JP5412376B2 - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
JP5412376B2
JP5412376B2 JP2010126909A JP2010126909A JP5412376B2 JP 5412376 B2 JP5412376 B2 JP 5412376B2 JP 2010126909 A JP2010126909 A JP 2010126909A JP 2010126909 A JP2010126909 A JP 2010126909A JP 5412376 B2 JP5412376 B2 JP 5412376B2
Authority
JP
Japan
Prior art keywords
transparent film
metal nanoparticles
solar cell
semiconductor substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010126909A
Other languages
Japanese (ja)
Other versions
JP2011253938A (en
Inventor
正直 後藤
剛 朝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2010126909A priority Critical patent/JP5412376B2/en
Publication of JP2011253938A publication Critical patent/JP2011253938A/en
Application granted granted Critical
Publication of JP5412376B2 publication Critical patent/JP5412376B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、基材表面において反射を防止するための反射防止膜が設けられた太陽電池に関する。   The present invention relates to a solar cell provided with an antireflection film for preventing reflection on the surface of a substrate.

太陽電池では、受光面における反射ロスを抑制して変換効率を上げるために受光面での反射を防止する技術が不可欠である。従来の反射防止技術として、太陽電池を構成する基材表面より屈折率が低い透明薄膜を反射防止膜として用いる構成が知られている。また、太陽電池を構成する半導体基板の表面にテクスチャ構造を形成することで、入射の際に表面反射した光を基材中に再入射させることで反射率を低減する技術が知られている。   In a solar cell, a technique for preventing reflection on the light receiving surface is indispensable in order to suppress reflection loss on the light receiving surface and increase conversion efficiency. As a conventional antireflection technique, a configuration is known in which a transparent thin film having a refractive index lower than that of a substrate surface constituting a solar cell is used as an antireflection film. In addition, a technique is known in which a texture structure is formed on the surface of a semiconductor substrate constituting a solar cell so that light reflected on the surface at the time of incidence is re-incident into the base material to reduce the reflectance.

Zhao et al.,IEEE Transactions on Electron Devices 1991,38,1925−1934Zhao et al. , IEEE Transactions on Electron Devices 1991, 38, 1925-1934.

従来の反射防止膜は、特定の波長において反射防止性能を発揮するものの、特定の波長以外の領域では、反射防止性能が激減するという課題がある。このため、幅広い波長範囲における反射防止効果を得るためには、屈折率の異なる反射防止膜を多層化して多層反射防止膜を形成する必要が生じ、コストの増加が避けられなかった。   Although the conventional antireflection film exhibits antireflection performance at a specific wavelength, there is a problem that the antireflection performance is drastically reduced in a region other than the specific wavelength. For this reason, in order to obtain an antireflection effect in a wide wavelength range, it is necessary to form a multilayer antireflection film by multilayering antireflection films having different refractive indexes, and an increase in cost is inevitable.

また、半導体基板の表面にテクスチャ構造を形成すると、半導体基板の表面の構造に乱れが生じたり、半導体基板の表面積の増大を招き、太陽電池の光電変換性能の低下を招く。たとえば、半導体基板の表面にテクスチャ構造を設けると、半導体基板の表層においてキャリアの再結合速度が増大するため、半導体基板の導電性が低下し、ひいては太陽電池の光電変換性能が低下する。   Further, when a texture structure is formed on the surface of the semiconductor substrate, the structure of the surface of the semiconductor substrate is disturbed, the surface area of the semiconductor substrate is increased, and the photoelectric conversion performance of the solar cell is decreased. For example, when a texture structure is provided on the surface of a semiconductor substrate, the recombination speed of carriers in the surface layer of the semiconductor substrate increases, so that the conductivity of the semiconductor substrate decreases, and consequently the photoelectric conversion performance of the solar cell decreases.

本発明はこうした課題に鑑みてなされたものであり、その目的は、より幅広い波長領域において優れた反射防止性能を発揮する反射防止膜が設けられた太陽電池の提供にある。   The present invention has been made in view of these problems, and an object thereof is to provide a solar cell provided with an antireflection film that exhibits excellent antireflection performance in a wider wavelength region.

本発明のある態様は、太陽電池である。当該太陽電池は、半導体基板と、半導体基板の受光面に設けられている、半導体基板より平均屈折率が低い透明膜と、透明膜の上に2次元配列して設けられている複数の金属ナノ粒子と、を備え、金属ナノ粒子の平均粒子径が、100nm以上、200nm未満の範囲であることを特徴とする。   One embodiment of the present invention is a solar cell. The solar cell includes a semiconductor substrate, a transparent film having an average refractive index lower than that of the semiconductor substrate provided on the light receiving surface of the semiconductor substrate, and a plurality of metal nanoparticles provided in a two-dimensional array on the transparent film. And an average particle size of the metal nanoparticles is in a range of 100 nm or more and less than 200 nm.

上記態様の太陽電池によれば、幅広い波長範囲において反射防止効果を得ることができ、ひいては、太陽電池特性の向上を図ることができる。   According to the solar cell of the above aspect, an antireflection effect can be obtained in a wide wavelength range, and consequently the solar cell characteristics can be improved.

上記態様の太陽電池において、金属ナノ粒子の粒子径の上限が200nmであってもよい。また、金属ナノ粒子が、Au、Ag、Al、Cu、Li、Na、Kまたはこれらの金属の合金からなっていてもよい。また、金属ナノ粒子が、AgないしはAgを主体とする合金からなっていてもよい。また、金属ナノ粒子の平均粒子径をDとしたとき、透明膜の膜厚dが下記式で表される範囲であってもよい。   In the solar cell of the above aspect, the upper limit of the particle diameter of the metal nanoparticles may be 200 nm. Moreover, the metal nanoparticles may be made of Au, Ag, Al, Cu, Li, Na, K, or an alloy of these metals. Further, the metal nanoparticles may be made of Ag or an alloy mainly composed of Ag. Further, when the average particle diameter of the metal nanoparticles is D, the film thickness d of the transparent film may be in a range represented by the following formula.

Figure 0005412376
また、透明膜の平均屈折率が1.2以上1.8以下であってもよい。
Figure 0005412376
Further, the average refractive index of the transparent film may be 1.2 or more and 1.8 or less.

なお、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。   A combination of the above-described elements as appropriate can also be included in the scope of the invention for which patent protection is sought by this patent application.

本発明によれば、より幅広い波長領域において優れた反射防止性能を発揮する反射防止膜が設けられた太陽電池が提供される。   According to the present invention, a solar cell provided with an antireflection film that exhibits excellent antireflection performance in a wider wavelength region is provided.

図1(A)は、実施の形態に係る反射防止膜を有する太陽電池の構成を示す概略断面図である。図1(B)は、半導体基板を平面視したときの、金属ナノ粒子の配列の様子を示す平面図である。FIG. 1A is a schematic cross-sectional view illustrating a configuration of a solar cell having an antireflection film according to an embodiment. FIG. 1B is a plan view showing a state of arrangement of metal nanoparticles when the semiconductor substrate is viewed in plan. 実施の形態に係る反射防止膜の作製方法を示す工程断面図である。It is process sectional drawing which shows the preparation methods of the reflection preventing film which concerns on embodiment. 金属ナノ粒子の粒子径と各粒子径における最適な透明膜厚さのときの最大短絡電流値との関係を示すグラフである。It is a graph which shows the relationship between the particle diameter of a metal nanoparticle, and the maximum short circuit current value in the case of the optimal transparent film thickness in each particle diameter. 透明膜の屈折率と各透明膜屈折率における最適な透明膜厚さにおける最大短絡電流値との関係を示すグラフである。It is a graph which shows the relationship between the refractive index of a transparent film, and the maximum short circuit current value in the optimal transparent film thickness in each transparent film refractive index. 短絡電流と透明膜の膜厚との関係を示すグラフである。It is a graph which shows the relationship between a short circuit current and the film thickness of a transparent film. 短絡電流の向上を図ることができる、透明膜の厚さと金属ナノ粒子の平均粒子径との関係を示すグラフである。It is a graph which shows the relationship between the thickness of a transparent film | membrane and the average particle diameter of a metal nanoparticle which can aim at the improvement of a short circuit current.

以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

図1(A)は、実施の形態に係る反射防止膜30を有する太陽電池10の構成を示す概略断面図である。図1(B)は、半導体基板を平面視したときの、金属ナノ粒子34の配列の様子を示す平面図である。図1(A)は、図1(B)のA−A線上の断面図に相当する。図1(A)に示すように、太陽電池10は、半導体基板20および反射防止膜30を備える。   FIG. 1A is a schematic cross-sectional view showing a configuration of solar cell 10 having antireflection film 30 according to the embodiment. FIG. 1B is a plan view showing the arrangement of the metal nanoparticles 34 when the semiconductor substrate is viewed in plan. FIG. 1A corresponds to a cross-sectional view taken along the line AA in FIG. As shown in FIG. 1A, the solar cell 10 includes a semiconductor substrate 20 and an antireflection film 30.

半導体基板20は、p型半導体とn型半導体とが接合したpn接合を有し、pn接合の光起電力効果により太陽からの光エネルギーが電気エネルギーに変換される。n型半導体、p型半導体にそれぞれ電極(図示せず)を取り付けることにより、直流電流を太陽電池10の外部に取り出すことができる。本実施の形態では、半導体基板20は単結晶Si基板(屈折率3.67(波長1000nm))であり、IV族半導体基板で構成された太陽電池として周知のpn接合を有する。   The semiconductor substrate 20 has a pn junction in which a p-type semiconductor and an n-type semiconductor are joined, and light energy from the sun is converted into electrical energy by the photovoltaic effect of the pn junction. A direct current can be taken out of the solar cell 10 by attaching electrodes (not shown) to the n-type semiconductor and the p-type semiconductor, respectively. In the present embodiment, the semiconductor substrate 20 is a single crystal Si substrate (refractive index 3.67 (wavelength 1000 nm)) and has a pn junction that is well-known as a solar cell composed of a group IV semiconductor substrate.

反射防止膜30は、太陽電池10の受光面側において、半導体基板20の主表面に設けられている。言い換えると、反射防止膜30の一方の主表面が半導体基板20の主表面との接触面となっている。本実施の形態では、反射防止膜30は、透明膜32および金属ナノ粒子34を含み、透明膜32の一方の主表面が上述した接触面として使用される。   The antireflection film 30 is provided on the main surface of the semiconductor substrate 20 on the light receiving surface side of the solar cell 10. In other words, one main surface of the antireflection film 30 is a contact surface with the main surface of the semiconductor substrate 20. In the present embodiment, the antireflection film 30 includes a transparent film 32 and metal nanoparticles 34, and one main surface of the transparent film 32 is used as the contact surface described above.

透明膜32は、太陽電池10が受光する光の波長領域、言い換えると反射を防止する光の波長領域において透明性を有する。また、透明膜32は半導体基板20に比べて平均屈折率が低く、1.2以上1.8以下が好ましい。透明膜32を形成する透明材料としては、たとえば、SiO、TiOが挙げられる。 The transparent film 32 has transparency in the wavelength region of light received by the solar cell 10, in other words, in the wavelength region of light that prevents reflection. The transparent film 32 has a lower average refractive index than that of the semiconductor substrate 20 and is preferably 1.2 or more and 1.8 or less. Examples of the transparent material forming the transparent film 32 include SiO 2 and TiO 2 .

複数の金属ナノ粒子34は、透明膜32の上に、2次元配列して設けられている。言い換えると、複数の金属ナノ粒子34は、透明膜32の上に2次元アレイ状に点在している。複数の金属ナノ粒子34は、透明膜32により半導体基板20の受光面側の主表面から一定の距離で隔てられている。このため、金属ナノ粒子34の底部と半導体基板20の受光面側の主表面との距離は、透明膜32の膜厚dと同等である。   The plurality of metal nanoparticles 34 are two-dimensionally arranged on the transparent film 32. In other words, the plurality of metal nanoparticles 34 are scattered in a two-dimensional array on the transparent film 32. The plurality of metal nanoparticles 34 are separated from the main surface on the light receiving surface side of the semiconductor substrate 20 by a transparent film 32 at a certain distance. Therefore, the distance between the bottom of the metal nanoparticles 34 and the main surface on the light receiving surface side of the semiconductor substrate 20 is equal to the film thickness d of the transparent film 32.

透明膜32の膜厚dは、金属ナノ粒子34の平均粒子径をDとしたとき、下記式で表される範囲であることが好ましい。   The film thickness d of the transparent film 32 is preferably in the range represented by the following formula, where D is the average particle diameter of the metal nanoparticles 34.

Figure 0005412376
Figure 0005412376

金属ナノ粒子34の材料は、金属材料であればよく特に限定されないが、Froehlich(アルファベット表記の「oe」は、ドイツ語のオー・ウムラウト)モード(Bohren and Huffman, Absorption and Scattering of Light by Small Particles, Wiley, 1983 を参照)の共鳴波長が反射を防止する光の波長と近い物が望ましく、たとえば、Au、Ag、Al、Cu、Li、Na、Kまたはこれらの金属の合金が挙げられるが、Agが特に好ましい。   The material of the metal nanoparticles 34 is not particularly limited as long as it is a metal material, but Froehlich (the alphabetical expression “oe” is the German word “Oh umlaut”) (Bohren and Huffman, Absorption and Scattering of Light by Small Particles) , Wiley, 1983) where the resonance wavelength is close to the wavelength of the light that prevents reflection, such as Au, Ag, Al, Cu, Li, Na, K or alloys of these metals. Ag is particularly preferred.

金属ナノ粒子34の形状は特に限定されないが、たとえば、半球状、円柱状、角柱状などの形状が挙げられる。半導体基板20を平面視した場合の金属ナノ粒子34の粒子径Mの平均Dは、100nm以上200nm以下が好ましい。また、半導体基板20を平面視した場合の金属ナノ粒子34の粒子径Mの上限は200nmであり、粒子径が200nmを超える金属ナノ粒子が実質的に存在していないことが好ましい。透明膜32の半導体基板20とは反対側の主表面(透明膜32の露出面)を基準面としたときの金属ナノ粒子34の高さHは、たとえば、100nmである。   The shape of the metal nanoparticles 34 is not particularly limited, and examples thereof include a hemispherical shape, a cylindrical shape, and a prismatic shape. The average D of the particle diameters M of the metal nanoparticles 34 when the semiconductor substrate 20 is viewed in plan is preferably 100 nm or more and 200 nm or less. In addition, the upper limit of the particle diameter M of the metal nanoparticles 34 when the semiconductor substrate 20 is viewed in plan is 200 nm, and it is preferable that metal nanoparticles having a particle diameter exceeding 200 nm are not substantially present. The height H of the metal nanoparticles 34 when the main surface of the transparent film 32 opposite to the semiconductor substrate 20 (exposed surface of the transparent film 32) is used as a reference surface is, for example, 100 nm.

以上説明した実施の形態に係る太陽電池10を概説すると、太陽電池10の受光面に設けられた透明膜32の上に平均粒子径が100nm以上200nm以下および/または粒子径の上限が200nmの複数の金属ナノ粒子34が2次元配列して設けられ、複数の金属ナノ粒子34が半導体基板20の表面から透明膜32の所定の厚さの分だけ離れている。この構成により、400〜1000nmの幅広い波長範囲において反射防止効果を得ることができ、ひいては、太陽電池の特性の向上を図ることができる。   When the solar cell 10 according to the embodiment described above is outlined, a plurality of average particle diameters of 100 nm to 200 nm and / or the upper limit of the particle diameter is 200 nm on the transparent film 32 provided on the light receiving surface of the solar cell 10. The metal nanoparticles 34 are two-dimensionally arranged, and the plurality of metal nanoparticles 34 are separated from the surface of the semiconductor substrate 20 by a predetermined thickness of the transparent film 32. With this configuration, an antireflection effect can be obtained in a wide wavelength range of 400 to 1000 nm, and as a result, the characteristics of the solar cell can be improved.

また、透明膜32の接触面は平滑であり、この接触面と接触する半導体基板20の主表面も平滑であるため、半導体基板20の受光面の表面積を必要以上に大きくする必要がない。このため、半導体基板20の表層においてキャリアが再結合することが抑制され、ひいては、太陽電池の光電変換性能の向上を図ることができる。   Further, since the contact surface of the transparent film 32 is smooth and the main surface of the semiconductor substrate 20 that is in contact with the contact surface is also smooth, it is not necessary to increase the surface area of the light receiving surface of the semiconductor substrate 20 more than necessary. For this reason, it is suppressed that a carrier recombines in the surface layer of the semiconductor substrate 20, and by extension, the photoelectric conversion performance of a solar cell can be aimed at.

また、複数の金属ナノ粒子34を透明膜32の上に2次元配列することにより、透明膜32の接触面と金属ナノ粒子34との距離を反射防止膜30全体で一定に保つことができ、反射防止膜30における反射性能の面内ばらつきを抑制することができる。   Further, by arranging the plurality of metal nanoparticles 34 two-dimensionally on the transparent film 32, the distance between the contact surface of the transparent film 32 and the metal nanoparticles 34 can be kept constant throughout the antireflection film 30. In-plane variation in reflection performance in the antireflection film 30 can be suppressed.

(反射防止膜の作製方法)
図2は、実施の形態に係る太陽電池に設けられた反射防止膜の作製方法を示す工程断面図である。実施の形態に係る反射防止膜の作製方法を図2を参照して説明する。
(Preparation method of antireflection film)
FIG. 2 is a process cross-sectional view illustrating a method for manufacturing an antireflection film provided in the solar cell according to the embodiment. A method for manufacturing the antireflection film according to the embodiment will be described with reference to FIGS.

まず、図2(A)に示すように、単結晶Si基板からなる半導体基板20の入射面に所定の膜厚の透明膜32を形成する。本実施の形態では、半導体基板20として単結晶Si基板を使用しているが、これに限定されず平坦であればいかなる基板の上にも作成可能である。たとえば、多結晶Si基板、何らかの薄膜が形成されたガラスないしは石英ないしはサファイア基板などがあげられる。   First, as shown in FIG. 2A, a transparent film 32 having a predetermined thickness is formed on the incident surface of a semiconductor substrate 20 made of a single crystal Si substrate. In this embodiment mode, a single crystal Si substrate is used as the semiconductor substrate 20, but the present invention is not limited to this, and the substrate can be formed on any substrate as long as it is flat. For example, a polycrystalline Si substrate, a glass, quartz, or sapphire substrate on which some thin film is formed can be used.

また、透明膜32の形成方法は特に限定されないが、たとえば、半導体基板20が単結晶Si基板の場合には、半導体基板20の表面を熱酸化する方法が挙げられる。この他、スピンコート法によりSiO、TiOなどの透明材料を半導体基板20に塗布する方法が挙げられる。この場合、透明膜32の膜厚は、スピンコート時の回転数と塗布液の溶液濃度により調節可能である。 The method for forming the transparent film 32 is not particularly limited. For example, when the semiconductor substrate 20 is a single crystal Si substrate, a method of thermally oxidizing the surface of the semiconductor substrate 20 can be used. In addition, there is a method in which a transparent material such as SiO 2 or TiO 2 is applied to the semiconductor substrate 20 by spin coating. In this case, the film thickness of the transparent film 32 can be adjusted by the number of rotations during spin coating and the solution concentration of the coating solution.

次に、図2(B)に示すように、透明膜32の上にマスク40を形成する。マスク40には、透明膜32上の金属ナノ粒子形成領域が露出するような複数の開口部42が形成されている。マスク40は、たとえば、アルミニウム基板の表面を陽極酸化した後に、陽極酸化された表面(アルミナバリア層)以外のアルミニウム基板を除去し、リン酸溶液を用いてアルミナバリア層に貫通孔を形成することにより作製することができる。この他、マスク40は、所定の開口部をパターニングしたレジストにより作製することも可能である。マスク40としてレジストを用いることにより、金属ナノ粒子を規則的に2次元配列することができる。   Next, as shown in FIG. 2B, a mask 40 is formed on the transparent film 32. In the mask 40, a plurality of openings 42 are formed so that the metal nanoparticle formation region on the transparent film 32 is exposed. For example, after anodizing the surface of the aluminum substrate, the mask 40 removes the aluminum substrate other than the anodized surface (alumina barrier layer) and forms a through hole in the alumina barrier layer using a phosphoric acid solution. Can be produced. In addition, the mask 40 can be made of a resist in which a predetermined opening is patterned. By using a resist as the mask 40, the metal nanoparticles can be regularly arranged two-dimensionally.

次に、図2(C)に示すように、マスク40を介して透明膜32に向けて、Au、Ag、Al、Cuまたはこれらの金属の合金を真空蒸着法により堆積させる。金属粒子は、マスク40に設けられた開口部42を通過し、開口部42内で透明膜32の上に選択的に堆積する。これにより、開口部42内に金属ナノ粒子34が形成され、透明膜32の上に、複数の金属ナノ粒子34が2次元配列される。半導体基板20を平面視したときの、金属ナノ粒子34の粒子径Mは、マスク40に設けられた開口部42の径で規定される。言い換えると、金属ナノ粒子34の粒子径Mは、マスク40に設けられた開口部42の径を超えることがなく、マスク40に設けられた開口部42の径が金属ナノ粒子34の粒子径Mの上限となる。   Next, as shown in FIG. 2C, Au, Ag, Al, Cu, or an alloy of these metals is deposited by vacuum evaporation toward the transparent film 32 through the mask 40. The metal particles pass through the opening 42 provided in the mask 40 and are selectively deposited on the transparent film 32 in the opening 42. Thereby, metal nanoparticles 34 are formed in the opening 42, and a plurality of metal nanoparticles 34 are two-dimensionally arranged on the transparent film 32. The particle diameter M of the metal nanoparticles 34 when the semiconductor substrate 20 is viewed in plan is defined by the diameter of the opening 42 provided in the mask 40. In other words, the particle diameter M of the metal nanoparticles 34 does not exceed the diameter of the opening 42 provided in the mask 40, and the diameter of the opening 42 provided in the mask 40 is equal to the particle diameter M of the metal nanoparticles 34. It becomes the upper limit of.

マスク40をアルミナバリア層を用いて形成する場合には、開口部42のサイズは、アルミニウムの陽極酸化時の印加電圧に比例する。たとえば、0.3mol/lシュウ酸電解液でアルミニウム基板に40V印加した場合には、開口部42の径は50nm程度となり、金属ナノ粒子34の径も50nm程度となる。また、0.4mol/lのマロン酸電解液でアルミニウム基板に120Vを引火した場合には開口部42の径は150nm程度となり、金属ナノ粒子34の径も150nm程度となる。また、透明膜32の表面を基準面したときの金属ナノ粒子34の高さは、真空蒸着の時間を変えることにより制御することができる。真空蒸着の時間が短い場合には、球面が上方を向いた半球状となり、真空蒸着の時間が十分長い場合には、円柱状または角柱状となる。   When the mask 40 is formed using an alumina barrier layer, the size of the opening 42 is proportional to the applied voltage during aluminum anodic oxidation. For example, when 40 V is applied to the aluminum substrate with 0.3 mol / l oxalic acid electrolyte, the diameter of the opening 42 is about 50 nm and the diameter of the metal nanoparticles 34 is also about 50 nm. Further, when 120 V is ignited on the aluminum substrate with 0.4 mol / l malonic acid electrolyte, the diameter of the opening 42 is about 150 nm and the diameter of the metal nanoparticles 34 is also about 150 nm. In addition, the height of the metal nanoparticles 34 when the surface of the transparent film 32 is the reference surface can be controlled by changing the time of vacuum deposition. When the time of vacuum vapor deposition is short, the spherical surface is a hemispherical surface facing upward, and when the time of vacuum vapor deposition is sufficiently long, the shape is cylindrical or prismatic.

次に、図2(D)に示すように、マスク40を除去し、透明膜32と金属ナノ粒子23とを含む反射防止膜30を得る。   Next, as shown in FIG. 2D, the mask 40 is removed, and the antireflection film 30 including the transparent film 32 and the metal nanoparticles 23 is obtained.

以上説明した工程により、反射防止膜30を半導体基板20の上に簡便に形成することができる。   Through the steps described above, the antireflection film 30 can be easily formed on the semiconductor substrate 20.

(実施例1)
実施例1の反射防止膜を有する太陽電池を模した試料を以下の条件にて作製した。
<透明膜の作製>
300μm厚の片面研磨したSi基板((100)面、p型、抵抗率3〜5Ωcm)を用意した。このSi基板の研磨面を900℃、60分間の熱酸化により酸化し、透明膜として、厚さ50nmのSiO層を形成した。
Example 1
A sample simulating a solar cell having the antireflection film of Example 1 was produced under the following conditions.
<Preparation of transparent film>
A Si substrate ((100) surface, p-type, resistivity 3 to 5 Ωcm) having a single-side polished surface of 300 μm thickness was prepared. The polished surface of this Si substrate was oxidized by thermal oxidation at 900 ° C. for 60 minutes to form a SiO 2 layer having a thickness of 50 nm as a transparent film.

<金属ナノ粒子の作製>
開口径が100nmの開口部が設けられたアルミナマスクを通して、上述のように形成した透明膜上にAuを真空蒸着し、平面視における粒子径が100nmの半球状のAuからなる金属ナノ粒子を2次元アレイ状に形成した。透明膜の面積に対する金属ナノ粒子による被覆率は約30%とした。
<Production of metal nanoparticles>
Through an alumina mask provided with an opening having an opening diameter of 100 nm, Au is vacuum-deposited on the transparent film formed as described above, and 2 metal nanoparticles made of hemispherical Au having a particle diameter of 100 nm in plan view are obtained. A dimensional array was formed. The coverage with the metal nanoparticles with respect to the area of the transparent film was about 30%.

(比較例1)
比較例1の反射防止膜を有する太陽電池を模した試料は、金属ナノ粒子が形成されていない点を除き、実施例1と同様である。
(Comparative Example 1)
A sample simulating a solar cell having the antireflection film of Comparative Example 1 is the same as Example 1 except that metal nanoparticles are not formed.

実施例1および比較例1の試料について、それぞれ、日立ハイテック社製分光光度計U4000を用いて反射防止膜を形成した側の基板表面の反射率を測定した。波長400nmから波長1000nmにおける平均反射率が、比較例1では27.3%であったが、実施例1では、18.3%に低下することが確認された。   For the samples of Example 1 and Comparative Example 1, the reflectance of the substrate surface on the side where the antireflection film was formed was measured using a spectrophotometer U4000 manufactured by Hitachi High-Tech. The average reflectance from a wavelength of 400 nm to a wavelength of 1000 nm was 27.3% in Comparative Example 1, but in Example 1, it was confirmed to decrease to 18.3%.

(実施例2)
実施例2の反射防止膜を有する太陽電池は、厚さ100μm、抵抗率1〜10Ωcmの両面研磨されたSi基板を利用して作製された。すなわち、まず表面に拡散炉を利用して900℃にて燐をドープしてエミッター層を作成する。次に、表面の燐珪酸ガラス層をフッ酸にて除去した。その後、p−n接合の短絡を除去するために基板端面をフッ酸と硝酸と酢酸の混合液にて除去した。その後、裏面側に銀アルミ電極をスパッターにより作製した。その上で、表面側に反射防止層が金属ナノ粒子の材料をAgとしたこと以外は、実施例1と同様の手順で作製された。
(Example 2)
The solar cell having the antireflection film of Example 2 was fabricated using a double-side polished Si substrate having a thickness of 100 μm and a resistivity of 1 to 10 Ωcm. That is, first, an emitter layer is formed by doping phosphorus on the surface at 900 ° C. using a diffusion furnace. Next, the surface phosphosilicate glass layer was removed with hydrofluoric acid. Thereafter, the end face of the substrate was removed with a mixed solution of hydrofluoric acid, nitric acid and acetic acid in order to remove the short circuit of the pn junction. Thereafter, a silver aluminum electrode was formed on the back side by sputtering. Then, an antireflection layer was produced on the surface side in the same procedure as in Example 1 except that the metal nanoparticle material was Ag.

(比較例2)
比較例2の反射防止膜を有する太陽電池は、金属ナノ粒子が形成されていない点を除き、実施例2と同様である。
(Comparative Example 2)
The solar cell having the antireflection film of Comparative Example 2 is the same as Example 2 except that the metal nanoparticles are not formed.

実施例2および比較例2の試料の1SUN下での短絡電流を測定した。比較例2の試料の短絡電流は29.2mA/cmであった。これに対して、実施例2の試料の短絡電流は31.4mA/cmであり、金属ナノ粒子による反射防止効果が太陽電池特性の向上をもたらすことが確認された。 The short-circuit current under 1 SUN of the samples of Example 2 and Comparative Example 2 was measured. The short-circuit current of the sample of Comparative Example 2 was 29.2 mA / cm 2 . On the other hand, the short-circuit current of the sample of Example 2 is 31.4 mA / cm 2 , and it was confirmed that the antireflection effect by the metal nanoparticles brings about the improvement of the solar cell characteristics.

(実施例3)
実施例3の反射防止膜を有する太陽電池は、Si基板の厚さを150μmとし、透明膜の厚さを60nmとし、金属ナノ粒子の材料をAgとしたこと以外は、実施例2と同様の手順で作製された。
(Example 3)
The solar cell having the antireflection film of Example 3 is the same as Example 2 except that the thickness of the Si substrate is 150 μm, the thickness of the transparent film is 60 nm, and the material of the metal nanoparticles is Ag. Produced by the procedure.

(実施例4)
実施例4の反射防止膜を有する太陽電池は、Si基板の厚さを150μmとし、透明膜の厚さを60nmとしたこと以外は、実施例2と同様であり、金属ナノ粒子の材料はAuである。
Example 4
The solar cell having the antireflection film of Example 4 is the same as Example 2 except that the thickness of the Si substrate is 150 μm and the thickness of the transparent film is 60 nm. The material of the metal nanoparticles is Au It is.

実施例3および実施例4の試料の1SUN下での短絡電流を測定した。その結果、実施例3の試料では、短絡電流が33.7mA/cmであるのに対して、実施例4の試料では、短絡電流が31.9mA/cmであり、太陽電池特性を向上させる金属ナノ粒子の材料としてAgがより好ましいことが確認された。 The short-circuit current under 1 SUN of the samples of Example 3 and Example 4 was measured. As a result, in the sample of Example 3, the short-circuit current is 33.7 mA / cm 2 , whereas in the sample of Example 4, the short-circuit current is 31.9 mA / cm 2 , which improves the solar cell characteristics. It was confirmed that Ag is more preferable as a material for the metal nanoparticles to be formed.

(実施例5)
実施例5の反射防止膜を有する太陽電池は、Si基板の厚さを200μmとし、透明膜として厚さ60nmのSiN層をプラズマCVDにより作製し、さらに金属ナノ粒子を粒子径150nmの半球状のAgとしたこと以外は、実施例2と同様の手順で作製された。
(Example 5)
In the solar cell having the antireflection film of Example 5, the thickness of the Si substrate is 200 μm, a SiN layer having a thickness of 60 nm is formed as a transparent film by plasma CVD, and the metal nanoparticles are hemispherical with a particle diameter of 150 nm. It was produced in the same procedure as in Example 2 except that Ag was used.

(実施例6)
実施例6の反射防止膜を有する太陽電池は、透明膜の材料を熱酸化により作製されたSiOとしたことを除き実施例5と同様である。
(Example 6)
The solar cell having the antireflection film of Example 6 is the same as Example 5 except that the transparent film is made of SiO 2 produced by thermal oxidation.

実施例5および実施例6の試料の1SUN下での短絡電流を測定した。その結果、実施例5の試料では、短絡電流が32.1mA/cmであるのに対して、実施例6の試料では、短絡電流が34.3mA/cmであり、太陽電池特性を向上させる透明膜の材料としてSiOがより好ましいことが確認された。 The short-circuit current under 1 SUN of the samples of Example 5 and Example 6 was measured. As a result, in the sample of Example 5, the short-circuit current is 32.1 mA / cm 2 , whereas in the sample of Example 6, the short-circuit current is 34.3 mA / cm 2 , which improves the solar cell characteristics. It was confirmed that SiO 2 is more preferable as a material for the transparent film to be formed.

(金属ナノ粒子の粒子径と光学特性との関係)
100μm厚のSi基板の上に透明膜(低屈折率層)として厚さ10〜150nmのSiO層を形成し、透明膜の上に半球状の半球状の銀からなる金属ナノ粒子を形成した構造について、金属ナノ粒子の粒子径を変えたときの光学特性をLumerical社のFDTD solutionsを用いて計算した。なお、光学特性を示す値として、最大短絡電流値を用いた。図3は、金属ナノ粒子の粒子径と各粒子径における最適な透明膜厚さのときの最大短絡電流値との関係を示すグラフである。図3に示すように、金属ナノ粒子の粒子径が200nmより大きいと極端に太陽電池特性が劣化し、粒子径が100〜200nmの範囲で良好な太陽電池特性が得られることが確認された。
(Relationship between particle size and optical properties of metal nanoparticles)
A SiO 2 layer having a thickness of 10 to 150 nm was formed as a transparent film (low refractive index layer) on a 100 μm thick Si substrate, and metal nanoparticles composed of hemispherical hemispherical silver were formed on the transparent film. Regarding the structure, the optical properties when the particle size of the metal nanoparticles was changed were calculated using Lumerical's FDTD solutions. In addition, the maximum short circuit current value was used as a value which shows an optical characteristic. FIG. 3 is a graph showing the relationship between the particle diameter of the metal nanoparticles and the maximum short-circuit current value at the optimum transparent film thickness at each particle diameter. As shown in FIG. 3, it was confirmed that when the particle diameter of the metal nanoparticles was larger than 200 nm, the solar cell characteristics were extremely deteriorated, and good solar cell characteristics were obtained when the particle diameter was in the range of 100 to 200 nm.

(透明膜の屈折率と光学特性との関係)
100μm厚のSi基板の上に厚さ10〜150nmの透明膜(低屈折率層)を形成し、透明膜の上に粒子径100nmの半球状の銀ナノ粒子および金ナノ粒子をそれぞれ形成した構造について、透明膜の屈折率を1.0〜2.5の範囲で変えたときの光学特性をLumerical社のFDTD solutionsを用いて計算した。なお、光学特性を示す値として、最大短絡電流値を用いた。図4は、透明膜の屈折率と各透明膜屈折率における最適な透明膜厚さにおける最大短絡電流値との関係を示すグラフである。図4に示すように、銀ナノ粒子および金ナノ粒子のいずれの場合にも、透明膜の屈折率が1.8を超えると最大短絡電流値が急激に低下することがわかる。また、透明膜の屈折率が1.2より低い場合も同様に特性が低下するため、望ましくない。
(Relationship between refractive index and optical properties of transparent film)
A structure in which a transparent film (low refractive index layer) having a thickness of 10 to 150 nm is formed on a Si substrate having a thickness of 100 μm, and hemispherical silver nanoparticles and gold nanoparticles having a particle diameter of 100 nm are formed on the transparent film. The optical characteristics when the refractive index of the transparent film was changed in the range of 1.0 to 2.5 were calculated using Lumerical's FDTD solutions. In addition, the maximum short circuit current value was used as a value which shows an optical characteristic. FIG. 4 is a graph showing the relationship between the refractive index of the transparent film and the maximum short-circuit current value at the optimum transparent film thickness at each transparent film refractive index. As shown in FIG. 4, it can be seen that the maximum short-circuit current value suddenly decreases when the refractive index of the transparent film exceeds 1.8 in both cases of silver nanoparticles and gold nanoparticles. Further, when the refractive index of the transparent film is lower than 1.2, the characteristics are similarly lowered, which is not desirable.

(透明膜の厚さと光学特性の関係1)
100μm厚のSi基板の上に透明膜(低屈折率層)としてSiO層を形成し、透明膜の上に粒子径100nmの半球状の銀からなる金属ナノ粒子を形成した構造について、透明膜の厚さを変えたときの短絡電流を測定した。図5は、短絡電流と透明膜の膜厚との関係を示すグラフである。図5に示すように、金属ナノ粒子の粒子径が固定された条件では、透明膜の膜厚が50nm程度のときに短絡電流が最大となることがわかる。
(Relationship between transparent film thickness and optical properties 1)
Regarding a structure in which a SiO 2 layer is formed as a transparent film (low refractive index layer) on a 100 μm thick Si substrate, and metal nanoparticles made of hemispherical silver having a particle diameter of 100 nm are formed on the transparent film. The short-circuit current was measured when the thickness was changed. FIG. 5 is a graph showing the relationship between the short-circuit current and the film thickness of the transparent film. As shown in FIG. 5, it can be seen that the short-circuit current is maximized when the thickness of the transparent film is about 50 nm under the condition that the particle diameter of the metal nanoparticles is fixed.

(透明膜の厚さと光学特性の関係2)
100μm厚のSi基板の上に透明膜(低屈折率層)としてSiO層を形成し、透明膜の上に半球状の銀からなる金属ナノ粒子を形成した構造について、透明膜の厚さと金属ナノ粒子の粒子径の両方を変えたときの短絡電流を測定した。図6は、短絡電流の向上を図ることができる、透明膜の厚さと金属ナノ粒子の粒子径との関係を示すグラフである。短絡電流が30mA/cmを超える範囲を求めたところ、図6に示す曲線Aと曲線Bとで囲まれる領域となることがわかった。なお、図6に示す曲線Aは、金属ナノ粒子の平均粒子径をDとし、透明膜の膜厚をdとしたとき、d=-0.0052D2+1.7346D-45.883となる曲線である。また、図6に示す曲線Bは、d=-0.0054D2-1.3215D+108.92となる曲線である。すなわち、金属ナノ粒子の粒子径をDとし、透明膜の膜厚をdとしたとき、透明膜の膜厚dが下記式で示される範囲である場合に、太陽電池の特性が顕著に改善されることが見いだされた。
(Relationship between transparent film thickness and optical properties 2)
Regarding a structure in which a SiO 2 layer is formed as a transparent film (low refractive index layer) on a 100 μm thick Si substrate and metal nanoparticles made of hemispherical silver are formed on the transparent film, the thickness of the transparent film and the metal The short-circuit current was measured when both the nanoparticle particle sizes were changed. FIG. 6 is a graph showing the relationship between the thickness of the transparent film and the particle diameter of the metal nanoparticles, which can improve the short-circuit current. When the range where the short-circuit current exceeds 30 mA / cm 2 was determined, it was found that the region surrounded by the curve A and the curve B shown in FIG. A curve A shown in FIG. 6 is a curve that becomes d = −0.0052D 2 + 1.7346D-45.883, where D is the average particle diameter of the metal nanoparticles and d is the thickness of the transparent film. Moreover, the curve B shown in FIG. 6 is a curve which becomes d = -0.0054D 2 -1.3215D + 108.92. That is, when the particle diameter of the metal nanoparticles is D and the film thickness of the transparent film is d, the characteristics of the solar cell are remarkably improved when the film thickness d of the transparent film is in the range represented by the following formula. Was found.

Figure 0005412376
Figure 0005412376

本発明は、上述の各実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。   The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. The form can also be included in the scope of the present invention.

10 太陽電池、20 半導体基板、30 反射防止膜、32 透明膜、34 金属ナノ粒子、40 マスク DESCRIPTION OF SYMBOLS 10 Solar cell, 20 Semiconductor substrate, 30 Antireflection film, 32 Transparent film, 34 Metal nanoparticle, 40 Mask

Claims (6)

半導体基板と、
前記半導体基板の受光面に設けられている、前記半導体基板より平均屈折率が低い透明膜と、
前記透明膜の上に2次元配列して設けられている複数の金属ナノ粒子と、
を備え、
金属ナノ粒子の平均粒子径が、100nm以上、200nm未満の範囲であることを特徴とする太陽電池。
A semiconductor substrate;
A transparent film having an average refractive index lower than that of the semiconductor substrate, provided on the light receiving surface of the semiconductor substrate;
A plurality of metal nanoparticles provided two-dimensionally on the transparent film;
With
The average particle diameter of a metal nanoparticle is the range of 100 nm or more and less than 200 nm, The solar cell characterized by the above-mentioned.
前記金属ナノ粒子の粒子径の上限が200nmである請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein the upper limit of the particle diameter of the metal nanoparticles is 200 nm. 前記金属ナノ粒子が、Au、Ag、Al、Cu、Li、Na、Kまたはこれらの金属の合金からなることを特徴とする請求項1または2に記載の太陽電池。   The solar cell according to claim 1 or 2, wherein the metal nanoparticles are made of Au, Ag, Al, Cu, Li, Na, K, or an alloy of these metals. 前記金属ナノ粒子が、AgないしはAgを主体とする合金からなることを特徴とする請求項1または2に記載の太陽電池。   The solar cell according to claim 1, wherein the metal nanoparticles are made of Ag or an alloy mainly composed of Ag. 前記金属ナノ粒子の平均粒子径をDとしたとき、前記透明膜の膜厚dが下記式で表される範囲であることを特徴とする請求項1乃至4のいずれか1項に記載の太陽電池。
Figure 0005412376
5. The sun according to claim 1, wherein when the average particle diameter of the metal nanoparticles is D, the film thickness d of the transparent film is in a range represented by the following formula. battery.
Figure 0005412376
前記透明膜の平均屈折率が1.2以上1.8以下である請求項1乃至5のいずれか1項に記載の太陽電池。   6. The solar cell according to claim 1, wherein the transparent film has an average refractive index of 1.2 or more and 1.8 or less.
JP2010126909A 2010-06-02 2010-06-02 Solar cell Expired - Fee Related JP5412376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010126909A JP5412376B2 (en) 2010-06-02 2010-06-02 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010126909A JP5412376B2 (en) 2010-06-02 2010-06-02 Solar cell

Publications (2)

Publication Number Publication Date
JP2011253938A JP2011253938A (en) 2011-12-15
JP5412376B2 true JP5412376B2 (en) 2014-02-12

Family

ID=45417639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010126909A Expired - Fee Related JP5412376B2 (en) 2010-06-02 2010-06-02 Solar cell

Country Status (1)

Country Link
JP (1) JP5412376B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101474549B1 (en) * 2013-04-08 2014-12-23 한국광기술원 Method for manufacturing ar thin film and metal nano-structures of dye-sensitized solar cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692185B2 (en) * 1988-11-02 1997-12-17 旭硝子株式会社 Solar cell
JPH10190031A (en) * 1996-12-20 1998-07-21 Tdk Corp Solar cell and its manufacture
JP2000208793A (en) * 1999-01-18 2000-07-28 Fuji Electric Co Ltd Solar cell module and its manufacture
JP2002182006A (en) * 2000-12-19 2002-06-26 Nippon Sheet Glass Co Ltd Reflection preventing film, substrate equipped with the same and photoelectric conversion device
JP2005033063A (en) * 2003-07-08 2005-02-03 Sharp Corp Reflection preventing film for solar battery and method for manufacturing same
JP2008256785A (en) * 2007-04-02 2008-10-23 Seiko Epson Corp Optical component, manufacturing method thereof and electronic apparatus
JP5077109B2 (en) * 2008-07-08 2012-11-21 オムロン株式会社 Photoelectric device
JP5280970B2 (en) * 2009-08-14 2013-09-04 国立大学法人東京工業大学 Solar cell having metal nanoparticle dispersed film on its surface

Also Published As

Publication number Publication date
JP2011253938A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
US20220123158A1 (en) Efficient black silicon photovoltaic devices with enhanced blue response
US20090223560A1 (en) Solar cell and method for manufacturing the same
TWI605265B (en) Optical anti-reflection structure and solar cell including the same, and method for making the optical anti-reflection structure
WO2015043028A1 (en) Local aluminum back surface field solar battery with two light-pervious surfaces, and preparation method therefor
Abdulkadir et al. Optimization of etching time for broadband absorption enhancement in black silicon fabricated by one-step electroless silver-assisted wet chemical etching
WO2011161961A1 (en) Photoelectric conversion element
TWI474488B (en) Solar cell
JP2016532317A (en) Nanostructured silicon-based solar cell and method for producing nanostructured silicon-based solar cell
JP2012023349A (en) Photoelectric conversion device
WO2012055302A1 (en) Electrode and manufacturing method thereof
TWI590478B (en) Solar cell and method of manufacturing solar cell
JP2006073617A (en) Solar cell and manufacturing method thereof
WO2012160764A1 (en) Photoelectric conversion element
KR101164326B1 (en) Silicon thin film solar cells using periodic or random metal nanoparticle layer and fabrication method thereof
US20110061729A1 (en) Solar Cell and Method of Manufacturing the Same
US20140090705A1 (en) Photoelectric conversion element
Huang et al. Efficiency improvement of silicon nanostructure-based solar cells
KR101658534B1 (en) Solar cell and method for fabricaitng the same
CN105576054A (en) Nanowire intermediate band solar cell structure based on butterfly-shaped plasmon antenna enhancement
JP2011243806A (en) Solar cell
JP5412376B2 (en) Solar cell
WO2015015694A1 (en) Photovoltaic device
JP5517775B2 (en) Photoelectric conversion element
JP2004119491A (en) Method for manufacturing thin film solar battery, and thin film solar battery manufactured thereby
JP5649856B2 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

LAPS Cancellation because of no payment of annual fees