JP5409405B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5409405B2
JP5409405B2 JP2010003554A JP2010003554A JP5409405B2 JP 5409405 B2 JP5409405 B2 JP 5409405B2 JP 2010003554 A JP2010003554 A JP 2010003554A JP 2010003554 A JP2010003554 A JP 2010003554A JP 5409405 B2 JP5409405 B2 JP 5409405B2
Authority
JP
Japan
Prior art keywords
outdoor unit
outdoor
refrigerant
limit value
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010003554A
Other languages
Japanese (ja)
Other versions
JP2011144941A (en
Inventor
和幹 浦田
康孝 吉田
宏治 内藤
博之 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010003554A priority Critical patent/JP5409405B2/en
Publication of JP2011144941A publication Critical patent/JP2011144941A/en
Application granted granted Critical
Publication of JP5409405B2 publication Critical patent/JP5409405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、室外機を複数台接続してなる空気調和装置に関する。   The present invention relates to an air conditioner formed by connecting a plurality of outdoor units.

従来、複数の室外機を有する空気調和装置において、室内機の空調負荷が小さい場合は、複数の室外機の一部を運転し、室内空調負荷に合致した室外機の運転容量に調整される。この場合、停止室外機に冷媒が溜まり、停止中の室外機への冷媒偏りが発生しやすい。そのため、空気調和装置の能力が低下したり、圧縮機の運転に適した圧力範囲からずれやすくなる等の問題が生じ、この問題を解決する方法として以下の特許文献が知られている。   Conventionally, in an air conditioner having a plurality of outdoor units, when the air conditioning load of the indoor unit is small, a part of the plurality of outdoor units is operated and adjusted to the operating capacity of the outdoor unit that matches the indoor air conditioning load. In this case, refrigerant accumulates in the stopped outdoor unit, and refrigerant bias to the stopped outdoor unit tends to occur. For this reason, problems such as a reduction in the performance of the air conditioner and a tendency to deviate from the pressure range suitable for the operation of the compressor occur, and the following patent documents are known as methods for solving this problem.

特許文献1の空気調和装置は、複数の室外機をバランス管で接続すると共に、バランス管と各室外機の油分離器の戻し管とを接続している。運転中の室外機の冷媒不足を検出すると、バランス管及び運転中の室外機に付設する油分離器の戻し管を介して、停止中の室外機から運転中の圧縮機吸入側に直接冷媒を排出することが記載されている。   In the air conditioner of Patent Document 1, a plurality of outdoor units are connected by a balance pipe, and a balance pipe and a return pipe of an oil separator of each outdoor unit are connected. When a shortage of refrigerant in the outdoor unit during operation is detected, the refrigerant is directly supplied from the stopped outdoor unit to the operating compressor suction side via the balance pipe and the return pipe of the oil separator attached to the outdoor unit during operation. It is described that it is discharged.

特許文献2の冷凍装置は、冷凍サイクル内の循環冷媒量が過剰な場合に、冷凍サイクルの運転とは別に設けた接続用配管を介して、運転中の室外ユニットから停止中の室外ユニットに冷媒を回収している。また、接続用配管を使わずに低圧ガス側配管を介して、運転中の室外ユニットから停止中の室外ユニットに冷媒を回収することも記載されている。   In the refrigeration apparatus of Patent Document 2, when the amount of circulating refrigerant in the refrigeration cycle is excessive, the refrigerant is transferred from the outdoor unit being operated to the outdoor unit being stopped via a connection pipe provided separately from the operation of the refrigeration cycle. Is recovered. Further, it is also described that the refrigerant is recovered from the operating outdoor unit to the stopped outdoor unit through the low-pressure gas side piping without using the connection piping.

特開2000−097481号公報JP 2000-097481 A 特開2008−185229号公報JP 2008-185229 A

しかし、上記特許文献に記載の空気調和装置では、冷媒の排出又は回収時に各室外機同士を連結する配管が必要となるため、空気調和装置の据付性には改良の余地がある。また、上記特許文献2に記載の冷凍装置では、各室外機同士を連結する配管でなく低圧ガス側配管によって過剰な冷媒を回収するものも記載されているが、その際に停止中の室外ユニットの圧縮機と室外ファンを運転させる必要があるため、省エネ性にも改良の余地がある。   However, in the air conditioner described in the above-mentioned patent document, piping for connecting the outdoor units to each other at the time of discharging or collecting the refrigerant is necessary, so there is room for improvement in the installability of the air conditioner. In addition, in the refrigeration apparatus described in Patent Document 2, an apparatus that collects excess refrigerant by a low-pressure gas side pipe instead of a pipe that connects the outdoor units to each other is described. Because it is necessary to operate the compressor and outdoor fan, there is room for improvement in energy saving.

本発明の目的は、省エネ性を考慮し、且つ室外機同士を特別に配管で接続せずに冷媒を回収することができる据付性の良い空気調和装置を得ることにある。   An object of the present invention is to obtain an air conditioner with good installation properties capable of recovering refrigerant without specially connecting outdoor units with piping in consideration of energy saving.

本発明の他の目的は、室外機同士を特別に配管で接続せずに冷媒を排出することができる据付性の良い空気調和装置を得ることにある。   Another object of the present invention is to obtain an air conditioner having a good installation property capable of discharging refrigerant without connecting outdoor units to each other by piping.

また、実際の製品では冷媒の回収及び排出の両方が必要となる。特許文献2では、回収後に排出する場合、補助用三方弁の切換や圧縮機の運転を必要とするため、省エネ性に改良の余地がある。   In actual products, both recovery and discharge of the refrigerant are required. In Patent Document 2, when discharging after collection, it is necessary to switch the auxiliary three-way valve and operate the compressor, so there is room for improvement in energy saving.

本発明の更に他の目的は、省エネ性を考慮し、且つ室外機同士を配管等で接続せずに冷媒を回収及び排出することができる据付性の良い空気調和装置を得ることにある。   Still another object of the present invention is to obtain an air conditioner with good installation properties that can save and discharge refrigerant without connecting outdoor units with piping or the like in consideration of energy saving.

上記目的を達成するために、本発明の特徴は、室内熱交換器を有する複数台の室内機と、圧縮機,該圧縮機の吐出圧力を検出する吐出圧力検出手段,四方弁,室外熱交換器,室外膨張弁とを有する複数台の室外機と、運転中の第1の室外機に設けられた吐出圧力検出手段の圧力値に基づき停止中の第2の室外機に設けられた室外膨張弁の開閉制御を行う制御手段とを備え、該制御手段は、前記第1の室外機に設けられた吐出圧力検出手段の圧力値が所定の運転上限値以上となる場合に、前記第2の室外機に設けられた室外膨張弁を開く制御を行うことにある。   In order to achieve the above object, the present invention is characterized by a plurality of indoor units having an indoor heat exchanger, a compressor, discharge pressure detecting means for detecting the discharge pressure of the compressor, a four-way valve, and outdoor heat exchange. Outdoor expansion unit provided in the second outdoor unit that is stopped based on the pressure value of the discharge pressure detecting means provided in the first outdoor unit in operation and a plurality of outdoor units having a storage unit and an outdoor expansion valve Control means for performing opening / closing control of the valve, the control means when the pressure value of the discharge pressure detection means provided in the first outdoor unit is equal to or higher than a predetermined operation upper limit value, The purpose is to perform control to open an outdoor expansion valve provided in the outdoor unit.

また、他の特徴は、室内熱交換器を有する複数台の室内機と、圧縮機,該圧縮機の吐出圧力を検出する吐出圧力検出手段,四方弁,室外熱交換器,前記圧縮機と前記四方弁とを接続する冷媒吐出側配管から前記四方弁と前記圧縮機とを接続する冷媒吸込側配管へ接続されるバイパス管、該バイパス管を流れる冷媒量を制御するバイパス電磁弁とを有する複数台の室外機と、運転中の第1の室外機に設けられた吐出圧力検出手段の圧力値に基づき停止中の第2の室外機に設けられたバイパス電磁弁の開閉制御を行う制御手段とを備え、該制御手段は、冷房運転時に前記第1の室外機に設けられた吐出圧力検出手段の圧力値が所定の運転下限値以下となる場合に、前記第2の室外機に設けられたバイパス電磁弁を開く制御を行うことにある。   Other features include a plurality of indoor units having an indoor heat exchanger, a compressor, discharge pressure detecting means for detecting the discharge pressure of the compressor, a four-way valve, an outdoor heat exchanger, the compressor and the A plurality of bypass pipes connected from the refrigerant discharge side pipe connecting the four-way valve to the refrigerant suction side pipe connecting the four-way valve and the compressor, and a bypass solenoid valve for controlling the amount of refrigerant flowing through the bypass pipe And a control means for performing opening / closing control of a bypass electromagnetic valve provided in the stopped second outdoor unit based on a pressure value of a discharge pressure detecting means provided in the first outdoor unit in operation And the control means is provided in the second outdoor unit when the pressure value of the discharge pressure detecting means provided in the first outdoor unit is equal to or lower than a predetermined operation lower limit value during cooling operation. The control is to open the bypass solenoid valve.

更に、他の特徴は、室内熱交換器を有する複数台の室内機と、圧縮機,該圧縮機の吐出圧力を検出する吐出圧力検出手段,四方弁,室外熱交換器,前記圧縮機と前記四方弁とを接続する冷媒吐出側配管から前記四方弁と前記圧縮機とを接続する冷媒吸込側配管へ接続されるバイパス管,該バイパス管を流れる冷媒量を制御するバイパス電磁弁とを有する複数台の室外機と、運転中の第1の室外機に設けられた第1の吐出圧力検出手段の圧力値に基づき停止中の第2の室外機に設けられた室外膨張弁とバイパス電磁弁の開閉制御を行う制御手段とを備え、該制御手段は、冷房運転時に前記第1の室外機に設けられた吐出圧力検出手段の圧力値が所定の運転上限値以上となる場合に、前記第2の室外機に設けられた室外膨張弁を開き、前記第1の室外機に設けられた吐出圧力検出手段の圧力値が所定の運転下限値以下となる場合に、前記第2の室外機に設けられたバイパス電磁弁を開く制御を行うことにある。   Furthermore, other features include a plurality of indoor units having an indoor heat exchanger, a compressor, discharge pressure detecting means for detecting a discharge pressure of the compressor, a four-way valve, an outdoor heat exchanger, the compressor and the A plurality of bypass pipes connected from the refrigerant discharge side pipe connecting the four-way valve to the refrigerant suction side pipe connecting the four-way valve and the compressor, and a bypass solenoid valve for controlling the amount of refrigerant flowing through the bypass pipe Of the outdoor expansion valve and the bypass solenoid valve provided in the stopped second outdoor unit based on the pressure value of the first discharge pressure detecting means provided in the first outdoor unit and the first outdoor unit in operation Control means for performing opening and closing control, the control means when the pressure value of the discharge pressure detection means provided in the first outdoor unit during cooling operation is equal to or higher than a predetermined operation upper limit value Open the outdoor expansion valve provided in the outdoor unit of the first, When the pressure value of the discharge pressure detecting means provided in the outer machine is less than or equal to a predetermined operating lower limit value is to perform the control to open the bypass solenoid valve provided in the second outdoor unit.

本発明によれば、省エネ且つ据付性良く冷媒を回収することができる。   According to the present invention, it is possible to recover the refrigerant with energy saving and good installability.

また、据付性良く冷媒を排出することができる。   Further, the refrigerant can be discharged with good installation properties.

更に、省エネ且つ据付性良く冷媒を回収及び排出することができる。   Furthermore, it is possible to recover and discharge the refrigerant with good energy saving and good installation.

本発明の実施例1に係る空気調和装置の冷房運転時における冷媒回収動作を示す冷媒回路図。The refrigerant circuit figure which shows the refrigerant | coolant collection | recovery operation | movement at the time of air_conditionaing | cooling operation of the air conditioning apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る空気調和装置の暖房運転時における冷媒回収動作を示す冷媒回路図。The refrigerant circuit diagram which shows the refrigerant | coolant collection | recovery operation | movement at the time of the heating operation of the air conditioning apparatus which concerns on Example 1 of this invention. 本発明の実施例2に係る空気調和装置の冷房運転時における冷媒排出動作を示す冷媒回路図。The refrigerant circuit diagram which shows the refrigerant | coolant discharge operation | movement at the time of air_conditionaing | cooling operation of the air conditioning apparatus which concerns on Example 2 of this invention. 本発明の実施例2に係る空気調和装置の暖房運転時における冷媒排出動作を示す冷媒回路図。The refrigerant circuit figure which shows the refrigerant | coolant discharge operation | movement at the time of the heating operation of the air conditioning apparatus which concerns on Example 2 of this invention.

以下、本発明の実施例を図1〜図4を用いて説明する。   Embodiments of the present invention will be described below with reference to FIGS.

図1は、実施例1における冷房運転時の冷媒回収動作を示す冷媒回路図、図2は、実施例1における暖房運転時の冷媒回収動作を示す冷媒回路図である。本実施例の空気調和装置は、2台の室外機100a,100bと3台の室内機200a〜200cが、それぞれ並列に配管で接続される。2台の室外機100a,100bは、それぞれ圧縮機1a,1b、四方弁2a,2b、室外熱交換器3a,3b、室外膨張弁4a,4b、液阻止弁11a,11b、ガス阻止弁10a,10b、アキュムレータ5a,5bを備え、順次配管で接続される。圧縮機1a,1bの吐出側配管には、圧縮機1a,1bの吐出側圧力を検出する吐出圧力センサ7a,7bが設けられ、室外熱交換器3a,3b近傍には室外ファン(図示せず)が設けられている。各室外機には空気調和装置を制御するためのマイクロコンピュータ(制御手段)20a,20bが設けられ、これらのマイクロコンピュータ20a,20bは、吐出圧力センサ7a,7bの出力信号を受信できるように接続される共に、室外膨張弁4a,4bに対して開度信号を送信できるように接続されている。マイクロコンピュータ20a,20b内には、吐出圧力センサ7a,7bの出力信号に基づいて吐出圧力の値を検出する圧力検知手段(図示せず)と、この圧力検知手段の値に基づいて室外膨張弁4a,4bの開度を制御する膨張弁開度制御手段(図示せず)、空気調和装置の運転を可能にするために必要な制御手段(図示せず)等が組み込まれている。また、各室外機に搭載されているマイクロコンピュータ20a,20b間は、双方向で通信できるように接続される。各室外機のマイクロコンピュータとは別に、更にマスターコントローラを設けて各制御を指示してもよく、各室外機にはマイクロコンピュータを設けずにマスターコントローラだけで各室外機内の機器と通信し制御するものであってもよい。四方弁2a,2bと圧縮機1a,1bの吐出側との間に、冷媒が圧縮機1a,1bへ逆流しないように逆止弁6a,6bが設けられている。また、室内機200a〜200cには、室内熱交換器12a〜12c,室内膨張弁13a〜13cが設けられている。   FIG. 1 is a refrigerant circuit diagram illustrating a refrigerant recovery operation during cooling operation according to the first embodiment, and FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant recovery operation during heating operation according to the first embodiment. In the air conditioner of this embodiment, two outdoor units 100a and 100b and three indoor units 200a to 200c are connected in parallel with each other by piping. The two outdoor units 100a and 100b include compressors 1a and 1b, four-way valves 2a and 2b, outdoor heat exchangers 3a and 3b, outdoor expansion valves 4a and 4b, liquid blocking valves 11a and 11b, and gas blocking valves 10a, respectively. 10b and accumulators 5a and 5b, which are sequentially connected by piping. Discharge pressure sensors 7a and 7b for detecting the discharge side pressure of the compressors 1a and 1b are provided in the discharge side pipes of the compressors 1a and 1b, and an outdoor fan (not shown) is provided in the vicinity of the outdoor heat exchangers 3a and 3b. ) Is provided. Each outdoor unit is provided with microcomputers (control means) 20a and 20b for controlling the air conditioner, and these microcomputers 20a and 20b are connected so as to receive the output signals of the discharge pressure sensors 7a and 7b. At the same time, it is connected so that an opening degree signal can be transmitted to the outdoor expansion valves 4a and 4b. In the microcomputers 20a and 20b, pressure detection means (not shown) for detecting the value of the discharge pressure based on the output signals of the discharge pressure sensors 7a and 7b, and the outdoor expansion valve based on the value of the pressure detection means An expansion valve opening degree control means (not shown) for controlling the opening degree of 4a and 4b, a control means (not shown) necessary for enabling the operation of the air conditioner, and the like are incorporated. Further, the microcomputers 20a and 20b mounted in each outdoor unit are connected so as to be able to communicate bidirectionally. In addition to the microcomputer of each outdoor unit, a master controller may be provided to instruct each control, and each outdoor unit is not provided with a microcomputer, and only the master controller communicates with and controls the devices in each outdoor unit. It may be a thing. Check valves 6a and 6b are provided between the four-way valves 2a and 2b and the discharge sides of the compressors 1a and 1b so that the refrigerant does not flow back to the compressors 1a and 1b. The indoor units 200a to 200c are provided with indoor heat exchangers 12a to 12c and indoor expansion valves 13a to 13c.

本実施例の冷房運転時の冷媒回収動作について、図1を用いて説明する。室内機200aを冷房運転し、室内機200b,200cは停止状態とする。室内機200aの運転容量が室外機1台の運転容量よりも小さい場合は、2台の室外機のうち、1台は停止状態とし、1台を運転させる。   The refrigerant recovery operation during the cooling operation of this embodiment will be described with reference to FIG. The indoor unit 200a is cooled and the indoor units 200b and 200c are stopped. When the operating capacity of the indoor unit 200a is smaller than the operating capacity of one outdoor unit, one of the two outdoor units is stopped and one unit is operated.

本実施例では、実線矢印の如く冷媒が流れ、室外機100bに設けられた圧縮機1bにより高温高圧のガス冷媒に圧縮され、四方弁2b,室外熱交換器3bを通り、室外熱交換器3bを通る空気と熱交換して凝縮液化し、室外膨張弁4b,液阻止弁11bを通り、室外機100bから流出される。室外機100bから流出された冷媒は、液側分岐ユニット14を通り、各室内機200a〜200c側と室外機100a側に分配される。室外機100a側に分岐された冷媒は、室外機100aの液阻止弁11aを通り室外膨張弁4aに導かれる。ここで、室外機100aは停止状態であり、室外膨張弁4aは全閉であるため、液冷媒はこれ以上室外機100a内部に進むことはできず、室外膨張弁4aと液側分岐ユニット14とを接続する配管内が液冷媒で満たされる。   In the present embodiment, the refrigerant flows as indicated by solid arrows, and is compressed into a high-temperature and high-pressure gas refrigerant by the compressor 1b provided in the outdoor unit 100b, passes through the four-way valve 2b and the outdoor heat exchanger 3b, and passes through the outdoor heat exchanger 3b. Heat exchanges with the air passing through and condensates into liquid, passes through the outdoor expansion valve 4b and the liquid blocking valve 11b, and flows out of the outdoor unit 100b. The refrigerant that has flowed out of the outdoor unit 100b passes through the liquid side branch unit 14, and is distributed to the indoor units 200a to 200c side and the outdoor unit 100a side. The refrigerant branched to the outdoor unit 100a side is guided to the outdoor expansion valve 4a through the liquid blocking valve 11a of the outdoor unit 100a. Here, since the outdoor unit 100a is in a stopped state and the outdoor expansion valve 4a is fully closed, the liquid refrigerant cannot go further into the outdoor unit 100a, and the outdoor expansion valve 4a and the liquid side branch unit 14 The pipe connecting the two is filled with the liquid refrigerant.

また、各室内機200a〜200cに分配された冷媒は、各室内膨張弁13a〜13cに導かれる。室内機200b,200cは停止しているため、その室内機200b,200cに付設する室内膨張弁13b,13cは全閉であり、室内機200b,200c内にそれ以上液冷媒が流入しない。室内機200aは冷房運転しているため、室内膨張弁13aで冷房運転に必要な所定の圧力に減圧され、室内熱交換器12aに流入する。冷媒が室内熱交換器12aを通過する空気と熱交換して蒸発ガス化する際に、空気が冷却されて冷房運転が行われる。室内熱交換器12aで蒸発した冷媒は、ガス側分岐ユニット15を通り、各室外機100a,100bに分配される。室外機100aは、室外機100aの周囲空気温度に相当する飽和圧力状態となっており、ガス側分岐ユニット15部の圧力よりも高い状態となる。このため、室外機100a内の冷媒がガス側分岐ユニット15に導かれ、室外機100a内の圧力がガス側分岐ユニット15と同等圧力となるまで低下する。   Moreover, the refrigerant | coolant distributed to each indoor unit 200a-200c is guide | induced to each indoor expansion valve 13a-13c. Since the indoor units 200b and 200c are stopped, the indoor expansion valves 13b and 13c attached to the indoor units 200b and 200c are fully closed, and no more liquid refrigerant flows into the indoor units 200b and 200c. Since the indoor unit 200a is in a cooling operation, the indoor expansion valve 13a is depressurized to a predetermined pressure necessary for the cooling operation and flows into the indoor heat exchanger 12a. When the refrigerant exchanges heat with the air passing through the indoor heat exchanger 12a to evaporate, the air is cooled and the cooling operation is performed. The refrigerant evaporated in the indoor heat exchanger 12a passes through the gas side branch unit 15 and is distributed to the outdoor units 100a and 100b. The outdoor unit 100a is in a saturated pressure state corresponding to the ambient air temperature of the outdoor unit 100a, and is higher than the pressure of the gas side branch unit 15 part. For this reason, the refrigerant in the outdoor unit 100 a is guided to the gas side branch unit 15, and the pressure in the outdoor unit 100 a decreases until the pressure in the outdoor unit 100 a becomes equal to that of the gas side branch unit 15.

一方、室外機100b内に導かれた冷媒は、室外機100bのガス阻止弁10b、四方弁2bを通過してアキュムレータ5bに流れ込む。アキュムレータ5bでは、気液に分離され所定の冷媒かわき度に調整され、圧縮機1bに吸い込まれ、冷凍サイクルが形成される。   On the other hand, the refrigerant introduced into the outdoor unit 100b passes through the gas blocking valve 10b and the four-way valve 2b of the outdoor unit 100b and flows into the accumulator 5b. In the accumulator 5b, it is separated into gas and liquid, adjusted to a predetermined refrigerant clearance, and sucked into the compressor 1b to form a refrigeration cycle.

ここで、運転容量が非常に大きい室内機200b,200cを設置する場合は、停止している室内機200b,200cで冷房運転を行う際に必要とされる冷媒も、運転している室外機100b内に全て流入する。このため、室外機100bの室外熱交換器3b内に冷媒が貯留され、冷媒過冷却度が増加し吐出圧力が上昇する。この室外熱交換器3b内に貯留される冷媒量がある所定量を超えると、吐出圧力が圧縮機1bの連続運転可能な上限の圧力を超えるので、圧縮機1bの信頼性が低下する。このため、圧縮機1bの運転容量をインバータ等で減ずることで、圧縮機1bの信頼性を確保する方法がある。しかし、この場合は冷房運転している室内機200aへの冷媒循環量が低減するので、室内負荷に応じた冷房能力を発揮できなくなり、室内の快適性が損なわれてしまう。   Here, when the indoor units 200b and 200c having a very large operating capacity are installed, the refrigerant required for the cooling operation of the stopped indoor units 200b and 200c is also the operating outdoor unit 100b. All flows in. For this reason, a refrigerant | coolant is stored in the outdoor heat exchanger 3b of the outdoor unit 100b, a refrigerant | coolant supercooling degree increases and discharge pressure rises. If the amount of refrigerant stored in the outdoor heat exchanger 3b exceeds a predetermined amount, the discharge pressure exceeds the upper limit pressure at which the compressor 1b can be continuously operated, and thus the reliability of the compressor 1b decreases. For this reason, there is a method of ensuring the reliability of the compressor 1b by reducing the operating capacity of the compressor 1b with an inverter or the like. However, in this case, since the refrigerant circulation amount to the indoor unit 200a that is performing the cooling operation is reduced, the cooling ability according to the indoor load cannot be exhibited, and the indoor comfort is impaired.

そこで本実施例では、室外機100bだけを運転する場合に、停止している室外機100a内に余剰冷媒を貯留し(冷媒回収動作)、運転している室外機100bの吐出圧力を低下させる。即ち、運転している室外機100bに付設する吐出圧力センサ7bの値が、圧縮機1bの連続運転可能な運転上限値以上の圧力となった場合に、停止している室外機100aに付設する室外膨張弁4aを所定の開度に開く。図1に示す点線矢印の如く、室外機100bから流出する高圧液冷媒が液側分岐ユニット14を通り、停止している室外機100aの室外熱交換器3aに余分な冷媒を貯留できる。本実施例によれば、室外機100aの室外膨張弁4a側から冷媒を回収するので、圧縮機1aを起動させる必要がない。また、室外機100bの室外熱交換器3bを通って液化した冷媒が流れてくるので、室外ファンを起動させて室外熱交換器3aで液化させる必要がない。従って、回収作業に無駄な電力を使わず省エネとなる。   Therefore, in this embodiment, when only the outdoor unit 100b is operated, excess refrigerant is stored in the stopped outdoor unit 100a (refrigerant recovery operation), and the discharge pressure of the operating outdoor unit 100b is reduced. That is, when the value of the discharge pressure sensor 7b attached to the operating outdoor unit 100b is equal to or higher than the operation upper limit value at which the compressor 1b can be continuously operated, it is attached to the stopped outdoor unit 100a. The outdoor expansion valve 4a is opened to a predetermined opening. As indicated by the dotted arrows in FIG. 1, the high-pressure liquid refrigerant flowing out of the outdoor unit 100b passes through the liquid side branch unit 14, and excess refrigerant can be stored in the outdoor heat exchanger 3a of the stopped outdoor unit 100a. According to the present embodiment, since the refrigerant is recovered from the outdoor expansion valve 4a side of the outdoor unit 100a, there is no need to start the compressor 1a. Further, since the liquefied refrigerant flows through the outdoor heat exchanger 3b of the outdoor unit 100b, there is no need to activate the outdoor fan and liquefy it with the outdoor heat exchanger 3a. Therefore, energy is saved without using wasteful power for the collection work.

仮に室外熱交換器3aから冷媒が流出しても、四方弁2aが冷房運転モードで切換えられている場合は、圧縮機1aの吐出側と四方弁2aとの間に逆止弁6aを設けることで、逆止弁6aで冷媒を止めることができる。四方弁2aが暖房運転モードで切換えられている場合は、圧縮機1aの吸入側と四方弁2aとの間にアキュムレータ5aを設けることで、アキュムレータ5aに冷媒を溜めることができるので、次に圧縮機1aを起動させるときに液圧縮をするおそれが低減する。   Even if the refrigerant flows out of the outdoor heat exchanger 3a, if the four-way valve 2a is switched in the cooling operation mode, a check valve 6a is provided between the discharge side of the compressor 1a and the four-way valve 2a. Thus, the refrigerant can be stopped by the check valve 6a. When the four-way valve 2a is switched in the heating operation mode, the refrigerant can be stored in the accumulator 5a by providing the accumulator 5a between the suction side of the compressor 1a and the four-way valve 2a. The risk of liquid compression when starting the machine 1a is reduced.

室外機100aに液冷媒が貯留されると、運転している室外機100bに付設する吐出圧力センサ7bの値が低下し始める。吐出圧力センサ7bの値が、圧縮機1bの連続運転可能な運転上限値よりも低下した場合に、停止している室外機100aに付設する室外膨張弁4aを全閉にすることで、室外膨張弁4aから流れ出すことなく室外機100a内の室外熱交換器3aに冷媒を保持することができる。このため、運転している室外機100b及び室内機200a内の冷媒量は常に適正な量に維持することができ、室内機200aの冷房能力を低下させることなく、圧縮機1bの信頼性を維持できる。吐出圧力の変動は吐出圧力センサ7bですぐに検出できるので、室外膨張弁4aの開閉を早く判断できる。これにより、圧縮機1bが運転に適した圧力範囲からずれる時間が短くてすむため、圧縮機1bの信頼性の向上にもつながる。   When the liquid refrigerant is stored in the outdoor unit 100a, the value of the discharge pressure sensor 7b attached to the operating outdoor unit 100b starts to decrease. When the value of the discharge pressure sensor 7b is lower than the operation upper limit value at which the compressor 1b can be continuously operated, the outdoor expansion valve 4a attached to the stopped outdoor unit 100a is fully closed, thereby expanding the outdoor expansion. The refrigerant can be held in the outdoor heat exchanger 3a in the outdoor unit 100a without flowing out from the valve 4a. For this reason, the amount of refrigerant in the outdoor unit 100b and the indoor unit 200a in operation can always be maintained at an appropriate amount, and the reliability of the compressor 1b is maintained without reducing the cooling capacity of the indoor unit 200a. it can. Since the fluctuation of the discharge pressure can be detected immediately by the discharge pressure sensor 7b, the opening / closing of the outdoor expansion valve 4a can be determined quickly. Thereby, since the time which the compressor 1b deviates from the pressure range suitable for driving | operation is short, it leads also to the improvement of the reliability of the compressor 1b.

次に、本実施例の暖房運転時の冷媒回収動作について、図2を用いて説明する。室内機200aを暖房運転し、室内機200b,200cは停止状態とする。室内機200aの運転容量が室外機1台の運転容量よりも小さい場合は、2台ある室外機のうち、1台は停止状態とし、1台を運転させる。   Next, the refrigerant | coolant collection | recovery operation | movement at the time of the heating operation of a present Example is demonstrated using FIG. The indoor unit 200a is heated and the indoor units 200b and 200c are stopped. When the operation capacity of the indoor unit 200a is smaller than the operation capacity of one outdoor unit, one of the two outdoor units is stopped and one is operated.

本実施例では、一点鎖線矢印の如く冷媒が流れ、室外機100bに設けられた圧縮機1bにより高温高圧のガス冷媒に圧縮され、四方弁2b,ガス阻止弁10bを通り、室外機100bより流出される。室外機100bから流出された冷媒は、ガス側分岐ユニット15を通り、室外機100a側と各室内機200a〜200c側に分配される。室外機100aに分配されたガス冷媒は、ガス阻止弁10aを通り、四方弁2aを通り逆止弁6aに到達する。ここで、逆止弁6aは、圧縮機1aへの逆流を防止するように設置されているため、ガス冷媒はそれ以上室外機100a内には進入できない。   In the present embodiment, the refrigerant flows as indicated by a one-dot chain line arrow, is compressed into a high-temperature and high-pressure gas refrigerant by the compressor 1b provided in the outdoor unit 100b, passes through the four-way valve 2b and the gas blocking valve 10b, and flows out from the outdoor unit 100b. Is done. The refrigerant that has flowed out of the outdoor unit 100b passes through the gas side branch unit 15 and is distributed to the outdoor unit 100a side and the indoor units 200a to 200c side. The gas refrigerant distributed to the outdoor unit 100a passes through the gas blocking valve 10a, passes through the four-way valve 2a, and reaches the check valve 6a. Here, since the check valve 6a is installed so as to prevent the backflow to the compressor 1a, the gas refrigerant cannot enter the outdoor unit 100a any more.

一方、各室内機200a〜200cに分配されたガス冷媒は、各室内熱交換器12a〜12cに流入する。室内機200aは暖房運転しているため、室内熱交換器12aを通過する空気と熱交換して凝縮液化する際に、空気が加熱され暖房運転が行われる。また、他の室内機200b,200cは停止状態であるため、各室内熱交換器12b,12cに流入したガス冷媒は殆ど熱交換できない。室内機200aの室内膨張弁13aは暖房運転を行うため全開もしくは所定の開度に調整される。また、室内機200b,200cの室内熱交換器12b,12c内では自然対流により微量の熱交換が生じるが、室内膨張弁13b,13cは、冷媒が液化しない程度に開度が調整される。各室内膨張弁13a〜13cで調整された冷媒は合流して液側分岐ユニット14を通り、各室外機100a,100bに分配される。   On the other hand, the gas refrigerant distributed to the indoor units 200a to 200c flows into the indoor heat exchangers 12a to 12c. Since the indoor unit 200a is in a heating operation, the air is heated and the heating operation is performed when heat is exchanged with the air passing through the indoor heat exchanger 12a to be condensed and liquefied. Further, since the other indoor units 200b and 200c are in a stopped state, the gas refrigerant flowing into the indoor heat exchangers 12b and 12c can hardly exchange heat. The indoor expansion valve 13a of the indoor unit 200a is fully opened or adjusted to a predetermined opening to perform the heating operation. In addition, a small amount of heat exchange occurs by natural convection in the indoor heat exchangers 12b and 12c of the indoor units 200b and 200c, but the opening degree of the indoor expansion valves 13b and 13c is adjusted so that the refrigerant is not liquefied. The refrigerant adjusted by the indoor expansion valves 13a to 13c merges, passes through the liquid side branch unit 14, and is distributed to the outdoor units 100a and 100b.

室外機100aに分配された冷媒は、液阻止弁11aを通り室外膨張弁4aに導かれる。室外機100aは停止していて、室外膨張弁4aは全閉となっているため、それ以上冷媒は室外機100a内に進入できない。一方、室外機100bに分配された冷媒は、液阻止弁11bを通り室外膨張弁4bで必要な所定の圧力に減圧され室外熱交換器3b内に流入し、室外熱交換器3bを通過する空気と熱交換して蒸発ガス化する。室外熱交換器3bで蒸発した冷媒は、四方弁2bを通過してアキュムレータ5bに流れ込む。アキュムレータ5bでは、気液に分離され所定の冷媒かわき度に調整され、圧縮機1bに吸い込まれ、冷凍サイクルが形成される。   The refrigerant distributed to the outdoor unit 100a passes through the liquid blocking valve 11a and is guided to the outdoor expansion valve 4a. Since the outdoor unit 100a is stopped and the outdoor expansion valve 4a is fully closed, no more refrigerant can enter the outdoor unit 100a. On the other hand, the refrigerant distributed to the outdoor unit 100b passes through the liquid blocking valve 11b, is reduced to a predetermined pressure required by the outdoor expansion valve 4b, flows into the outdoor heat exchanger 3b, and passes through the outdoor heat exchanger 3b. Exchanges heat with gas. The refrigerant evaporated in the outdoor heat exchanger 3b passes through the four-way valve 2b and flows into the accumulator 5b. In the accumulator 5b, it is separated into gas and liquid, adjusted to a predetermined refrigerant clearance, and sucked into the compressor 1b to form a refrigeration cycle.

ここで、運転容量が非常に大きい室内機200b,200cを設置する場合は、停止している室内機200b,200cで暖房運転を行う際に必要とされる冷媒が、運転している室内機200a内に全て流入する。このため、室内機200aの室内熱交換器12a内に冷媒が貯留され、冷媒過冷却度が増加し吐出圧力が上昇する。この室内熱交換器12a内に貯留される冷媒量がある所定量を超えると、吐出圧力が圧縮機1bの連続運転可能な上限の圧力を超えるので、圧縮機1bの信頼性が低下する。このため、圧縮機1bの運転容量をインバータ等で減ずることで、圧縮機1bの信頼性を確保する方法がある。しかし、この場合は暖房運転している室内機200aへの冷媒循環量が低減するので、室内負荷に応じた暖房能力を発揮できなくなり、室内の快適性が損なわれてしまう。   Here, when installing the indoor units 200b and 200c having a very large operation capacity, the refrigerant that is required when the heating operation is performed in the stopped indoor units 200b and 200c is the indoor unit 200a that is being operated. All flows in. For this reason, a refrigerant | coolant is stored in the indoor heat exchanger 12a of the indoor unit 200a, a refrigerant | coolant supercooling degree increases, and a discharge pressure rises. If the amount of refrigerant stored in the indoor heat exchanger 12a exceeds a predetermined amount, the discharge pressure exceeds the upper limit pressure at which the compressor 1b can be operated continuously, so that the reliability of the compressor 1b decreases. For this reason, there is a method of ensuring the reliability of the compressor 1b by reducing the operating capacity of the compressor 1b with an inverter or the like. However, in this case, since the refrigerant circulation amount to the indoor unit 200a that is in the heating operation is reduced, the heating ability corresponding to the indoor load cannot be exhibited, and the indoor comfort is impaired.

そこで本実施例では、室外機100bだけを運転する場合に、停止している室外機100a内に余剰冷媒を貯留し、運転している室外機100bの吐出圧力を低下させる。即ち、運転している室外機100bに付設する吐出圧力センサ7bの値が圧縮機1bの連続運転可能な運転上限値以上の圧力となった場合に、停止している室外機100aに付設する室外膨張弁4aの開度を所定の開度に開く。図2に示す点線矢印の如く、室内機200aから流出する高圧液冷媒が液側分岐ユニット14を通り、停止している室外機100aの室外熱交換器3a及びアキュムレータ5a内に導かれることで、停止している室外機100aに余分な冷媒を貯留できる。本実施例によれば、室外機100aの室外膨張弁4a側から冷媒を回収するので、圧縮機1aを起動させる必要がない。また、室内熱交換器を通って液化した冷媒が流れてくるので、室外ファンを起動させて室外熱交換器3aで液化させる必要がない。従って、回収作業に無駄な電力を使わず省エネとなる。   Therefore, in this embodiment, when only the outdoor unit 100b is operated, excess refrigerant is stored in the stopped outdoor unit 100a, and the discharge pressure of the operating outdoor unit 100b is reduced. That is, when the value of the discharge pressure sensor 7b attached to the operating outdoor unit 100b is equal to or higher than the operation upper limit value capable of continuous operation of the compressor 1b, the outdoor attached to the stopped outdoor unit 100a. The opening degree of the expansion valve 4a is opened to a predetermined opening degree. As shown by the dotted arrow in FIG. 2, the high-pressure liquid refrigerant flowing out from the indoor unit 200a passes through the liquid side branch unit 14 and is led into the outdoor heat exchanger 3a and the accumulator 5a of the stopped outdoor unit 100a. Excess refrigerant can be stored in the stopped outdoor unit 100a. According to the present embodiment, since the refrigerant is recovered from the outdoor expansion valve 4a side of the outdoor unit 100a, there is no need to start the compressor 1a. Further, since the liquefied refrigerant flows through the indoor heat exchanger, there is no need to activate the outdoor fan and liquefy it with the outdoor heat exchanger 3a. Therefore, energy is saved without using wasteful power for the collection work.

仮に室外熱交換器3aから冷媒が流出しても、四方弁2aが冷房運転モードで切換えられている場合は、圧縮機1aの吐出側と四方弁2aとの間に逆止弁6aを設けることで、逆止弁6aで冷媒を止めることができる。四方弁2aが暖房運転モードで切換えられている場合は、圧縮機1aの吸入側と四方弁2aとの間にアキュムレータ5aを設けることで、アキュムレータ5aに冷媒を溜めることができるので、次に圧縮機1aを起動させるときに液圧縮をするおそれが低減する。   Even if the refrigerant flows out of the outdoor heat exchanger 3a, if the four-way valve 2a is switched in the cooling operation mode, a check valve 6a is provided between the discharge side of the compressor 1a and the four-way valve 2a. Thus, the refrigerant can be stopped by the check valve 6a. When the four-way valve 2a is switched in the heating operation mode, the refrigerant can be stored in the accumulator 5a by providing the accumulator 5a between the suction side of the compressor 1a and the four-way valve 2a. The risk of liquid compression when starting the machine 1a is reduced.

室外機100aに液冷媒が貯留されると運転している室外機100bに付設する吐出圧力センサ7bの値が低下し始める。吐出圧力センサ7bの値が圧縮機1bの連続運転可能な運転上限値よりも低下した場合に、停止している室外機100aに付設する室外膨張弁4aを全閉にすることで、室外膨張弁4aから流れ出ることなく停止している室外機100a内の室外熱交換器3a及びアキュムレータ5aに保持できる。このため、運転している室外機100b及び室内機200a内の冷媒量は常に適正な量に維持することができ、室内機200aの暖房能力を低下させることなく、圧縮機1bの信頼性を維持できる。   When the liquid refrigerant is stored in the outdoor unit 100a, the value of the discharge pressure sensor 7b attached to the operating outdoor unit 100b starts to decrease. When the value of the discharge pressure sensor 7b is lower than the operation upper limit value at which the compressor 1b can be continuously operated, the outdoor expansion valve 4a attached to the stopped outdoor unit 100a is fully closed, so that the outdoor expansion valve It can hold | maintain in the outdoor heat exchanger 3a and the accumulator 5a in the outdoor unit 100a which has stopped without flowing out from 4a. For this reason, the amount of refrigerant in the outdoor unit 100b and the indoor unit 200a in operation can always be maintained at an appropriate amount, and the reliability of the compressor 1b is maintained without reducing the heating capacity of the indoor unit 200a. it can.

以上の構成により、複数台の室外機で構成される空気調和装置において、複数台の室外機同士を配管等で接続せずに冷媒の回収が可能な、据付性の良い空気調和システムを実現することができる。   With the above configuration, in an air conditioner configured with a plurality of outdoor units, an air conditioning system with a good installation property capable of collecting the refrigerant without connecting the plurality of outdoor units with piping or the like is realized. be able to.

本実施例の空気調和装置の冷媒排出動作について図3及び図4を用いて説明する。
図3は、実施例2における冷房運転時の冷媒排出動作を示す冷媒回路図、図4は、実施例2における暖房運転時の冷媒排出動作を示す冷媒回路図である。図1及び図2と同符号のものは同一のものを示す。本実施例では更に、逆止弁6a,6bと四方弁2a,2bを接続する吐出側配管から、四方弁2a,2bとアキュムレータ5a,5bとを接続する吸入側配管との間にバイパス管8a,8bを設け、バイパス管8a,8bには、バイパス管を流れる冷媒を調整するためのバイパス電磁弁9a,9bが設けられている。本実施例のマイクロコンピュータ20a,20bは、更にバイパス電磁弁9a,9bに開閉信号を送信できるように接続され、バイパス電磁弁9a,9bの開閉を制御する開閉弁制御手段(図示せず)が組み込まれている。
The refrigerant | coolant discharge | emission operation | movement of the air conditioning apparatus of a present Example is demonstrated using FIG.3 and FIG.4.
FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant discharge operation during cooling operation in the second embodiment, and FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant discharge operation during heating operation in the second embodiment. 1 and 2 denote the same components. In the present embodiment, the bypass pipe 8a is further provided between the discharge side pipe connecting the check valves 6a and 6b and the four-way valves 2a and 2b and the suction side pipe connecting the four-way valves 2a and 2b and the accumulators 5a and 5b. 8b, and bypass pipes 8a and 8b are provided with bypass solenoid valves 9a and 9b for adjusting the refrigerant flowing through the bypass pipe. The microcomputers 20a and 20b of this embodiment are further connected so as to be able to transmit an opening / closing signal to the bypass solenoid valves 9a and 9b, and an opening / closing valve control means (not shown) for controlling the opening and closing of the bypass solenoid valves 9a and 9b. It has been incorporated.

冷房運転時の冷媒排出動作について図3を用いて説明する。各室内機の運転状態は、図1における冷媒回収動作で説明した内容と同様であり、ここでは省略する。   The refrigerant discharge operation during the cooling operation will be described with reference to FIG. The operation state of each indoor unit is the same as that described in the refrigerant recovery operation in FIG.

室内機200aが冷房運転している状態で室内機200bも冷房運転を開始する場合、室内機200aと室内機200bの合計冷房運転容量が、運転している室外機100bの容量よりも小さい場合であっても、室外機100bの1台運転を継続する。室外機100a内には、室外機100bと室内機200aで冷房運転する場合に必要な冷媒量となるようにしたときに余分となる冷媒が貯留されている。このため、室内機200bが冷房運転で必要とする冷媒を貯留した冷媒から補充しなければ、運転している室外機100b内の冷媒が減少して室外機100bの吐出圧力が低下し、室外熱交換器3bで十分な放熱ができなくなるので、室内機200a及び室内機200bで発生する冷房能力も低下する。   When the indoor unit 200b also starts the cooling operation in a state where the indoor unit 200a is in the cooling operation, the total cooling operation capacity of the indoor unit 200a and the indoor unit 200b is smaller than the capacity of the operating outdoor unit 100b. Even if there is, the operation of one outdoor unit 100b is continued. In the outdoor unit 100a, extra refrigerant is stored when the refrigerant amount is required when cooling with the outdoor unit 100b and the indoor unit 200a. For this reason, unless the indoor unit 200b replenishes the refrigerant required for the cooling operation from the stored refrigerant, the refrigerant in the outdoor unit 100b in operation decreases, the discharge pressure of the outdoor unit 100b decreases, and the outdoor heat Since sufficient heat dissipation cannot be performed by the exchanger 3b, the cooling capacity generated in the indoor unit 200a and the indoor unit 200b is also reduced.

また、室外機100a,100bの周囲温度が室内機200a〜200cの周囲温度よりも低い状態で、空気調和装置を長時間停止状態としていた場合は、室外機100a及び室外機100b内に液冷媒が貯留される。このときは室外熱交換器3a,3bだけでなく、アキュムレータ5a,5bにも冷媒が貯留される。室内機200aの冷房運転を開始した場合に、停止している室外機100a内に冷媒が貯留したままなので、空気調和装置全体に必要な冷媒が不足して、室内機200aで十分な冷房能力を発揮できず、室内の快適性が損なわれてしまう。   In addition, when the ambient temperature of the outdoor units 100a and 100b is lower than the ambient temperature of the indoor units 200a to 200c and the air conditioner has been stopped for a long time, liquid refrigerant is generated in the outdoor unit 100a and the outdoor unit 100b. Stored. At this time, the refrigerant is stored not only in the outdoor heat exchangers 3a and 3b but also in the accumulators 5a and 5b. When the cooling operation of the indoor unit 200a is started, since the refrigerant remains stored in the stopped outdoor unit 100a, the refrigerant necessary for the entire air conditioner is insufficient, and the indoor unit 200a has sufficient cooling capacity. It cannot be used and indoor comfort is impaired.

そこで本実施例では、停止している室外機100aから冷媒を排出して(冷媒排出動作)、運転している室外機100bの吐出圧力を放熱に必要な圧力に上昇させる。即ち、運転している室外機100bに付設する吐出圧力センサ7bの値が、圧縮機1bの連続運転可能な下限値以下の圧力となった場合に、停止している室外機100aに付設するバイパス電磁弁9aに通電して開くことで、運転している室外機100bにより低圧となったガス側分岐ユニット15に向かって図3に示す破線矢印の如く冷媒が流れる。   Therefore, in this embodiment, the refrigerant is discharged from the stopped outdoor unit 100a (refrigerant discharge operation), and the discharge pressure of the operating outdoor unit 100b is increased to a pressure necessary for heat radiation. That is, the bypass attached to the stopped outdoor unit 100a when the value of the discharge pressure sensor 7b attached to the operating outdoor unit 100b is equal to or lower than the lower limit value at which the compressor 1b can be continuously operated. When the solenoid valve 9a is energized and opened, the refrigerant flows toward the gas-side branch unit 15 which has become a low pressure by the outdoor unit 100b being operated, as indicated by the broken-line arrow shown in FIG.

停止している室外機100a内のアキュムレータ5a及び室外熱交換器3aに貯留されている冷媒が室外機100aから排出され、運転している室外機100b内に吸込まれ、室外熱交換器3b内の貯留冷媒量が増加する。このとき室外膨張弁4aは閉じている。アキュムレータ5a内の冷媒の方が、室外熱交換器3a内の冷媒よりも先に排出される。冷媒量の増加に伴い、吐出圧力センサ7bの値が増加し、吐出圧力センサ7bの値が圧縮機1bの連続運転可能な運転下限値よりも高くなった場合に、バイパス電磁弁9aの通電を解除して閉状態とすることで、停止している室外機100aから適切な量の冷媒を排出することができる。このため、停止している室外機100aの圧縮機1bを運転することなく、運転している室外機100b及び室内機200a,200b内の冷媒量を常に適正な量に維持することができ、室内機200a,200bの冷房能力を低下させることなく、圧縮機1bの信頼性を維持できる。   The accumulator 5a in the stopped outdoor unit 100a and the refrigerant stored in the outdoor heat exchanger 3a are discharged from the outdoor unit 100a, sucked into the operating outdoor unit 100b, and stored in the outdoor heat exchanger 3b. The amount of stored refrigerant increases. At this time, the outdoor expansion valve 4a is closed. The refrigerant in the accumulator 5a is discharged before the refrigerant in the outdoor heat exchanger 3a. As the amount of refrigerant increases, the value of the discharge pressure sensor 7b increases, and when the value of the discharge pressure sensor 7b becomes higher than the operation lower limit value at which the compressor 1b can be operated continuously, the bypass solenoid valve 9a is energized. By releasing and closing, an appropriate amount of refrigerant can be discharged from the stopped outdoor unit 100a. Therefore, the amount of refrigerant in the outdoor unit 100b and the indoor units 200a and 200b that are in operation can always be maintained at an appropriate level without operating the compressor 1b of the outdoor unit 100a that is stopped. The reliability of the compressor 1b can be maintained without reducing the cooling capacity of the machines 200a and 200b.

冷媒を排出する際に、四方弁2aが冷房運転モードで切換えられている場合は、圧縮機1aの吐出側と四方弁2aとの間に逆止弁6aを設けることで、逆止弁6aで冷媒が止まるので、より効率よくバイパス回路8aに冷媒を流すことができる。また、アキュムレータ5bを介するので、運転中の圧縮機1b内部に冷媒を直接排出しない。そのため、停止室外機100aから送られる冷媒に液冷媒が混在している場合でも、液圧縮を防止し、圧縮機1b内の油が冷媒で希釈されて粘度低下することもないので、圧縮機1bの信頼性を維持できる。   When the refrigerant is discharged, if the four-way valve 2a is switched in the cooling operation mode, a check valve 6a is provided between the discharge side of the compressor 1a and the four-way valve 2a so that the check valve 6a Since the refrigerant stops, the refrigerant can flow through the bypass circuit 8a more efficiently. Moreover, since the accumulator 5b is interposed, the refrigerant is not directly discharged into the compressor 1b during operation. Therefore, even when liquid refrigerant is mixed in the refrigerant sent from the stop outdoor unit 100a, liquid compression is prevented, and the oil in the compressor 1b is not diluted with the refrigerant and the viscosity does not decrease. Can be maintained.

以上は冷媒排出動作のみを行う場合だが、実施例1のように冷媒回収動作を行ってから、本実施例の冷媒排出動作を行ってもよい。つまり、運転している室外機100bに付設する吐出圧力センサ7bの値が圧縮機1bの連続運転可能な上限値以上の圧力となった場合に、停止している室外機100aに付設する室外膨張弁4aの開度を所定の開度に開く。このときバイパス電磁弁9aは閉じているので、室外膨張弁4aを通って室外機100aに流入した冷媒は、室外機100aの外には流れない。室外機100aに液冷媒が貯留されると吐出圧力センサ7bの値が低下し始めるので、吐出圧力センサ7bの値が圧縮機1bの連続運転可能な上限値よりも低下した場合に、停止している室外機100aに付設する室外膨張弁4aを全閉にして冷媒回収する。   Although only the refrigerant discharge operation is performed as described above, the refrigerant discharge operation of the present embodiment may be performed after the refrigerant recovery operation is performed as in the first embodiment. That is, when the value of the discharge pressure sensor 7b attached to the operating outdoor unit 100b is equal to or higher than the upper limit value at which the compressor 1b can be continuously operated, the outdoor expansion attached to the stopped outdoor unit 100a. The opening degree of the valve 4a is opened to a predetermined opening degree. At this time, since the bypass electromagnetic valve 9a is closed, the refrigerant flowing into the outdoor unit 100a through the outdoor expansion valve 4a does not flow outside the outdoor unit 100a. When the liquid refrigerant is stored in the outdoor unit 100a, the value of the discharge pressure sensor 7b starts to decrease, so when the value of the discharge pressure sensor 7b is lower than the upper limit value at which the compressor 1b can be continuously operated, the value is stopped. The outdoor expansion valve 4a attached to the outdoor unit 100a is fully closed to recover the refrigerant.

その後、運転する室内機を増やした場合等、冷媒排出動作が必要となるときは、室外膨張弁4aを閉じたままでバイパス電磁弁9aを開く。更に、吐出圧力センサ7bの値が圧縮機1bの連続運転可能な下限値よりも高くなった場合に、バイパス電磁弁9aを閉じればよい。   Thereafter, when the refrigerant discharge operation is necessary, for example, when the number of indoor units to be operated is increased, the bypass electromagnetic valve 9a is opened while the outdoor expansion valve 4a is closed. Further, when the value of the discharge pressure sensor 7b becomes higher than the lower limit value at which the compressor 1b can be continuously operated, the bypass solenoid valve 9a may be closed.

このように構成することで、室外機同士を配管で接続することなく、停止室外機内に余剰冷媒を回収すると共に、冷媒が必要となる場合は、その停止室外機から冷媒を排出することができ、省エネ且つ据付性の良い実機を考慮した空気調和システムを実現できる。   By configuring in this way, it is possible to collect excess refrigerant in the stop outdoor unit without connecting the outdoor units with pipes, and to discharge the refrigerant from the stop outdoor unit when refrigerant is necessary. It is possible to realize an air conditioning system that takes into consideration a real machine that is energy-saving and easy to install.

次に暖房運転時の冷媒排出動作について図4を用いて説明する。各室内機の運転状態は、図2における冷媒回収動作で説明した内容と同様であり、ここでは省略する。   Next, the refrigerant | coolant discharge operation | movement at the time of heating operation is demonstrated using FIG. The operation state of each indoor unit is the same as that described in the refrigerant recovery operation in FIG.

室内機200aが暖房運転している状態で室内機200bも暖房運転を開始する場合、室内機200aと室内機200bの合計暖房運転容量が、運転している室外機100bの容量よりも小さい場合であっても、室外機100bの1台運転を継続する。室外機100a内には、室外機100bと室内機200aで暖房運転する場合に必要な冷媒量となるようにしたときに余分となる冷媒が貯留されている。このため、室内機200bが暖房運転すると循環する冷媒が不足し、今まで運転していた室内機200aの冷媒が減少して吐出圧力が低下する。室内熱交換器12a,12bで十分な放熱ができなくなり、室内機200a及び室内機200bで発生する暖房能力が低下する。   When the indoor unit 200b also starts the heating operation while the indoor unit 200a is in the heating operation, the total heating operation capacity of the indoor unit 200a and the indoor unit 200b is smaller than the capacity of the operating outdoor unit 100b. Even if there is, the operation of one outdoor unit 100b is continued. In the outdoor unit 100a, extra refrigerant is stored when the refrigerant amount is required for heating operation in the outdoor unit 100b and the indoor unit 200a. For this reason, when the indoor unit 200b performs the heating operation, the circulating refrigerant is insufficient, the refrigerant of the indoor unit 200a that has been operated so far decreases, and the discharge pressure decreases. The indoor heat exchangers 12a and 12b cannot sufficiently dissipate heat, and the heating capacity generated in the indoor units 200a and 200b decreases.

また、室外機100a,100bの周囲温度が室内機200a〜200cの周囲温度よりも低い状態で、空気調和装置を長時間停止状態としていた場合は、室外機100a及び室外機100b内に液冷媒が貯留される。室内機200aを暖房運転した場合に、停止している室外機100a内に貯留されている冷媒を排出できないため、空気調和装置全体に必要な冷媒が不足して、室内機200aで十分な暖房能力を発揮できない場合があり、室内の快適性が損なわれてしまう。   In addition, when the ambient temperature of the outdoor units 100a and 100b is lower than the ambient temperature of the indoor units 200a to 200c and the air conditioner has been stopped for a long time, liquid refrigerant is generated in the outdoor unit 100a and the outdoor unit 100b. Stored. When the indoor unit 200a is operated for heating, the refrigerant stored in the stopped outdoor unit 100a cannot be discharged, so that the refrigerant necessary for the entire air conditioner is insufficient and the indoor unit 200a has sufficient heating capacity. May not be possible, and indoor comfort will be impaired.

そこで本実施例では、停止している室外機100aから冷媒を排出して、運転している室外機100bの吐出圧力を放熱に必要な圧力に上昇させる。即ち、運転している室外機100bに付設する吐出圧力センサ7bの値が圧縮機1bの連続運転可能な下限値以下の圧力となった場合に、停止している室外機100aを暖房運転させ、停止している室外機100aに貯留されている冷媒を排出する。排出された冷媒は、運転している室内機200aもしくは室内機200bに導かれ、室内熱交換器12aもしくは室内熱交換器12b内の貯留冷媒量が増加する。このときバイパス電磁弁9aは閉じている。吐出圧力センサ7bの値が増加し、吐出圧力センサ7bの値が圧縮機1bの連続運転可能な下限値よりも高くなった場合に、運転している室外機100aを停止させることで、運転している室外機100b及び室内機200a並びに室内機200b内の冷媒量を常に適正な量に維持することができる。これにより、室内機200aもしくは室内機200bの暖房能力を低下させることなく、圧縮機1bの信頼性を維持することができる。   Therefore, in this embodiment, the refrigerant is discharged from the stopped outdoor unit 100a, and the discharge pressure of the operating outdoor unit 100b is increased to a pressure necessary for heat radiation. That is, when the value of the discharge pressure sensor 7b attached to the operating outdoor unit 100b is equal to or lower than the lower limit value at which the compressor 1b can be operated continuously, the stopped outdoor unit 100a is heated and operated. The refrigerant stored in the stopped outdoor unit 100a is discharged. The discharged refrigerant is guided to the operating indoor unit 200a or indoor unit 200b, and the amount of refrigerant stored in the indoor heat exchanger 12a or the indoor heat exchanger 12b increases. At this time, the bypass solenoid valve 9a is closed. When the value of the discharge pressure sensor 7b increases and the value of the discharge pressure sensor 7b becomes higher than the lower limit value at which the compressor 1b can be continuously operated, the outdoor unit 100a that is in operation is stopped. The amount of refrigerant in the outdoor unit 100b, the indoor unit 200a, and the indoor unit 200b can always be maintained at an appropriate amount. Thereby, the reliability of the compressor 1b can be maintained, without reducing the heating capability of the indoor unit 200a or the indoor unit 200b.

暖房運転時においても、冷房運転時と同様に、冷媒回収動作を行ってから上記の冷媒排出動作を行ってもよい。つまり、運転している室外機100bに付設する吐出圧力センサ7bの値が圧縮機1bの連続運転可能な上限値以上の圧力となった場合に、停止している室外機100aに付設する室外膨張弁4aの開度を所定の開度に開く。このときバイパス電磁弁9aは閉じているので、室外膨張弁4aを通って室外機100aに流入した冷媒は、室外機100aの外には流れない。室外機100aに液冷媒が貯留されると吐出圧力センサ7bの値が低下し始めるので、吐出圧力センサ7bの値が圧縮機1bの連続運転可能な上限値よりも低下した場合に、停止している室外機100aに付設する室外膨張弁4aを全閉にして冷媒回収する。   Also during the heating operation, the refrigerant discharge operation may be performed after the refrigerant recovery operation is performed as in the cooling operation. That is, when the value of the discharge pressure sensor 7b attached to the operating outdoor unit 100b is equal to or higher than the upper limit value at which the compressor 1b can be continuously operated, the outdoor expansion attached to the stopped outdoor unit 100a. The opening degree of the valve 4a is opened to a predetermined opening degree. At this time, since the bypass electromagnetic valve 9a is closed, the refrigerant flowing into the outdoor unit 100a through the outdoor expansion valve 4a does not flow outside the outdoor unit 100a. When the liquid refrigerant is stored in the outdoor unit 100a, the value of the discharge pressure sensor 7b starts to decrease, so when the value of the discharge pressure sensor 7b is lower than the upper limit value at which the compressor 1b can be continuously operated, the value is stopped. The outdoor expansion valve 4a attached to the outdoor unit 100a is fully closed to recover the refrigerant.

その後、運転する室内機を増やした場合等、冷媒排出動作が必要となるときは、バイパス電磁弁9aを閉じたままで室外膨張弁4aを開けて、停止していた室外機100aの暖房運転を開始する。更に、吐出圧力センサ7bの値が圧縮機1bの連続運転可能な下限値よりも高くなった場合に、室外機100aを停止させればよい。   After that, when the refrigerant discharge operation is necessary, such as when the number of indoor units to be operated is increased, the outdoor expansion valve 4a is opened while the bypass solenoid valve 9a is closed, and the heating operation of the stopped outdoor unit 100a is started. To do. Furthermore, what is necessary is just to stop the outdoor unit 100a, when the value of the discharge pressure sensor 7b becomes higher than the lower limit value in which the compressor 1b can be continuously operated.

以上の構成により、複数台の室外機を有する空気調和装置において、複数台の室外機同士を配管等で接続せずに冷媒を回収,排出でき、据付性の良い空気調和システムを実現することができる。   With the above configuration, in an air conditioner having a plurality of outdoor units, it is possible to recover and discharge the refrigerant without connecting the plurality of outdoor units to each other by piping or the like, and to realize an air conditioning system with good installation properties. it can.

ここで、空気調和装置内の冷媒量の適正判定には吐出圧力センサを用いている。圧縮機は、吐出圧力が所定の範囲内にある場合に連続運転できるので、その上限値及び下限値を設けて吐出圧力センサの値と比較する。冷媒回収動作の場合は、圧縮機が連続運転可能な吐出圧力の運転上限値以上で冷媒回収動作を開始し、運転上限値未満となって所定の吐出圧力範囲になると冷媒回収動作を終了するように設定する。冷媒排出動作の場合は、圧縮機が連続運転可能な吐出圧力の運転下限値以下で冷媒排出動作を開始し、下限値より高くなって所定の吐出圧力範囲になると冷媒排出動作を終了するように設定する。   Here, a discharge pressure sensor is used for appropriate determination of the refrigerant amount in the air conditioner. Since the compressor can be continuously operated when the discharge pressure is within a predetermined range, the upper limit value and the lower limit value are provided and compared with the value of the discharge pressure sensor. In the case of the refrigerant recovery operation, the refrigerant recovery operation starts when the compressor is at or above the operation upper limit value of the discharge pressure at which the compressor can be operated continuously, and ends when the refrigerant becomes less than the operation upper limit value and falls within a predetermined discharge pressure range. Set to. In the case of the refrigerant discharge operation, the refrigerant discharge operation is started at the discharge lower limit value of the discharge pressure at which the compressor can be continuously operated, and the refrigerant discharge operation is ended when the refrigerant pressure becomes higher than the lower limit value and falls within a predetermined discharge pressure range. Set.

更に、その運転上限値と運転下限値を各々一点の値とせず、所定の範囲を設けて上限圧力範囲と下限圧力範囲としてもよい。第1の上限値から更に高圧な第2の上限値までを上限範囲とし、第1の下限値から更に低圧な第2の下限値までを下限範囲とする。冷媒回収動作の場合は、第2の上限値以上で冷媒回収動作を開始し、第1の上限値未満まで圧力が下がると冷媒回収動作を終了する。冷媒排出動作の場合は、第2の下限値以下で冷媒排出動作を開始し、第1の下限値よりも圧力が高くなると冷媒排出動作を終了する。これにより、冷媒回収動作もしくは冷媒排出動作のハンチングを防止でき、これらの動作がスムーズに且つ安定して行われるようになるため、更に室内の快適性を向上でき、据付性の良い空気調和システムを実現することができる。   Furthermore, the operation upper limit value and the operation lower limit value may not be a single value, but a predetermined range may be provided to obtain an upper limit pressure range and a lower limit pressure range. The upper limit range is from the first upper limit value to the second upper limit value with a higher pressure, and the lower limit range is from the first lower limit value to the second lower limit value with a lower pressure. In the case of the refrigerant recovery operation, the refrigerant recovery operation is started at a value equal to or higher than the second upper limit value, and the refrigerant recovery operation is ended when the pressure decreases to less than the first upper limit value. In the case of the refrigerant discharge operation, the refrigerant discharge operation is started at the second lower limit value or less, and the refrigerant discharge operation is ended when the pressure becomes higher than the first lower limit value. As a result, the hunting of the refrigerant recovery operation or the refrigerant discharge operation can be prevented, and these operations can be performed smoothly and stably. Therefore, indoor comfort can be further improved, and an air conditioning system with good installation can be achieved. Can be realized.

以上の実施例では、室外機100aを停止し、室外機100bを運転するが、室外機100aを運転し、室外機100bを停止してもよい。また、吐出圧力を測定する代わりに運転時に凝縮器となる熱交換器に温度センサを設け、凝縮温度を測定して室外膨張弁やバイパス電磁弁を制御してもよい。具体的には、凝縮温度に所定の上限値と下限値を設定し、温度センサの値がその上限値以上となった場合に室外膨張弁4aを所定の開度に開き、上限値未満となった場合に室外膨張弁4aを全閉として冷媒回収する。冷媒排出動作の場合は、温度センサの値が下限値以下となった場合にバイパス電磁弁9aを開き、下限値より高くなった場合にバイパス電磁弁9aを閉じればよい。即ち、上記の実施例で述べた吐出圧力の上限値及び下限値と、凝縮温度の上限値及び下限値が対応する。凝縮温度を測定し、その温度を吐出圧力値に換算して用いてもよい。更に、室外機を2台、室内機を3台として説明したが、同様の構成機器からなる場合においては、室外機の台数や室内機の台数が増減した場合においても同様の効果がある。   In the above embodiment, the outdoor unit 100a is stopped and the outdoor unit 100b is operated. However, the outdoor unit 100a may be operated and the outdoor unit 100b may be stopped. Further, instead of measuring the discharge pressure, a temperature sensor may be provided in a heat exchanger that becomes a condenser during operation, and the outdoor expansion valve and the bypass solenoid valve may be controlled by measuring the condensation temperature. Specifically, a predetermined upper limit value and a lower limit value are set for the condensation temperature, and when the value of the temperature sensor becomes equal to or higher than the upper limit value, the outdoor expansion valve 4a is opened to a predetermined opening and becomes less than the upper limit value. In this case, the outdoor expansion valve 4a is fully closed and the refrigerant is recovered. In the case of the refrigerant discharge operation, the bypass electromagnetic valve 9a may be opened when the value of the temperature sensor becomes equal to or lower than the lower limit value, and the bypass electromagnetic valve 9a may be closed when the value becomes higher than the lower limit value. That is, the upper limit value and the lower limit value of the discharge pressure described in the above embodiment correspond to the upper limit value and the lower limit value of the condensation temperature. The condensation temperature may be measured, and the temperature may be converted into a discharge pressure value. Furthermore, although two outdoor units and three indoor units have been described, the same effect can be obtained when the number of outdoor units or the number of indoor units increases or decreases in the case of the same constituent devices.

1a,1b 圧縮機
2a,2b 四方弁
3a,3b 室外熱交換器
4a,4b 室外膨張弁
5a,5b アキュムレータ
6a,6b 逆止弁
7a,7b 吐出圧力センサ(吐出圧力検出手段)
8a,8b バイパス管
9a,9b バイパス電磁弁
12a〜12c 室内熱交換器
13a〜13c 室内膨張弁
14 液側分岐ユニット
15 ガス側分岐ユニット
20a,20b マイクロコンピュータ(制御手段)
100a 室外機(第2の室外機)
100b 室外機(第1の室外機)
200a〜200c 室内機
1a, 1b Compressors 2a, 2b Four-way valves 3a, 3b Outdoor heat exchangers 4a, 4b Outdoor expansion valves 5a, 5b Accumulators 6a, 6b Check valves 7a, 7b Discharge pressure sensors (discharge pressure detection means)
8a, 8b Bypass pipes 9a, 9b Bypass solenoid valves 12a-12c Indoor heat exchangers 13a-13c Indoor expansion valve 14 Liquid side branch unit 15 Gas side branch units 20a, 20b Microcomputer (control means)
100a Outdoor unit (second outdoor unit)
100b Outdoor unit (first outdoor unit)
200a-200c indoor unit

Claims (12)

室内熱交換器を有する複数台の室内機と、
圧縮機、該圧縮機の吐出圧力を検出する吐出圧力検出手段、四方弁、室外熱交換器、室外膨張弁とを有する複数台の室外機と、
運転中の第1の室外機に設けられた吐出圧力検出手段の圧力値に基づき停止中の第2の室外機に設けられた室外膨張弁の開閉制御を行う制御手段とを備え、
前記複数台の室内機と前記複数台の室外機とが冷媒配管により接続され、
前記制御手段は、前記第1の室外機に設けられた吐出圧力検出手段の圧力値が所定の運転上限値以上となる場合に、前記第2の室外機に設けられた室外膨張弁を開く制御を行うことを特徴とする空気調和装置。
A plurality of indoor units having indoor heat exchangers;
A plurality of outdoor units having a compressor, discharge pressure detecting means for detecting the discharge pressure of the compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion valve;
Control means for performing opening / closing control of the outdoor expansion valve provided in the second outdoor unit being stopped based on the pressure value of the discharge pressure detecting means provided in the first outdoor unit during operation,
The plurality of indoor units and the plurality of outdoor units are connected by a refrigerant pipe,
The control means controls the opening of the outdoor expansion valve provided in the second outdoor unit when the pressure value of the discharge pressure detecting means provided in the first outdoor unit is equal to or higher than a predetermined operation upper limit value. An air conditioner characterized by
請求項1において、前記圧縮機の冷媒吐出側配管であって前記圧縮機と前記四方弁との間に逆止弁を設けることを特徴とする空気調和装置。   The air conditioner according to claim 1, wherein a check valve is provided between the compressor and the four-way valve, which is a refrigerant discharge side pipe of the compressor. 請求項1において、前記圧縮機の冷媒吸入側配管であって前記圧縮機と前記四方弁との間にアキュムレータを設けることを特徴とする空気調和装置。   2. The air conditioner according to claim 1, wherein an accumulator is provided between the compressor and the four-way valve, which is a refrigerant suction side pipe of the compressor. 請求項1において、前記制御手段は、前記第1の室外機に設けられた吐出圧力検出手段の圧力値が所定の運転上限値未満となる場合に、前記第2の室外機に設けられた室外膨張弁を閉じる制御を行うことを特徴とする空気調和装置。   2. The outdoor unit provided in the second outdoor unit according to claim 1, wherein when the pressure value of the discharge pressure detecting unit provided in the first outdoor unit is less than a predetermined operation upper limit value, the control unit is provided with an outdoor unit provided in the second outdoor unit. An air conditioner that performs control to close an expansion valve. 請求項1において、前記運転上限値が所定の上限圧力範囲を有し、該上限圧力範囲を第1の上限値から該第1の上限値より高圧な第2の上限値までと定め、
前記制御手段は、前記第1の室外機に設けられた吐出圧力検出手段の圧力値が前記第2の上限値以上となる場合に前記第2の室外機に設けられた室外膨張弁を開き、
前記第1の室外機に設けられた吐出圧力検出手段の圧力値が前記第1の上限値未満となる場合に前記第2の室外機に設けられた室外膨張弁を閉じる制御を行うことを特徴とする空気調和装置。
In Claim 1, the operation upper limit value has a predetermined upper limit pressure range, the upper limit pressure range is determined from a first upper limit value to a second upper limit value higher than the first upper limit value,
The control means opens an outdoor expansion valve provided in the second outdoor unit when the pressure value of the discharge pressure detecting means provided in the first outdoor unit is equal to or higher than the second upper limit value.
Control is performed to close an outdoor expansion valve provided in the second outdoor unit when the pressure value of the discharge pressure detecting means provided in the first outdoor unit is less than the first upper limit value. Air conditioner.
室内熱交換器を有する複数台の室内機と、
圧縮機、該圧縮機の吐出圧力を検出する吐出圧力検出手段、四方弁、室外熱交換器、前記圧縮機と前記四方弁とを接続する冷媒吐出側配管から前記四方弁と前記圧縮機とを接続する冷媒吸込側配管へ接続されるバイパス管、該バイパス管を流れる冷媒量を制御するバイパス電磁弁とを有する複数台の室外機と、
運転中の第1の室外機に設けられた吐出圧力検出手段の圧力値に基づき停止中の第2の室外機に設けられたバイパス電磁弁の開閉制御を行う制御手段とを備え、
前記複数台の室内機と前記複数台の室外機とが冷媒配管により接続され、
前記制御手段は、
冷房運転時に前記第1の室外機に設けられた吐出圧力検出手段の圧力値が所定の運転下限値以下となる場合に、前記第2の室外機に設けられたバイパス電磁弁を開く制御を行うとともに、
前記第1の室外機に設けられた吐出圧力検出手段の圧力値が所定の運転下限値より高くなる場合に、前記第2の室外機に設けられたバイパス電磁弁を閉じる制御を行うことを特徴とする空気調和装置。
A plurality of indoor units having indoor heat exchangers;
A compressor, a discharge pressure detecting means for detecting a discharge pressure of the compressor, a four-way valve, an outdoor heat exchanger, and a refrigerant discharge side pipe connecting the compressor and the four-way valve, and the four-way valve and the compressor. A plurality of outdoor units having a bypass pipe connected to the refrigerant suction side pipe to be connected, and a bypass solenoid valve for controlling the amount of refrigerant flowing through the bypass pipe;
Control means for performing opening / closing control of the bypass solenoid valve provided in the second outdoor unit being stopped based on the pressure value of the discharge pressure detecting means provided in the first outdoor unit during operation,
The plurality of indoor units and the plurality of outdoor units are connected by a refrigerant pipe,
The control means includes
Control is performed to open the bypass solenoid valve provided in the second outdoor unit when the pressure value of the discharge pressure detecting means provided in the first outdoor unit is equal to or lower than a predetermined lower limit during cooling operation. And
When the pressure value of the discharge pressure detecting means provided in the first outdoor unit becomes higher than a predetermined operation lower limit value, the bypass electromagnetic valve provided in the second outdoor unit is controlled to be closed. Air conditioner.
室内熱交換器を有する複数台の室内機と、
圧縮機、該圧縮機の吐出圧力を検出する吐出圧力検出手段、四方弁、室外熱交換器、前記圧縮機と前記四方弁とを接続する冷媒吐出側配管から前記四方弁と前記圧縮機とを接続する冷媒吸込側配管へ接続されるバイパス管、該バイパス管を流れる冷媒量を制御するバイパス電磁弁とを有する複数台の室外機と、
運転中の第1の室外機に設けられた吐出圧力検出手段の圧力値に基づき停止中の第2の室外機に設けられたバイパス電磁弁の開閉制御を行う制御手段とを備え、
前記複数台の室内機と前記複数台の室外機とが冷媒配管により接続され、
前記制御手段は、
冷房運転時に前記第1の室外機に設けられた吐出圧力検出手段の圧力値が所定の運転下限値以下となる場合に、前記第2の室外機に設けられたバイパス電磁弁を開く制御を行うとともに、
前記運転下限値が所定の下限圧力範囲を有し、該下限圧力範囲を第1の下限値から該第1の下限値より低圧な第2の下限値までと定め、
前記第1の室外機に設けられた吐出圧力検出手段の圧力値が前記第2の下限値以下となる場合に前記第2の室外機に設けられたバイパス電磁弁を開き、
前記第1の室外機に設けられた吐出圧力検出手段の圧力値が前記第1の下限値より高くなる場合に前記第2の室外機に設けられたバイパス電磁弁を閉じる制御を行うことを特徴とする空気調和装置。
A plurality of indoor units having indoor heat exchangers;
A compressor, a discharge pressure detecting means for detecting a discharge pressure of the compressor, a four-way valve, an outdoor heat exchanger, and a refrigerant discharge side pipe connecting the compressor and the four-way valve, and the four-way valve and the compressor. A plurality of outdoor units having a bypass pipe connected to the refrigerant suction side pipe to be connected, and a bypass solenoid valve for controlling the amount of refrigerant flowing through the bypass pipe;
Control means for performing opening / closing control of the bypass solenoid valve provided in the second outdoor unit being stopped based on the pressure value of the discharge pressure detecting means provided in the first outdoor unit during operation,
The plurality of indoor units and the plurality of outdoor units are connected by a refrigerant pipe,
The control means includes
Control is performed to open the bypass solenoid valve provided in the second outdoor unit when the pressure value of the discharge pressure detecting means provided in the first outdoor unit is equal to or lower than a predetermined lower limit during cooling operation. And
The operation lower limit value has a predetermined lower limit pressure range, and the lower limit pressure range is determined from a first lower limit value to a second lower limit value lower than the first lower limit value;
When the pressure value of the discharge pressure detecting means provided in the first outdoor unit is equal to or lower than the second lower limit value, a bypass solenoid valve provided in the second outdoor unit is opened,
When the pressure value of the discharge pressure detecting means provided in the first outdoor unit becomes higher than the first lower limit value, the bypass electromagnetic valve provided in the second outdoor unit is controlled to be closed. Air conditioner.
室内熱交換器を有する複数台の室内機と、
圧縮機、該圧縮機の吐出圧力を検出する吐出圧力検出手段、四方弁、室外熱交換器、前記圧縮機と前記四方弁とを接続する冷媒吐出側配管から前記四方弁と前記圧縮機とを接続する冷媒吸込側配管へ接続されるバイパス管、該バイパス管を流れる冷媒量を制御するバイパス電磁弁とを有する複数台の室外機と、
運転中の第1の室外機に設けられた第1の吐出圧力検出手段の圧力値に基づき停止中の第2の室外機に設けられた室外膨張弁とバイパス電磁弁の開閉制御を行う制御手段とを備え、
前記複数台の室内機と前記複数台の室外機とが冷媒配管により接続され、
前記制御手段は、
冷房運転時に前記第1の室外機に設けられた吐出圧力検出手段の圧力値が所定の運転上限値以上となる場合に、前記第2の室外機に設けられた室外膨張弁を開き、
前記第1の室外機に設けられた吐出圧力検出手段の圧力値が所定の運転下限値以下となる場合に、前記第2の室外機に設けられたバイパス電磁弁を開く制御を行うことを特徴とする空気調和装置。
A plurality of indoor units having indoor heat exchangers;
A compressor, a discharge pressure detecting means for detecting a discharge pressure of the compressor, a four-way valve, an outdoor heat exchanger, and a refrigerant discharge side pipe connecting the compressor and the four-way valve, and the four-way valve and the compressor. A plurality of outdoor units having a bypass pipe connected to the refrigerant suction side pipe to be connected, and a bypass solenoid valve for controlling the amount of refrigerant flowing through the bypass pipe;
Control means for performing open / close control of the outdoor expansion valve and bypass solenoid valve provided in the second outdoor unit that is stopped based on the pressure value of the first discharge pressure detection means provided in the first outdoor unit during operation And
The plurality of indoor units and the plurality of outdoor units are connected by a refrigerant pipe,
The control means includes
When the pressure value of the discharge pressure detection means provided in the first outdoor unit during cooling operation is equal to or higher than a predetermined operation upper limit value, the outdoor expansion valve provided in the second outdoor unit is opened,
When the pressure value of the discharge pressure detecting means provided in the first outdoor unit is equal to or lower than a predetermined operation lower limit value, control is performed to open a bypass solenoid valve provided in the second outdoor unit. Air conditioner.
請求項8において、前記圧縮機の冷媒吐出側配管であって前記圧縮機と前記四方弁との間に逆止弁を設けることを特徴とする空気調和装置。   9. The air conditioner according to claim 8, wherein a check valve is provided between the compressor and the four-way valve, which is a refrigerant discharge side pipe of the compressor. 請求項8において、前記圧縮機の冷媒吸入側配管であって前記圧縮機と前記四方弁との間にアキュムレータを設けることを特徴とする空気調和装置。   9. The air conditioner according to claim 8, wherein an accumulator is provided between the compressor and the four-way valve, which is a refrigerant suction side pipe of the compressor. 請求項8において、
前記制御手段は、
前記第1の室外機に設けられた吐出圧力検出手段の圧力値が所定の運転上限値未満となる場合に、前記第2の室外機に設けられた室外膨張弁を閉じ、
前記第1の室外機に設けられた吐出圧力検出手段の圧力値が所定の運転下限値より高くなる場合に、前記第2の室外機に設けられたバイパス電磁弁を閉じる制御を行うことを特徴とする空気調和装置。
In claim 8,
The control means includes
When the pressure value of the discharge pressure detecting means provided in the first outdoor unit is less than a predetermined operation upper limit value, the outdoor expansion valve provided in the second outdoor unit is closed,
When the pressure value of the discharge pressure detecting means provided in the first outdoor unit becomes higher than a predetermined operation lower limit value, the bypass electromagnetic valve provided in the second outdoor unit is controlled to be closed. Air conditioner.
請求項8において、前記運転上限値が所定の上限圧力範囲を有し、該上限圧力範囲を第1の上限値から該第1の上限値より高圧な第2の上限値までと定め、
前記運転下限値が所定の下限圧力範囲を有し、該下限圧力範囲を第1の下限値から該第1の下限値より低圧な第2の下限値までと定め、
前記制御手段は、
前記第1の室外機に設けられた吐出圧力検出手段の圧力値が前記第2の上限値以上となる場合に前記第2の室外機に設けられた室外膨張弁を開き、
前記第1の室外機に設けられた吐出圧力検出手段の圧力値が前記第1の上限値未満となる場合に前記第2の室外機に設けられた室外膨張弁を閉じ、
前記第1の室外機に設けられた吐出圧力検出手段の圧力値が前記第2の下限値以下となる場合に前記第2の室外機に設けられたバイパス電磁弁を開き、
前記第1の室外機に設けられた吐出圧力検出手段の圧力値が前記第1の下限値より高くなる場合に前記第2の室外機に設けられたバイパス電磁弁を閉じる制御を行うことを特徴とする空気調和装置。
In Claim 8, the operation upper limit value has a predetermined upper limit pressure range, the upper limit pressure range is determined from the first upper limit value to a second upper limit value higher than the first upper limit value,
The operation lower limit value has a predetermined lower limit pressure range, and the lower limit pressure range is determined from a first lower limit value to a second lower limit value lower than the first lower limit value;
The control means includes
When the pressure value of the discharge pressure detecting means provided in the first outdoor unit is equal to or higher than the second upper limit value, the outdoor expansion valve provided in the second outdoor unit is opened,
Closing the outdoor expansion valve provided in the second outdoor unit when the pressure value of the discharge pressure detecting means provided in the first outdoor unit is less than the first upper limit value,
When the pressure value of the discharge pressure detecting means provided in the first outdoor unit is equal to or lower than the second lower limit value, a bypass solenoid valve provided in the second outdoor unit is opened,
When the pressure value of the discharge pressure detecting means provided in the first outdoor unit becomes higher than the first lower limit value, the bypass electromagnetic valve provided in the second outdoor unit is controlled to be closed. Air conditioner.
JP2010003554A 2010-01-12 2010-01-12 Air conditioner Active JP5409405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010003554A JP5409405B2 (en) 2010-01-12 2010-01-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010003554A JP5409405B2 (en) 2010-01-12 2010-01-12 Air conditioner

Publications (2)

Publication Number Publication Date
JP2011144941A JP2011144941A (en) 2011-07-28
JP5409405B2 true JP5409405B2 (en) 2014-02-05

Family

ID=44459961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010003554A Active JP5409405B2 (en) 2010-01-12 2010-01-12 Air conditioner

Country Status (1)

Country Link
JP (1) JP5409405B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5581457B2 (en) * 2012-02-09 2014-08-27 日立アプライアンス株式会社 Air conditioner
JP6291794B2 (en) * 2013-10-31 2018-03-14 株式会社富士通ゼネラル Air conditioner
WO2017199384A1 (en) * 2016-05-19 2017-11-23 三菱電機株式会社 Air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281576A (en) * 1997-04-01 1998-10-23 Mitsubishi Heavy Ind Ltd Multizone heat pump type air conditioner
JP4120682B2 (en) * 2006-02-20 2008-07-16 ダイキン工業株式会社 Air conditioner and heat source unit
JP4383472B2 (en) * 2007-08-27 2009-12-16 三洋電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2011144941A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
US10088206B2 (en) Air-conditioning apparatus
KR102136881B1 (en) Air conditioner and a method controlling the same
CN104272037B (en) Conditioner
JP6613759B2 (en) Engine-driven air conditioner
WO2013088482A1 (en) Air conditioning device
JP2011208860A (en) Air conditioner
KR20140103352A (en) Refrigeration device
JP2009236397A (en) Air conditioner
EP2416078A1 (en) Air-conditioning device
US11333410B2 (en) Refrigeration apparatus
JP5409405B2 (en) Air conditioner
JP3334601B2 (en) Air conditioner with natural circulation
CN106949657B (en) Air conditioning system with supercooling device and control method thereof
JP2016102636A (en) Air conditioning system
JP4844601B2 (en) Refrigeration equipment
JP2007101127A (en) Air conditioner
JP4575184B2 (en) Air conditioner
KR101321545B1 (en) Air conditioner
JP4278229B2 (en) Air conditioner
CN110779112B (en) Air conditioning apparatus
KR102032183B1 (en) An air conditioner and a control method the same
KR101160351B1 (en) Multi air conditioner and control method thereof
JP3883725B2 (en) Method of operating air conditioner and air conditioner
JP6634590B2 (en) Air conditioner
KR101145051B1 (en) Air Conditioner for Preventing High Pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R150 Certificate of patent or registration of utility model

Ref document number: 5409405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250