸弁を制御し、
前記原動機の排蒸側の使用蒸気量が、前記被動機の吐出側の流体圧力に基づく制御で要求される前記原動機の通過蒸気量より多いが、前記原動機の給蒸側の発生蒸気量が、前記被動機の吐出側の流体圧力に基づく制御で要求される前記原動機の通過蒸気量より少ない場合には、前記原動機の給蒸側の蒸気圧力に基づき前記給蒸弁を制御し、
前記原動機の排蒸側の使用蒸気量と前記原動機の給蒸側の発生蒸気量とが、前記被動機の吐出側の流体圧力に基づく制御で要求される前記原動機の通過蒸気量より少なく、且つ発生蒸気量<使用蒸気量である場合には、前記原動機の給蒸側の蒸気圧力に基づき前記給蒸弁を制御し、
前記原動機の排蒸側の使用蒸気量と前記原動機の給蒸側の発生蒸気量とが、前記被動機の吐出側の流体圧力に基づく制御で要求される前記原動機の通過蒸気量より少なく、且つ使用蒸気量<発生蒸気量である場合には、前記原動機の排蒸側の蒸気圧力に基づき前記給蒸弁を制御する
ことを特徴とする請求項3に記載の蒸気システム。
When the amount of steam used on the exhaust side of the prime mover and the amount of steam generated on the steam supply side of the prime mover are greater than the amount of steam passing through the prime mover required by the control based on the fluid pressure on the discharge side of the prime mover Controls the steam supply valve based on the fluid pressure on the discharge side of the driven machine,
The amount of steam used on the exhaust side of the prime mover is less than the amount of passing steam of the prime mover required in the control based on the fluid pressure on the discharge side of the driven device, but the amount of generated steam on the steam supply side of the prime mover is When the amount of steam passing through the prime mover required in the control based on the fluid pressure on the discharge side of the driven machine is greater than the steam pressure on the steaming side of the prime mover, the steam supply valve is controlled,
The amount of steam used on the exhaust side of the prime mover is greater than the amount of steam passing through the prime mover required for control based on the fluid pressure on the discharge side of the driven device, but the amount of steam generated on the steam supply side of the prime mover is In the case where the amount of steam passing through the prime mover required in the control based on the fluid pressure on the discharge side of the driven machine is smaller, the steam supply valve is controlled based on the steam pressure on the steam supply side of the prime mover,
The amount of steam used on the exhaust side of the prime mover and the amount of steam generated on the steam supply side of the prime mover are less than the amount of steam passing through the prime mover required by the control based on the fluid pressure on the discharge side of the prime mover, and When the generated steam amount <the used steam amount, the steam supply valve is controlled based on the steam pressure on the steam supply side of the prime mover,
The amount of steam used on the exhaust side of the prime mover and the amount of steam generated on the steam supply side of the prime mover are less than the amount of steam passing through the prime mover required by the control based on the fluid pressure on the discharge side of the prime mover, and The steam system according to claim 3, wherein when the amount of steam used is less than the amount of steam generated, the steam supply valve is controlled based on the steam pressure on the exhaust side of the prime mover.
前記被動機は、空気圧縮機であり、
前記第一圧力センサは、前記空気圧縮機から圧縮空気利用機器への空気路またはそれに設けた空気タンク内の圧力を検出し、
前記第二圧力センサは、前記原動機から蒸気利用機器への蒸気路またはそれに設けた蒸気ヘッダ内の圧力を検出し、
前記第三圧力センサは、ボイラから前記原動機への蒸気路またはそれに設けた蒸気ヘッダ内の圧力を検出する
ことを特徴とする請求項2〜4のいずれか1項に記載の蒸気システム。
The driven machine is an air compressor;
The first pressure sensor detects a pressure in an air path from the air compressor to a compressed air utilization device or an air tank provided in the air path,
The second pressure sensor detects a pressure in a steam path from the prime mover to the steam utilization device or a steam header provided in the steam path,
The steam system according to any one of claims 2 to 4, wherein the third pressure sensor detects a pressure in a steam path from the boiler to the prime mover or a steam header provided in the steam path.
前記空気路または前記空気タンクには、前記原動機で駆動される第一空気圧縮機からの圧縮空気と、この第一空気圧縮機とは異なる駆動源で駆動される第二空気圧縮機からの圧縮空気とが供給可能とされ、
前記第一空気圧縮機は、前記第一圧力センサの検出圧力に基づく制御において、前記第一圧力センサの検出圧力を第一設定値に維持するよう制御され、
前記第二空気圧縮機は、前記第一圧力センサの検出圧力を第二設定値に維持するよう制御され、
前記第二設定値は、前記第一設定値よりも低く設定される
ことを特徴とする請求項5に記載の蒸気システム。
In the air passage or the air tank, compressed air from a first air compressor driven by the prime mover and compression from a second air compressor driven by a driving source different from the first air compressor Air can be supplied,
The first air compressor is controlled to maintain the detected pressure of the first pressure sensor at a first set value in the control based on the detected pressure of the first pressure sensor,
The second air compressor is controlled to maintain the detected pressure of the first pressure sensor at a second set value;
The steam system according to claim 5, wherein the second set value is set lower than the first set value.
前記原動機から蒸気利用機器への蒸気路または蒸気ヘッダには、前記原動機を介した蒸気と、前記原動機を介さずにバイパス弁を介した蒸気とが供給可能とされ、
前記原動機は、前記第二圧力センサの検出圧力に基づく制御において、前記第二圧力センサの検出圧力を第三設定値に維持するよう制御され、
前記バイパス弁は、前記第二圧力センサの検出圧力を第四設定値に維持するよう開度調整され、
前記第四設定値は、前記第三設定値よりも低く設定される
ことを特徴とする請求項5または請求項6に記載の蒸気システム。
The steam path or steam header from the prime mover to the steam utilization device can supply steam via the prime mover and steam via a bypass valve without going through the prime mover,
The prime mover is controlled to maintain the detected pressure of the second pressure sensor at a third set value in the control based on the detected pressure of the second pressure sensor,
The opening degree of the bypass valve is adjusted to maintain the detected pressure of the second pressure sensor at a fourth set value,
The steam system according to claim 5 or 6, wherein the fourth set value is set lower than the third set value.
前記原動機への給蒸量は、前記第三圧力センサの検出圧力に基づく制御において、前記第三圧力センサの検出圧力を第五設定値に維持するよう制御され、
前記ボイラが、前記第三圧力センサの検出圧力を第六設定値に維持するよう制御されるか、前記原動機の上流側に設けた放蒸弁が、前記第三圧力センサの検出圧力を第六設定値に維持するよう開度調整され、
前記第六設定値は、前記第五設定値よりも高く設定される
ことを特徴とする請求項5〜7のいずれか1項に記載の蒸気システム。
The amount of steam supply to the prime mover is controlled to maintain the detection pressure of the third pressure sensor at a fifth set value in the control based on the detection pressure of the third pressure sensor,
The boiler is controlled to maintain the detected pressure of the third pressure sensor at a sixth set value, or an evaporating valve provided on the upstream side of the prime mover controls the detected pressure of the third pressure sensor to the sixth The opening is adjusted to maintain the set value,
The steam system according to any one of claims 5 to 7, wherein the sixth set value is set higher than the fifth set value.
JP2011138885A 2011-06-22 2011-06-22 Steam system Active JP5415483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011138885A JP5415483B2 (en) 2011-06-22 2011-06-22 Steam system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011138885A JP5415483B2 (en) 2011-06-22 2011-06-22 Steam system

Publications (2)

Publication Number Publication Date
JP2013007286A JP2013007286A (en) 2013-01-10
JP5415483B2 true JP5415483B2 (en) 2014-02-12

Family

ID=47674834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011138885A Active JP5415483B2 (en) 2011-06-22 2011-06-22 Steam system

Country Status (1)

Country Link
JP (1) JP5415483B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240155B1 (en) * 2008-03-06 2009-03-18 三浦工業株式会社 Steam system

Also Published As

Publication number Publication date
JP2013007286A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP5805068B2 (en) Surge control system and method for compressor
KR101421517B1 (en) Steam system
JP4786443B2 (en) Compressed air production facility
JP4240155B1 (en) Steam system
JP2012522182A5 (en)
EP1851438A1 (en) System and method for controlling a variable speed compressor during stopping
RU2007132873A (en) METHOD OF PUMP SYSTEM OPERATION
JP2000297765A (en) Compressor device
WO2013014808A1 (en) System for controlling number of compressors
WO2003104655A1 (en) Pump unit
JP5415484B2 (en) Steam system
JP2007092582A (en) Fluid control device and fluid control method
WO2019189085A1 (en) Gas compressor
JP5159187B2 (en) Variable speed water supply device
JP2007170216A (en) Air compressor
JP5415483B2 (en) Steam system
JP6078748B2 (en) Suction system and suction method
JP5163962B2 (en) Steam system
JP2006316759A (en) Compression device
JP2004263631A (en) Screw compressor and method for operating the same
JP2005016464A (en) Compression device
WO2011074421A1 (en) Device and method for controlling compressor
JP2006312900A (en) Compressed gas supply device
JP4627763B2 (en) Compressed air production facility and operation method thereof
JP4496886B2 (en) Operation method of turbo compressor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131113

R150 Certificate of patent or registration of utility model

Ref document number: 5415483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250