JP5412253B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP5412253B2
JP5412253B2 JP2009267989A JP2009267989A JP5412253B2 JP 5412253 B2 JP5412253 B2 JP 5412253B2 JP 2009267989 A JP2009267989 A JP 2009267989A JP 2009267989 A JP2009267989 A JP 2009267989A JP 5412253 B2 JP5412253 B2 JP 5412253B2
Authority
JP
Japan
Prior art keywords
light
diffractive lens
emitting device
lens
spectral distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009267989A
Other languages
Japanese (ja)
Other versions
JP2011113755A (en
Inventor
哲也 西
広行 関井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009267989A priority Critical patent/JP5412253B2/en
Publication of JP2011113755A publication Critical patent/JP2011113755A/en
Application granted granted Critical
Publication of JP5412253B2 publication Critical patent/JP5412253B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、単色光の発光素子からの光と、この光を波長変換素子で変換した光とを集光レンズで混色して照射する発光装置に関する。   The present invention relates to a light emitting device that irradiates light from a light emitting element that emits monochromatic light and light obtained by converting the light by a wavelength conversion element using a condenser lens.

従来の、この種の発光装置を図10(a)(b)に示す。発光装置は、青色LED1からの青色光が黄色蛍光体(波長変換素子という)2で変換された黄色光と、波長変換素子2で変換されずに出射された青色光とにより白色光を発光する白色LED光源である。この白色光は、屈折レンズ6で照射面20上に光源像Pが写る。ここに、光源像Pは、斜視で示している。   A conventional light emitting device of this type is shown in FIGS. The light emitting device emits white light from yellow light obtained by converting blue light from the blue LED 1 by a yellow phosphor (referred to as a wavelength conversion element) 2 and blue light emitted without being converted by the wavelength conversion element 2. It is a white LED light source. The white light causes the light source image P to appear on the irradiation surface 20 by the refractive lens 6. Here, the light source image P is shown in perspective.

図10(a)は、白色LED光源が青色光に対する焦点位置に配置された場合を示す。青色光X1は屈折レンズ6を通過後、光軸に平行に進行する。図10(b)は、白色LED光源が黄色光に対する焦点位置に配置された場合を示す。黄色光Y1は屈折レンズ6を通過後、光軸に平行に進行する。   FIG. 10A shows a case where a white LED light source is arranged at a focal position with respect to blue light. The blue light X1 travels parallel to the optical axis after passing through the refractive lens 6. FIG. 10B shows a case where the white LED light source is arranged at the focal position for yellow light. The yellow light Y1 travels parallel to the optical axis after passing through the refractive lens 6.

上記いずれの場合も、光源像Pは波長変換素子2の発光面が青色LED1の発光面に比べて大きいので、黄色光パターンPyが青色光パターンPxより大きくなる。このため、青色光パターンPxと黄色光パターンPyが重なる部分は白色パターンとなるが、光源像Pの周辺で黄色光が多くなるため、色むらが発生する。このとき、図11に示すように、光学ガラスの屈折レンズでは、長波長の光は短波長の光に比較して屈折率が大きくなるので、青色光は黄色光に比べ大きく屈折され、青色光パターンPxが縮小し、黄色光パターンPyが拡大するため、色むらがより顕著となる。   In any of the above cases, since the light source image P has a larger light emitting surface of the wavelength conversion element 2 than the light emitting surface of the blue LED 1, the yellow light pattern Py is larger than the blue light pattern Px. For this reason, although the part which the blue light pattern Px and the yellow light pattern Py overlap becomes a white pattern, since yellow light increases around the light source image P, color unevenness generate | occur | produces. At this time, as shown in FIG. 11, in the refractive lens of the optical glass, since the long wavelength light has a higher refractive index than the short wavelength light, the blue light is refracted more than the yellow light, and the blue light Since the pattern Px is reduced and the yellow light pattern Py is enlarged, the color unevenness becomes more prominent.

ところで、白色LED光源からの光を屈折レンズの出射面で拡散することにより、照射光周辺の色むらを抑制する発光装置が知られている(例えば、特許文献1、2参照)。図12(a)に示すように、この装置は、基板4上の青色LED1と波長変換素子2とによる白色LED光源からの光を屈折レンズ6で集光し、屈折レンズ6の出射面7に形成された拡散処理面や凸レンズ群等の光拡散部材8により拡散して青色光11と黄色光12を出射する。この装置は、光拡散部材8を備えていない場合は、図12(b)に示されるように、青色光11のビーム角が黄色光12のビーム角より狭いことにより色むらを生じるが、光拡散部材8を備えたことにより、青色光11と黄色光12が拡散され色むらが低減される。   By the way, there is known a light emitting device that suppresses color unevenness around irradiated light by diffusing light from a white LED light source on an exit surface of a refractive lens (see, for example, Patent Documents 1 and 2). As shown in FIG. 12A, this apparatus condenses the light from the white LED light source by the blue LED 1 and the wavelength conversion element 2 on the substrate 4 by the refractive lens 6, and the light is emitted to the exit surface 7 of the refractive lens 6. Blue light 11 and yellow light 12 are emitted by being diffused by the light diffusion member 8 such as the formed diffusion-treated surface or convex lens group. If this device does not include the light diffusing member 8, as shown in FIG. 12 (b), the beam angle of the blue light 11 is narrower than the beam angle of the yellow light 12. By providing the diffusing member 8, the blue light 11 and the yellow light 12 are diffused, and the color unevenness is reduced.

しかしながら、図12(a)に示される装置は、青色光と黄色光を光色に関係なく一律に拡散するので、全体に各ビーム角が広くなり集光作用が弱くなって、出射面7からの照度が低下すると共に、光拡散部材8によりレンズの光透過率が低くなるため、照射効率が劣化する。   However, since the apparatus shown in FIG. 12A uniformly diffuses blue light and yellow light regardless of the light color, each beam angle becomes wide and the condensing action becomes weak as a whole. Since the light diffusing member 8 lowers the light transmittance of the lens, the irradiation efficiency deteriorates.

また、他の例として、LEDからの光を回折格子レンズにより集光して照射する発光装置が知られている(例えば、特許文献3参照)。しかしながら、この装置は、LEDからの光の集光を良くするもので、照射光の色むらを抑制するものではない。   As another example, a light-emitting device that collects and emits light from an LED by a diffraction grating lens is known (see, for example, Patent Document 3). However, this device improves the concentration of light from the LED and does not suppress uneven color of the irradiated light.

特開2007−5218号公報JP 2007-5218 A 特開2007−265964号公報JP 2007-265964 A 特開2006−24378号公報JP 2006-24378 A

本発明は、上記の問題を解決するものであり、単色光の発光素子からの光と、この光が波長変換素子で変換された光とを混色しレンズで集光して出射する発光装置において、効率良く色むらを低減できる発光装置を提供することを目的とする。   The present invention solves the above-described problem. In a light-emitting device that mixes light from a monochromatic light-emitting element and light converted by a wavelength conversion element, collects the light by a lens, and emits the light. An object of the present invention is to provide a light-emitting device that can efficiently reduce color unevenness.

上記目的を達成するために請求項1の発明は、第一の分光分布を有する光を発光する固体発光素子と、前記第一の分光分布の光を受けて、それよりも波長の長い第二の分光分布を有する光に波長変換して出射する波長変換素子と、前記波長変換素子からの第二の分光分布の光と前記波長変換素子で波長変換されなかった前記第一の分光分布の光とを集光して照射する光学素子と、を有し、前記固体発光素子、波長変換素子、及び光学素子が互いに共通の光軸を有する発光装置であって、前記光学素子は、回折レンズであり、照射面から見て、前記第一の分光分布の光に対する焦点が前記第二の分光分布の光に対する焦点よりも前記回折レンズから遠い位置となる光学特性を持ち、前記回折レンズは同心円状の回折格子を有し、前記固体発光素子の外縁部を通る点Aと、前記回折レンズの外縁部を通り、かつ光軸を跨いで点Aと反対側の点Bと、を結ぶ直線ABが光軸と成す角度をθabとし、前記波長変換素子の外縁部を通る点Cと、前記回折レンズの外縁部を通り、かつ光軸を跨いで点Cと反対側の点Dと、を結ぶ直線CDが光軸と成す角度をθcdとし、前記回折レンズの外縁部の前記第一の分光分布の光に対する回折角度をφ1とし、前記回折レンズの外縁部の前記第二の分光分布の光に対する回折角度をφ2としたとき、θab−φ1=θcd−φ2の関係を満たすように構成されているものである。
In order to achieve the above object, a first aspect of the present invention is directed to a solid-state light emitting device that emits light having a first spectral distribution, and a second light having a longer wavelength than the solid light-emitting element that receives the light of the first spectral distribution. A wavelength conversion element that converts the wavelength of light into light having a spectral distribution, and emits the second spectral distribution light from the wavelength conversion element and the light of the first spectral distribution that has not been wavelength-converted by the wavelength conversion element A solid-state light emitting element, a wavelength converting element, and a light emitting device having an optical axis common to each other, wherein the optical element is a diffractive lens. There, as viewed from the irradiation surface, the first spectral focus for light distribution than focus for the second spectral distribution of the light Chi lifting the optical properties to be farther from the diffraction lens, the diffractive lens concentric A solid-state light emitting element Θb is an angle formed by a straight line AB passing through the outer edge of the diffractive lens and a point B passing through the outer edge of the diffractive lens and straddling the optical axis. An angle formed by a straight line CD connecting the point C passing through the outer edge of the conversion element and the point D passing through the outer edge of the diffractive lens and across the optical axis and the point C opposite to the optical axis is defined as θcd, When the diffraction angle of the outer edge of the diffractive lens with respect to the light of the first spectral distribution is φ1, and the diffraction angle of the outer edge of the diffractive lens with respect to the light of the second spectral distribution is φ2, θab−φ1 = This is configured to satisfy the relationship of θcd−φ2 .

請求項の発明は、請求項1に記載の発光装置において、前記回折レンズは、単層型回折レンズを複数組合わせた積層型回折レンズであるものである。
The invention of claim 2 is the light-emitting device according to claim 1, wherein the diffractive lens is one which is laminated diffractive lens which combined a plurality of single-layer type diffractive lens.

請求項の発明は、請求項1に記載の発光装置において、前記回折レンズは、屈折面及び全反射面を有し、出射面に前記回折格子を有しているものである。
According to a third aspect of the present invention, in the light emitting device according to the first aspect, the diffractive lens has a refracting surface and a total reflection surface, and has the diffraction grating on the exit surface.

請求項の発明は、請求項1に記載の発光装置において、前記回折レンズは、屈折面及び全反射面を有し、入射面に前記回折格子を有しているものである。
According to a fourth aspect of the present invention, in the light emitting device according to the first aspect, the diffractive lens has a refracting surface and a total reflection surface, and has the diffraction grating on the incident surface.

請求項1の発明によれば、回折レンズを用いて第一の分光分布の光(例えば、青色光)の焦点が第二の分光分布の光(例えば、黄色光)のそれよりも回折レンズから遠い位置にあるようにしたので、屈折レンズを用いた場合に比べ、照射面の光源像の外縁側にある第二の分光分布の光の照射パターンが相対的に小さくなる。このため、光源像の周縁で第一の分光分布の光の割合が増加し、第二の分光分布の光を目立たせなくすることができ、拡散部材を用いることなく効率良く、色むらを低減することができる。また、第一の分光分布の光の回折レンズを出射後の最大出射角度と、第二の分光分布の光の回折レンズを出射後の最大出射角度とが等しくなるので、照射面の光源像の周縁で第一の分光分布の光と第二の分光分布の光との各照射パターンが重なるようにでき、色むらをより低減することができる。
According to the first aspect of the present invention, the focus of the light having the first spectral distribution (for example, blue light) is made farther from the diffraction lens than that of the light having the second spectral distribution (for example, yellow light) by using the diffraction lens. Since it is located at a far position, the irradiation pattern of the light of the second spectral distribution on the outer edge side of the light source image on the irradiation surface is relatively smaller than in the case of using a refractive lens. For this reason, the ratio of the light of the first spectral distribution increases at the periphery of the light source image, the light of the second spectral distribution can be made inconspicuous, and color unevenness can be reduced efficiently without using a diffusing member. can do. In addition, since the maximum emission angle after exiting the diffraction lens for the light with the first spectral distribution and the maximum exit angle after exiting the diffraction lens for the light with the second spectral distribution are equal, the light source image of the irradiation surface The irradiation patterns of the light with the first spectral distribution and the light with the second spectral distribution can be overlapped at the periphery, and color unevenness can be further reduced.

請求項の発明によれば、積層型回折レンズにより、単体の単層型回折レンズに比べて、不要な回折光が抑制され色むらが抑制されると共に、回折効率の波長依存性が低減され、広い波長領域の光の回折が可能となる。
According to the invention of claim 2 , the laminated diffractive lens suppresses unnecessary diffracted light and color unevenness, and reduces the wavelength dependency of diffraction efficiency, compared to a single-layer diffractive lens. This enables diffraction of light in a wide wavelength region.

請求項の発明によれば、色ずれの少ない照射光を得ることができると共に、屈折面と全反射面を利用して光量を多く出射面に集光制御できるので、屈折面と全反射面を有しない回折レンズに比べ、光利用効率を良くすることができる。
According to the third aspect of the present invention, it is possible to obtain irradiation light with little color misregistration, and it is possible to control light condensing on the exit surface by using the refracting surface and the total reflection surface. Compared with a diffractive lens that does not have the light efficiency, the light utilization efficiency can be improved.

請求項の発明によれば、入射面で回折された光を屈折面と全反射面を利用して出射面に集光して照射できるので、屈折面と全反射面を有しない回折レンズに比べ、光利用効率を良くすることができる。
According to the invention of claim 4 , since the light diffracted on the incident surface can be condensed and irradiated on the exit surface using the refracting surface and the total reflection surface, the diffraction lens having no refracting surface and the total reflection surface can be applied. In comparison, the light utilization efficiency can be improved.

本発明の第1の実施形態に係る発光装置の断面図。1 is a cross-sectional view of a light emitting device according to a first embodiment of the present invention. 同発光装置の動作を説明するための図。The figure for demonstrating operation | movement of the light-emitting device. (a)は同発光装置の回折レンズによる集光状態を示す図、(b)は同回折レンズの部分断面図。(A) is a figure which shows the condensing state by the diffraction lens of the light-emitting device, (b) is a fragmentary sectional view of the diffraction lens. (a)は同回折レンズで青色光を平行光としたときの集光状況と照射パターンを示す図、(b)は同回折レンズで黄色光を平行光としたときの集光状況と照射パターンを示す図。(A) The figure which shows the condensing condition and irradiation pattern when making blue light into parallel light with the same diffraction lens, (b) The condensing condition and irradiation pattern when making yellow light into parallel light with the same diffraction lens FIG. 本発明の第2の実施形態に係る発光装置の断面図。Sectional drawing of the light-emitting device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る発光装置の断面図。Sectional drawing of the light-emitting device which concerns on the 3rd Embodiment of this invention. (a)は同発光装置の積層型回折レンズの回折効率特性図、(b)は単層型回折レンズの回折効率特性図。(A) is a diffraction efficiency characteristic figure of the laminated | stacked diffraction lens of the light-emitting device, (b) is a diffraction efficiency characteristic figure of a single layer type | mold diffraction lens. 本発明の第4の実施形態に係る発光装置の断面図。Sectional drawing of the light-emitting device which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る発光装置の断面図。Sectional drawing of the light-emitting device which concerns on the 5th Embodiment of this invention. (a)は従来の発光装置において青色光を平行光に屈折する場合の構成及び照射パターンを示す図、(b)は同発光装置において黄色光を平行光に屈折する場合の構成及び照射パターンを示す図。(A) is a figure which shows the structure and irradiation pattern in the case of refracting blue light into parallel light in the conventional light emitting device, (b) is the structure and irradiation pattern in the case of refracting yellow light into parallel light in the light emitting device. FIG. 光学ガラスの屈折率を示す図。The figure which shows the refractive index of optical glass. (a)は従来の発光装置の出射面に光拡散部材を有する場合の断面図、(b)は同発光装置の出射面に光拡散部材を有しない場合の断面図。(A) is sectional drawing in case the light-diffusion member is provided in the output surface of the conventional light-emitting device, (b) is sectional drawing in case the light-diffusion member is not provided in the output surface of the light-emitting device.

(第1の実施形態)
本発明の第1の実施形態に係る発光装置について図1乃至図4を参照して説明する。図1に示すように、本実施形態の発光装置10は、青色光(第一の分光分布を有する光)を発光する青色LED(固体発光素子)1と、青色光を受けて、それよりも波長の長い黄色光(第二の分光分布を有する光)に波長変換して出射する波長変換素子2と、波長変換素子2からの黄色光と波長変換素子2で波長変換されなかった青色光とを集光して照射する光学素子3とを有する。青色LED1、波長変換素子2、及び光学素子3は互いに共通の光軸を有する。なお、青色LED1と波長変換素子2とはLED実装基板(不図示)に設けられ、光学素子3と共に、例えば、円筒形等の筐体に(不図示)に収納固定されている。
(First embodiment)
A light emitting device according to a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the light emitting device 10 of the present embodiment receives a blue LED (solid light emitting element) 1 that emits blue light (light having a first spectral distribution) and blue light, and more than that. A wavelength conversion element 2 that converts the wavelength into yellow light having a long wavelength (light having a second spectral distribution) and emits the light; a yellow light from the wavelength conversion element 2; a blue light that is not wavelength-converted by the wavelength conversion element 2; And an optical element 3 that collects and irradiates the light. The blue LED 1, the wavelength conversion element 2, and the optical element 3 have a common optical axis. The blue LED 1 and the wavelength conversion element 2 are provided on an LED mounting board (not shown), and are housed and fixed together with the optical element 3 in, for example, a cylindrical housing (not shown).

青色LED1は、エネルギが高い光を放射する短波長の固体光源であり、紫外線発光ダイオードなどでもよく、その材料は、例えば、InGaN系部材が用いられるが、特に限定されるものではない。   The blue LED 1 is a short-wavelength solid-state light source that emits light with high energy, and may be an ultraviolet light-emitting diode or the like. The material thereof is, for example, an InGaN-based member, but is not particularly limited.

波長変換素子2は、その材料として蛍光体などが使用され、固体発光素子からの光を受光した後、それよりも長波長、すなわち、エネルギが低い光を放射する変換素子である。ここでは、波長変換素子2は、青色光を黄色光に変換する黄色発光蛍光体として、例えば、380nm〜480nmの波長帯域の光を480nm〜780nmの光へ変換するYAG(Yttrium Aluminium Garnet)系蛍光体やBOS(Barium ortho-Silicate)系蛍光体等を用いることができる。   The wavelength conversion element 2 is a conversion element that uses a phosphor or the like as its material, and emits light having a longer wavelength, that is, light having lower energy after receiving light from the solid state light emitting element. Here, the wavelength conversion element 2 is, for example, a YAG (Yttrium Aluminum Garnet) fluorescence that converts light in a wavelength band of 380 nm to 480 nm into light of 480 nm to 780 nm as a yellow light emitting phosphor that converts blue light into yellow light. Body, BOS (Barium ortho-Silicate) phosphor, etc. can be used.

波長変換素子2は、LED実装基板(不図示)の実装面側に設けられた凹部内に、樹脂に黄色発光蛍光体を含有させた蛍光体層を充填して形成され、凹部内に実装された青色LEDチップを蛍光体層により被覆することにより、青色光で黄色発光体を励起させることにより黄色光を発光する。   The wavelength conversion element 2 is formed by filling a phosphor layer containing a yellow light-emitting phosphor in a recess provided on the mounting surface side of an LED mounting substrate (not shown), and is mounted in the recess. By covering the blue LED chip with a phosphor layer, yellow light is emitted by exciting the yellow light emitter with blue light.

波長変換素子2に入射された青色LED1からの青色光は、その一部が波長変換素子2で変換されずに、そのまま波長変換素子2を通って出射される。このとき、変換されなかった青色光と変換された黄色光とは混色されて白色光を生じ、青色LED1と波長変換素子2による白色LED光源が形成される。この白色LED光源においては、青色LED1の発光面積は、波長変換素子2による黄色光の発光面積に比較して小さい。   A part of the blue light from the blue LED 1 incident on the wavelength conversion element 2 is emitted through the wavelength conversion element 2 as it is without being converted by the wavelength conversion element 2. At this time, the unconverted blue light and the converted yellow light are mixed to produce white light, and a white LED light source is formed by the blue LED 1 and the wavelength conversion element 2. In this white LED light source, the emission area of the blue LED 1 is smaller than the emission area of yellow light by the wavelength conversion element 2.

光学素子3は、回折現象を利用する回折レンズであり、その光透過部材としてアクリル、ポリカーボネート等の一般的な光学ガラス材が用いられる。回折レンズ3は、同心円状の回折格子31を有し、光軸に垂直な照射面20から見て、青色光に対する焦点F1(図2)が黄色光に対する焦点F2よりも回折レンズ3から遠い位置となる光学特性を持つ。   The optical element 3 is a diffractive lens using a diffraction phenomenon, and a general optical glass material such as acrylic or polycarbonate is used as a light transmission member thereof. The diffractive lens 3 has a concentric diffraction grating 31, and when viewed from the irradiation surface 20 perpendicular to the optical axis, the focal point F1 (FIG. 2) for blue light is farther from the diffractive lens 3 than the focal point F2 for yellow light. With optical properties

図2は、本発光装置10の動作を説明するものであり、回折レンズ3から青色光の焦点距離f1だけ離れた焦点F1の位置に青色LED1aが配置された場合と、回折レンズ3から黄色光の焦点距離f2だけ離れた焦点F2の位置に青色LED1が仮想的に配置された場合とを示す。青色LED1aからの青色光は回折レンズ3を通過後、光軸に平行に進む。また、波長変換素子2の中心から出た黄色光は、回折レンズ3を通過後、光軸に平行に進む。実際には、青色光は、焦点F2に配置された青色LED1から出るので、照射面20で結像されず、黄色光の結像範囲内にぼんやり結像されることになる。   FIG. 2 is a diagram for explaining the operation of the light emitting device 10. In the case where the blue LED 1 a is disposed at the position of the focal point F 1 that is separated from the diffractive lens 3 by the focal length f 1 of the blue light, The case where the blue LED 1 is virtually arranged at the position of the focal point F2 separated by the focal length f2 is shown. The blue light from the blue LED 1a passes through the diffraction lens 3 and then travels parallel to the optical axis. The yellow light emitted from the center of the wavelength conversion element 2 travels parallel to the optical axis after passing through the diffraction lens 3. Actually, the blue light is emitted from the blue LED 1 arranged at the focal point F2, so that the image is not formed on the irradiation surface 20, but is formed in the image range of yellow light.

回折レンズ3は、図3(a)に示すように、鋸歯形状の位相型回折光学素子の回折格子31から成り、入射光は回折レンズ3で回折され、その波長に基く焦点Fに集光される。また、回折レンズ3は、図3(b)に示すように、下記の式1が成り立つように、光透過基板を光波長寸法オーダの細かさで削ることにより、光の位相を制御することができる。なお、回折レンズ3は、図3(a)(b)に示された形状より格子の周期、溝深さが十分小さい。   As shown in FIG. 3A, the diffractive lens 3 is composed of a diffraction grating 31 of a sawtooth phase type diffractive optical element, and incident light is diffracted by the diffractive lens 3 and collected at a focal point F based on the wavelength. The In addition, as shown in FIG. 3B, the diffractive lens 3 can control the phase of light by shaving the light transmitting substrate with a fineness of the optical wavelength dimension order so that the following formula 1 is satisfied. it can. The diffraction lens 3 has a sufficiently smaller grating period and groove depth than the shapes shown in FIGS. 3 (a) and 3 (b).

[数1]
nL2+L3−L1=mλ・・・(1)
ここで、L1は回折格子31の高さ、nは回折レンズ材料の屈折率、mは回折次数(整数)、λは設計波長を示す。このとき、設計波長λに対し光軸に沿って光の等位相波面30が形成され、回折レンズ3に異なる波長の光を通過させた場合は、波長の長い方の光が波長の短い方に比べ、強め合う点(焦点)が回折レンズ3から近くなる。すなわち、回折レンズ3は、長波長の光の方が短波長の光よりよく曲がり、長波長と短波長とでレンズによる屈折の大小関係が屈折レンズに比べて逆になる。
[Equation 1]
nL2 + L3-L1 = mλ (1)
Here, L1 is the height of the diffraction grating 31, n is the refractive index of the diffractive lens material, m is the diffraction order (integer), and λ is the design wavelength. At this time, when an equiphase wavefront 30 of light is formed along the optical axis with respect to the design wavelength λ, and light having a different wavelength is passed through the diffraction lens 3, the light having the longer wavelength is changed to the light having the shorter wavelength. In comparison, the point of strengthening (focal point) is closer to the diffractive lens 3. That is, in the diffractive lens 3, the long wavelength light bends better than the short wavelength light, and the refraction relationship between the long wavelength and the short wavelength is opposite to that of the refractive lens.

回折レンズ3は、フォトリソグラフィによりシリカウェハ上にマスクパターンを形成し、その後エッチングにより微細構造を形成する、又はナノインプリントなどで金型成形することにより製作することができる。   The diffractive lens 3 can be manufactured by forming a mask pattern on a silica wafer by photolithography and then forming a fine structure by etching, or forming a mold by nanoimprint or the like.

図4(a)は、青色LED1と波長変換素子2を回折レンズ3の青色光の焦点F1の位置に配置したときの照射パターンを示す。ここでは、分かり易くするために、光軸の紙面の上側に青色光を、下側に黄色光を示す。図4(b)は、青色LED1と波長変換素子2を回折レンズ3の黄色光の焦点F2の位置に配置したときの照射パターンを示す。   FIG. 4A shows an irradiation pattern when the blue LED 1 and the wavelength conversion element 2 are arranged at the blue light focal point F1 of the diffractive lens 3. Here, for easy understanding, blue light is shown on the upper side of the paper surface of the optical axis, and yellow light is shown on the lower side. FIG. 4B shows an irradiation pattern when the blue LED 1 and the wavelength conversion element 2 are arranged at the position of the focal point F2 of the yellow light of the diffraction lens 3.

図4(a)の場合は、青色LED1の光軸上にある中心から出た青色光X1は、回折レンズ3を通過後、光軸に平行に進み、波長変換素子2の中心から出た黄色光Y1は、光軸に近づくように進む。青色光のうち、青色LED1の外縁部を通る点Aと、回折レンズ3の外縁部を通り、かつ光軸を跨いで点Aと反対側の点Bとを通る青色光X2は、回折レンズ3で屈折され青色光の中で最も光軸より離れて照射面20上に照射される。また、黄色光のうち、波長変換素子2の外縁部を通る点Cと、回折レンズ3の外縁部を通り、かつ光軸を跨いで点Cと反対側の点Dとを通る黄色光Y2は、黄色光の中で最も光軸より離れて照射面20上に照射される。   In the case of FIG. 4A, the blue light X1 emitted from the center on the optical axis of the blue LED 1 passes through the diffraction lens 3 and proceeds parallel to the optical axis, and yellow emitted from the center of the wavelength conversion element 2. The light Y1 travels so as to approach the optical axis. Of the blue light, the blue light X2 passing through the outer edge of the blue LED 1 and the outer edge of the diffractive lens 3 and passing through the optical axis and the point B opposite to the point A is the diffractive lens 3. And is irradiated on the irradiation surface 20 farthest from the optical axis in the blue light. Further, among yellow light, yellow light Y2 passing through the outer edge of the wavelength conversion element 2 and passing through the outer edge of the diffractive lens 3 and passing through the optical axis and the point D opposite to the point C is Y In the yellow light, the irradiation surface 20 is irradiated farthest from the optical axis.

このとき、回折レンズ3では青色光は黄色光より屈折が少ないため、屈折レンズの場合と比較して、青色光X2は相対的に光軸から離れ、黄色光Y2は光軸に近づくようになる。すなわち、光源像Pは、青色光X2の照射パターンPxが拡大され、黄色光Y2の照射パターンPyが縮小されるようになり、互いのパターン径が接近されることになる。   At this time, since the blue light is less refracted than the yellow light in the diffractive lens 3, the blue light X2 is relatively away from the optical axis and the yellow light Y2 is closer to the optical axis than in the case of the refractive lens. . That is, in the light source image P, the irradiation pattern Px of the blue light X2 is enlarged, the irradiation pattern Py of the yellow light Y2 is reduced, and the pattern diameters are close to each other.

また、図4(b)の場合は、黄色光Y1は回折レンズ3を通過後、光軸に平行に進み、青色光X1は光軸に近づくように進む。光源像Pは、図4(a)のと同様に、青色光X2の照射パターンPxが拡大され、黄色光Y2の照射パターンPyが縮小されるので、両パターンの重なりが増えるようになる。ここでは、黄色光の焦点距離f2が青色光の焦点距離f1より短いので、図4(a)の場合と比較して装置全体が短くなる。   In the case of FIG. 4B, the yellow light Y1 travels parallel to the optical axis after passing through the diffraction lens 3, and the blue light X1 travels so as to approach the optical axis. In the light source image P, similarly to FIG. 4A, the irradiation pattern Px of the blue light X2 is enlarged and the irradiation pattern Py of the yellow light Y2 is reduced, so that the overlapping of both patterns increases. Here, since the focal length f2 of yellow light is shorter than the focal length f1 of blue light, the entire apparatus is shortened compared to the case of FIG.

本実施形態によれば、青色光と黄色光の互いの照射パターン径を近づけ、照射面20の光源像Pの周縁で青色の割合を増加させ、黄色を目立たせなくすることができるので、混色による白色光の輪郭部における色ずれを軽減することができる。また、拡散部材を使用しないので、光の透過率が低下することなく、効率良く照射することができる。   According to the present embodiment, the irradiation pattern diameters of blue light and yellow light can be made closer, the ratio of blue can be increased at the periphery of the light source image P on the irradiation surface 20, and yellow can be made inconspicuous. It is possible to reduce the color misregistration in the outline portion of the white light due to. Further, since no diffusing member is used, the light can be efficiently irradiated without lowering the light transmittance.

(第2の実施形態)
本発明の第2の実施形態に係る発光装置について図5を参照して説明する。同図において、青色LED1の外縁部を通る点Aと、回折レンズ3の外縁部を通り、かつ光軸を跨いで点Aと反対側の点Bとを結ぶ直線をABとする。また、波長変換素子2の外縁部を通る点Cと、回折レンズ3の外縁部を通り、かつ光軸を跨いで点Cと反対側の点Dとを結ぶ直線をCDとする。また、直線ABが光軸と成す角度をθabとし、直線CDが光軸と成す角度をθcdとする。また、回折レンズ3の外縁部の青色光に対する回折角度をφ1とし、回折レンズの外縁部の黄色光に対する回折角度をφ2とする。このとき、本実施形態の発光装置10は、下記式2の関係を満たすように構成されているものである。
(Second Embodiment)
A light emitting device according to a second embodiment of the present invention will be described with reference to FIG. In the figure, a straight line connecting point A passing through the outer edge of the blue LED 1 and point B opposite to the point A passing through the outer edge of the diffractive lens 3 and straddling the optical axis is defined as AB. Further, a straight line connecting a point C passing through the outer edge of the wavelength conversion element 2 and a point D passing through the outer edge of the diffraction lens 3 and straddling the optical axis is defined as CD. Further, an angle formed by the straight line AB with the optical axis is θab, and an angle formed by the straight line CD with the optical axis is θcd. Further, the diffraction angle with respect to blue light at the outer edge of the diffraction lens 3 is φ1, and the diffraction angle with respect to yellow light at the outer edge of the diffraction lens is φ2. At this time, the light emitting device 10 of the present embodiment is configured to satisfy the relationship of the following formula 2.

[数2]
θab−φ1=θcd−φ2 ・・・(2)
式2のθab−φ1は、青色光の回折レンズ3からの出射後の最大出射角度を示し、θcd−φ2は、黄色光の回折レンズ3からの出射後の最大出射角度を示す。
[Equation 2]
θab−φ1 = θcd−φ2 (2)
In Equation 2, θab−φ1 represents the maximum emission angle after the blue light is emitted from the diffraction lens 3, and θcd−φ2 represents the maximum emission angle after the yellow light is emitted from the diffraction lens 3.

ここでは、青色LED1、波長変換素子2、及び回折レンズ3は、それぞれ半径d1、d2、及びd3を有する回転体形状を成し、点Aからの青色光X2及び点Cからの黄色光Y2は光軸と交差する。ここで、青色光と黄色光の各最大出射角度は、青色LED1、波長変換素子2、及び回折レンズ3のそれぞれ半径d1、d2、及びd3と、回折レンズ3の焦点距離f1、f2及び回折角度φ1、φ2等を用いて、互いに等しくなるように設計される。   Here, the blue LED 1, the wavelength conversion element 2, and the diffraction lens 3 form a rotating body having radii d 1, d 2, and d 3, respectively, and the blue light X 2 from the point A and the yellow light Y 2 from the point C are Crosses the optical axis. Here, the maximum emission angles of blue light and yellow light are the radii d1, d2, and d3 of the blue LED 1, the wavelength conversion element 2, and the diffraction lens 3, respectively, the focal lengths f1, f2, and the diffraction angle of the diffraction lens 3. It is designed to be equal to each other using φ1, φ2, etc.

本実施形態によれば、青色光と黄色光の各最大出射角度が等しくなるので、回折レンズ3からの青色光X2及び黄色光Y2の各照射パターンPx,Pyを照射面20上でほぼ一致させることができ、光源像Pの周縁で青色の割合を増加させ、黄色をより目立たせなくすることができ、白色光の色むらがさらに良くなる。   According to the present embodiment, since the maximum emission angles of blue light and yellow light are equal, the irradiation patterns Px and Py of the blue light X2 and yellow light Y2 from the diffraction lens 3 are substantially matched on the irradiation surface 20. It is possible to increase the ratio of blue at the periphery of the light source image P and make yellow more inconspicuous, and the color unevenness of white light is further improved.

(第3の実施形態)
本発明の第3の実施形態に係る発光装置について図6及び図7を参照して説明する。本実施形態において、回折レンズ3は、単層型回折レンズを複数(ここでは、2つ)組合わせた積層型回折レンズとしたものである。
(Third embodiment)
A light emitting device according to a third embodiment of the present invention will be described with reference to FIGS. In this embodiment, the diffractive lens 3 is a laminated diffractive lens in which a plurality of (here, two) single-layer diffractive lenses are combined.

積層型回折レンズ3は、2つの単層型回折レンズ3a、3bから成る。単層型回折レンズ3a、3bは、前記実施形態の回折レンズと同様の構成を成し、互いに同心円状の格子周期構造が基本的に等しい形状であるが、回折格子31a、31bの凹凸方向が互いに逆向きを成し、各格子の高さと、格子を形成する材質が異なっている。この積層型回折レンズ3は、波長によらず、常に位相差が一周期に近づくようにした1組の回折格子である。ここでは、回折格子の高さと、回折格子を形成する材質を最適に設計し、数マイクロメートルの間隔で接近して向かい合わせることにより、回折効率を高めている。なお、単層型回折レンズ3aの入射面側は、集光性を高めるために凸レンズ形状としている。   The laminated diffractive lens 3 includes two single-layer diffractive lenses 3a and 3b. The single-layer diffractive lenses 3a and 3b have the same configuration as that of the diffractive lens of the above-described embodiment, and have concentric grating periodic structures that are basically equal to each other, but the concave and convex directions of the diffraction gratings 31a and 31b are They are opposite to each other, and the height of each lattice and the material forming the lattice are different. The laminated diffractive lens 3 is a set of diffraction gratings whose phase difference always approaches one period regardless of the wavelength. Here, the diffraction efficiency is enhanced by optimizing the height of the diffraction grating and the material forming the diffraction grating and facing each other at intervals of several micrometers. In addition, the incident surface side of the single layer type diffractive lens 3a has a convex lens shape in order to improve the light collecting property.

図7(a)は、積層型回折レンズ3の回折特性、図7(b)は単層型回折レンズの回折特性を示す。単層型回折レンズの場合は、一次回折光の回折効率は設計波長から離れるほど低下し、可視光領域全体で均一にできず、一次回折光以外の不要な回折光が発生し色むらの原因となる場合がある。これに対し、積層型回折レンズ3は、2枚の単層型回折レンズの組合わせにより回折効率の波長依存性を補完し、不要な回折光を発生せず、可視光領域全体で高い回折効率を持つことができる。   7A shows the diffraction characteristics of the laminated diffractive lens 3, and FIG. 7B shows the diffraction characteristics of the single-layer diffractive lens. In the case of a single-layer diffractive lens, the diffraction efficiency of the first-order diffracted light decreases as it goes away from the design wavelength, and it cannot be made uniform throughout the visible light region. It may become. On the other hand, the laminated diffractive lens 3 complements the wavelength dependency of diffraction efficiency by combining two single-layer diffractive lenses, generates no unnecessary diffracted light, and has high diffraction efficiency over the entire visible light region. Can have.

本実施形態によれば、単体の単層型回折レンズを用いる場合に比べて、不要な回折光が抑制され色むらが低減されると共に、可視光領域全体の広い波長領域の光の回折が可能となる。   According to the present embodiment, unnecessary diffracted light is suppressed and color unevenness is reduced, and light in a wide wavelength region in the entire visible light region can be diffracted compared to the case of using a single-layer diffractive lens. It becomes.

(第4の実施形態)
本発明の第4の実施形態に係る発光装置について図8を参照して説明する。本実施形態の発光装置10は、回折レンズ3が屈折面34及び全反射面35を有し、出射面36に回折格子31を有しているものである。
(Fourth embodiment)
A light emitting device according to a fourth embodiment of the present invention will be described with reference to FIG. In the light emitting device 10 of the present embodiment, the diffractive lens 3 has a refracting surface 34 and a total reflection surface 35, and has a diffraction grating 31 on the exit surface 36.

本実施形態においては、青色LED1と波長変換素子2とはLED実装基板4に実装され、LED実装基板4は本体基板5に固定されている。青色LED1は、LED実装基板4の実装面に形成された円筒型凹部の中央に装着され、この円筒型凹部に黄色発光蛍光体を含有させた樹脂が充填されて形成される波長変換素子2で覆われて、白色LED光源が形成されている。   In the present embodiment, the blue LED 1 and the wavelength conversion element 2 are mounted on the LED mounting substrate 4, and the LED mounting substrate 4 is fixed to the main body substrate 5. The blue LED 1 is a wavelength conversion element 2 that is mounted at the center of a cylindrical recess formed on the mounting surface of the LED mounting substrate 4 and is formed by filling the cylindrical recess with a resin containing a yellow light-emitting phosphor. Covered to form a white LED light source.

回折レンズ3は、波長変換素子2の出光面21側の前方を取り囲むように凹部32が形成されたハイブリッド型レンズを成し、接着材やレンズフォルダ等を用いて本体基板5に固定されている。この回折レンズ3は、凹部32の底面に位置する凸型の入射面33と、凹部32の内側面から成る屈折面34と、入射面33及び屈折面34から入射された光の一部を全反射する全反射面35と、入射面33からの入射光と全反射面35からの反射光とを出射する出射面36とを有する。回折レンズ3は、出射面36に回折格子31が形成され、入射面33が波長変換素子2の出光面21の正面に対向し、屈折面34が凹部32の開口に向けテーパを成す。   The diffractive lens 3 is a hybrid lens having a recess 32 formed so as to surround the front of the wavelength conversion element 2 on the light exit surface 21 side, and is fixed to the main body substrate 5 using an adhesive, a lens folder, or the like. . The diffractive lens 3 includes a convex incident surface 33 positioned on the bottom surface of the concave portion 32, a refractive surface 34 formed by the inner surface of the concave portion 32, and a part of light incident from the incident surface 33 and the refractive surface 34. It has a total reflection surface 35 that reflects, and an output surface 36 that emits incident light from the incident surface 33 and reflected light from the total reflection surface 35. In the diffractive lens 3, the diffraction grating 31 is formed on the exit surface 36, the entrance surface 33 faces the front of the light exit surface 21 of the wavelength conversion element 2, and the refracting surface 34 tapers toward the opening of the recess 32.

本実施形態によれば、白色LED光源からの入射光は、入射面33の凸型の屈折レンズで一次的に集光された後、出射面36の回折格子31で青色光と黄色光とが互いに近づくように回折され、照射面20で互いに重なるように照射され、色むらの少ない光源像Pが得られる。このとき、白色LED光源からの入射光は、屈折面34及び全反射面35を利用する光制御により集光されるので、屈折面34及び全反射面35を有しない回折レンズに比べ、光量を多く出射面36に集光制御でき、光利用効率を良くすることができる。   According to the present embodiment, the incident light from the white LED light source is primarily condensed by the convex refractive lens of the incident surface 33, and then blue light and yellow light are generated by the diffraction grating 31 of the output surface 36. The light source images P that are diffracted so as to approach each other and are irradiated so as to overlap each other on the irradiation surface 20 are obtained. At this time, incident light from the white LED light source is collected by light control using the refracting surface 34 and the total reflection surface 35, so that the amount of light is smaller than that of a diffractive lens without the refracting surface 34 and the total reflection surface 35. Many of the light exit surfaces 36 can be focused and light utilization efficiency can be improved.

(第5の実施形態)
本発明の第5の実施形態に係る発光装置について図9を参照して説明する。本実施形態の発光装置10は、回折レンズ3が屈折面34及び全反射面35を有し、入射面33に回折格子31を有しているものである。
(Fifth embodiment)
A light emitting device according to a fifth embodiment of the present invention will be described with reference to FIG. In the light emitting device 10 of the present embodiment, the diffractive lens 3 has a refracting surface 34 and a total reflection surface 35, and a diffraction grating 31 on the incident surface 33.

本実施形態によれば、白色LED光源からの入射光は、入射面33の回折格子31で青色光と黄色光とが互いに近づくように回折されて、出射面36から照射されるので、色むらの少ない光源像Pを得ることができる。また、入射面33で回折された光を屈折面34と全反射面35を利用する光制御により集光して照射することができるので、屈折面34と全反射面35を有しない回折レンズに比べ、光利用効率を良くすることができる。   According to the present embodiment, the incident light from the white LED light source is diffracted by the diffraction grating 31 of the incident surface 33 so that the blue light and the yellow light are close to each other, and is emitted from the output surface 36. Can be obtained. Further, since the light diffracted by the incident surface 33 can be condensed and irradiated by light control using the refracting surface 34 and the total reflection surface 35, the diffraction lens having no refracting surface 34 and the total reflection surface 35 can be applied. In comparison, the light utilization efficiency can be improved.

なお、本発明は上記各種実施形態の構成に限定されるものではなく、発明の趣旨を変更しない範囲で適宜に種々の変形が可能である。例えば、上記各種実施形態では、波長変換素子2は、入力光の青色光を黄色光の出射光に変換する場合を示したが、他の色同士の変換でもよい。また、青色LED1と波長変換素子2は一体化され、例えば円筒形状にモジュール化されたものであってもよい。   In addition, this invention is not limited to the structure of the said various embodiment, A various deformation | transformation is possible suitably in the range which does not change the meaning of invention. For example, in the various embodiments described above, the wavelength conversion element 2 has shown the case where the blue light of the input light is converted into the outgoing light of yellow light, but it may be converted between other colors. Also, the blue LED 1 and the wavelength conversion element 2 may be integrated, for example, modularized in a cylindrical shape.

1 青色LED(固体発光素子)
10 発光装置
2 波長変換素子
20 照射面
3 光学素子、回折レンズ、積層型回折レンズ
3a、3b 単層型回折レンズ
31 回折格子
33 入射面
34 屈折面
35 全反射面
36 出射面
F1 回折レンズの青色光に対する焦点(第一の分光分布の光に対する焦点)
F2 回折レンズの黄色光に対する焦点(第二の分光分布の光に対する焦点)
X1、X2 青色光(第一の分光分布の光)
Y1、Y2 黄色光(第二の分光分布の光)
1 Blue LED (solid state light emitting device)
DESCRIPTION OF SYMBOLS 10 Light-emitting device 2 Wavelength conversion element 20 Irradiation surface 3 Optical element, diffraction lens, laminated diffraction lens 3a, 3b Single layer type diffraction lens 31 Diffraction grating 33 Incident surface 34 Refraction surface 35 Total reflection surface 36 Output surface F1 Blue of diffraction lens Focus on light (focus on light of first spectral distribution)
F2 diffractive lens focus on yellow light (focus on light of second spectral distribution)
X1, X2 Blue light (light with first spectral distribution)
Y1, Y2 Yellow light (light with second spectral distribution)

Claims (4)

第一の分光分布を有する光を発光する固体発光素子と、前記第一の分光分布の光を受けて、それよりも波長の長い第二の分光分布を有する光に波長変換して出射する波長変換素子と、前記波長変換素子からの第二の分光分布の光と前記波長変換素子で波長変換されなかった前記第一の分光分布の光とを集光して照射する光学素子と、を有し、前記固体発光素子、波長変換素子、及び光学素子が互いに共通の光軸を有する発光装置であって、
前記光学素子は、回折レンズであり、照射面から見て、前記第一の分光分布の光に対する焦点が前記第二の分光分布の光に対する焦点よりも前記回折レンズから遠い位置となる光学特性を持ち、
前記回折レンズは同心円状の回折格子を有し、
前記固体発光素子の外縁部を通る点Aと、前記回折レンズの外縁部を通り、かつ光軸を跨いで点Aと反対側の点Bと、を結ぶ直線ABが光軸と成す角度をθabとし、
前記波長変換素子の外縁部を通る点Cと、前記回折レンズの外縁部を通り、かつ光軸を跨いで点Cと反対側の点Dと、を結ぶ直線CDが光軸と成す角度をθcdとし、
前記回折レンズの外縁部の前記第一の分光分布の光に対する回折角度をφ1とし、
前記回折レンズの外縁部の前記第二の分光分布の光に対する回折角度をφ2としたとき、
θab−φ1=θcd−φ2の関係を満たすように構成されていることを特徴とする発光装置。
A solid-state light emitting device that emits light having a first spectral distribution and a wavelength that receives the light of the first spectral distribution, converts the wavelength into light having a second spectral distribution longer than that, and emits the light. A conversion element; and an optical element that collects and irradiates the light having the second spectral distribution from the wavelength conversion element and the light having the first spectral distribution that has not been wavelength-converted by the wavelength conversion element. A light emitting device in which the solid light emitting element, the wavelength converting element, and the optical element have a common optical axis,
The optical element is a diffractive lens, and has an optical characteristic that a focal point with respect to the light with the first spectral distribution is farther from the diffractive lens than a focal point with respect to the light with the second spectral distribution as viewed from the irradiation surface. equity Chi,
The diffractive lens has a concentric diffraction grating,
An angle formed by a straight line AB connecting the point A passing through the outer edge of the solid-state light emitting element and the point B passing through the outer edge of the diffractive lens and across the optical axis with respect to the point A is θab age,
An angle formed by a straight line CD passing through the outer edge of the wavelength conversion element and a point D passing through the outer edge of the diffractive lens and across the optical axis from the point C opposite to the optical axis is θcd. age,
The diffraction angle with respect to the light of the first spectral distribution at the outer edge of the diffractive lens is φ1,
When the diffraction angle with respect to the light of the second spectral distribution at the outer edge of the diffractive lens is φ2,
A light-emitting device configured to satisfy the relationship θab−φ1 = θcd−φ2 .
前記回折レンズは、単層型回折レンズを複数組合わせた積層型回折レンズであることを特徴とする請求項1に記載の発光装置。 The light-emitting device according to claim 1, wherein the diffractive lens is a laminated diffractive lens in which a plurality of single-layer diffractive lenses are combined. 前記回折レンズは、屈折面及び全反射面を有し、出射面に前記回折格子を有していることを特徴とする請求項1に記載の発光装置。 The light-emitting device according to claim 1, wherein the diffractive lens has a refracting surface and a total reflection surface, and has the diffraction grating on an exit surface. 前記回折レンズは、屈折面及び全反射面を有し、入射面に前記回折格子を有していることを特徴とする請求項1に記載の発光装置。 The light-emitting device according to claim 1, wherein the diffractive lens has a refracting surface and a total reflection surface, and has the diffraction grating on an incident surface.
JP2009267989A 2009-11-25 2009-11-25 Light emitting device Expired - Fee Related JP5412253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009267989A JP5412253B2 (en) 2009-11-25 2009-11-25 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267989A JP5412253B2 (en) 2009-11-25 2009-11-25 Light emitting device

Publications (2)

Publication Number Publication Date
JP2011113755A JP2011113755A (en) 2011-06-09
JP5412253B2 true JP5412253B2 (en) 2014-02-12

Family

ID=44235948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267989A Expired - Fee Related JP5412253B2 (en) 2009-11-25 2009-11-25 Light emitting device

Country Status (1)

Country Link
JP (1) JP5412253B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106813118A (en) * 2015-10-19 2017-06-09 通用电气照明解决方案有限责任公司 Remote phosphor illumination apparatus and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481223B2 (en) * 2010-02-18 2014-04-23 ミネベア株式会社 Lighting device and lens sheet
JP5562177B2 (en) * 2010-08-25 2014-07-30 パナソニック株式会社 Light emitting device
US9122000B2 (en) 2011-08-24 2015-09-01 Minebea Co., Ltd. Illuminator using a combination of pseudo-white LED and lens sheet
JP2013190522A (en) * 2012-03-13 2013-09-26 Stanley Electric Co Ltd Optical element and illumination device
KR101489898B1 (en) 2012-12-12 2015-02-09 주식회사 어플리컴 Method of manufacturing hologram diffuser for point source of light and hologram diffuser thereof
CN105940262B (en) 2014-01-23 2020-01-07 亮锐控股有限公司 Light emitting device with self-aligned preformed lens
CN106979502A (en) * 2016-08-31 2017-07-25 厦门益光照明科技股份有限公司 A kind of LED illumination lamp of formal dress or upside-down mounting lens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631375B2 (en) * 2004-09-27 2011-02-16 パナソニック電工株式会社 Signal light
JP4893982B2 (en) * 2005-01-31 2012-03-07 株式会社ニコン LED lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106813118A (en) * 2015-10-19 2017-06-09 通用电气照明解决方案有限责任公司 Remote phosphor illumination apparatus and method

Also Published As

Publication number Publication date
JP2011113755A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5412253B2 (en) Light emitting device
JP5650752B2 (en) Light capturing sheet and rod, and light receiving device and light emitting device using the same
JP5646748B2 (en) Light capturing sheet and rod, and light receiving device and light emitting device using the same
JP5010549B2 (en) Liquid crystal display
JP4665832B2 (en) Light emitting device and white light source and lighting device using the same
JP4976218B2 (en) Light emitting unit
JP6238203B2 (en) Light capturing sheet and rod, and light receiving device and light emitting device using the same
JP5860961B2 (en) Optical wheel
KR20110100656A (en) Device for mixing light
WO2012006123A2 (en) Optical beam shaping and polarization selection on led with wavelength conversion
WO2012026211A1 (en) Light source, and projection display device
JP7399378B2 (en) Optical devices, lighting devices, display devices and optical communication devices
JP2011154078A (en) Liquid crystal display device
JP6316940B2 (en) Optical element having wavelength selectivity and lamp device using the same
JP2012133086A (en) Light-emitting device
JP4525539B2 (en) Backlight device
US7195387B2 (en) Device and method for emitting light with increased brightness using diffractive grating pattern
JP6621038B2 (en) Optical member and microlens array
JP6459104B2 (en) Wavelength conversion device and illumination device
JP6761991B2 (en) Wavelength converter and lighting device
JP6692032B2 (en) Wavelength conversion device and lighting device
JP4893982B2 (en) LED lamp
WO2024024272A1 (en) Light-emitting device
KR102662650B1 (en) Optical structure
JP2012146562A (en) Light-emitting device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R150 Certificate of patent or registration of utility model

Ref document number: 5412253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees