JP5415105B2 - Oxygen isotope enrichment apparatus and enrichment method - Google Patents

Oxygen isotope enrichment apparatus and enrichment method Download PDF

Info

Publication number
JP5415105B2
JP5415105B2 JP2009044728A JP2009044728A JP5415105B2 JP 5415105 B2 JP5415105 B2 JP 5415105B2 JP 2009044728 A JP2009044728 A JP 2009044728A JP 2009044728 A JP2009044728 A JP 2009044728A JP 5415105 B2 JP5415105 B2 JP 5415105B2
Authority
JP
Japan
Prior art keywords
oxygen
ozone
distillation column
gas
photoreaction cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009044728A
Other languages
Japanese (ja)
Other versions
JP2010194496A (en
Inventor
貴史 神邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2009044728A priority Critical patent/JP5415105B2/en
Publication of JP2010194496A publication Critical patent/JP2010194496A/en
Application granted granted Critical
Publication of JP5415105B2 publication Critical patent/JP5415105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

この発明は、オゾンにレーザを照射し、天然存在比の小さな酸素同位体17O、18Oを選択的に濃縮する装置およびその方法に関する。 The present invention relates to an apparatus and method for selectively concentrating oxygen isotopes 17 O and 18 O having a small natural abundance ratio by irradiating ozone with laser.

オゾンにレーザを照射して目的とする酸素同位体を含むオゾンを選択的に分解し、酸素同位体の濃縮を行う方法として、図2に示す濃縮装置が用いられている。
原料となる酸素をオゾナイザ1に送り、酸素の一部をオゾンとして、ここで生成した酸素とオゾンとの混合ガスを第1蒸留塔2に送り込む。この際、オゾンの自己分解を防ぐため、テトラフルオロメタンやキセノンなど希釈ガスが第1蒸留塔2に同時に送り込まれ、蒸留が行われる。
A concentration apparatus shown in FIG. 2 is used as a method for selectively decomposing ozone containing a target oxygen isotope by irradiating the laser with ozone and concentrating the oxygen isotope.
Oxygen as a raw material is sent to the ozonizer 1, a part of oxygen is converted into ozone, and a mixed gas of oxygen and ozone generated here is sent into the first distillation column 2. At this time, in order to prevent the self-decomposition of ozone, a diluting gas such as tetrafluoromethane or xenon is simultaneously fed into the first distillation column 2 to perform distillation.

第1蒸留塔2において、その塔頂に酸素が分離され、この酸素は回収されて再度オゾナイザ1に送られる。塔底からはオゾンと希釈ガスとの混合ガスが分離され、この混合ガスは光反応セル3に送られる。光反応セル3では、特定波長のレーザがこの混合ガスに照射され、目的とする酸素同位体を含むオゾンが選択的に分解されて酸素となる。光反応セル3から導出される酸素、オゾンおよび希釈ガスからなる混合ガスは液化昇圧装置4にて液化、加圧されたのち、第2蒸留塔5に導入される。   In the first distillation column 2, oxygen is separated at the top of the column, and this oxygen is recovered and sent to the ozonizer 1 again. A mixed gas of ozone and dilution gas is separated from the bottom of the column, and this mixed gas is sent to the photoreaction cell 3. In the photoreaction cell 3, a laser having a specific wavelength is irradiated to the mixed gas, and ozone containing the target oxygen isotope is selectively decomposed into oxygen. The mixed gas composed of oxygen, ozone and dilution gas derived from the photoreaction cell 3 is liquefied and pressurized by the liquefying and boosting device 4 and then introduced into the second distillation column 5.

第2蒸留塔5の塔頂からは目的の酸素同位体が濃縮された酸素が製品として導出され、塔底からは酸素と希釈ガスが分離される。酸素と希釈ガスとの混合ガスは、オゾン分解装置6に送られてオゾンが分解されて酸素となって、この酸素と希釈ガスとは第3蒸留塔7に送られ、酸素と希釈ガスとに分離され、塔頂から導出された希釈ガスは再度第1蒸留塔2に送られ、循環使用される。塔底からの酸素は、廃ガスとして系外に排出される。   From the top of the second distillation column 5, oxygen enriched with the target oxygen isotope is led out as a product, and oxygen and diluent gas are separated from the bottom of the column. The mixed gas of oxygen and dilution gas is sent to the ozonolysis device 6 where ozone is decomposed to become oxygen, and this oxygen and dilution gas are sent to the third distillation column 7 to be converted into oxygen and dilution gas. The diluent gas separated and led out from the top of the column is sent again to the first distillation column 2 for circulation. Oxygen from the tower bottom is discharged out of the system as waste gas.

この濃縮方法では、オゾンは常圧、高濃度において自己分解性があるため、上述のように希釈ガスを加えてオゾン濃度を低濃度に抑えている。この希釈ガス量はオゾン濃度を抑えるためにオゾン量に比較して5倍以上もの大量のガスが添加され、このため、第1蒸留塔2、光反応セル3、液化昇圧装置4などの各装置内部に存在するガスのほとんどが希釈ガスで占められ、同位体分離に必要な容量に比べプロセスガスが大量となる。このため各蒸留塔や光反応セルが大型化してしまう。
また、希釈ガスを大気に放出するのが経済的にあるいは環境問題的に問題があるため、酸素同位体濃縮には関係ない希釈ガスと未反応オゾンから分解した酸素ガスとを分離する第3蒸留塔7が必要となる。
In this concentration method, ozone is self-decomposable at normal pressure and high concentration. Therefore, as described above, dilution gas is added to keep ozone concentration low. In order to suppress the ozone concentration, a large amount of gas more than five times as much as the amount of ozone is added to the dilution gas amount. For this reason, each device such as the first distillation column 2, the photoreaction cell 3, and the liquefaction pressure increasing device 4 is used. Most of the gas present in the interior is occupied by dilution gas, and the amount of process gas is larger than the volume required for isotope separation. For this reason, each distillation tower and a photoreaction cell will enlarge.
Moreover, since it is economically or environmentally problematic to discharge the dilution gas to the atmosphere, the third distillation for separating the dilution gas not related to oxygen isotope enrichment and the oxygen gas decomposed from unreacted ozone Tower 7 is required.

さらに、通常光反応セル3内は、大気圧以下の減圧状態で運転される。このため、光反応セル3から第2蒸留塔5に混合ガスを供給するためには大気圧以上に昇圧する必要があり、光反応セル3でのレーザ照射処理後の混合ガスを一旦液化し、液化状態で昇圧しなければならない。ポンプによるガス状態での混合ガスの昇圧は、非選択的なオゾン分解を引き起こすので、このような方法をやむなく採用している。   Furthermore, the inside of the normal photoreaction cell 3 is operated in a reduced pressure state below atmospheric pressure. For this reason, in order to supply the mixed gas from the photoreaction cell 3 to the second distillation column 5, it is necessary to raise the pressure to atmospheric pressure or higher, and the mixed gas after the laser irradiation treatment in the photoreaction cell 3 is once liquefied, The pressure must be increased in the liquefied state. Since the pressure increase of the mixed gas in the gas state by the pump causes non-selective ozonolysis, such a method is unavoidably adopted.

以上のように、従来の酸素同位体の濃縮に際しては、オゾンの自己分解を防ぐために希釈ガスを加えることに起因して、装置全体が大型化し、酸素同位体濃縮には本質的に不要な液化昇圧装置4や第3蒸留塔7をも設置しなければならない問題がある。
また、希釈ガスは循環し再利用されるが、プロセスガスの大部分をしめ、高価であるためコストアップの要因となっている。
As described above, in the conventional oxygen isotope enrichment, the entire apparatus becomes large due to the addition of a dilution gas to prevent the self-decomposition of ozone, and liquefaction that is essentially unnecessary for oxygen isotope enrichment. There is a problem that the booster 4 and the third distillation column 7 must be installed.
In addition, the dilution gas is circulated and reused, but it accounts for most of the process gas and is expensive, which increases the cost.

特開2005−40668号公報JP 2005-40668 A

よって、本発明における課題は、酸素同位体の濃縮に際して、希釈ガスの使用を不要とし、希釈ガスの使用による装置の大型化、複雑化あるいはコストアップなど不都合を解消することにある。   Therefore, an object of the present invention is to eliminate the need for a dilution gas when concentrating oxygen isotopes, and to solve problems such as an increase in size, complexity, and cost of the apparatus due to the use of the dilution gas.

かかる課題を解決するため、
請求項1にかかる発明は、原料酸素の一部をオゾンとするオゾナイザと、このオゾナイザからの酸素とオゾンの混合ガスを−50kPaG以下の減圧状態で蒸留する第1蒸留塔と、この第1蒸留塔からのオゾンに光を照射し、目的の酸素同位体原子を含むオゾンを選択的に酸素に分解する光反応セルと、この光反応セルにおいてオゾンが分解された酸素と未分解のオゾンとの混合ガスを−50kPaG以下の減圧状態で蒸留する第2蒸留塔を備え、第1蒸留塔から光反応セルを経て第2蒸留塔に向けて順次運転圧力を低下させたことを特徴とする酸素同位体の濃縮装置である。
請求項2にかかる発明は、原料酸素の一部をオゾンとする工程Aと、この工程で得られた酸素とオゾンの混合ガスを−50kPaG以下の減圧状態で蒸留する工程Bと、この蒸留により分離されたオゾンに光を照射し、目的の酸素同位体原子を含むオゾンを選択的に酸素に分解する工程Cと、この分解工程でオゾンが分解された酸素と未分解のオゾンとを−50kPaG以下の減圧状態で分離する工程Dとを備え、工程Aから工程B、工程Cを経て工程Dに向けて順次運転圧力を低下させることを特徴とする酸素同位体の濃縮方法である。
To solve this problem,
The invention according to claim 1 includes an ozonizer that uses ozone as a part of raw material oxygen, a first distillation column that distills a mixed gas of oxygen and ozone from the ozonizer in a reduced pressure state of -50 kPaG or less , and the first distillation column. A photoreaction cell that irradiates the ozone from the tower with light and selectively decomposes ozone containing the target oxygen isotope atom into oxygen, and the oxygen decomposed and undecomposed ozone in this photoreaction cell An oxygen isotope comprising a second distillation column for distilling the mixed gas in a reduced pressure state of −50 kPaG or less , wherein the operating pressure is sequentially reduced from the first distillation column through the photoreaction cell toward the second distillation column. It is a body concentration device.
The invention according to claim 2 includes a step A in which a part of the raw material oxygen is ozone, a step B in which the mixed gas of oxygen and ozone obtained in this step is distilled in a reduced pressure state of -50 kPaG or less, and this distillation. The separated ozone is irradiated with light to selectively decompose the ozone containing the target oxygen isotope atom into oxygen, and the oxygen decomposed and undecomposed ozone in this decomposition step is −50 kPaG And an oxygen isotope enrichment method characterized in that the operation pressure is decreased sequentially from step A to step D through step B, step C, and step D.

本発明によれば、希釈ガスが不要なり、希釈ガスの回収用の蒸留塔が不要となる。また、蒸留塔や光反応セルの大きさがコンパクトになり、配管も小さくすることができる。さらに、全体のプロセスガス量が小さくなるため蒸留塔運転に必要な動力も小さくなる。
また、オゾンの光分解反応はオゾン濃度に依存するため、オゾン濃度の増加により効率的にレーザ光を利用することができる。
光反応セルの運転圧力近傍で蒸留塔を動かし、第1蒸留塔から光反応セル、第2蒸留塔に進むにつれ圧力が低くなるように圧力を設定することで途中に昇圧装置を設置しなくてすむ。
According to the present invention, no dilution gas is required, and a distillation column for recovering the dilution gas is not required. In addition, the size of the distillation column and the photoreaction cell can be made compact, and the piping can be reduced. Furthermore, since the total amount of process gas is reduced, the power required for operation of the distillation tower is also reduced.
In addition, since the photodecomposition reaction of ozone depends on the ozone concentration, the laser light can be used efficiently by increasing the ozone concentration.
By moving the distillation column in the vicinity of the operating pressure of the photoreaction cell and setting the pressure so that the pressure decreases as it proceeds from the first distilling column to the photoreaction cell and the second distilling column, there is no need to install a booster on the way. I'm sorry.

本発明の酸素同位体濃縮装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the oxygen isotope enrichment apparatus of this invention. 従来の酸素同位体濃縮装置を示す概略構成図である。It is a schematic block diagram which shows the conventional oxygen isotope enrichment apparatus.

図1は、本発明の酸素同位体濃縮装置の一例を示すもので、図2に示した従来の装置と同一構成部分には同一符号を付してある。
この例の濃縮装置は、原料からオゾンを発生させるオゾナイザ1、オゾナイザ1で発生したオゾンと未反応の酸素とを分離する第1蒸留塔2、第1蒸留塔2で分離されたオゾンにレーザを照射し、目的とする酸素同位体原子を含むオゾンを選択的に分解する光反応セル3、光反応セル3でオゾンの分解により得られた酸素とオゾンとを分離して製品酸素を得る第2蒸留塔5、第2蒸留塔5で分離したオゾンを分解するオゾン分解装置6から概略構成されている。
第1蒸留塔1、第2蒸留塔5には、規則充填物を用いた充填塔を用いることが好ましいが、不規則充填物の充填塔や棚段塔を用いても良い。
FIG. 1 shows an example of the oxygen isotope concentrator of the present invention, and the same components as those of the conventional apparatus shown in FIG.
The concentrator of this example is a laser for the ozonizer 1 that generates ozone from a raw material, the first distillation column 2 that separates ozone generated by the ozonizer 1 and unreacted oxygen, and the ozone separated by the first distillation column 2. Irradiating and selectively decomposing ozone containing the target oxygen isotope atoms, the photoreaction cell 3 separates oxygen and ozone obtained by decomposing ozone in the photoreaction cell 3 to obtain product oxygen. It is schematically configured from an ozonolysis apparatus 6 for decomposing ozone separated in the distillation column 5 and the second distillation column 5.
As the first distillation column 1 and the second distillation column 5, it is preferable to use a packed column using a regular packing, but a packed column or a plate column with an irregular packing may be used.

この濃縮装置を用いて、目的の酸素同位体を濃縮した酸素を得るための方法を以下に説明する。
オゾナイザ1に導入された原料酸素は、大気圧下でその一部がオゾン化される。オゾナイザ1には、オゾン化率が概ね数体積%から20体積%程度となるような流量の酸素を導入する。
オゾナイザ1で、一部がオゾン化された酸素は、大気圧以下の減圧状態となっている第1蒸留塔2の中間部に導入され、オゾンと未反応の酸素とに分離される。第1蒸留塔2に導入されるガスは、オゾンと酸素のみであり、従来のように希釈ガスは不要である。高濃度オゾンは減圧状態に保持されることで自己分解を防ぎ、安全が確保される
ここで、大気圧以下の減圧状態とは、圧力0kPaG(ゲージ圧)以下で運転、作業することを言い、好ましくは−50kPaG以下であることがオゾンの自己分解を完全に防止できる点で望ましい。
A method for obtaining oxygen enriched with the target oxygen isotope using this concentrator will be described below.
Part of the raw material oxygen introduced into the ozonizer 1 is ozonized under atmospheric pressure. Ozonizer 1 is introduced with a flow rate of oxygen such that the ozonization rate is about several to 20% by volume.
In the ozonizer 1, oxygen that is partially ozonized is introduced into the middle part of the first distillation column 2 in a reduced pressure state below atmospheric pressure, and is separated into ozone and unreacted oxygen. The gases introduced into the first distillation column 2 are only ozone and oxygen, and no dilution gas is required as in the prior art. High-concentration ozone is kept in a reduced pressure state to prevent self-decomposition and ensure safety. Here, a reduced pressure state below atmospheric pressure means operating and working at a pressure of 0 kPaG (gauge pressure) or less, Preferably, it is -50 kPaG or less from the viewpoint that ozone self-decomposition can be completely prevented.

第1蒸留塔2塔頂から取り出された酸素の一部はコンデンサ11で液化され還流液として第1蒸留塔2に戻される。その他の酸素はオゾナイザ1の上流側で原料酸素に戻すことができる。このとき、第1蒸留塔2は大気圧以下の減圧状態であり、オゾナイザ1では大気圧付近でオゾン化させるので、第1蒸留塔2塔頂からの酸素は圧縮機12によって圧力を高めてから原料酸素に戻される。   Part of the oxygen extracted from the top of the first distillation column 2 is liquefied by the condenser 11 and returned to the first distillation column 2 as a reflux liquid. Other oxygen can be returned to the raw material oxygen upstream of the ozonizer 1. At this time, the first distillation column 2 is in a depressurized state below atmospheric pressure, and the ozonizer 1 is ozonized near atmospheric pressure, so that oxygen from the top of the first distillation column 2 is increased in pressure by the compressor 12. Returned to raw oxygen.

第1蒸留塔2の塔底からオゾンガスを取り出し、第1蒸留塔2より低圧状態にある光反応セル3へ導入する。光反応セル3では、オゾンにレーザ装置20から特定の波長のレーザ光を照射し、目的の酸素同位体原子(17Oもしくは18O)を含むオゾンを選択的に分解する。光反応セル3から導出されたオゾンと酸素の混合ガスは、第2蒸留塔5の中間部へ導入される。
第2蒸留塔5の圧力は光反応セル3内の圧力より更に低圧とされており、酸素とオゾンとに分離される。第2蒸留塔5塔頂から抜き出された酸素は、製品酸素として圧縮機13により系外に取り出される。第2蒸留塔5塔頂からの酸素の一部はコンデンサ14で液化され、還流液として第2蒸留塔5に戻される。
Ozone gas is taken out from the bottom of the first distillation column 2 and introduced into the photoreaction cell 3 in a lower pressure state than the first distillation column 2. In the photoreaction cell 3, ozone is irradiated with laser light having a specific wavelength from the laser device 20, and ozone containing the target oxygen isotope atom ( 17 O or 18 O) is selectively decomposed. The mixed gas of ozone and oxygen led out from the photoreaction cell 3 is introduced into the middle part of the second distillation column 5.
The pressure in the second distillation column 5 is lower than the pressure in the photoreaction cell 3 and is separated into oxygen and ozone. Oxygen extracted from the top of the second distillation column 5 is taken out of the system by the compressor 13 as product oxygen. Part of the oxygen from the top of the second distillation column 5 is liquefied by the condenser 14 and returned to the second distillation column 5 as a reflux liquid.

第2蒸留塔5の塔底には、目的の酸素同位体原子が減少したオゾンが濃縮される。塔底液はリボイラ15で上昇ガスとされ、塔底のガスは、オゾン分解装置6で酸素に分解されたあと、圧縮機16で系外に排出される。
ここで、各蒸留塔2、5内の減圧状態は、各蒸留塔2、5のコンデンサ11、14と圧縮機12、13により達成される。
第1蒸留塔2、第2蒸留塔5のコンデンサ11、14における冷流体として、例えば減圧した液体窒素等を用いることができる。
At the bottom of the second distillation column 5, ozone having a reduced target oxygen isotope atom is concentrated. The tower bottom liquid is converted into a rising gas by the reboiler 15, and the gas at the tower bottom is decomposed into oxygen by the ozone decomposing apparatus 6 and then discharged out of the system by the compressor 16.
Here, the reduced pressure state in each distillation column 2, 5 is achieved by the condensers 11, 14 and the compressors 12, 13 of each distillation column 2, 5.
As the cold fluid in the condensers 11 and 14 of the first distillation column 2 and the second distillation column 5, for example, decompressed liquid nitrogen or the like can be used.

このように、第1蒸留塔2、光反応セル3および第2蒸留塔5をいずれも大気圧以下の減圧状態で運転しているので、オゾン濃度が高くても、オゾンが自己分解することがない。このため、従来のようにテトラフルオロメタン、キセノンなどの希釈ガスを大量に同伴させる必要がない。よって、高価な希釈ガスが不要であり、さらには希釈ガスを回収するための蒸留塔も不要になる。   As described above, since the first distillation column 2, the photoreaction cell 3 and the second distillation column 5 are all operated under a reduced pressure of atmospheric pressure or less, ozone can be self-decomposed even if the ozone concentration is high. Absent. For this reason, it is not necessary to entrain a large amount of diluent gas such as tetrafluoromethane and xenon as in the prior art. Therefore, an expensive dilution gas is unnecessary, and further, a distillation column for recovering the dilution gas is also unnecessary.

また、第1蒸留塔2から光反応セル3を経て第2蒸留塔5に向けて運転圧力を次第に低下するように設定することで、光反応セル3から導出されるオゾンと酸素との混合ガスをそのまま第2蒸留塔5に導入でき、従来の液化加圧装置も不要となる。
さらに、従来方法では、オゾンの自己分解を防ぐため、希釈ガスを大量に混合して蒸留していたため、光反応セル3でのオゾン濃度は10体積%程度となっていた。これに対して本発明方法ではオゾンがほぼ100体積%の状態で光反応セル3に導入することができ、光反応セル3の容積を10分の1にすることができる。
Further, by setting the operating pressure to gradually decrease from the first distillation column 2 through the photoreaction cell 3 to the second distillation column 5, a mixed gas of ozone and oxygen derived from the photoreaction cell 3 Can be introduced into the second distillation column 5 as it is, and a conventional liquefaction pressurizing apparatus is also unnecessary.
Furthermore, in the conventional method, in order to prevent the self-decomposition of ozone, a large amount of dilution gas was mixed and distilled, so that the ozone concentration in the photoreaction cell 3 was about 10% by volume. On the other hand, in the method of the present invention, ozone can be introduced into the photoreaction cell 3 in a state of almost 100% by volume, and the volume of the photoreaction cell 3 can be reduced to 1/10.

さらに、図1を参照して、酸素同位体として18Oが濃縮された酸素を得る方法について具体的に説明する。
18Oを約2000ppm含み、窒素が1ppm未満の原料酸素をオゾナイザ1に導入し、酸素をオゾン化する。オゾナイザ1での圧力は、約10kPaGである。オゾナイザ1では、約20体積%の酸素がオゾン化され、オゾンと酸素との混合ガスを第1蒸留塔2の中間部に導入する。
Further, a method for obtaining oxygen enriched with 18 O as an oxygen isotope will be specifically described with reference to FIG.
Source oxygen containing about 2000 ppm of 18 O and nitrogen of less than 1 ppm is introduced into the ozonizer 1 to ozonize the oxygen. The pressure in the ozonizer 1 is about 10 kPaG. In the ozonizer 1, about 20% by volume of oxygen is ozonized, and a mixed gas of ozone and oxygen is introduced into the middle part of the first distillation column 2.

第1蒸留塔2には、充填塔を用い、予め圧縮機12で真空に近い状態にしておく。オゾンと酸素の混合ガスを導入したら、塔底の圧力を−70kPaG程度にして蒸留する。第1蒸留塔2は、塔頂にコンデンサ11、塔底にリボイラ19を有する。蒸留により酸素が塔頂に濃縮されるので、その一部はコンデンサ11により還流液として、第1蒸留塔2に戻す。残りの酸素は圧縮機12によって約20kPaGまで圧縮され、オゾナイザ1の上流側の原料酸素ラインに戻す。   A packed tower is used as the first distillation column 2 and is brought into a state close to a vacuum by the compressor 12 in advance. When the mixed gas of ozone and oxygen is introduced, the column bottom pressure is set to about -70 kPaG and distilled. The first distillation column 2 has a condenser 11 at the top and a reboiler 19 at the bottom. Since oxygen is concentrated at the top of the column by distillation, a part thereof is returned to the first distillation column 2 as a reflux liquid by the condenser 11. The remaining oxygen is compressed to about 20 kPaG by the compressor 12 and returned to the raw material oxygen line upstream of the ozonizer 1.

第1蒸留塔2の塔底ではオゾンが濃縮されるので、塔底液はリボイラ19で上昇ガスとする。リボイラ19の熱源となる温流体は、窒素ガス等を用いる。
第1蒸留塔2の塔底に濃縮されたオゾンガスを光反応セル3へと導入する。ここで、光反応セル3の圧力を約−75kPaGにしておくことで、圧縮機等を用いることなく、オゾンを光反応セル3に導入することができる。
Since ozone is concentrated at the bottom of the first distillation column 2, the column bottom liquid is used as a rising gas by the reboiler 19. Nitrogen gas or the like is used as a warm fluid serving as a heat source for the reboiler 19.
The ozone gas concentrated at the bottom of the first distillation column 2 is introduced into the photoreaction cell 3. Here, by setting the pressure of the photoreaction cell 3 to about −75 kPaG, ozone can be introduced into the photoreaction cell 3 without using a compressor or the like.

この光反応セル3内で、レーザ装置20から18Oを含むオゾンを選択的に分解する波長のレーザ光をオゾンに照射することにより、18Oを含むオゾンを選択的に分解し、酸素を得る。レーザ光を有効に使用するため光反応セル3は長光路のものを使用する。このときのオゾンの分解率は10%程度である。
18Oを含む酸素とオゾンの混合ガスを、第2蒸留塔9の中間部へ導入する。ここで、第2蒸留塔5には充填塔を用い、予め真空に近い状態としておく。光反応セル3より低圧の状態で蒸留するようにすることで、オゾンを圧縮することなく第2蒸留塔5へ導入することができる。第2蒸留塔5の運転圧力は、例えば、塔底部を−78kPaG程度とする。
In this photoreaction cell 3, by irradiating ozone with laser light having a wavelength that selectively decomposes ozone containing 18 O from the laser device 20, ozone containing 18 O is selectively decomposed to obtain oxygen. . In order to use the laser beam effectively, the photoreaction cell 3 having a long optical path is used. The ozone decomposition rate at this time is about 10%.
A mixed gas of oxygen and ozone containing 18 O is introduced into the middle part of the second distillation column 9. Here, a packed column is used as the second distillation column 5 and is in a state close to vacuum in advance. By distilling at a lower pressure than the photoreaction cell 3, ozone can be introduced into the second distillation column 5 without being compressed. The operating pressure of the second distillation column 5 is, for example, about -78 kPaG at the bottom of the column.

第2蒸留塔5内での蒸留により、第2蒸留塔5の塔頂に目的の18Oを多く含む酸素が、塔底にオゾンが濃縮される。塔頂の酸素は圧縮機13により製品酸素として系外に取り出される。このとき、レーザ光で選択的に分解するオゾン種を161618Oとしたとき、製品酸素には約16%の18Oが含まれる。
第2蒸留塔5の塔底に濃縮されたオゾンは、リボイラ15で上昇ガスとされる。このときの温流体も、リボイラ19と同様に窒素ガス等を用いる。
第2蒸留塔5の塔底のオゾンガスは、オゾン分解装置6に送られ完全分解されて酸素とされ、系外に廃棄される。
By distillation in the second distillation column 5, oxygen containing a large amount of target 18 O is concentrated at the top of the second distillation column 5, and ozone is concentrated at the bottom of the column. The oxygen at the top of the column is taken out of the system as product oxygen by the compressor 13. At this time, when the ozone species that is selectively decomposed by the laser beam is 16 O 16 O 18 O, the product oxygen contains about 16% of 18 O.
The ozone concentrated at the bottom of the second distillation column 5 is converted into a rising gas by the reboiler 15. Nitrogen gas etc. are used also for the warm fluid at this time similarly to the reboiler 19.
The ozone gas at the bottom of the second distillation column 5 is sent to the ozonolysis device 6 where it is completely decomposed into oxygen and discarded outside the system.

1・・オゾナイザ、2・・第1蒸留塔、3・・光反応セル、5・・第2蒸留塔、6・・オゾン分解装置 1. Ozonizer, 2. First distillation column, 3. Photoreaction cell, 5. Second distillation column, 6. Ozonizer

Claims (2)

原料酸素の一部をオゾンとするオゾナイザと、このオゾナイザからの酸素とオゾンの混合ガスを−50kPaG以下の減圧状態で蒸留する第1蒸留塔と、この第1蒸留塔からのオゾンに光を照射し、目的の酸素同位体原子を含むオゾンを選択的に酸素に分解する光反応セルと、この光反応セルにおいてオゾンが分解された酸素と未分解のオゾンとの混合ガスを−50kPaG以下の減圧状態で蒸留する第2蒸留塔を備え
第1蒸留塔から光反応セルを経て第2蒸留塔に向けて順次運転圧力を低下させたことを特徴とする酸素同位体の濃縮装置。
An ozonizer that uses ozone as a part of the raw material oxygen, a first distillation column that distills a mixed gas of oxygen and ozone from the ozonizer in a reduced pressure state of -50 kPaG or less , and irradiates the ozone from the first distillation column with light. Then, a photoreaction cell for selectively decomposing ozone containing the target oxygen isotope atom into oxygen, and a mixed gas of oxygen decomposed and undecomposed ozone in this photoreaction cell is reduced to -50 kPaG or less . A second distillation column for distillation in a state ,
An apparatus for concentrating oxygen isotopes, wherein the operating pressure is sequentially reduced from the first distillation column through the photoreaction cell toward the second distillation column .
原料酸素の一部をオゾンとする工程Aと、この工程で得られた酸素とオゾンの混合ガスを−50kPaG以下の減圧状態で蒸留する工程Bと、この蒸留により分離されたオゾンに光を照射し、目的の酸素同位体原子を含むオゾンを選択的に酸素に分解する工程Cと、この分解工程でオゾンが分解された酸素と未分解のオゾンとを−50kPaG以下の減圧状態で分離する工程Dとを備え
工程Aから工程B、工程Cを経て工程Dに向けて順次運転圧力を低下させることを特徴とする酸素同位体の濃縮方法。
Step A using part of the raw material oxygen as ozone, Step B in which the mixed gas of oxygen and ozone obtained in this step is distilled at a reduced pressure of -50 kPaG or less , and irradiation of the ozone separated by this distillation with light And step C for selectively decomposing ozone containing the target oxygen isotope atom into oxygen, and step for separating oxygen decomposed in this decomposition step and undecomposed ozone in a reduced pressure state of −50 kPaG or less. and a D,
A method for concentrating oxygen isotopes, wherein the operating pressure is decreased sequentially from step A to step D through step B and step C.
JP2009044728A 2009-02-26 2009-02-26 Oxygen isotope enrichment apparatus and enrichment method Active JP5415105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009044728A JP5415105B2 (en) 2009-02-26 2009-02-26 Oxygen isotope enrichment apparatus and enrichment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009044728A JP5415105B2 (en) 2009-02-26 2009-02-26 Oxygen isotope enrichment apparatus and enrichment method

Publications (2)

Publication Number Publication Date
JP2010194496A JP2010194496A (en) 2010-09-09
JP5415105B2 true JP5415105B2 (en) 2014-02-12

Family

ID=42819792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009044728A Active JP5415105B2 (en) 2009-02-26 2009-02-26 Oxygen isotope enrichment apparatus and enrichment method

Country Status (1)

Country Link
JP (1) JP5415105B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365379B2 (en) 2021-08-16 2023-10-19 大陽日酸株式会社 Oxygen isotope enrichment method and oxygen isotope enrichment device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184195A (en) * 2002-12-03 2004-07-02 Meidensha Corp Residual ozone checking method and ozone producing method
JP4364529B2 (en) * 2003-03-04 2009-11-18 大陽日酸株式会社 Oxygen isotope enrichment method and apparatus
JP4699784B2 (en) * 2005-03-28 2011-06-15 大陽日酸株式会社 Method and apparatus for concentrating oxygen isotopes
WO2007020934A1 (en) * 2005-08-17 2007-02-22 Taiyo Nippon Sanso Corporation Method of oxygen isotope concentration
JP5116274B2 (en) * 2006-09-26 2013-01-09 大陽日酸株式会社 Concentration method and concentration apparatus for oxygen isotope weight component
JP4771992B2 (en) * 2007-05-31 2011-09-14 大陽日酸株式会社 Oxygen isotope enrichment apparatus and enrichment method

Also Published As

Publication number Publication date
JP2010194496A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
US7922875B2 (en) Method and apparatus for enrichment of heavy oxygen isotopes
EP0550152B1 (en) Treatment of water with ozone
TWI732970B (en) Water treatment method and apparatus
EP2873939B1 (en) Process and apparatus for the production of CO and CO2
JP4699784B2 (en) Method and apparatus for concentrating oxygen isotopes
TWI732969B (en) Water treatment method and apparatus
IL195704A (en) Method for concentrating oxygen isotope
JP5415105B2 (en) Oxygen isotope enrichment apparatus and enrichment method
JP4364529B2 (en) Oxygen isotope enrichment method and apparatus
JP5620705B2 (en) Oxygen isotope enrichment method and oxygen isotope enrichment apparatus
WO2022138162A1 (en) Stable isotope enrichment device and stable isotope enrichment method
JP2019141752A (en) Laser gas recycle system and method for the same
JP2016131938A (en) Oxygen isotope concentration method
JP2011161383A (en) Method and apparatus for concentrating oxygen containing heavy component of oxygen isotope
RU2329093C2 (en) Method of concentrating oxygen isotope
US9593020B2 (en) Methods for carbon dioxide purification
JP4409237B2 (en) Oxygen isotope enrichment method
JPH1179734A (en) Device for purifying boron trichloride by removal of phosgene and method thereof
JP2008073656A (en) Gas sending method in laser photochemical reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131113

R150 Certificate of patent or registration of utility model

Ref document number: 5415105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250