JP5412817B2 - Solvent recovery device - Google Patents

Solvent recovery device Download PDF

Info

Publication number
JP5412817B2
JP5412817B2 JP2008314048A JP2008314048A JP5412817B2 JP 5412817 B2 JP5412817 B2 JP 5412817B2 JP 2008314048 A JP2008314048 A JP 2008314048A JP 2008314048 A JP2008314048 A JP 2008314048A JP 5412817 B2 JP5412817 B2 JP 5412817B2
Authority
JP
Japan
Prior art keywords
gas
water
aqueous solution
concentrator
suction port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008314048A
Other languages
Japanese (ja)
Other versions
JP2010137137A (en
Inventor
日出夫 寺野
隆雄 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008314048A priority Critical patent/JP5412817B2/en
Publication of JP2010137137A publication Critical patent/JP2010137137A/en
Application granted granted Critical
Publication of JP5412817B2 publication Critical patent/JP5412817B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、工場から排出される排気ガスなどに含まれる水溶性溶剤を回収する溶剤回収装置に関するものである。   The present invention relates to a solvent recovery apparatus that recovers a water-soluble solvent contained in exhaust gas discharged from a factory.

従来より、水よりも沸点が高い水溶性溶剤を含む排気ガス(本願の「ガス」)から、その水溶性溶剤を回収する装置として、以下のものが提案されている。   Conventionally, the following apparatus has been proposed as an apparatus for recovering a water-soluble solvent from an exhaust gas containing a water-soluble solvent having a boiling point higher than that of water (the “gas” in the present application).

すなわち、水溶性溶剤としてN−メチル−2−ピロリドン(以下、「NMP」と記す)を例示し、NMP含有の排気ガスが、濃縮器で冷却され、ダクト(本願の「水噴霧部」が対応)を介して容器(本願の「気液分離部」)へと導かれている。ダクト内にはノズルが設けられている。容器で回収された水溶液または水(以下、「水溶液等」と記す)は、ノズルから噴霧され、排気ガスと接触する。   That is, N-methyl-2-pyrrolidone (hereinafter referred to as “NMP”) is exemplified as the water-soluble solvent, the exhaust gas containing NMP is cooled by a concentrator, and the duct (the “water spray part” of the present application corresponds). ) To the container (the “gas-liquid separator” of the present application). A nozzle is provided in the duct. An aqueous solution or water collected in the container (hereinafter referred to as “aqueous solution”) is sprayed from the nozzle and comes into contact with the exhaust gas.

その後、容器内に導かれた排気ガスは、容器に設けられた濃縮器内を循環する熱媒体と熱交換を行い、さらに冷却される。その結果、水溶液等と接触した排気ガスは、気液分離を促され、NMPが溶けた水溶液を生成する(例えば、特許文献1参照)。   Thereafter, the exhaust gas introduced into the container exchanges heat with the heat medium circulating in the concentrator provided in the container, and is further cooled. As a result, the exhaust gas that has come into contact with the aqueous solution or the like is promoted to gas-liquid separation and generates an aqueous solution in which NMP is dissolved (see, for example, Patent Document 1).

なお、より多くのNMPが溶けた水溶液を回収するために、排気ガスと水溶液等とが接触するダクト内には、つぎの要件が要求される。   In order to recover an aqueous solution in which more NMP is dissolved, the following requirements are required in the duct in which the exhaust gas and the aqueous solution contact.

まず、排気ガスと水溶液等とを十分に接触させる必要がある。   First, it is necessary to sufficiently contact the exhaust gas and the aqueous solution.

つまり、排気ガス中に含まれるNMPを水溶液としてより多く回収するためには、容器の前工程であるダクト内で、NMPが水溶液等により多く溶解している必要がある。NMPが水溶液等により多く溶解していれば、NMPが溶解した水溶液等を容器内で冷却して気液分離することで、水溶液としてNMPを回収しやすくなる。   That is, in order to collect more NMP contained in the exhaust gas as an aqueous solution, it is necessary that more NMP is dissolved in the aqueous solution or the like in the duct, which is a pre-process of the container. If NMP is more dissolved in an aqueous solution or the like, it is easier to recover NMP as an aqueous solution by cooling the aqueous solution in which NMP is dissolved in a container and performing gas-liquid separation.

つぎに、水溶液等と接触した排気ガスがダクト内に滞留することなく、より多くの排気ガスが容器内へ送り込まれる必要がある。   Next, more exhaust gas needs to be sent into the container without the exhaust gas coming into contact with the aqueous solution or the like remaining in the duct.

つまり、ノズルから噴霧された水溶液等は、ダクト内において霧状の水滴として漂っている。この霧状の水滴と接触した排気ガスは、水滴と接触する前と比べて重量が増す。適度な重量であれば、ダクト内を流れる排気ガスの流れによって、容器へと送付される。しかし、過度に水滴と接触しすぎた場合、容器へ到達できず、ダクト内を滞留する恐れがある。ダクト内を滞留する排気ガスは、ダクトの内壁面に付着したり、ダクト内を落下するなどして、ダクト内で液化する可能性がある。
特開2008−168290号公報
That is, the aqueous solution or the like sprayed from the nozzle drifts as mist-like water droplets in the duct. Exhaust gas that has come into contact with the mist-like water droplets is heavier than before being in contact with the water droplets. If the weight is appropriate, it is sent to the container by the flow of exhaust gas flowing in the duct. However, when it contacts too much with a water droplet, it cannot reach a container and there exists a possibility of staying in a duct. The exhaust gas staying in the duct may be liquefied in the duct by adhering to the inner wall surface of the duct or falling in the duct.
JP 2008-168290 A

ところで、排気ガスと水溶液等とを十分に接触させるためには、排気ガスと水溶液等とが接触する空間を広くする、あるいは、排気ガスと水溶液等とが接触する時間を長くしなければならない。   By the way, in order to make exhaust gas, aqueous solution, etc. contact sufficiently, the space which exhaust gas, aqueous solution, etc. contact must be expanded, or the time for exhaust gas, aqueous solution, etc. to contact must be lengthened.

この要件を実現するためには、ダクトの長さを長くして排気ガスと水溶液等とが接触する空間を広くする、あるいは、排気ガスが流れる速度を遅くして排気ガスと水溶液等とが接触する時間を長くすることが考えられる。   In order to realize this requirement, the length of the duct is increased to widen the space where the exhaust gas and the aqueous solution contact, or the exhaust gas flow rate is decreased so that the exhaust gas and the aqueous solution contact each other. It is conceivable to lengthen the time to do.

一方、水滴と接触した排気ガスをダクト内に滞留させることなく、少しでも多く容器へ送り込むためには、ダクトの長さは長くなく、排気ガスが流れる速度は速いほうがよい。   On the other hand, in order to send the exhaust gas in contact with the water droplets into the container as much as possible without staying in the duct, the length of the duct is not long and the flow rate of the exhaust gas should be fast.

本発明は、これらの相反する要件を満たすものであり、十分に水溶液等と接触させた排気ガスをより多く容器内へ送り込むことで、より多くの水溶性溶剤を回収することを目的とする。   The present invention satisfies these conflicting requirements, and an object of the present invention is to recover more water-soluble solvent by sending more exhaust gas sufficiently in contact with an aqueous solution or the like into the container.

本発明は、上記目的を達成するために、水より沸点が高い水溶性溶剤を含むガスに対して水滴を接触させる水噴霧部と、前記水噴霧部で前記水滴と接触した前記ガスを冷却する気液分離部とを備え、前記水噴霧部は、前記ガスを吸込む吸込口と、前記水滴と接触した前記ガスを前記気液分離部へ吐出する吐出口と、前記吸込口と前記吐出口とをつなぐガス流路とを有し、前記ガス流路内には、前記水滴を噴出するノズルと、前記吸込口と前記ノズルとの間に、前記吐出口と前記ノズルとの間の前記ガス流路の断面積よりも前記吸込口と前記ノズルとの間の前記ガス流路の断面積を小さくする絞り部とを設け、前記絞り部は、前記ガス流路をなす内壁面に設けたガイド板からなり、前記ガイド板は、一端を前記内壁面に接続し前記内壁面を一周全て覆うように取り付けられ、他端は前記内壁から離れた構造で前記他端を前記一端よりも上方へ位置するように傾斜して取り付けられ、前記水噴霧部が直線状の管であり、下から上方向に、前記吸込口、前記絞り部、前記ノズル、前記吐出口が順に配置され、濃縮器を備え、前記濃縮器は水溶液と前記ガスの熱交換を行う冷却部を備え、前記冷却部で冷却された前記ガスは前記吸込口を介して前記水噴霧部内へと吸込まれ、前記気液分離部で回収された水溶液は配管を介して前記濃縮器に集められ前記冷却部に流入し、前記絞り部を前記濃縮器よりも上側に設け、前記絞り部と前記濃縮器の前記冷却部とを連絡する戻り管を設けて前記絞り部に溜まった水溶液を前記冷却部に導き、前記濃縮器は水溶液と前記ガスの熱交換により水溶液を加熱して濃縮する溶剤回収装置というものである。
In order to achieve the above-mentioned object, the present invention cools the water spray unit that makes water droplets contact with a gas containing a water-soluble solvent having a boiling point higher than that of water, and the gas that contacts the water droplets in the water spray unit. and a gas-liquid separator, the water spray portion includes a suction port for sucking the gas, a discharge port for discharging the gas in contact with the water droplets into the gas-liquid separator, and the suction port and the discharge port and a gas flow path that connects, wherein the gas flow path, a nozzle for jetting the water droplet, between the nozzle and the suction port, the gas flow between the nozzle and the discharge port and a narrowed portion than the cross-sectional area of the road to reduce the cross-sectional area of the gas flow path between the nozzle and the suction port is provided, the diaphragm portion, the guide plate provided on the inner wall surface forming said gas flow paths made, said guide plate, around the inside wall and one end connected to the inner wall surface Attached to cover Te, and the other end is mounted inclined to the other end in the structure remote from the inner wall so as to be positioned upward from the end, the water spray portion is a straight tube, the lower From above, the suction port, the throttle unit, the nozzle, and the discharge port are arranged in this order, and include a concentrator, the concentrator includes a cooling unit that exchanges heat between the aqueous solution and the gas, and the cooling unit The gas cooled in the step is sucked into the water spray section through the suction port, and the aqueous solution collected in the gas-liquid separation section is collected in the concentrator through a pipe and flows into the cooling section, The constrictor is provided above the concentrator, a return pipe is provided to connect the constrictor and the cooling unit of the concentrator, and the aqueous solution accumulated in the constrictor is guided to the cooling unit, and the concentrator Is an aqueous solution added by heat exchange between the aqueous solution and the gas. It is that the solvent recovery apparatus which concentrated.

本装置とすることで、水滴とガスとがガス流路の内壁面に付着することで生じる水溶液を、絞り部の取り付け部分に貯え、回収することができる。絞り部を通過して流速が早くなったガスの流れが、ガスと水滴とが過大に接触して生じる液滴落下する水溶液を、次工程である気液分離部へと吹き上げることができる。
With this apparatus, the resulting aqueous solution by the water droplets and the gas adheres to the inner wall surface of the gas flow path, stored in a mounting portion of the diaphragm portion can you to recover. It is possible to blow up the aqueous solution in which the liquid drops, which are generated by the gas flow that has passed through the constriction part and the flow velocity becomes high, due to excessive contact between the gas and the water droplets, to the gas-liquid separation part as the next step.

本発明の溶剤回収装置は、水より沸点が高い水溶性溶剤を含むガスに対して水滴を接触させる水噴霧部と、前記水噴霧部で前記水滴と接触した前記ガスを冷却する気液分離部とを備え、前記水噴霧部は、前記ガスを吸込む吸込口と、前記水滴と接触した前記ガスを前記気液分離部へ吐出する吐出口と、前記吸込口と前記吐出口とをつなぐガス流路とを有し、前記ガス流路内には、前記水滴を噴出するノズルと、前記吸込口と前記ノズルとの間に、前記吐出口と前記ノズルとの間の前記ガス流路の断面積よりも前記吸込口と前記ノズルとの間の前記ガス流路の断面積を小さくする絞り部とを設け、前記絞り部は、前記ガス流路をなす内壁面に設けたガイド板からなり、前記ガイド板は、一端を前記内壁面に接続し前記内壁面を一周全て覆うように取り付けられ、他端は前記内壁から離れた構造で前記他端を前記一端よりも上方へ位置するように傾斜して取り付けられ、前記水噴霧部が直線状の管であり、下から上方向に、前記吸込口、前記絞り部、前記ノズル、前記吐出口が順に配置され、濃縮器を備え、前記濃縮器は水溶液と前記ガスの熱交換を行う冷却部を備え、前記冷却部で冷却された前記ガスは前記吸込口を介して前記水噴霧部内へと吸込まれ、前記気液分離部で回収された水溶液は配管を介して前記濃縮器に集められ前記冷却部に流入し、前記絞り部を前記濃縮器よりも上側に設け、前記絞り部と前記濃縮器の前記冷却部とを連絡する戻り管を設けて前記絞り部に溜まった水溶液を前記冷却部に導き、前記濃縮器は水溶液と前記ガスの熱交換により水溶液を加熱して濃縮することで、水滴とガスとがガス流路の内壁面に付着することで生じる水溶液を、絞り部の取り付け部分に貯え、回収することができる。水溶液が濃縮器へ流入することを防止できる。
The solvent recovery device of the present invention includes a water spray unit that makes water droplets contact with a gas containing a water-soluble solvent having a boiling point higher than that of water, and a gas-liquid separation unit that cools the gas that has contacted the water droplets in the water spray unit. The water spray section includes a suction port that sucks the gas, a discharge port that discharges the gas in contact with the water droplets to the gas-liquid separation unit, and a gas flow that connects the suction port and the discharge port. A cross-sectional area of the gas flow path between the discharge port and the nozzle, between the nozzle that ejects the water droplets, and the suction port and the nozzle. and said diaphragm portion to reduce the cross-sectional area of the gas flow path between the nozzle and the suction port is provided than the diaphragm portion consists guide plate provided on the inner wall surface forming said gas flow path, wherein guide plates, to cover all around the inner wall surface connected at one end to the inner wall surface Attached, the other end is mounted inclined to the other end in the structure remote from the inner wall so as to be positioned upward from the end, the water spray portion is a straight pipe, upwardly from the bottom The suction port, the throttle unit, the nozzle, and the discharge port are arranged in order, and include a concentrator, the concentrator includes a cooling unit that performs heat exchange between the aqueous solution and the gas, and is cooled by the cooling unit The gas is sucked into the water spraying part through the suction port, and the aqueous solution recovered in the gas-liquid separation part is collected in the concentrator through a pipe and flows into the cooling part, Provided on the upper side of the concentrator, and provided with a return pipe connecting the constriction unit and the cooling unit of the concentrator to guide the aqueous solution accumulated in the constriction unit to the cooling unit, the concentrator Heat and concentrate aqueous solution by heat exchange of gas It is an aqueous solution caused by the water droplets and the gas adheres to the inner wall surface of the gas flow path, stored in a mounting portion of the diaphragm portion can you to recover. The aqueous solution can be prevented from flowing into the concentrator.

本発明の実施の形態は、水より沸点が高い水溶性溶剤を含むガスに対して水滴を接触させる水噴霧部と、前記水噴霧部で前記水滴と接触した前記ガスを冷却する気液分離部とを備え、前記水噴霧部は、前記ガスを吸込む吸込口と、前記水滴と接触した前記ガスを前記気液分離部へ吐出する吐出口と、前記吸込口と前記吐出口とをつなぐガス流路とを有し、前記ガス流路内には、前記水滴を噴出するノズルと、前記吸込口と前記ノズルとの間に、前記吐出口と前記ノズルとの間の前記ガス流路の断面積よりも前記吸込口と前記ノズルとの間の前記ガス流路の断面積を小さくする絞り部とを設け、前記絞り部を、前記ガス流路をなす内壁面に設けたガイド板で構成し、このガイド板は、一端を前記内壁面に接続し前記内壁面を一周全て覆うように取り付けられ、他端は前記内壁から離れた構造で前記他端を前記一端よりも上方へ位置するように傾斜して取り付けられ、前記水噴霧部が直線状の管であり、下から上方向に、前記吸込口、前記絞り部、前記ノズル、前記吐出口が順に配置され、濃縮器を備え、前記濃縮器は水溶液と前記ガスの熱交換を行う冷却部を備え、前記冷却部で冷却された前記ガスは前記吸込口を介して前記水噴霧部内へと吸込まれ、前記気液分離部で回収された水溶液は配管を介して前記濃縮器に集められ前記冷却部に流入し、前記絞り部を前記濃縮器よりも上側に設け、前記絞り部と前記濃縮器の前記冷却部とを連絡する戻り管を設けて前記絞り部に溜まった水溶液を前記冷却部に導き、前記濃縮器は水溶液と前記ガスの熱交換により水溶液を加熱して濃縮するというものである。
An embodiment of the present invention includes a water spray unit that makes water droplets contact with a gas containing a water-soluble solvent having a boiling point higher than that of water, and a gas-liquid separation unit that cools the gas that has contacted the water droplets in the water spray unit. The water spray section includes a suction port that sucks the gas, a discharge port that discharges the gas in contact with the water droplets to the gas-liquid separation unit, and a gas flow that connects the suction port and the discharge port. and a road, the cross-sectional area of the gas flow path between said the gas flow path, a nozzle for jetting the water droplet, between the nozzle and the suction port, the discharge port and the nozzle and said diaphragm portion to reduce the cross-sectional area of the gas flow path between the nozzle and the suction port is provided than the diaphragm portion, constituted by a guide plate provided on the inner wall surface forming said gas flow path, the guide plate is to cover all around the inner wall surface connected at one end to the inner wall surface Ri attached, the other end is mounted inclined to the other end in the structure remote from the inner wall so as to be positioned upward from the end, the water spray portion is a straight tube, from bottom to top direction The suction port, the throttle unit, the nozzle, and the discharge port are arranged in order, and include a concentrator, the concentrator includes a cooling unit that performs heat exchange between the aqueous solution and the gas, and is cooled by the cooling unit. The gas is sucked into the water spray section through the suction port, and the aqueous solution recovered by the gas-liquid separation section is collected in the concentrator through a pipe and flows into the cooling section, and the throttle section Is provided on the upper side of the concentrator, a return pipe is provided to connect the constriction unit and the cooling unit of the concentrator, and the aqueous solution accumulated in the constriction unit is guided to the cooling unit, it concentrated by heating the aqueous solution by the heat exchange of the gas It is intended to refer.

本構成とすることにより、水滴とガスとがガス流路の内壁面に付着することで生じる水溶液を、絞り部の取り付け部分に貯え、回収することができる。ガス流路内を流れるガスの流速を加速することができるので、水滴と接触して重量が重くなったガスを吐出口近傍まで吹き上げることができる。水滴と接触したガスを水噴霧部から気液分離部へと送り届けることができるため、気液分離部で水溶液として回収される水溶性溶剤が増える。水溶液が濃縮器へ流入することを防止できる。
With this configuration, the resulting aqueous solution by the water droplets and the gas adheres to the inner wall surface of the gas flow path, stored in a mounting portion of the diaphragm portion can you to recover. Since the flow velocity of the gas flowing in the gas flow path can be accelerated, the gas that has increased in weight due to contact with the water droplets can be blown up to the vicinity of the discharge port. Since the gas in contact with the water droplets can be delivered from the water spraying part to the gas-liquid separation part, the amount of water-soluble solvent recovered as an aqueous solution in the gas-liquid separation part increases. The aqueous solution can be prevented from flowing into the concentrator.

また本発明の実施の形態は、絞り部を、ガイド板の吸込口面側に、吸込口から吐出口へと流れるガスの流れる方向を斜め方向へと変更する斜流ガイド部を設けるというものである。   In the embodiment of the present invention, the throttle portion is provided on the suction port surface side of the guide plate with a mixed flow guide portion that changes the flow direction of the gas flowing from the suction port to the discharge port in an oblique direction. is there.

本構成とすることにより、水噴霧部の水滴とガスとが接触する空間において、ガス流路の内壁面に沿ったガスの斜流を生じることができる。   By adopting this configuration, a diagonal flow of gas along the inner wall surface of the gas flow path can be generated in the space where the water droplets in the water spray section and the gas are in contact with each other.

その結果、水滴と接触したガスが、ガス流路の内壁面に付着することを抑制することが可能となり、次工程である気液分離部へ供給できるガスの量が増える。   As a result, it is possible to suppress the gas that has contacted the water droplets from adhering to the inner wall surface of the gas flow path, and the amount of gas that can be supplied to the gas-liquid separation unit, which is the next process, is increased.

以下、本発明の実施例について図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
図1は、本発明の実施例1における水溶性溶剤の溶剤回収装置の構成図である。この図1を用いて、溶剤回収装置100の全体概要について説明する。
Example 1
FIG. 1 is a configuration diagram of a solvent recovery device for a water-soluble solvent in Example 1 of the present invention. The overall outline of the solvent recovery apparatus 100 will be described with reference to FIG.

水溶性溶剤を回収する溶剤回収装置100は、ガス1を冷却するとともに、後述する気液分離部40で分離された水溶液3を加熱して濃縮する濃縮器20と、この濃縮器20で冷却されたガス1aに対して水滴2を接触させる水噴霧部30と、この水噴霧部30で水滴2と接触したガス1bを冷却する気液分離部40とを備えている。   A solvent recovery apparatus 100 that recovers a water-soluble solvent cools the gas 1 and also heats and concentrates the aqueous solution 3 separated by the gas-liquid separation unit 40 described later, and is cooled by the concentrator 20. The water spray unit 30 that contacts the water droplet 2 with the gas 1a and the gas-liquid separation unit 40 that cools the gas 1b that has contacted the water droplet 2 with the water spray unit 30 are provided.

気液分離部40で抽出された水溶性溶剤を含む水溶液3は、配管50を介して濃縮器20へと導かれる。濃縮器20へと流入された水溶液3は、新たに吸込まれるガス1と熱交換を行うことで、水溶液3中の水分を蒸発させて、その濃度が高められる。その結果、高濃度となった水溶液3aは、配管6を介してタンク51に回収される。一方、気液分離部40で水溶液成分を除去されたガス1cは、エリミネータ52で浄化され、大気中へ放出される。   The aqueous solution 3 containing the water-soluble solvent extracted by the gas-liquid separator 40 is guided to the concentrator 20 through the pipe 50. The aqueous solution 3 that has flowed into the concentrator 20 exchanges heat with the newly sucked gas 1, thereby evaporating the moisture in the aqueous solution 3 and increasing its concentration. As a result, the aqueous solution 3 a having a high concentration is collected in the tank 51 through the pipe 6. On the other hand, the gas 1c from which the aqueous solution component has been removed by the gas-liquid separator 40 is purified by the eliminator 52 and released into the atmosphere.

このような溶剤回収装置100の各部について、図2に示す、本発明の実施例1における水溶性溶剤の溶剤回収手順を示すフローチャートとともに説明する。なお、水溶性溶剤としては、NMPを用いて説明する。   Each part of such a solvent collection | recovery apparatus 100 is demonstrated with the flowchart which shows the solvent collection | recovery procedure of the water-soluble solvent in Example 1 of this invention shown in FIG. The water-soluble solvent will be described using NMP.

工場などから排気ガスとして回収されたガス1は、濃縮器20にて冷却される(S1)。濃縮器20は、図1に示すように、冷却準備室21と、冷却部22と、吐出準備室23に区分されている。濃縮器20の外部からファン5で冷却準備室21へと吹き込まれたガス1は、冷却部22に複数設けられた管24へ吸い込まれる。冷却部22は、複数の仕切板25、26で仕切られている。管24の周囲で、これら複数の仕切板25、26で仕切られた冷却部22内には、後述する水溶液3が貯められ、ガス1と熱交換を行う。冷却部22で放熱し、冷却されたガス1aは、吐出準備室23を介して、次工程となる水噴霧部30へと送り出される。 The gas 1 collected as exhaust gas from a factory or the like is cooled by the concentrator 20 (S1). As shown in FIG. 1, the concentrator 20 is divided into a cooling preparation chamber 21, a cooling unit 22, and a discharge preparation chamber 23. The gas 1 blown from the outside of the concentrator 20 into the cooling preparation chamber 21 by the fan 5 is sucked into a plurality of pipes 24 provided in the cooling unit 22. The cooling unit 22 is partitioned by a plurality of partition plates 25 and 26. Around the tube 24, an aqueous solution 3 described later is stored in the cooling section 22 partitioned by the plurality of partition plates 25 and 26, and exchanges heat with the gas 1. The gas 1a radiated and cooled by the cooling unit 22 is sent out to the water spraying unit 30 which is the next process through the discharge preparation chamber 23.

一例として、冷却準備室21に吸込まれたNMPを含むガス1が100℃前後の場合、冷却準備室21の水溶液3が25℃前後であれば、吐出準備室23に存在するガス1aは、70℃程度まで冷却することが可能である。   As an example, when the gas 1 containing NMP sucked into the cooling preparation chamber 21 is around 100 ° C., and the aqueous solution 3 in the cooling preparation chamber 21 is around 25 ° C., the gas 1a present in the discharge preparation chamber 23 is 70 It is possible to cool to about 0C.

つぎに、ガス1aは、濃縮器20と水噴霧部30とを連絡する吸込口31を介して水噴霧部30内へと吸込まれる。   Next, the gas 1 a is sucked into the water spray unit 30 through the suction port 31 that connects the concentrator 20 and the water spray unit 30.

水噴霧部30は、吸込口31と吐出口32とをつなぐガス流路33からなる。本実施の形態1では、水噴霧部30は縦長のものを使用している。ガス流路33内は、ガス1aが流れる流路の面積を小さくする絞り部35を境として、吸込口31から絞り部35までをガス吸込室34、絞り部35から吐出口32までを気液接触室37と区分している。なお、気液接触室37内には、ノズル36が設けてある。このノズル36から噴霧された水滴2は、気液接触室37内においてガス1aと接触する。   The water spray unit 30 includes a gas flow path 33 that connects the suction port 31 and the discharge port 32. In the first embodiment, a vertically long water spray unit 30 is used. Inside the gas flow path 33, the gas suction chamber 34 from the suction port 31 to the throttle part 35 and the gas liquid from the throttle part 35 to the discharge port 32 are bordered by a throttle part 35 that reduces the area of the flow path through which the gas 1 a flows. Separated from the contact chamber 37. A nozzle 36 is provided in the gas-liquid contact chamber 37. The water droplet 2 sprayed from the nozzle 36 comes into contact with the gas 1 a in the gas-liquid contact chamber 37.

以下、水噴霧部30について詳述する。   Hereinafter, the water spray unit 30 will be described in detail.

まず、次工程である気液分離部40でNMPを含む水溶液3を少しでも多く回収するために、ノズル36は水噴霧部30の下方に取り付けられている。本構成とすれば、気液接触室37内でガス1aと水滴2とが十分に接触できるようになる。   First, the nozzle 36 is attached below the water spray unit 30 in order to collect as much of the aqueous solution 3 containing NMP as possible in the gas-liquid separation unit 40 as the next step. With this configuration, the gas 1 a and the water droplet 2 can sufficiently come into contact with each other in the gas-liquid contact chamber 37.

ノズル36には、水滴2の源となる水を供給する給水パイプ36aと、水を噴出するための圧縮空気を供給する給気パイプ36bとが接続されている。ノズル36から噴霧される水滴2は、ノズル36に施した孔径によって、その直径が定められる。水滴2は、水を噴出する圧縮空気の圧力によって、その噴霧速度や噴霧量を調整することができる。本実施例1では、ガス1a内に含まれるNMPに対し、より多くの水滴2を接触させるために、直径10μm程度の水滴2を得ることができるノズル36を用いている。なお、水滴2の直径を小さくすれば、単位体積当たりの表面積が大きくなるため、同量の水であっても、より多くのNMPと接触することが可能となる(S2)。   The nozzle 36 is connected to a water supply pipe 36 a that supplies water that is a source of the water droplets 2 and an air supply pipe 36 b that supplies compressed air for ejecting water. The diameter of the water droplet 2 sprayed from the nozzle 36 is determined by the diameter of the hole applied to the nozzle 36. The spray speed and spray amount of the water droplet 2 can be adjusted by the pressure of the compressed air that ejects water. In the first embodiment, in order to bring more water droplets 2 into contact with NMP contained in the gas 1a, a nozzle 36 that can obtain water droplets 2 having a diameter of about 10 μm is used. In addition, since the surface area per unit volume will become large if the diameter of the water droplet 2 is made small, even if it is the same amount of water, it becomes possible to contact with more NMP (S2).

さらに、溶剤回収装置100に流れ込むガス1の流量が安定しない場合、ガス流路33内を流れるガス1aの流量に合わせて、給水パイプ36aと給気パイプ36bから供給する水と圧縮空気の量を調整できるようにしてもよい。本構成とすれば、ガス1aに含有されるNMPの量に応じて水と圧縮空気の量を調整し、適量の水滴2を供給できるため、不要な水や圧縮空気を消耗することがない。   Further, when the flow rate of the gas 1 flowing into the solvent recovery device 100 is not stable, the amounts of water and compressed air supplied from the water supply pipe 36a and the air supply pipe 36b are adjusted in accordance with the flow rate of the gas 1a flowing in the gas flow path 33. It may be possible to adjust. According to this configuration, the amount of water and compressed air can be adjusted according to the amount of NMP contained in the gas 1a and an appropriate amount of water droplets 2 can be supplied, so that unnecessary water and compressed air are not consumed.

つぎに、次工程でNMPを少しでも多く回収するために、気液接触室37内で、水滴2と十分に接触したガス1bを、少しでも多く気液分離部40へ送付する必要がある。   Next, in order to collect as much NMP as possible in the next step, it is necessary to send as much gas 1b in sufficient contact with the water droplets 2 in the gas-liquid contact chamber 37 to the gas-liquid separator 40 as much as possible.

この要件を満たすために、以下の考慮が必要となる。   To meet this requirement, the following considerations are necessary.

まず、気液接触室37内で、ノズル36から噴出する水滴2の方向を吐出口32方向(図中上側)とする。つまり、ガス1aと同方向へ水滴2を噴霧して、ガス1aの流れが阻害されないようにする。   First, the direction of the water droplet 2 ejected from the nozzle 36 in the gas-liquid contact chamber 37 is defined as the direction of the discharge port 32 (upper side in the figure). That is, the water droplet 2 is sprayed in the same direction as the gas 1a so that the flow of the gas 1a is not hindered.

つぎに、ガス1aの流速よりも噴霧する水滴2の速度を遅くする。こうすれば、気液接触室37中を漂う水滴2の中をガス1aが通過することになるため、ガス1aが水滴2と接触できる機会が多くなる。つまり、水滴2とガス1aとの相対速度の関係から、水滴2とガス1aとが接触する時間を少しでも長くできる。   Next, the speed of the water droplet 2 to be sprayed is made slower than the flow rate of the gas 1a. By doing so, the gas 1a passes through the water droplet 2 drifting in the gas-liquid contact chamber 37, so that the opportunity for the gas 1a to contact the water droplet 2 increases. That is, from the relationship between the relative speeds of the water droplet 2 and the gas 1a, the time during which the water droplet 2 and the gas 1a are in contact with each other can be increased as much as possible.

さらに、水滴2と接触することで重量を増したガス1bが、失速することなく気液分離部40へ移動できるよう、ガス1aの流速を加速する絞り部35を設ける。   Furthermore, the throttle part 35 which accelerates | stimulates the flow velocity of the gas 1a is provided so that the gas 1b which increased in weight by contacting with the water droplet 2 can move to the gas-liquid separation part 40 without stalling.

つまり、ガス1aが通過する絞り部35の開口35aの断面積Bを、ガス吸込室34の断面積Aよりも小さくすれば、開口35aを通過するガス1aの流速は早くなる。本構成とすれば、従来、水滴2と接触したガス1bで、吐出口32へ達することなく水噴霧部30内に液滴落下していたものが、開口35aを通過して流速を増したガス1aに吹き上げられ、吐出口32へ到達するようになる。   That is, if the cross-sectional area B of the opening 35a of the throttle portion 35 through which the gas 1a passes is made smaller than the cross-sectional area A of the gas suction chamber 34, the flow velocity of the gas 1a passing through the opening 35a is increased. According to this configuration, the gas 1b that has been in contact with the water droplet 2 and that has been dropped into the water spray unit 30 without reaching the discharge port 32 has passed through the opening 35a and increased in flow rate. It is blown up to 1 a and reaches the discharge port 32.

ところで、本実施例1では、水滴2と接触することで重量を増したガス1bを所定高さまで吹き上げた後、さらに水滴2とガス1bとの接触を促進させるために、ガス吸込室34と気液接触室37とを同じ断面積Aにして、加速されたガス1bの流速を絞り部35通過前の流速へと戻している。   By the way, in the first embodiment, after the gas 1b increased in weight by being brought into contact with the water droplet 2 is blown up to a predetermined height, in order to further promote the contact between the water droplet 2 and the gas 1b, the gas suction chamber 34 and the gas The liquid contact chamber 37 has the same cross-sectional area A, and the flow velocity of the accelerated gas 1b is returned to the flow velocity before passing through the throttle portion 35.

なお、このような流速の調整については、次工程である気液分離部40へ流入するガス1bの最適速度や、水滴2とガス1bの接触状況などを考慮して調整すればよい。   The flow rate may be adjusted in consideration of the optimum speed of the gas 1b flowing into the gas-liquid separator 40, which is the next step, the contact state between the water droplet 2 and the gas 1b, and the like.

また、本実施例1では、ガス吸込室34及び気液接触室37の直径aを1000mm、絞り部35に設けた開口35aの直径bを400mmとした。その結果、ガス吸込室34を流れるガス1aの流速t=2m/secは、開口35aを通過する冷却されたガスの流速8m/secにまで加速できた。   In the first embodiment, the diameter a of the gas suction chamber 34 and the gas-liquid contact chamber 37 is 1000 mm, and the diameter b of the opening 35 a provided in the throttle portion 35 is 400 mm. As a result, the flow velocity t = 2 m / sec of the gas 1a flowing through the gas suction chamber 34 could be accelerated to the flow velocity of the cooled gas passing through the opening 35a.

さらに、本実施例1の水噴霧部30では、水滴2とガス1aとが接触したもので、ガス流路33の側壁面に付着して生じる水溶液を効率よく回収するために以下の対応を行っている。   Further, in the water spray unit 30 of the first embodiment, the water droplet 2 and the gas 1a are in contact with each other, and the following measures are taken in order to efficiently recover the aqueous solution generated on the side wall surface of the gas flow path 33. ing.

すなわち、図1に示すように、絞り部35は、絞り部35とガス流路33との接続部分よりも、絞り部35の開口35aを高くなるように取り付けられている。本構成とすれば、絞り部35とガス流路33との接続部分に水溶液4を貯めることができる。さらに、戻り管53が、絞り部35とガス流路33との接続部分近傍と、濃縮器20との間に設けられている。絞り部35とガス流路33との接続部分を濃縮器20よりも上側に設ければ、ポンプなどの不要な機器を必要とすることなく、絞り部35に溜まった水溶液4を冷却部22へ供給できる。   That is, as shown in FIG. 1, the throttle portion 35 is attached so that the opening 35 a of the throttle portion 35 is higher than the connection portion between the throttle portion 35 and the gas flow path 33. With this configuration, the aqueous solution 4 can be stored in the connection portion between the throttle portion 35 and the gas flow path 33. Further, a return pipe 53 is provided between the vicinity of the connecting portion between the throttle 35 and the gas flow path 33 and the concentrator 20. If the connecting portion between the constricting part 35 and the gas flow path 33 is provided above the concentrator 20, the aqueous solution 4 accumulated in the constricting part 35 can be transferred to the cooling part 22 without requiring unnecessary equipment such as a pump. Can supply.

つぎに、気液分離部40について説明する。   Next, the gas-liquid separator 40 will be described.

吐出口32を介して気液分離部40へ吐出されたガス1bは、気液分離部40内に設けられた凝縮器41により冷却され、ガス1b中に溶けていたNMPが、水溶液3として抽出、回収される。   The gas 1b discharged to the gas-liquid separator 40 through the discharge port 32 is cooled by the condenser 41 provided in the gas-liquid separator 40, and the NMP dissolved in the gas 1b is extracted as the aqueous solution 3. To be recovered.

本実施例1では、凝縮器41を2段に分け、前段の凝縮器41aを用いてガス1bを高温から中温へ、後段の凝縮器41bを用いてガス1bを中温から低温へ冷却している(S3)。   In the first embodiment, the condenser 41 is divided into two stages, the gas 1b is cooled from a high temperature to an intermediate temperature using the former condenser 41a, and the gas 1b is cooled from the medium temperature to a low temperature using the latter condenser 41b. (S3).

図1に示す凝縮器41は、冷却管42a、42bと放熱部43a、43bとからなる。   The condenser 41 shown in FIG. 1 includes cooling pipes 42a and 42b and heat radiation parts 43a and 43b.

各凝縮器41a、41bには冷媒として水が封入されている。   Each condenser 41a, 41b is filled with water as a refrigerant.

まず、気液分離部40へ流入したガス1bは、冷却管42a近傍の空気および、冷却管42aに直接触れることにより、50〜65℃程度あった温度が40℃程度に冷却される。ガス1bと熱交換した冷媒の水は、放熱部43aへと循環され、吸収した熱を大気中に放出した後、再び冷却管42aへと供給される。   First, the gas 1b that has flowed into the gas-liquid separation unit 40 is cooled to a temperature of about 50 to 65 ° C. by directly touching the air near the cooling tube 42 a and the cooling tube 42 a. The refrigerant water exchanged with the gas 1b is circulated to the heat radiating portion 43a, and after the absorbed heat is released into the atmosphere, it is supplied to the cooling pipe 42a again.

一方、冷却管42aと接触したガス1bの一部で露点に達したものは、NMPを含む水溶液3として抽出される。   On the other hand, a part of the gas 1b in contact with the cooling pipe 42a that has reached the dew point is extracted as an aqueous solution 3 containing NMP.

同様に、冷却管42b近傍へと流れてきたガス1bは、冷却管42b近傍の空気および、冷却管42bに直接触れることにより、40℃程度あった温度が20℃程度に冷却される。冷却管42bは、冷却管42aよりも低い温度のため、より多くのガス1bを露点へ導くことができ、冷却管42aよりも多くのNMPを含む水溶液3を抽出し、回収することができる。   Similarly, the gas 1b flowing to the vicinity of the cooling pipe 42b is directly brought into contact with the air in the vicinity of the cooling pipe 42b and the cooling pipe 42b, whereby the temperature of about 40 ° C. is cooled to about 20 ° C. Since the cooling pipe 42b has a lower temperature than the cooling pipe 42a, more gas 1b can be guided to the dew point, and the aqueous solution 3 containing more NMP than the cooling pipe 42a can be extracted and recovered.

一方、ガス1bと熱交換した冷媒の水は、放熱部43bへと循環され、吸収した熱を大気中に放出した後、再び冷却管42bへと供給される。   On the other hand, the coolant water exchanged with the gas 1b is circulated to the heat radiating portion 43b, and after the absorbed heat is released into the atmosphere, it is supplied to the cooling pipe 42b again.

つぎに、気液分離部40で主たる水溶液3成分を除去されたガス1cは、さらにエリミネータ52へ送付される。ガス1cは、エリミネータ52内に設けられた金属細線からなる網状部52aを通過することで、気液分離部40では除去されなかった液体の微粒子を分離回収される(S4)。   Next, the gas 1 c from which the three main components of the aqueous solution are removed by the gas-liquid separator 40 is further sent to the eliminator 52. The gas 1c passes through a net-like portion 52a made of a fine metal wire provided in the eliminator 52, whereby liquid fine particles that have not been removed by the gas-liquid separator 40 are separated and recovered (S4).

その後、液体の微粒子まで分離されたガス1dは、大気中へ放出される。   Thereafter, the gas 1d separated into the liquid fine particles is released into the atmosphere.

また、気液分離部40およびエリミネータ52にて抽出、回収されたNMPを含む水溶液3は、配管50を介して濃縮器20へと集められる。   Further, the aqueous solution 3 containing NMP extracted and recovered by the gas-liquid separator 40 and the eliminator 52 is collected to the concentrator 20 via the pipe 50.

ところで、濃縮器20でガス1を冷却した冷却部22には、回収した水溶液3を加熱して濃縮し、NMP濃度が高い水溶液3を回収するという機能も備わっている。   By the way, the cooling unit 22 that has cooled the gas 1 by the concentrator 20 has a function of heating and concentrating the recovered aqueous solution 3 to recover the aqueous solution 3 having a high NMP concentration.

まず、濃縮器20に設けられた冷却部22の詳細について説明する。図3は、図1のA−A矢視図、B−B矢視図を示している。   First, the details of the cooling unit 22 provided in the concentrator 20 will be described. 3 shows an AA arrow view and a BB arrow view of FIG.

図3(a)に示すように、仕切板26は上端を、図3(b)に示すように、仕切板25は下端を切り欠いた形状とし、各々切欠き部25a、26aを隣接する空間への連絡路としている。すなわち、冷却部22には、配管50を介して冷却部22へ流入した水溶液3を、冷却部22からタンク51へと送り出す流路が構成されている。   As shown in FIG. 3A, the partition plate 26 has a shape in which the upper end is cut off, and as shown in FIG. 3B, the partition plate 25 has a shape in which the lower end is cut out, and the notch portions 25a and 26a are adjacent spaces. As a connecting route to That is, the cooling unit 22 includes a flow path for sending the aqueous solution 3 flowing into the cooling unit 22 through the pipe 50 from the cooling unit 22 to the tank 51.

上述したように、100℃程度の高温で冷却準備室21へと吸い込まれたガス1は、吐出準備室23に至るまでに70℃程度まで下げられて放熱を行う。換言すれば、冷却部22に対して放熱したのと略同容量の熱を供給することになる。この熱は、ガス1が冷却部22中を左から右へと流れるため、水溶液3が冷却部22中を右から左へ流れるほど高くなる。つまり、水溶液3に含まれる水分は、ガス1から供給される熱によって蒸発することになる(S5)。   As described above, the gas 1 sucked into the cooling preparation chamber 21 at a high temperature of about 100 ° C. is lowered to about 70 ° C. until it reaches the discharge preparation chamber 23 to dissipate heat. In other words, heat of substantially the same capacity as that radiated heat is supplied to the cooling unit 22. This heat increases as the aqueous solution 3 flows from the right to the left in the cooling unit 22 because the gas 1 flows from the left to the right in the cooling unit 22. That is, the moisture contained in the aqueous solution 3 is evaporated by the heat supplied from the gas 1 (S5).

このようにして、水分を蒸発することで濃縮されたNMPを含む水溶液3aは、タンク51に回収される。一方、ガス1と熱交換した結果、水溶液3から蒸発したNMPを含む蒸気は、戻り管27を介して濃縮器20の冷却準備室21へと導かれる。   In this way, the aqueous solution 3a containing NMP concentrated by evaporating moisture is collected in the tank 51. On the other hand, as a result of heat exchange with the gas 1, the vapor containing NMP evaporated from the aqueous solution 3 is led to the cooling preparation chamber 21 of the concentrator 20 through the return pipe 27.

以上説明したように、本発明の実施例1に記載の溶剤回収装置100では、水噴霧部30の内部に絞り部35を設けて、水噴霧部30の吸込口31から吐出口32へと流れるガス1aの流路の断面積を要部で絞っている。この絞り部35は、使用する水噴霧部30の形状や大きさ、あるいは流れるガス1aの成分によって適宜、最適な設計を行えばよいが、以下の内容に留意する必要がある。   As described above, in the solvent recovery apparatus 100 according to the first embodiment of the present invention, the throttle unit 35 is provided inside the water spray unit 30 and flows from the suction port 31 of the water spray unit 30 to the discharge port 32. The cross-sectional area of the flow path of the gas 1a is narrowed by the main part. The throttling unit 35 may be appropriately designed according to the shape and size of the water spray unit 30 to be used or the component of the flowing gas 1a. However, it is necessary to pay attention to the following contents.

ひとつ目は、水噴霧部30の主目的である、ガス1aとノズル36から噴出する水滴2との接触時間を少しでも長く確保することである。これは、上述したように、次工程である気液分離部40で、ガス1aに含まれる水溶性溶剤を少しでも多く回収するために、ガス1aに十分な水滴2を付けておく必要がある。具体的には、図1で示した水噴霧部30を用いた場合、絞り部35とノズル36を水噴霧部30の下部に設置し、ノズル36から吐出口32までの空間を十分に確保することで実現している。   The first is to ensure the contact time between the gas 1a and the water droplet 2 ejected from the nozzle 36, which is the main purpose of the water spray section 30, as long as possible. As described above, in the gas-liquid separation unit 40, which is the next step, it is necessary to attach sufficient water droplets 2 to the gas 1a in order to recover as much water-soluble solvent as possible contained in the gas 1a. . Specifically, when the water spray unit 30 shown in FIG. 1 is used, the throttle unit 35 and the nozzle 36 are installed below the water spray unit 30 to ensure a sufficient space from the nozzle 36 to the discharge port 32. This is realized.

ふたつ目は、水滴2と接触したガス1bを、水噴霧部30内で液化させることなく、次工程である気液分離部40へ送り出すことである。本実施例1に示す溶剤回収装置100では、水溶液3となったNMPは、気液分離部40から回収する構成となっており、水噴霧部30にて、水溶液となったNMPを積極的に回収するという構成となっていない。従って、水噴霧部30内でガス1bが液化した場合、気液分離部40で回収可能なNMPの水溶液3が減少することになる。しかも、吐出口32から前工程である濃縮器20への逆流が生じる可能性もあり、水噴霧部30の下部に水滴が残留する場合は、内面腐食を防ぐために頻繁に水抜き作業を行う必要があるという余分な手間が生じることになる。   The second is to send the gas 1b in contact with the water droplet 2 to the gas-liquid separation unit 40, which is the next step, without liquefying in the water spray unit 30. In the solvent recovery apparatus 100 shown in the first embodiment, the NMP that has become the aqueous solution 3 is configured to be recovered from the gas-liquid separation unit 40, and the water spray unit 30 actively removes the NMP that has become the aqueous solution. It is not configured to collect. Therefore, when the gas 1b is liquefied in the water spray section 30, the NMP aqueous solution 3 that can be recovered by the gas-liquid separation section 40 is reduced. In addition, backflow from the discharge port 32 to the concentrator 20, which is the previous process, may occur, and when water droplets remain in the lower part of the water spray unit 30, it is necessary to frequently drain water to prevent internal corrosion. There will be an extra amount of trouble.

そこで、ガス1aを気液分離部40へ送り出すためには、絞り部35とノズル36とを水噴霧部30の上部に設けるようにしている。   Therefore, in order to send the gas 1 a to the gas-liquid separation unit 40, the throttle unit 35 and the nozzle 36 are provided above the water spray unit 30.

この矛盾するひとつ目とふたつ目の留意事項を実現するために、本発明の実施例1では、絞り部35とノズル36とを水噴霧部30の下部に設置して、ガス1aと水滴2との接触時間を確保し、絞り部35の開口35aを用いてガス流路33の要部断面積を絞ることでガス1aの流速を早めて、液滴を防止し、より多くのガス1bを気液分離部40へ吐出するようにしている。   In order to realize the first and second contradictory considerations, in the first embodiment of the present invention, the throttle part 35 and the nozzle 36 are installed at the lower part of the water spraying part 30, and the gas 1a, the water droplet 2 and The flow rate of the gas 1a is increased by restricting the cross-sectional area of the main part of the gas flow path 33 by using the opening 35a of the restricting part 35, thereby preventing droplets and allowing more gas 1b to escape. It is made to discharge to the liquid separation part 40.

このような構成とすることにより、水噴霧部30内において、落下してきた水滴2を水噴霧部30上方へと吹き上げることができる。しかも、水噴霧部30上部におけるガス流路33の断面積は、水滴2とガス1bとが十分に接触可能な速度を得ることが可能な面積を有しているため、絞り部35で加速されたガス1aの流速を抑制し、水滴2とガス1bとの接触を促進することができる。   By setting it as such a structure, the water droplet 2 which has fallen in the water spray part 30 can be blown up to the water spray part 30 upper direction. Moreover, since the cross-sectional area of the gas flow path 33 at the upper part of the water spraying part 30 has an area capable of obtaining a speed at which the water droplet 2 and the gas 1b can sufficiently contact with each other, it is accelerated by the throttle part 35. Further, the flow rate of the gas 1a can be suppressed, and the contact between the water droplet 2 and the gas 1b can be promoted.

なお、図1に示す絞り部35を用いた場合、水噴霧部30の側壁面に付着し、やむを得ず生じる水溶液4を受け止めることができる。   In addition, when the aperture | diaphragm | squeeze part 35 shown in FIG. 1 is used, it can adhere to the side wall surface of the water spray part 30, and can receive the aqueous solution 4 which becomes unavoidable.

このような構成とすれば、やむを得ず生じる水溶液4が、前工程である濃縮器20に逆流することを防止できる。   With such a configuration, it is possible to prevent the aqueous solution 4 that is inevitably generated from flowing backward to the concentrator 20 that is the previous step.

また、図1に示すように、水噴霧部30の絞り部35と、濃縮器20の冷却部22とを連絡する戻り管53を設けて、水溶液4を冷却部22に戻せば、より多くのNMPの水溶液3aを回収することが可能となる。   In addition, as shown in FIG. 1, if a return pipe 53 that connects the throttle unit 35 of the water spray unit 30 and the cooling unit 22 of the concentrator 20 is provided and the aqueous solution 4 is returned to the cooling unit 22, more It becomes possible to collect the aqueous solution 3a of NMP.

なお、絞り部35を、濃縮器20よりも上方に設置すれば、ポンプなどの余分な機器を設置することなく、戻り管53を介して水溶液4を冷却部22へ導くことが可能である。   If the throttling part 35 is installed above the concentrator 20, the aqueous solution 4 can be guided to the cooling part 22 via the return pipe 53 without installing extra equipment such as a pump.

参考
つぎに、参考について、図4を用いて説明する。
( Reference Example 1 )
Next, Reference Example 1 will be described with reference to FIG.

図4は、水噴霧部30aにおいて、絞り部38の先端を吸込口31方向に向けている。本構成とした場合、水噴霧部30aの上部において、水滴2とガス1aとが接触した結果、水噴霧部30aの側壁面に付着するなどして、やむを得ず生じる水溶液4aを、以下のようにして回収することができる。   In FIG. 4, the tip of the throttle portion 38 is directed toward the suction port 31 in the water spray portion 30a. In the case of this configuration, the aqueous solution 4a inevitably generated as a result of contact between the water droplet 2 and the gas 1a in the upper part of the water spraying part 30a and adhering to the side wall surface of the water spraying part 30a is as follows. It can be recovered.

すなわち、側壁面に付着した水溶液4aは、側壁面を伝って、絞り部38へと流れてくる。絞り部38にたどり着いた水溶液4aは、絞り部38の傾斜に従い、絞り部38の開口38aへと流れる。その結果、水溶液4aが絞り部38の開口38aへたどり着くと、吸込口31から吐出口32へと流れるガス1aによって、水溶液4aは開口38aから吐出口32へと吹き上げられる。特に、開口38aは、ガス流路33の断面積を絞って、ガス1aの流速を加速しているため、水溶液4aを吹き上げるに十分な流速を確保している。   That is, the aqueous solution 4a adhering to the side wall surface flows along the side wall surface to the throttle portion 38. The aqueous solution 4 a that has reached the throttle portion 38 flows to the opening 38 a of the throttle portion 38 according to the inclination of the throttle portion 38. As a result, when the aqueous solution 4 a reaches the opening 38 a of the throttle portion 38, the aqueous solution 4 a is blown up from the opening 38 a to the discharge port 32 by the gas 1 a flowing from the suction port 31 to the discharge port 32. In particular, since the opening 38a squeezes the cross-sectional area of the gas flow path 33 to accelerate the flow rate of the gas 1a, the flow rate is sufficient to blow up the aqueous solution 4a.

さらに、図5に示すように、絞り部38の下側に下端を水噴霧部30aの内壁面に接続し、上端を絞り部38の開口38a近傍に開口した導風板39を設ける。このような導風板39を設ければ、図中、矢印60a、60bで示すように、水噴霧部30aの内壁面から導風板39を介して絞り部38へと続く滑らかな風の流れを構築することが可能となる。   Further, as shown in FIG. 5, an air guide plate 39 having a lower end connected to the inner wall surface of the water spray unit 30 a and an upper end opened near the opening 38 a of the throttle unit 38 is provided below the throttle unit 38. If such a wind guide plate 39 is provided, as shown by arrows 60a and 60b in the figure, the flow of a smooth wind that continues from the inner wall surface of the water spray portion 30a to the throttle portion 38 via the wind guide plate 39 is shown. Can be built.

このような滑らかな風の流れを構築できれば、冷却されたガス1aを移動させるファン5などのエネルギーロスを抑制することができ、溶剤回収装置100を駆動するエネルギーの省力化を図ることができる。   If such a smooth wind flow can be constructed, energy loss of the fan 5 or the like that moves the cooled gas 1a can be suppressed, and energy saving for driving the solvent recovery apparatus 100 can be achieved.

(実施例
つぎに、本発明の実施例について、図6から図8を用いて説明する。
(Example 2 )
Next, a second embodiment of the present invention will be described with reference to FIGS. 6-8.

図6、図7は、他の実施例における絞り部70、71を示している。すなわち、図6に示すように、絞り部70のガイド板72を用いて斜流ガイド部73を設けたり、図7に示すように、絞り部71のガイド板74に斜流ガイド部75を設ける。   6 and 7 show the diaphragm portions 70 and 71 in another embodiment. That is, as shown in FIG. 6, the mixed flow guide portion 73 is provided using the guide plate 72 of the restricting portion 70, or the mixed flow guide portion 75 is provided on the guide plate 74 of the restricting portion 71 as shown in FIG. .

このような斜流ガイド部73、75を有する絞り部70、71を図8に示す水噴霧部30bに設置する。吸込口31から吸い込まれた冷却されたガス1aには、ガス流路33の中央部を流れるガスの流れ76aと側壁面に沿って流れるガスの流れ76bとが生じる。ガス流路33の中央部を流れるガスの流れ76aは、流速も早いことから、絞り部70、71を経由して吐出口32へと円滑に流れることが期待できる。   The throttle portions 70 and 71 having such mixed flow guide portions 73 and 75 are installed in the water spray portion 30b shown in FIG. In the cooled gas 1 a sucked from the suction port 31, a gas flow 76 a flowing through the central portion of the gas flow path 33 and a gas flow 76 b flowing along the side wall surface are generated. Since the gas flow 76a flowing through the central portion of the gas flow path 33 has a high flow velocity, it can be expected to smoothly flow to the discharge port 32 via the throttle portions 70 and 71.

しかしながら、側壁面近傍のガスの流れ76bについては、冷却されたガス1aと側壁面との間で生じる摩擦力の影響などから、吸込口31から絞り部70、71、吐出口32へと流れる円滑なガス1aの流れを期待できない。   However, with respect to the gas flow 76b in the vicinity of the side wall surface, the smooth flow that flows from the suction port 31 to the throttle portions 70 and 71 and the discharge port 32 due to the influence of frictional force generated between the cooled gas 1a and the side wall surface. The flow of the gas 1a cannot be expected.

そこで、本実施例3に示すように、斜流ガイド部73、75を有する絞り部70、71を用いることにより、気液接触室37では、内壁面に沿った斜めのガスの流れ77、いわゆる斜流を発生させることができる。この結果、内壁面近傍でのガスの流れ77を促すとともに、水滴2と接触したガス1bが内壁面に付着して、液化することを防止することが可能となる。   Therefore, as shown in the third embodiment, by using the throttle portions 70 and 71 having the mixed flow guide portions 73 and 75, in the gas-liquid contact chamber 37, an oblique gas flow 77 along the inner wall surface, so-called A mixed flow can be generated. As a result, it is possible to promote the gas flow 77 in the vicinity of the inner wall surface and to prevent the gas 1b in contact with the water droplet 2 from adhering to the inner wall surface and liquefying.

従って、次工程である気液分離部40で回収できるガス1bの量が増え、NMPが溶けた水溶液3の回収効率を向上できる。   Accordingly, the amount of the gas 1b that can be recovered by the gas-liquid separator 40, which is the next step, is increased, and the recovery efficiency of the aqueous solution 3 in which NMP is dissolved can be improved.

本発明の溶剤回収装置は、排気ガス中の低濃度の水溶性溶剤を、吸着剤を用いずに安定して効率的に回収できるため、連続的な排気ガス浄化の分野に有用である。   The solvent recovery device of the present invention is useful in the field of continuous exhaust gas purification because a low-concentration water-soluble solvent in exhaust gas can be recovered stably and efficiently without using an adsorbent.

本発明の一実施例における溶剤回収装置の構成図Configuration diagram of solvent recovery apparatus in one embodiment of the present invention 同本発明の一実施例における水溶性溶剤の溶剤回収手順を示すフローチャートThe flowchart which shows the solvent recovery procedure of the water-soluble solvent in one Example of the same invention (a)は同本発明の一実施例における冷却部22のA−A矢視図、(b)は同B−B矢視図(A) is the AA arrow directional view of the cooling unit 22 in one Example of this invention, (b) is the BB arrow directional view. 参考例における水噴霧部の構成図Configuration diagram of water spray section in reference example 参考例における水噴霧部の構成図Configuration diagram of water spray section in other reference examples 本発明の他の一実施例における絞り部の斜視図The perspective view of the aperture | diaphragm | squeeze part in other one Example of this invention. 本発明の他の一実施例における絞り部の斜視図The perspective view of the aperture | diaphragm | squeeze part in other one Example of this invention. 本発明の他の一実施例における水噴霧部の構成図The block diagram of the water spray part in other one Example of this invention

符号の説明Explanation of symbols

1,1a,1b,1c,1d ガス
2 水滴
20 濃縮器
30,30a,30b 水噴霧部
31 吸込口
32 吐出口
33 ガス流路
35,38,70,71 絞り部
36 ノズル
39 導風板
40 気液分離部
72,74 ガイド板
73,75 斜流ガイド部
1, 1a, 1b, 1c, 1d Gas 2 Water droplet 20 Concentrator 30, 30a, 30b Water spraying portion 31 Suction port 32 Discharge port 33 Gas flow path 35, 38, 70, 71 Restriction portion 36 Nozzle 39 Air guide plate 40 Air Liquid separation part 72, 74 Guide plate 73, 75 Diagonal flow guide part

Claims (2)

水より沸点が高い水溶性溶剤を含むガスに対して水滴を接触させる水噴霧部と、
前記水噴霧部で前記水滴と接触した前記ガスを冷却する気液分離部とを備え、
前記水噴霧部は、
前記ガスを吸込む吸込口と、
前記水滴と接触した前記ガスを前記気液分離部へ吐出する吐出口と、
前記吸込口と前記吐出口とをつなぐガス流路とを有し、
前記ガス流路内には、
前記水滴を噴出するノズルと、
前記吸込口と前記ノズルとの間に、前記吐出口と前記ノズルとの間の前記ガス流路の断面積よりも前記吸込口と前記ノズルとの間の前記ガス流路の断面積を小さくする絞り部とを設け、
前記絞り部は、
前記ガス流路をなす内壁面に設けたガイド板からなり、
前記ガイド板は、一端を前記内壁面に接続し前記内壁面を一周全て覆うように取り付けられ、他端は前記内壁から離れた構造で前記他端を前記一端よりも上方へ位置するように傾斜して取り付けられ、
前記水噴霧部が直線状の管であり、下から上方向に、前記吸込口、前記絞り部、前記ノズル、前記吐出口が順に配置され、
濃縮器を備え、
前記濃縮器は水溶液と前記ガスの熱交換を行う冷却部を備え、
前記冷却部で冷却された前記ガスは前記吸込口を介して前記水噴霧部内へと吸込まれ、
前記気液分離部で回収された水溶液は配管を介して前記濃縮器に集められ前記冷却部に流入し、
前記絞り部を前記濃縮器よりも上側に設け、
前記絞り部と前記濃縮器の前記冷却部とを連絡する戻り管を設けて前記絞り部に溜まった水溶液を前記冷却部に導き、
前記濃縮器は水溶液と前記ガスの熱交換により水溶液を加熱して濃縮する溶剤回収装置。
A water spray section for bringing water droplets into contact with a gas containing a water-soluble solvent having a boiling point higher than that of water;
A gas-liquid separation unit that cools the gas in contact with the water droplets in the water spray unit;
The water spray section is
A suction port for sucking the gas;
A discharge port for discharging the gas in contact with the water droplets to the gas-liquid separator;
A gas flow path connecting the suction port and the discharge port;
In the gas flow path,
A nozzle that ejects the water droplets;
The cross-sectional area of the gas flow path between the suction port and the nozzle is smaller than the cross-sectional area of the gas flow path between the discharge port and the nozzle between the suction port and the nozzle. With a diaphragm,
The throttle part is
A guide plate provided on the inner wall surface forming the gas flow path,
The guide plate is attached so that one end thereof is connected to the inner wall surface and covers the entire inner wall surface, and the other end is inclined so that the other end is located above the one end with a structure separated from the inner wall. Attached ,
The water spray part is a straight pipe, and from the bottom to the top, the suction port, the throttle unit, the nozzle, the discharge port are arranged in this order,
With a concentrator,
The concentrator includes a cooling unit that performs heat exchange between the aqueous solution and the gas,
The gas cooled by the cooling unit is sucked into the water spray unit through the suction port,
The aqueous solution recovered in the gas-liquid separation unit is collected in the concentrator through a pipe and flows into the cooling unit,
The throttle part is provided above the concentrator,
Providing a return pipe connecting the constriction section and the cooling section of the concentrator to guide the aqueous solution accumulated in the constriction section to the cooling section;
The concentrator is a solvent recovery apparatus that heats and concentrates an aqueous solution by heat exchange between the aqueous solution and the gas .
さらに前記絞り部は、
前記ガイド板の吸込口面側に、前記吸込口から前記吐出口へと流れる前記ガスの流れる方向を変更する斜流ガイド部を設けた請求項1に記載の溶剤回収装置。
Further, the aperture portion is
The solvent recovery apparatus according to claim 1, wherein a mixed flow guide portion that changes a flow direction of the gas flowing from the suction port to the discharge port is provided on the suction port surface side of the guide plate.
JP2008314048A 2008-12-10 2008-12-10 Solvent recovery device Expired - Fee Related JP5412817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008314048A JP5412817B2 (en) 2008-12-10 2008-12-10 Solvent recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314048A JP5412817B2 (en) 2008-12-10 2008-12-10 Solvent recovery device

Publications (2)

Publication Number Publication Date
JP2010137137A JP2010137137A (en) 2010-06-24
JP5412817B2 true JP5412817B2 (en) 2014-02-12

Family

ID=42347741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314048A Expired - Fee Related JP5412817B2 (en) 2008-12-10 2008-12-10 Solvent recovery device

Country Status (1)

Country Link
JP (1) JP5412817B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170208B (en) * 2013-03-25 2015-03-11 哈尔滨工程大学 Emission device for reducing emission of smoke pollutants

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121627A (en) * 1980-02-29 1981-09-24 Mitsubishi Heavy Ind Ltd Spray drying type reaction apparatus
JPH0933179A (en) * 1995-07-21 1997-02-07 Kubota Corp Gas temperature lowering tower in low temperature region
JP4009778B2 (en) * 2001-07-06 2007-11-21 日立造船株式会社 Gas cooling device
JP4858425B2 (en) * 2006-12-11 2012-01-18 パナソニック株式会社 Water-soluble solvent recovery method and recovery device

Also Published As

Publication number Publication date
JP2010137137A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
US8944152B2 (en) Compact evaporator for chillers
CN108779968B (en) Heat exchanger
US10132537B1 (en) Heat exchanger
CN106440925B (en) Floater remover of cooling tower
CN113227698B (en) Heat exchanger
US11029094B2 (en) Heat exchanger
CN105518391B (en) Integrated separator-distributor for falling film evaporator
JP5412817B2 (en) Solvent recovery device
JP2006200852A (en) Absorber in absorption type refrigerator
JP4362272B2 (en) Condenser for fuel cell system
JP2009136732A (en) Cleaning equipment, method of recovering cleaning liquid, and semiconductor manufacturing device
JP7260822B2 (en) Liquid refrigerant spraying device and falling liquid film evaporator
CN113195997B (en) Heat exchanger
EA013361B1 (en) Arrangement and method for cooling a solution
KR101716003B1 (en) Cooling Tower
JP4222063B2 (en) Absorption refrigerator
JP4564341B2 (en) Gas-liquid separator
JP2007125779A (en) Inkjet head and inkjet printer
CN213942147U (en) Prevent condensation material extraction element of jam
JP5785744B2 (en) Liquid separation device
JP4045825B2 (en) Chemical recovery device
JP2021169893A (en) Liquid refrigerant spraying device and falling liquid film type evaporator
JP2018136048A (en) Cooling device
JP2020030008A (en) Steam suppression system
JP2000320918A (en) Ammonia absorption freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R151 Written notification of patent or utility model registration

Ref document number: 5412817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees