JP5413554B2 - Coloring pigment for sunlight high reflection paint - Google Patents
Coloring pigment for sunlight high reflection paint Download PDFInfo
- Publication number
- JP5413554B2 JP5413554B2 JP2008116284A JP2008116284A JP5413554B2 JP 5413554 B2 JP5413554 B2 JP 5413554B2 JP 2008116284 A JP2008116284 A JP 2008116284A JP 2008116284 A JP2008116284 A JP 2008116284A JP 5413554 B2 JP5413554 B2 JP 5413554B2
- Authority
- JP
- Japan
- Prior art keywords
- pigment
- iron oxide
- particles
- white
- white inorganic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Paints Or Removers (AREA)
Description
本発明は、可視光線から赤外線に至る波長領域、即ち、380〜780nmおよび780〜2100nmにおける太陽光を効率良く反射することにより、夏の強い太陽光の下で発生している屋根材やアスファルト道路およびビル外壁などの蓄熱を削減してヒートアイランド現象を抑制し、同時に環境に調和した色彩に着色することができる白色無機顔料の粒子表面に着色酸化鉄微粒子が海島模様に固着している構造の着色顔料であって、光線反射性と着色性の機能を兼ね備えていることを特徴とする太陽光高反射塗料用着色顔料に関する。 The present invention efficiently reflects sunlight in the wavelength region from visible light to infrared light, that is, 380 to 780 nm and 780 to 2100 nm, thereby enabling roofing materials and asphalt roads generated under strong sunlight in summer. Coloring of the structure where colored iron oxide fine particles are fixed to the sea-island pattern on the surface of white inorganic pigment particles that can suppress heat island phenomenon by reducing heat storage on the exterior walls of buildings and the like, and at the same time, color in harmony with the environment The present invention relates to a colored pigment for highly reflective solar light paints, which has both light reflectivity and colorability functions.
夏の強い太陽光が都市部にもたらすヒートアイランド現象は、冷房用の電力需要を激増させ、冷房機からの排熱がヒートアイランド現象をさらに増幅しているという深刻な社会問題になっている。そこで、太陽光の日射を反射して道路や建築物の蓄熱を削減するために遮熱性顔料や塗料組成物などの対策が多数提案されている。 The heat island phenomenon brought to urban areas by strong sunlight in the summer is a serious social problem that the demand for electric power for cooling is drastically increased, and the exhaust heat from the air conditioner further amplifies the heat island phenomenon. Therefore, many countermeasures such as heat-shielding pigments and paint compositions have been proposed in order to reflect sunlight and reduce heat storage in roads and buildings.
これら提案には、光反射機能を有する重金属含有無機顔料または有機物の色素や顔料を用いた塗料や塗布膜に関するもの、塗布膜の構造や組み合わせにより光反射効果を増大させる方法、あるいは、白色体が光線を全反射する特性を利用して、白色の有機または無機粒子の表面に有機色素や有機顔料を被覆した遮熱性、高反射性塗料に関するもの等である。 These proposals relate to paints and coating films using heavy metal-containing inorganic pigments or organic pigments or pigments having a light reflecting function, methods for increasing the light reflecting effect by the structure and combination of coating films, or white bodies. The present invention relates to a heat-shielding and highly reflective coating in which organic pigments or organic pigments are coated on the surface of white organic or inorganic particles using the characteristic of totally reflecting light rays.
白色体を利用する例としては、白色無機粒子の表面にアルコキシシランから生成するオルガノシラン化合物が被覆されており、該被覆にペリレンブラックが付着している複合粒子からなる熱遮蔽性顔料(特許文献1)は、沈降性硫酸バリウムまたは酸化チタンの白色粒子表面にオルガノシラン化合物を被覆し、その上にペリレンブラックが付着している構造の粒子である。 As an example of utilizing a white body, the surface of white inorganic particles is coated with an organosilane compound generated from alkoxysilane, and a heat shielding pigment composed of composite particles in which perylene black is adhered to the coating (Patent Document) 1) is a particle having a structure in which a white particle surface of precipitated barium sulfate or titanium oxide is coated with an organosilane compound, and perylene black is adhered thereon.
また、『近赤外線反射性および/または近赤外線透過性の有彩色色素または黒色色素で、白色顔料を被覆してなる複合顔料は、近赤外線を吸収せずに反射し、これを着色剤とする塗料が塗布された建築物などは、直射日光により室温が高温になりにくい』(特許文献2[0007])ことが記され、この複合顔料は、白色顔料として『白色の無機または有機の粉体であり、例えば、酸化チタン、亜鉛華などの白色顔料、炭酸カルシウム、アルミナ、シリカ、クレイ、活性白土、含水珪酸、無水珪酸、アルミニウム粉末、ステンレス粉末、有機プラスチックピグメントなどの体質顔料』(特許文献2[0015])などを使用し、『近赤外線非吸収性色素としては、例えば、アゾ系、アンスラキノン系、フタロシアニン系、ペリノン・ペリレン系、インジゴ・チオインジゴ系、ジオキサジン系、キナクドリン系、イソインドリノン系、イソインドリン系、ジケトピロロピロール系、アゾメチン系、アゾメチンアゾ系の有機色素が挙げられ、好ましい黒色色素としてはアゾ系、アゾメチンアゾ系、ぺリレン系の有機黒色色素』(特許文献2[0009])などの有機色素で白色顔料を被覆した構造の顔料粒子である。 In addition, “a composite pigment formed by coating a white pigment with a chromatic color pigment or a black pigment having near infrared reflectivity and / or near infrared transmittance reflects without absorbing near infrared rays and uses this as a colorant. It is noted that a building or the like to which a paint is applied is difficult to reach a high temperature due to direct sunlight ”(Patent Document 2 [0007]), and this composite pigment is a white inorganic or organic powder as a white pigment. For example, white pigments such as titanium oxide and zinc white, extender pigments such as calcium carbonate, alumina, silica, clay, activated clay, hydrous silicic acid, anhydrous silicic acid, aluminum powder, stainless steel powder, and organic plastic pigments (patent document) 2 [0015]), etc. “Near infrared non-absorbing dyes include, for example, azo, anthraquinone, phthalocyanine, perinone and perylene. Indigo / thioindigo, dioxazine, quinacdolin, isoindolinone, isoindoline, diketopyrrolopyrrole, azomethine, and azomethine azo organic dyes. Preferred azo dyes include azo, azomethine azo, Pigment particles having a structure in which a white pigment is coated with an organic dye such as “perylene-based organic black dye” (Patent Document 2 [0009]).
また、特許文献3は、『遮熱性および耐チッピング性に優れた着色塗料に関する』(特許文献3[0001])もので、遮熱性顔料(A)には顔料(a1)と顔料(a2)がある。
『遮熱性顔料(A)は、アゾ系、アンスラキノン系、フタロシアニン系、ペリノン・ペリレン系、インジゴ・チオインジゴ系、ジオキサジン系、キナクドリン系、イソインドリノン系、イソインドリン系、ジケトピロロピロール系、アゾメチン系、およびアゾメチンアゾ系から選ばれる少なくとも1種の赤外線反射顔料にて、白色顔料を被覆してなる顔料(a1)』(特許文献3[0009])であり、『顔料(a1)に使用する白色顔料は、白色の無機または有機の粉体であり、例えば、酸化チタン(ルチル型酸化チタン、アナターゼ型酸化チタンなど)、鉛白、亜鉛華、硫化亜鉛、リトポンなどの白色顔料、炭酸カルシウム、硫酸バリウム、アルミナ、シリカ、クレイ、活性白土、含水珪酸、無水珪酸、アルミニウム粉末、ステンレス粉末、有機プラスチックピグメントなどの体質顔料など』(特許文献3[0010])であり、顔料(a1)は、これら白色顔料を上記の有機色素で被覆した構造の顔料粒子である。
また、『遮熱顔料(A)としては、Si、Zr、Mg、Ca、Fe、Mnから選ばれる元素の酸化物、複酸化物、炭化物及び窒化物から選ばれる少なくとも1種にて、白色顔料を被覆してなる顔料(a2)も用いることができる』(特許文献3[0017])とあるように、顔料(a2)は、上記無機元素の化合物で白色顔料を被覆した構造の粒子であることが示されている。
Patent Document 3 relates to “colored paint excellent in heat-shielding and chipping resistance” (Patent Document 3 [0001]), and pigment (a1) and pigment (a2) are included in the heat-shielding pigment (A). is there.
“Thermal pigment (A) is an azo, anthraquinone, phthalocyanine, perinone / perylene, indigo / thioindigo, dioxazine, quinacdrine, isoindolinone, isoindoline, diketopyrrolopyrrole, A pigment (a1) ”(Patent Document 3 [0009]) obtained by coating a white pigment with at least one infrared reflective pigment selected from azomethine and azomethine azo, and is used in“ pigment (a1) ”. The white pigment is a white inorganic or organic powder, for example, white oxide such as titanium oxide (rutile type titanium oxide, anatase type titanium oxide, etc.), lead white, zinc white, zinc sulfide, lithopone, calcium carbonate, Barium sulfate, alumina, silica, clay, activated clay, hydrous silicic acid, anhydrous silicic acid, aluminum powder, stainless steel powder A like extender pigments such as organic plastic pigments "(Patent Document 3 [0010]), pigment (a1) is these white pigments are pigment particles of the structure coated with the above organic dye.
“Thermal pigment (A) includes at least one selected from oxides, double oxides, carbides and nitrides of elements selected from Si, Zr, Mg, Ca, Fe and Mn, and white pigments. (Patent Document 3 [0017]) ”, the pigment (a2) is a particle having a structure in which a white pigment is coated with the above-mentioned inorganic element compound. It has been shown.
以上のように、白色無機顔料の表面に赤外線反射性顔料や有機色素を被覆または付着させた構造の粒子からなる赤外線反射顔料が開示されている。これらの例が示すように、遮熱性や近赤外線反射効果を発現する塗料を得るためには、多くの場合に有機色素や有機顔料が使用されているのが現状である。 As described above, an infrared reflective pigment composed of particles having a structure in which a surface of a white inorganic pigment is coated or adhered with an infrared reflective pigment or an organic dye is disclosed. As these examples show, in order to obtain a coating material that exhibits heat-shielding properties and near-infrared reflection effects, in many cases, organic dyes and organic pigments are currently used.
しかしながら、これら有機色素や有機顔料を用いた遮熱塗料は、これを塗布した建築物の改修や道路の補修工事などの際に、有機物が混入した廃材を大量に発生することになり、廃材中の有機物が環境へどのように影響するかという問題がある。ヒートアイランド対策に必要な環境保全や調和に関して十分な配慮があるとは言えない。環境に配慮したヒートアイランド対策が求められている。 However, these organic pigments and thermal barrier paints using organic pigments generate a large amount of waste materials mixed with organic matter when repairing buildings and repairing roads where they are applied. There is a problem of how the organic matter affects the environment. It cannot be said that there is sufficient consideration for environmental conservation and harmony necessary for heat island countermeasures. There is a need for environmentally friendly heat island countermeasures.
また、特許文献2および3には、白色無機顔料としてクレイや活性白土の粘土質顔料が挙げられているが、光線反射特性などについての記述は何もなく、示唆するものもない。単なる例示に過ぎない。 Patent Documents 2 and 3 mention clay and activated clay clay pigments as white inorganic pigments, but there is no description or suggestion of light reflection characteristics. It is merely an example.
また、太陽光線の内の近赤外線を反射することを目的とした対策は、太陽光線のエネルギー分布が赤外線領域で48%、可視光線領域で46%、紫外線領域で6%である(非特許文献1)から、可視光線領域に関する対策が不足している。 Further, a measure aimed at reflecting near-infrared rays in solar rays is that the energy distribution of solar rays is 48% in the infrared region, 46% in the visible light region, and 6% in the ultraviolet region (non-patent document). From 1), there are insufficient measures for the visible light region.
そこで、本発明は、光線反射性と着色性の機能を兼ね備えた太陽光高反射塗料用着色顔料を得ることを技術的課題とする。 Then, this invention makes it a technical subject to obtain the coloring pigment for sunlight highly reflective coating materials which has the function of light reflectivity and coloring property.
本発明者は、上記のような従来技術の現状に鑑み、可視光から赤外線領域を対象にし、環境適応性を重視して取り組みを始めた。そして、カオリンやケイソウ土などの光線反射率特性について鋭意検討した結果、これらには可視光から赤外線に至る波長領域で高い光線反射性能があることを見出した。 In view of the current state of the prior art as described above, the present inventor has started an effort focusing on environmental adaptability from the visible light to the infrared region. As a result of intensive studies on the light reflectance characteristics of kaolin, diatomaceous earth, etc., they have found that they have high light reflection performance in the wavelength region from visible light to infrared light.
そして、カオリンやケイソウ土の白色無機顔料の粒子表面に酸化鉄微粒子を海島模様に固着させた構造の着色顔料が、可視光線領域においても光反射率が大きくなることを見出して本発明を完成した。このことは、酸化鉄には特定波長の光を吸収する性質があるので光線反射率が低いものであったが、この光吸収性が弱まった結果であった。 The present invention was completed by finding that a colored pigment having a structure in which iron oxide fine particles were fixed in a sea-island pattern on the surface of a white inorganic pigment such as kaolin or diatomaceous earth had a high light reflectance even in the visible light region. . This is because iron oxide has a property of absorbing light of a specific wavelength and thus has a low light reflectivity, but this light absorption is weakened.
このことは光反射率の測定結果から明らかであるが、この現象については未だ十分に解明できていない。考察としては、赤色酸化鉄は850nm近辺の光を吸収し、黄色含水酸化鉄は650nmと900nm近辺の光を吸収する性質があるが、本発明の海島模様の構造粒子から成る着色顔料は、白色無機顔料の海に、酸化鉄微粒子または含水酸化鉄微粒子の島が点在してできた着色顔料であるので、白色粒子表面の反射光が、密着している酸化鉄微粒子の吸収光と干渉しながら相互作用して、酸化鉄微粒子または含水酸化鉄微粒子の光吸収性を弱め、近接する波長の反射光を増強したためであると考えている。 This is clear from the measurement results of the light reflectance, but this phenomenon has not been fully elucidated. As a consideration, red iron oxide absorbs light in the vicinity of 850 nm, and yellow hydrous iron oxide has the property of absorbing light in the vicinity of 650 nm and 900 nm. Since this is a colored pigment made of islands of iron oxide fine particles or hydrous iron oxide fine particles scattered in the inorganic pigment sea, the reflected light on the surface of the white particles interferes with the absorbed light of the iron oxide fine particles that are in close contact with each other. However, it is thought that this is because the light absorption of the iron oxide fine particles or the hydrous iron oxide fine particles is weakened and the reflected light of the adjacent wavelength is enhanced.
前記課題は、次の通りの本発明によって達成できる。 The object can be achieved by the present invention as follows.
即ち、本発明は、白色無機顔料の粒子表面に酸化鉄微粒子が海島模様に固着している構造の粒子から成る着色顔料であって、JIS A5759に基づく光反射率が、600〜2100nmの波長領域において40〜90%であることを特徴とする太陽光高反射塗料用着色顔料である(本発明1)。 That is, the present invention is a colored pigment composed of particles having a structure in which iron oxide fine particles are fixed in a sea-island pattern on the surface of white inorganic pigment particles, and the light reflectance based on JIS A5759 is a wavelength region of 600 to 2100 nm. It is a coloring pigment for sunlight highly reflective paints characterized by being 40 to 90% (Invention 1).
また、白色無機顔料が、平均粒子径0.1〜10μmであり、JIS Z8722に基づく白色度が60%以上のクレイ、タルク、カオリン、ケイソウ土、酸化チタン、亜鉛華、および硫酸バリウム粉の1種または2種以上の混合粉である本発明1に記載の太陽光高反射塗料用着色顔料である(本発明2)。 Further, the white inorganic pigment has an average particle diameter of 0.1 to 10 μm, and has a whiteness of 60% or more based on JIS Z8722, and is 1 of clay, talc, kaolin, diatomaceous earth, titanium oxide, zinc white, and barium sulfate powder. It is a coloring pigment for solar highly reflective paints of this invention 1 which is a seed or 2 or more types of mixed powder (this invention 2).
また、酸化鉄微粒子が、赤色系酸化鉄または黄色系含水酸化鉄で平均粒子径が10〜300nmである本発明1に記載の太陽光高反射塗料用着色顔料である(本発明3)。 Moreover, the iron oxide fine particles are red-type iron oxide or yellow-type hydrous iron oxide and have a mean particle size of 10 to 300 nm.
また、酸化鉄微粒子または含水酸化鉄微粒子の固着量が、白色無機顔料の5〜70wt%である本発明1乃至3のいずれかに記載の太陽光高反射塗料用着色顔料である(本発明4)。 The colored pigment for solar reflective coating according to any one of the present inventions 1 to 3, wherein the fixed amount of the iron oxide fine particles or the hydrous iron oxide fine particles is 5 to 70 wt% of the white inorganic pigment (Invention 4). ).
本発明に係る太陽光高反射塗料用着色顔料は、白色無機顔料の粒子表面に酸化鉄微粒子が海島模様に固着した構造の粒子から成る着色顔料で、太陽光高反射性と彩色性を兼ね備えた機能を発揮する。 The colored pigment for solar highly reflective paint according to the present invention is a colored pigment composed of particles having a structure in which iron oxide fine particles are fixed in a sea-island pattern on the surface of white inorganic pigment particles, and has both high solar reflectivity and chromaticity. Demonstrate the function.
また、本発明の光反射機能は可視光線から赤外線に至る幅広い波長領域で太陽光を40〜90%反射するので、この顔料を用いた塗料は、建造物の日射による蓄熱を低減する大きな効果があり、また、着色性は有彩色顔料としてビル街の景観を保持する効果を発揮する。 Moreover, since the light reflecting function of the present invention reflects 40 to 90% of sunlight in a wide wavelength range from visible rays to infrared rays, the paint using this pigment has a great effect of reducing heat storage due to solar radiation of the building. In addition, the colorability exhibits the effect of maintaining the scenery of the building street as a chromatic pigment.
また、本発明に係る着色顔料の素材には、クレイ、カオリン等の粘土質素材や酸化チタン、亜鉛華等の白色無機顔料と、着色顔料としては酸化鉄を用いるので、建築物や道路に施工した後でも、改修や補修工事で発生する廃材には環境汚染物質を含まないので環境の保全と調和に貢献できる。 In addition, the material of the colored pigment according to the present invention uses clay-based materials such as clay and kaolin, white inorganic pigments such as titanium oxide and zinc white, and iron oxide as the color pigment, so it is applied to buildings and roads. Even after repairing, waste materials generated by renovation and repair work do not contain environmental pollutants, which can contribute to environmental conservation and harmony.
本発明の実施形態をより詳しく説明すれば次のようである。 The embodiment of the present invention will be described in more detail as follows.
本発明は、白色無機顔料の粒子表面に酸化鉄微粒子が海島模様に固着している構造の粒子から成る着色顔料であって、JIS A5759に基づく光反射率が、600〜2100nmの波長領域において40〜90%であることを特徴とする太陽光高反射塗料用着色顔料である。 The present invention is a colored pigment comprising particles having a structure in which iron oxide fine particles are fixed in a sea-island pattern on the surface of a white inorganic pigment particle, and the light reflectance based on JIS A5759 is 40 in the wavelength region of 600 to 2100 nm. It is a colored pigment for sunlight highly reflective paint characterized by ˜90%.
白色無機顔料の粒子表面に酸化鉄微粒子を海島模様に固着させた構造の粒子とするのは、太陽光線の反射効果を増大させるためである。白色無機顔料の粒子表面全体を酸化鉄微粒子で被覆した場合には、酸化鉄本来の光吸収性により、本発明の目的とする光線反射効果は発現しない。 The reason why the particles having a structure in which iron oxide fine particles are fixed in a sea-island pattern on the surface of the white inorganic pigment particles is to increase the reflection effect of sunlight. When the entire particle surface of the white inorganic pigment is coated with iron oxide fine particles, the light reflection effect intended by the present invention does not appear due to the inherent light absorption of iron oxide.
酸化鉄微粒子は白色無機顔料の粒子表面に強く固着しており、なおかつ、白色無機顔料の粒子表面の光反射機能を阻害しない程度の、5〜70wt%の酸化鉄微粒子を海島模様に固着している場合に、初めて光線を高反射する機能を発現する太陽光高反射塗料用着色顔料が得られる。 The iron oxide fine particles are firmly fixed to the particle surface of the white inorganic pigment, and 5 to 70 wt% of the iron oxide fine particles are fixed to the sea-island pattern to such an extent that the light reflection function on the particle surface of the white inorganic pigment is not hindered. In this case, a colored pigment for solar highly reflective paint that exhibits a function of highly reflecting light rays is obtained for the first time.
図1に本発明の着色顔料の海島模様の粒子構造を模式図で示した。図1において、WPは白色無機顔料であり、この海WPの中のCPは酸化鉄微粒子であり、点在する島として表わされているが、粒子形状は一例を示したものである。 FIG. 1 is a schematic diagram showing the particle structure of the sea-island pattern of the color pigment of the present invention. In FIG. 1, WP is a white inorganic pigment, and CP in the sea WP is iron oxide fine particles and is represented as dotted islands, but the particle shape is an example.
また、本発明に係る着色顔料のJIS A 5759に基づく光反射率が、600〜2100nmの波長領域において、40〜90%であるとしたのは、酸化鉄の黄色系から赤色系領域における反射光の周波数を考慮すれば反射領域は600〜780nmであり、日射の熱エネルギー分布を考慮して反射効率の良い赤外波長領域である780〜2100nmとした。また、光反射率を40〜90%としたのは、40%未満では性能不足であり、90%を超える場合は太陽光利用の視点からは過剰であると考えた。本発明では、特に、780nm〜1500nmの波長領域において光反射率が60%以上であることが好ましい。より好ましい光反射率の範囲は50〜85%であり、さらにより好ましくは60〜80%である。 Moreover, the light reflectance based on JIS A 5759 of the coloring pigment according to the present invention is 40 to 90% in the wavelength region of 600 to 2100 nm. The reflection region is 600 to 780 nm in consideration of the frequency of 780 to 2100 nm, which is an infrared wavelength region with good reflection efficiency in consideration of solar thermal energy distribution. Further, the reason why the light reflectance was set to 40 to 90% was considered to be insufficient from the viewpoint of sunlight utilization when it was less than 40% and when it exceeded 90%. In the present invention, the light reflectance is particularly preferably 60% or more in the wavelength region of 780 nm to 1500 nm. A more preferable range of light reflectance is 50 to 85%, and still more preferably 60 to 80%.
本発明の太陽光高反射塗料用着色顔料は、一例を示せば、下記のような方法で製造できる。 If an example is shown, the coloring pigment for solar reflective coatings of this invention can be manufactured by the following methods.
即ち、白色無機顔料を水に分散し、該スラリーに第一鉄塩水溶液を添加して、白色無機顔料の粒子表面に第一鉄イオンを吸着させた後、アルカリを添加して、第一鉄イオンを沈殿物として海島構造に固着させ、ついで、固着している沈殿物を加熱酸化して黄色酸化鉄粒子とし、白色無機顔料の粒子表面に5〜70wt%固着させ、常法に従って、水洗してろ過分離した後、乾燥して粉砕することにより得ることができる。
また、前記黄色酸化鉄微粒子が白色無機顔料の粒子表面に海島構造に固着した黄色系着色顔料の乾燥物を、空気中で加熱することにより、赤色または紫色または茶褐色に発色させて多色化することができる。
That is, a white inorganic pigment is dispersed in water, a ferrous salt aqueous solution is added to the slurry, and ferrous ions are adsorbed on the particle surface of the white inorganic pigment. Ions are fixed to the sea-island structure as precipitates, then the fixed precipitates are oxidized by heating to form yellow iron oxide particles, fixed to 5 to 70 wt% on the surface of the white inorganic pigment particles, and washed with water according to a conventional method. After filtration and separation, it can be obtained by drying and pulverizing.
In addition, the yellow colored pigment dry matter in which the yellow iron oxide fine particles are fixed to the sea-island structure on the surface of the white inorganic pigment particles is heated in the air to develop a red, purple, or brown color to be multicolored. be able to.
先ず、白色無機顔料WPを水に分散して、所望の濃度の均一分散水溶液を調整する。 First, the white inorganic pigment WP is dispersed in water to prepare a uniformly dispersed aqueous solution having a desired concentration.
この白色無機顔料WPとしては、平均粒子径0.1〜10μmであって、JIS Z8722に基づく白色度が60%以上のクレイ、タルク、カオリン、ケイソウ土、酸化チタン、亜鉛華、および硫酸バリウム粉の1種、または2種以上の混合粉などが使用できる。 As this white inorganic pigment WP, clay, talc, kaolin, diatomaceous earth, titanium oxide, zinc white, and barium sulfate powder having an average particle size of 0.1 to 10 μm and a whiteness of 60% or more based on JIS Z8722 1 type, or 2 or more types of mixed powders can be used.
本発明における白色無機顔料の平均粒子径が0.1μm未満の場合は光線反射性が劣り、10μmを超える場合は、塗料化が困難となる。白色無機顔料の好ましい平均粒子径は0.5〜8.0μmであり、さらにより好ましい範囲は1.0〜6.0μmである。また、使用する白色無機顔料には、経済性と環境調和性を勘案すれば粘土素材の白色無機顔料が好ましい。 When the average particle size of the white inorganic pigment in the present invention is less than 0.1 μm, the light reflectivity is inferior, and when it exceeds 10 μm, it becomes difficult to form a paint. The preferable average particle diameter of the white inorganic pigment is 0.5 to 8.0 μm, and an even more preferable range is 1.0 to 6.0 μm. The white inorganic pigment used is preferably a clay-based white inorganic pigment in consideration of economy and environmental harmony.
本発明における白色無機顔料は、JIS Z8722に基づく白色度は60%以上が好ましい。前記白色度が60%未満の場合には、得られる着色顔料の光線反射性が十分とは言い難い。 The white inorganic pigment in the present invention preferably has a whiteness based on JIS Z8722 of 60% or more. When the whiteness is less than 60%, it is difficult to say that the resulting color pigment has sufficient light reflectivity.
次に、上記の白色無機顔料WPの分散水溶液に、あらかじめ準備した所望濃度の第一鉄塩水溶液を所望量添加して攪拌混合する。 Next, a desired amount of a ferrous salt aqueous solution having a desired concentration prepared in advance is added to the aqueous dispersion of the white inorganic pigment WP, and the mixture is stirred and mixed.
この第一鉄塩には、硫酸第一鉄、塩化第一鉄、硝酸第一鉄などの第一鉄塩が使用できる。 As the ferrous salt, ferrous salts such as ferrous sulfate, ferrous chloride, and ferrous nitrate can be used.
次に、上記の混合水溶液にアルカリを添加して、水溶液中の第一鉄イオンを白色無機顔料のWP粒子表面に沈殿固着させた後、該水懸濁液を攪拌しながら加熱し、所望の温度で空気吹き込みによる酸化反応を行い、白色無機顔料のWP粒子表面に含水酸化鉄粒子CPを固着させる。この生成物を水洗洗浄し固液分離した後、乾燥して粉砕することにより黄色系の太陽光高反射塗料用着色顔料が得られる。 Next, alkali is added to the above mixed aqueous solution, and ferrous ions in the aqueous solution are precipitated and fixed on the surface of the WP particles of the white inorganic pigment, and then the aqueous suspension is heated with stirring to obtain a desired An oxidation reaction is performed by blowing air at a temperature to fix the iron oxide hydrous particles CP on the surface of the white inorganic pigment WP particles. The product is washed with water, separated into solid and liquid, dried, and pulverized to obtain a yellow colored pigment for solar reflective coating.
さらに、上記の黄色系顔料粉を空気中で加熱焼成することにより、発色させ赤色系の太陽光高反射塗料用着色顔料が得られる。 Further, the yellow pigment powder is heated and fired in the air, whereby a colored pigment for a sunlight-based highly reflective paint is obtained.
上記の製造法で諸条件を変えると、黄色系、赤色系以外の色調の着色顔料を得ることができる。 When various conditions are changed in the above production method, a color pigment having a color tone other than yellow and red can be obtained.
また、上記製法で得られる酸化鉄微粒子CPとしては、平均粒子径が10〜300nmの酸化鉄または含水酸化鉄粒子である。平均粒子径が10nm未満では粒子の結晶性が不完全で発色性も不安定であり、300nmを超える場合では白色無機顔料WP表面への固着が困難となる。平均粒子径の好ましい範囲は30〜250nmであり、より好まし範囲は50〜200nmである。また、異種金属を含有した複合酸化鉄粒子も同様に使用でき、多色化のためには好ましい。 Further, the iron oxide fine particles CP obtained by the above production method are iron oxide or hydrous iron oxide particles having an average particle diameter of 10 to 300 nm. If the average particle size is less than 10 nm, the crystallinity of the particles is incomplete and the color developability is unstable, and if it exceeds 300 nm, it is difficult to fix to the surface of the white inorganic pigment WP. A preferable range of the average particle diameter is 30 to 250 nm, and a more preferable range is 50 to 200 nm. In addition, composite iron oxide particles containing different metals can be used in the same manner, which is preferable for increasing the color.
また、酸化鉄粒子CPの固着量は白色無機顔料WPの5〜70wt%である。固着量が5wt%未満では着色性が不足であり、70wt%を超える場合には着色性は向上するが光線反射性が低下するので好ましくない。酸化鉄粒子CPの固着量はより好ましい範囲は10〜60wt%であり、更により好ましくは10〜50wt%である。 Moreover, the fixed amount of the iron oxide particles CP is 5 to 70 wt% of the white inorganic pigment WP. If the fixing amount is less than 5 wt%, the colorability is insufficient, and if it exceeds 70 wt%, the colorability is improved, but the light reflectivity is lowered, which is not preferable. The more preferable range of the fixed amount of the iron oxide particles CP is 10 to 60 wt%, and still more preferably 10 to 50 wt%.
以下、実施例によって本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
粒子形態の観察は走査型電子顕微鏡(日立製、S4800)を用いた。 The observation of the particle form was performed using a scanning electron microscope (Hitachi, S4800).
X線回折装置は(理研電機製、RINT 2500)を用いた。 An X-ray diffraction apparatus (RINT 2500, manufactured by Riken Denki) was used.
色調および光線反射率は、顔料試験法によりミラーコート紙に塗布した塗膜を用いて測定した。色調は色差計(Xライト製)を用い、光線反射率は分光光度計(日立製、U−4100、自記分光光度計)を用いて測定を行った。 The color tone and light reflectance were measured using a coating film applied to mirror-coated paper by a pigment test method. The color tone was measured using a color difference meter (manufactured by X Light), and the light reflectance was measured using a spectrophotometer (manufactured by Hitachi, U-4100, self-recording spectrophotometer).
白色無機顔料としては、カオリン(純正化学製、白色度:80以上、平均粒子径4μm)、ケイソウ土(昭和化学工業製、ラジオライト#900。白色度:85以上、平均粒子径6.5μm)および酸化チタン(石原産業製,ルチル型。白色度:90以上、平均粒子径0.8μm)を用いた。 Examples of white inorganic pigments include kaolin (manufactured by Junsei Kagaku, whiteness: 80 or more, average particle size 4 μm), diatomaceous earth (manufactured by Showa Chemical Industry, Radiolight # 900, whiteness: 85 or more, average particle size 6.5 μm). And titanium oxide (Ishihara Sangyo, rutile type, whiteness: 90 or more, average particle diameter 0.8 μm) was used.
合成実験にはウオータバスと攪拌装置、空気吹き込み装置、温度調整器を備えた500mlのフラスコから成る反応装置を用いた。 In the synthesis experiment, a reaction apparatus comprising a 500 ml flask equipped with a water bath, a stirrer, an air blowing apparatus, and a temperature controller was used.
使用水はどの場合もイオン交換水を用いた。 In all cases, ion-exchanged water was used.
海島構造粒子の合成−合成反応
実施例1
合成反応: 500mlのガラスビーカーにカオリン粉末6gと水を投入して全容300mlの混合液とした後、ホモミキサーを用いて30分間分散処理して、乳白色のカオリン分散液を得た。つぎに、この分散液を反応装置のフラスコに移し、攪拌しながら、あらかじめ用意した硫酸第一鉄3.3gを溶解した100mlの水溶液を添加して30分間攪拌混合した後、さらに、あらかじめ用意した炭酸ナトリウムを1.54g溶解した100mlの水溶液を添加した。この時の水溶液は、pHが8.37で、乳白色から緑色に変化した。そして、さらに、30分間攪拌をつづけた後に、水溶液を40℃の温度に加熱し、水溶液中に空気を120分間通気して酸化反応を行った。緑色の水溶液は黄色に変化して含水酸化鉄粒子が生成した。
精製処理: 得られた黄色沈殿物を水洗して精製した後、ろ過分離して得た固形物を乾燥、粉砕して、カオリン粒子に含水酸化鉄微粒子が18.5wt%海島構造に固着した黄色系着色顔料を得た。
Synthesis of sea-island structure particles-synthesis reaction example 1
Synthesis reaction: 6 g of kaolin powder and water were put into a 500 ml glass beaker to prepare a mixed solution of 300 ml in total volume, followed by dispersion treatment for 30 minutes using a homomixer to obtain a milky white kaolin dispersion. Next, the dispersion was transferred to a flask of a reaction apparatus, and while stirring, 100 ml of an aqueous solution prepared by dissolving 3.3 g of ferrous sulfate prepared in advance was added and stirred and mixed for 30 minutes. 100 ml of an aqueous solution in which 1.54 g of sodium carbonate was dissolved was added. The aqueous solution at this time had a pH of 8.37 and changed from milky white to green. Further, after stirring for 30 minutes, the aqueous solution was heated to a temperature of 40 ° C., and air was passed through the aqueous solution for 120 minutes to carry out an oxidation reaction. The green aqueous solution turned yellow to produce hydrous iron oxide particles.
Purification treatment: The obtained yellow precipitate was washed with water and purified, and then the solid substance obtained by filtration and separation was dried and pulverized, and the hydrous iron oxide fine particles were fixed to the kaolin particles in a 18.5 wt% sea-island structure. A colored pigment was obtained.
実施例2〜5および比較例1
白色無機顔料に対する着色酸化鉄粒子の固着割合を変え、白色無機顔料をケイソウ土および酸化チタンに変えた以外は実施例1と同様の条件で合成反応を行った。
実施例2:固着割合を55wt%に、実施例3:固着割合を15wt%に、実施例4:白色無機顔料をケイソウ土に、実施例5:白色無機顔料を酸化チタンにそれぞれ変更した以外は、実施例1と同様にして着色顔料を得た。
また、比較例1として黄色酸化鉄顔料(戸田工業製STY−1)を用いた。
Examples 2 to 5 and Comparative Example 1
The synthetic reaction was carried out under the same conditions as in Example 1 except that the fixing ratio of the colored iron oxide particles to the white inorganic pigment was changed and the white inorganic pigment was changed to diatomaceous earth and titanium oxide.
Example 2: The fixing ratio was changed to 55 wt%, Example 3: the fixing ratio was changed to 15 wt%, Example 4: the white inorganic pigment was changed to diatomaceous earth, and Example 5: the white inorganic pigment was changed to titanium oxide. In the same manner as in Example 1, a colored pigment was obtained.
As Comparative Example 1, a yellow iron oxide pigment (STY-1 manufactured by Toda Kogyo) was used.
海島構造粒子の合成−加熱発色
実施例6〜8および比較例2
加熱発色: 実施例1、4、5で得た黄色系着色顔料を前駆体として、空気中で加熱することにより発色させ、白色無機顔料粒子に酸化鉄粒子が海島構造に固着した赤色系着色顔料を得た。前駆体は、実施例6:実施例1、実施例7:実施例4、実施例8:実施例5である。また、比較例2として赤色酸化鉄顔料(戸田工業製ED130)を用いた。
Synthesis of Sea-island Structure Particles-Heating Coloring Examples 6-8 and Comparative Example 2
Coloring by heating: Using the yellow colored pigment obtained in Examples 1, 4, and 5 as a precursor, the colored pigment is colored by heating in air, and iron oxide particles are fixed to the sea-island structure on white inorganic pigment particles. Got. The precursors are Example 6: Example 1, Example 7: Example 4, Example 8: Example 5. Further, as Comparative Example 2, a red iron oxide pigment (ED130 manufactured by Toda Kogyo) was used.
測定分析結果
a) 粒子形態について
実施例1で得た合成物の粒子形態を図7に示す。図7から海島構造をしていることが確認できた。また、固着している細長い微粒子はX線分析の結果、含水酸化鉄であった。また、固着している含水酸化鉄の平均粒子径は120nmであった。実施例2〜5で得た合成物について観察した結果も同様であった。また、実施例6〜8で得た発色物は前駆体の粒子形態を継承した海島構造が観察され、固着している微粒子はX線分析の結果からヘマタイトであった。また、固着している酸化鉄(ヘマタイト)の平均粒子径は100nmであった。
Measurement Analysis Results a) Particle Morphology The particle morphology of the synthesized product obtained in Example 1 is shown in FIG. It can be confirmed from FIG. 7 that the island has a sea-island structure. Further, the adhering elongated fine particles were hydrous iron oxide as a result of X-ray analysis. The average particle size of the hydrous iron oxide adhering was 120 nm. The result observed about the compound obtained in Examples 2-5 was also the same. In addition, in the color products obtained in Examples 6 to 8, a sea-island structure inheriting the particle form of the precursor was observed, and the adhered fine particles were hematite from the result of X-ray analysis. The average particle diameter of the fixed iron oxide (hematite) was 100 nm.
b)色調について
実施例1で得た着色顔料の色調は、L*:65.7、a*:20.1、b*:53.1であり、明るい黄色粉体であった。
b) Color tone The color tone of the colored pigment obtained in Example 1 was L *: 65.7, a *: 20.1, b *: 53.1, and was a bright yellow powder.
この他の実施例で得た着色顔料および比較例の色調を表1に示した。 The color pigments obtained in other Examples and the color tones of Comparative Examples are shown in Table 1.
c)光線反射性について
実施例1、6の光線反射率曲線を図2、3に、比較例1、2の光線反射率曲線を図4、5に示した。
c) Light reflectivity The light reflectivity curves of Examples 1 and 6 are shown in FIGS. 2 and 3, and the light reflectivity curves of Comparative Examples 1 and 2 are shown in FIGS.
なお、実施例2〜5で得られた着色顔料について光線反射率を測定したところ、前記実施例1と同程度であることが確認された。また、実施例7、8で得られた着色顔料について光線反射率を測定したところ、前記実施例6と同程度であることが確認された。 In addition, when the light reflectance was measured about the colored pigment obtained in Examples 2-5, it was confirmed that it is comparable as the said Example 1. Moreover, when the light reflectance was measured about the coloring pigment obtained in Example 7, 8, it was confirmed that it is comparable as the said Example 6.
これらの図から、黄色系着色顔料の実施例1〜5と比較例1を比較し、赤色系着色顔料の実施例6〜8と比較例2を比較してみると明らかなように、光線反射率は、何れの実施例も可視光領域(380〜780nm)から近赤外領域(780〜1200nm)にわたり60〜80%の高反射率特性を示していた。 From these figures, it is clear that the yellow color pigment Examples 1 to 5 and Comparative Example 1 are compared, and the red color pigment Examples 6 to 8 and Comparative Example 2 are compared. In all the examples, high reflectivity characteristics of 60 to 80% were exhibited from the visible light region (380 to 780 nm) to the near infrared region (780 to 1200 nm).
図6は白色無機顔料のカオリンの光線反射率曲線である。 FIG. 6 is a light reflectance curve of kaolin, a white inorganic pigment.
図6の反射率曲線は、本発明の海島構造の着色顔料が、白色無機顔料の光線反射特性と酸化鉄微粒子の着色性が一体となってもたらす太陽光高反射着色顔料であることを裏付けるものであった。 The reflectance curve in FIG. 6 confirms that the colored pigment of the sea-island structure of the present invention is a highly reflective solar pigment that brings together the light reflection characteristics of the white inorganic pigment and the colorability of the iron oxide fine particles. Met.
本発明は、省エネ、省資源および環境保全という時代の要請に応えたヒートアイランド対策材料としての太陽光高反射塗料用着色顔料であり、使用する素材が環境調和型で経済性に優れているので、建材塗料用、道路舗装用などの他にも広い用途に利用されることが期待できる。 The present invention is a color pigment for solar highly reflective paint as a heat island countermeasure material that meets the demands of the times of energy saving, resource saving and environmental conservation, and the material used is environmentally friendly and economical. It can be expected to be used for a wide range of applications besides building materials and road paving.
図1
WP : 白色無機顔料
CP : 酸化鉄微粒子
FIG.
WP: White inorganic pigment CP: Fine iron oxide particles
Claims (3)
A5759に基づく光反射率が、600〜2100nmの波長領域において40〜90%であることを特徴とする太陽光高反射塗料用着色顔料。 A colored pigment composed of structural particles in which iron oxide fine particles are fixed in a sea-island pattern on the surface of white inorganic pigment particles having an average particle size of 0.1 to 10 μm , wherein the iron oxide fine particles are red iron oxide or yellow Based hydrous iron oxide with an average particle size of 10 to 300 nm, JIS
A color pigment for solar highly reflective paint, wherein the light reflectance based on A5759 is 40 to 90% in a wavelength region of 600 to 2100 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008116284A JP5413554B2 (en) | 2008-04-25 | 2008-04-25 | Coloring pigment for sunlight high reflection paint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008116284A JP5413554B2 (en) | 2008-04-25 | 2008-04-25 | Coloring pigment for sunlight high reflection paint |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009263547A JP2009263547A (en) | 2009-11-12 |
JP5413554B2 true JP5413554B2 (en) | 2014-02-12 |
Family
ID=41389810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008116284A Active JP5413554B2 (en) | 2008-04-25 | 2008-04-25 | Coloring pigment for sunlight high reflection paint |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5413554B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8865303B2 (en) | 2009-10-02 | 2014-10-21 | National Coatings Corporation | Highly reflective roofing system |
KR101282674B1 (en) | 2011-08-22 | 2013-07-05 | 현대자동차주식회사 | Paint coat for reflecting solar light comprising infrared-reflecting pigments |
JP5737523B2 (en) * | 2012-06-01 | 2015-06-17 | 学校法人 名古屋電気学園 | Black pigment, glaze and paint containing the same |
JP6217905B2 (en) * | 2012-06-28 | 2017-10-25 | 戸田工業株式会社 | Heat-resistant yellow hydrated iron oxide pigment and method for producing the same, paint and resin composition using the heat-resistant hydrated yellow iron oxide pigment |
CA2996403A1 (en) | 2015-10-05 | 2017-04-13 | M. Technique Co., Ltd. | Metal oxide particles and method of producing the same |
JPWO2017134910A1 (en) | 2016-02-02 | 2018-11-22 | エム・テクニック株式会社 | Zinc oxide particles with controlled color characteristics, production method thereof, and coating composition containing the zinc oxide particles |
CN109072010B (en) | 2016-06-02 | 2022-09-23 | M技术株式会社 | Ultraviolet and/or near infrared ray blocking agent composition for transparent material |
JP6183677B1 (en) | 2016-06-02 | 2017-08-23 | エム・テクニック株式会社 | Colored UV protection agent |
JP6179839B1 (en) | 2017-02-14 | 2017-08-23 | エム・テクニック株式会社 | Silicon-doped metal oxide particles, and ultraviolet absorbing composition comprising silicon-doped metal oxide particles |
CN107500613A (en) * | 2017-07-24 | 2017-12-22 | 福建名城建工有限公司 | A kind of wall surfacing material diatom ooze and preparation method thereof |
JP7166104B2 (en) * | 2018-08-22 | 2022-11-07 | セーレン株式会社 | Inkjet ink set, printed matter and method for producing printed matter |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3260404B2 (en) * | 1991-10-18 | 2002-02-25 | 川鉄鉱業株式会社 | Heat resistant fibrous chromatic pigment |
JP3207013B2 (en) * | 1993-04-27 | 2001-09-10 | ダイセル化学工業株式会社 | Near-infrared blocking transparent resin composition and molded product thereof |
DE19546058A1 (en) * | 1994-12-21 | 1996-06-27 | Merck Patent Gmbh | Non-lustrous yellow pigments prepn. |
JP2000265154A (en) * | 1999-03-11 | 2000-09-26 | Sakai Chem Ind Co Ltd | Lamellar barium sulfate coated with iron oxide and its production |
JP4986319B2 (en) * | 2000-09-11 | 2012-07-25 | 日揮触媒化成株式会社 | Colored composite powder and cosmetic containing the same |
JP3798266B2 (en) * | 2001-06-25 | 2006-07-19 | 花王株式会社 | Colored mica titanium |
JP3745688B2 (en) * | 2002-01-22 | 2006-02-15 | メルク株式会社 | Cosmetic extender pigment and method for producing the same |
JP4104353B2 (en) * | 2002-03-07 | 2008-06-18 | エスケー化研株式会社 | Paint composition |
JP3697428B2 (en) * | 2002-06-17 | 2005-09-21 | 株式会社資生堂 | Colored mica titanium |
-
2008
- 2008-04-25 JP JP2008116284A patent/JP5413554B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009263547A (en) | 2009-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5413554B2 (en) | Coloring pigment for sunlight high reflection paint | |
JP6199538B2 (en) | titanium dioxide | |
TWI506072B (en) | Infrared-reflective coatings | |
JP5906098B2 (en) | Near-infrared reflector and composition containing the same | |
JPWO2018079486A1 (en) | Composite pigment and method for producing the same, coating composition containing the same, and coating film | |
Kumar et al. | Study on reflectivity and photostability of Al-doped TiO2 nanoparticles and their reflectors | |
Bao et al. | Transparent, thermal insulation and UV-shielding coating for energy efficient glass window | |
Lee et al. | Nanostructured Fe 2 O 3/TiO 2 composite particles with enhanced NIR reflectance for application to LiDAR detectable cool pigments | |
JP2021001340A (en) | Coated product | |
Chen et al. | Gel-sol synthesis of surface-treated TiO 2 nanoparticles and incorporation with waterborne acrylic resin systems for clear UV protective coatings | |
Aranzabe et al. | Preparation and characterization of high NIR reflective pigments based in ultramarine blue | |
US9221995B2 (en) | Titanium dioxide | |
EP2536793B1 (en) | Titanium dioxide | |
TW201805370A (en) | A method for treating titanium dioxide particles, a titanium dioxide particle and uses of the same | |
JP7086867B2 (en) | Titanium dioxide product | |
JP4195254B2 (en) | Rutile type titanium dioxide fine particles and method for producing the same | |
Kumar et al. | Highly reflective titania nanoparticle‐based coating | |
JPH0649387A (en) | Titanium dioxide pigment and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110328 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121203 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130319 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130619 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20130807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131016 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131029 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5413554 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |