JP5409185B2 - Air salinity measuring method and measuring system - Google Patents

Air salinity measuring method and measuring system Download PDF

Info

Publication number
JP5409185B2
JP5409185B2 JP2009188233A JP2009188233A JP5409185B2 JP 5409185 B2 JP5409185 B2 JP 5409185B2 JP 2009188233 A JP2009188233 A JP 2009188233A JP 2009188233 A JP2009188233 A JP 2009188233A JP 5409185 B2 JP5409185 B2 JP 5409185B2
Authority
JP
Japan
Prior art keywords
outside air
pure water
sealed container
measured
introduction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009188233A
Other languages
Japanese (ja)
Other versions
JP2011038956A (en
Inventor
真澄 亘
浩史 鳴滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2009188233A priority Critical patent/JP5409185B2/en
Publication of JP2011038956A publication Critical patent/JP2011038956A/en
Application granted granted Critical
Publication of JP5409185B2 publication Critical patent/JP5409185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、気中塩分測定方法及び測定システムに関する。さらに詳述すると、本発明は、大気中の塩分を純水に溶解させ、この純水の電気伝導度の測定値から大気中の塩分を測定する気中塩分測定方法及び測定システムに関する。   The present invention relates to an air salinity measurement method and measurement system. More specifically, the present invention relates to an air salinity measurement method and a measurement system for dissolving salinity in the atmosphere in pure water and measuring the salinity in the atmosphere from a measured value of electric conductivity of the pure water.

大気中の塩分を測定する従来技術として、特許文献1記載の気中塩分測定方法が知られている。この気中塩分測定方法は、図9に示す気中塩分計を用いて実施される。具体的には、一定量の純水102を封入した密閉容器101に、外気を容器101内に導入するための外気導入管103と容器101内の純水102を吸い上げるための純水吸引管104とを有し且つ外気導入管103の先端に備えられたノズル103aから射出される外気と純水吸引管104により吸い上げられた容器101内の純水102とにより容器101内で霧110を発生させる霧吹装置105を備えておく。そして、容器101に設けた排気口106から排気ポンプによって容器101内の空気を排除することで容器101を負圧とし、外気導入管103から被測定外気を容器101内に導入すると共に純水吸引管104により容器内の純水102を吸い上げ、容器101の内壁に衝突するように霧吹装置105から霧110を発生させて被測定外気に含まれる塩分を容器101内の純水102に溶解させ、容器101内の純水102中の電気伝導度の測定値(電極112により測定)から被測定外気の塩分を測定するものである。また、図9に示す気中塩分計には、一定時間毎に容器101内の純水102を交換するための機構として、純水タンク107、吸水電磁弁108、排水電磁弁109及び純水を一定量に定めるための水位センサ111が備えられている。   As a conventional technique for measuring the salinity in the atmosphere, an air salinity measuring method described in Patent Document 1 is known. This air salinity measuring method is carried out using an air salinity meter shown in FIG. Specifically, an outside air introduction pipe 103 for introducing outside air into the container 101 and a pure water suction pipe 104 for sucking up the pure water 102 in the container 101 into a sealed container 101 in which a certain amount of pure water 102 is sealed. Mist 110 is generated in the container 101 by the outside air injected from the nozzle 103 a provided at the tip of the outside air introduction pipe 103 and the pure water 102 in the container 101 sucked up by the pure water suction pipe 104. A fog spray device 105 is provided. Then, by removing the air in the container 101 from the exhaust port 106 provided in the container 101 by an exhaust pump, the container 101 is brought to a negative pressure, and the outside air to be measured is introduced into the container 101 from the outside air introduction pipe 103 and pure water is sucked. The pipe 104 sucks up the pure water 102 in the container, generates a mist 110 from the mist blowing device 105 so as to collide with the inner wall of the container 101, and dissolves the salt contained in the outside air to be measured in the pure water 102 in the container 101, The salinity of the outside air to be measured is measured from the measured value of electric conductivity in the pure water 102 in the container 101 (measured by the electrode 112). The air salinity meter shown in FIG. 9 includes a pure water tank 107, a water absorption electromagnetic valve 108, a drain electromagnetic valve 109, and pure water as a mechanism for exchanging the pure water 102 in the container 101 at regular intervals. A water level sensor 111 for determining a certain amount is provided.

特公平5−8982号Japanese Patent Publication 5-8982

しかしながら、特許文献1に記載の気中塩分測定方法では、測定精度が十分なものとは言えず、信頼性の高いデータが得られないという問題があった。   However, the air salinity measurement method described in Patent Document 1 cannot be said to have sufficient measurement accuracy, and there is a problem in that highly reliable data cannot be obtained.

また、特許文献1記載の気中塩分測定方法は、一定時間毎に容器101内の純水102の交換を行って測定毎に容器101内の純水を全量入れ替えることを前提とするものである。近年、1〜2ヶ月あるいはそれ以上の長期間に亘って継続的に気中塩分測定を行うことが要求されており、このような長期間に亘って継続的に塩分測定を行うことのできる手法の確立が望まれている。   In addition, the air salinity measurement method described in Patent Document 1 is based on the premise that the pure water 102 in the container 101 is replaced at regular intervals, and the entire amount of pure water in the container 101 is replaced for each measurement. . In recent years, it has been required to continuously measure air salinity over a long period of 1 to 2 months or more, and such a method capable of continuously measuring salinity over a long period of time. Establishment of is desired.

そこで、本発明は、被測定外気に含まれる塩分を精度良く測定することのできる気中塩分測定方法及び測定システムを提供することを目的とする。   Then, an object of this invention is to provide the air salinity measuring method and measuring system which can measure the salinity contained in to-be-measured external air accurately.

また、本発明は、被測定外気に含まれる塩分を精度良く測定することができ、しかも長期間に亘って継続的に測定を行うことのできる気中塩分測定方法及び測定システムを提供することを目的とする。   The present invention also provides an air salinity measurement method and measurement system that can accurately measure the salinity contained in the outside air to be measured and that can continuously measure over a long period of time. Objective.

かかる課題を解決するため、本願発明者等が鋭意検討を行った結果、特許文献1に記載されているような従来の気中塩分測定方法では、霧吹装置105で発生した塩分を含む霧110が排気ポンプで排気されてしまい、これが測定精度を低下させている根本的な要因となっていることを突き止めた。   As a result of intensive studies by the inventors of the present application in order to solve such a problem, in the conventional air salinity measurement method as described in Patent Document 1, the mist 110 containing the salt generated in the mist blowing device 105 is generated. It was found that the exhaust was exhausted by the exhaust pump, and this was a fundamental factor that lowered the measurement accuracy.

また、特許文献1に記載されているような従来の気中塩分測定方法では、外気導入管103のノズル103aに土埃や塩分の結晶による詰まりが生じて、ノズル103aからの外気の射出が阻害され、霧110が発生し難くなる場合があることが判明した。また、外気導入管103に昆虫等の固形物が入り込んでノズル103aの近傍が詰まり、これによりノズル103aからの外気の射出が阻害されて、霧110が発生し難くなる場合もあることが判明した。つまり、外気導入管103のノズル103aの詰まりもまた、被測定外気の射出を阻害して測定精度を低下させる要因となり得ることを突き止めた。   Further, in the conventional air salinity measuring method as described in Patent Document 1, the nozzle 103a of the outside air introduction tube 103 is clogged with dust or salt crystals, and the injection of outside air from the nozzle 103a is hindered. It has been found that the fog 110 may be difficult to occur. It has also been found that solid matter such as insects enters the outside air introduction tube 103 and clogs the vicinity of the nozzle 103a, thereby inhibiting the injection of outside air from the nozzle 103a and making it difficult to generate the mist 110. . In other words, it has been found that the clogging of the nozzle 103a of the outside air introduction tube 103 can also be a factor that impedes the injection of the outside air to be measured and reduces the measurement accuracy.

その一方で、本願発明者等は、特許文献1に記載されている気中塩分測定方法によって、1〜2ヶ月あるいはそれ以上の長期間に亘って継続的に塩分測定を行うことができないか検討を行った。その結果、一定時間毎、例えば5〜6時間毎に容器101内の純水102の交換を行って測定毎に容器101内の純水102を全量入れ替えることを前提としていた従来の方法においては生じ得なかった問題が明らかとなった。即ち、測定期間が一日を超えると、霧110が排気ポンプで排気されることに加えて、容器101内の純水102が蒸発してその量が低下し、霧110を発生させることができなくなることが判明した。   On the other hand, the inventors of the present application have examined whether the salinity measurement can be continuously performed over a long period of 1 to 2 months or more by the air salinity measurement method described in Patent Document 1. Went. As a result, it occurs in the conventional method which is based on the premise that the pure water 102 in the container 101 is replaced every predetermined time, for example, every 5 to 6 hours, and the entire amount of the pure water 102 in the container 101 is replaced for every measurement. The problem that was not obtained became clear. That is, when the measurement period exceeds one day, in addition to the mist 110 being exhausted by the exhaust pump, the pure water 102 in the container 101 is evaporated and the amount thereof is reduced, and the mist 110 can be generated. It turned out to be gone.

そこで、本願発明者等は、一定時間毎に容器101内の純水102を交換するための機構である純水タンク107、吸水電磁弁108及び純水を一定量に定めるための水位センサ111を利用することによって、容器101内の純水102の量が低下したことを水位センサ111で検知させ、吸水電磁弁108を作動させて純水タンク107から純水102を補給することで、長期間に亘る継続的な塩分測定を実施できるのではないかと考え、実験を行った。ところが、この場合には、上記した外気導入管103のノズル103aの詰まりの問題がさらに顕著なものとなることがわかった。   Therefore, the inventors of the present application provide a pure water tank 107, a water absorption electromagnetic valve 108, and a water level sensor 111 for determining a constant amount of pure water, which are mechanisms for exchanging the pure water 102 in the container 101 at regular intervals. By using this, the water level sensor 111 detects that the amount of pure water 102 in the container 101 has decreased, and the water absorption electromagnetic valve 108 is operated to replenish the pure water 102 from the pure water tank 107. The experiment was carried out on the assumption that continuous salinity measurement could be carried out. However, in this case, it has been found that the problem of the clogging of the nozzle 103a of the outside air introduction pipe 103 becomes more remarkable.

そこで、本願発明者等は、従来よりも測定精度を向上させるための検討を重ね、排気されやすい霧を発生させる従来の方式とは別の新規な方式を採用することで、上記問題点を解決できることを見出し、本願発明を完成するに至った。   Therefore, the inventors of the present application have repeatedly studied to improve the measurement accuracy than before, and have adopted the new method different from the conventional method for generating fog that is easily exhausted, thereby solving the above-mentioned problems. As a result, the present invention has been completed.

即ち、請求項1に記載の気中塩分測定方法は、被測定外気に含まれる塩分を測定する気中塩分測定方法であって、純水を入れた密閉容器に、両端が開口している外気導入管を差し込み、密閉容器の外側に位置する開口部を外気吸引部とすると共に密閉容器の内側に位置する開口部を外気排出部とし、且つ外気排出部は密閉容器内の純水と接触しない位置に配置し、外気導入管内にはフィルタ部材を設け、外気導入管内の外気吸引部とフィルタ部材との間の位置に密閉容器内の純水を供給して外気排出部に向けて純水を流通させることにより、密閉容器内の純水が外気導入管内を流通して外気排出部から再び密閉容器内に戻る純水循環路を形成する一方で、密閉容器内を排気することにより、被測定外気に含まれる固形物をフィルタ部材で除去しながら被測定外気を外気導入管の外気吸引部から外気排出部に向けて流通させて、外気導入管内を流通する純水に被測定外気に含まれる塩分、フィルタ部材に付着した被測定外気由来の塩分及び外気導入管の壁面に付着した被測定外気由来の塩分を溶け込ませ、密閉容器内の純水の電気伝導度の測定値から被測定外気に含まれる塩分を測定するようにしている。 That is, the air salinity measuring method according to claim 1 is an air salinity measuring method for measuring the salinity contained in the outside air to be measured, and the outside air having both ends opened in a sealed container containing pure water. The inlet tube is inserted, the opening located outside the sealed container is used as the outside air suction part, and the opening located inside the sealed container is used as the outside air discharge part, and the outside air discharge part does not come into contact with the pure water in the sealed container. A filter member is provided in the outside air introduction pipe, and pure water in the sealed container is supplied to a position between the outside air suction part and the filter member in the outside air introduction pipe, and the pure water is supplied to the outside air discharge part. By circulating, the pure water in the sealed container circulates in the outside air introduction pipe and forms a pure water circulation path that returns from the outside air discharge part to the sealed container again, while exhausting the inside of the sealed container to measure Solid matter contained in the outside air is removed with a filter member While the outside air measured by the outside air suction portion of the outside air introducing pipe is circulated toward the ambient air discharging unit, salt contained in the outside air to be measured in pure water flowing through the external air introduction pipe, the measured outside air from adhering to the filter member The salinity and the salinity derived from the outside air to be measured adhering to the wall surface of the outside air introduction pipe are dissolved, and the salinity contained in the outside air to be measured is measured from the measured value of the electric conductivity of pure water in the sealed container.

また、請求項3に記載の気中塩分測定システムは、被測定外気に含まれる塩分を測定する気中塩分測定システムであって、純水を入れた密閉容器と、両端が開口している管であって密閉容器に差し込まれて密閉容器の外側に位置する開口部を外気吸引部とすると共に密閉容器の内側に位置する開口部を外気排出部とし且つ外気排出部は密閉容器内の純水と接触しない位置に配置されている外気導入管と、密閉容器内を排気する排気装置と、外気導入管内に設けられたフィルタ部材と、密閉容器内の純水に一端が接触された第1配管と、外気導入管の外気吸引部とフィルタ部材との間の位置に一端が接続された第2配管と、第1配管の他端と第2配管の他端とを接続する送液ポンプと、密閉容器内の純水の電気伝導度を測定する測定装置とを少なくとも備え、送液ポンプを稼働させることにより、密閉容器内の純水が第1配管、第2配管及び外気導入管の順で流通して外気排出部から再び密閉容器内に戻る純水循環路が形成される一方で、排気装置を稼働させることにより、被測定外気に含まれる固形物をフィルタ部材で除去しながら被測定外気を外気導入管の外気吸引部から外気排出部に向けて流通させて、外気導入管内を流通する純水に被測定外気に含まれる塩分、フィルタ部材に付着した被測定外気由来の塩分及び外気導入管の壁面に付着した被測定外気由来の塩分を溶け込ませ、測定装置により得られる密閉容器内の純水の電気伝導度の測定値から被測定外気の塩分を測定するものとしている。 The air salinity measuring system according to claim 3 is an air salinity measuring system for measuring the salinity contained in the outside air to be measured, which is a sealed container containing pure water, and a pipe having both ends open. The opening that is inserted into the sealed container and located outside the sealed container is used as an outside air suction part, and the opening that is located inside the sealed container is used as an outside air discharge part, and the outside air discharge part is pure water in the sealed container. The outside air introduction pipe arranged at a position not in contact with the air, the exhaust device for exhausting the inside of the sealed container, the filter member provided in the outside air introduction pipe, and the first pipe whose one end is in contact with the pure water in the sealed container A second pipe having one end connected to a position between the outside air suction part of the outside air introduction pipe and the filter member, a liquid feed pump connecting the other end of the first pipe and the other end of the second pipe, A measuring device that measures the electrical conductivity of pure water in a sealed container Pure water circulation in which the deionized water in the sealed container circulates in the order of the first pipe, the second pipe, and the outside air introduction pipe and returns to the sealed container again from the outside air discharge section by operating the liquid pump. While the passage is formed, the measured air is circulated from the outside air suction part to the outside air discharge part of the outside air introduction pipe while the solid matter contained in the outside air to be measured is removed by the filter member by operating the exhaust device. Let the salt contained in the measured outside air in the pure water flowing through the outside air introducing pipe, the salt derived from the measured outside air attached to the filter member and the salt derived from the measured outside air attached to the wall surface of the outside air introducing pipe , The salinity of the outside air to be measured is measured from the measured value of the electrical conductivity of pure water in the sealed container obtained by the measuring device.

したがって、請求項1に記載の気中塩分測定方法及び請求項3に記載の気中塩分測定システムによると、外気導入管内の外気吸引部とフィルタ部材との間の位置に密閉容器内の純水を供給して外気導入管内に純水を流通させるようにしているので、外気導入管内を流通する被測定外気に含まれる塩分をこの純水に溶け込ませることができる。そして、塩分が溶け込んだ純水は外気導入管の外気排出部から流下ないしは滴下するので、従来の気中塩分測定方法のように被測定外気と純水とを接触させて発生させた霧よりも排気されにくいものとなる。また、外気導入管に設けられたフィルタ部材によって被測定外気に含まれる固形物を除去しながら被測定外気を密閉容器内に導入すると共に、外気導入管内の外気吸引部とフィルタ部材との間の位置に密閉容器内の純水を供給するようにしているので、フィルタ部材に捕捉された被測定外気由来の土埃や塩分が純水に溶けてフィルタ部材から除去されるので、土埃や塩分の結晶による外気導入管の詰まりが生じない。しかも、被測定外気由来の塩分を純水に溶かし込んで測定に供することができる。さらには、外気導入管に設けられたフィルタ部材によって、昆虫等の固形物が密閉容器内に入り込んで、配管等が閉塞されてしまうようなトラブルも回避できる。   Therefore, according to the air salinity measuring method according to claim 1 and the air salinity measuring system according to claim 3, the pure water in the sealed container is placed at a position between the outside air suction part and the filter member in the outside air introduction pipe. Since the pure water is circulated through the outside air introduction pipe, the salt contained in the measured outside air flowing through the outside air introduction pipe can be dissolved in the pure water. Since pure water in which salt is dissolved flows down or drops from the outside air discharge part of the outside air introduction pipe, it is more than the mist generated by contacting the air to be measured and pure water as in the conventional air salinity measurement method. It becomes difficult to be exhausted. In addition, while removing solids contained in the measured outside air by the filter member provided in the outside air introduction pipe, the outside air to be measured is introduced into the sealed container, and between the outside air suction part in the outside air introduction pipe and the filter member. Since the pure water in the sealed container is supplied to the position, the dirt and salt derived from the outside air to be measured captured by the filter member are dissolved in the pure water and removed from the filter member. The clogging of the outside air introduction pipe due to will not occur. Moreover, the salt content derived from the outside air to be measured can be dissolved in pure water and used for the measurement. Furthermore, it is possible to avoid a trouble that solid matter such as insects enters the sealed container and the piping is blocked by the filter member provided in the outside air introduction pipe.

ここで、請求項1に記載の気中塩分測定方法において、請求項2に記載したように、密閉容器内の純水の量が低下したときに、外気導入管内の外気吸引部とフィルタ部材との間の位置に純水を供給することにより、密閉容器内に純水を補給することが好ましい。また、請求項3に記載の気中塩分測定システムにおいて、請求項4に記載したように、純水を貯留する純水貯留タンクと、外気導入管への純水の供給源を密閉容器内から純水貯留タンクに切り替える切替手段と、密閉容器内の純水の量が規定値より低下したときには切替手段を作動させて純水の供給源を純水貯留タンクに切り替えると共に密閉容器内の純水の量が規定値以上のときには切替手段を作動させて純水の供給源を密閉容器内に切り替える制御手段とを備えるものとすることが好ましい。この場合、密閉容器内の純水の量が低下したときに純水貯留タンクからの純水の補充が可能となるので、密閉容器内の純水の量を長期に亘り一定量に維持し続けることができる。しかも、外気導入管からの被測定外気の密閉容器内への導入を停止することなく、外気導入管を介して密閉容器内への純水の補充を行うことができ、気中塩分の測定を継続しながらの純水の補充が可能である。   Here, in the air salinity measurement method according to claim 1, when the amount of pure water in the sealed container is reduced as described in claim 2, the outside air suction part and the filter member in the outside air introduction pipe are It is preferable to supply pure water into the sealed container by supplying pure water to a position between the two. Further, in the air salinity measurement system according to claim 3, as described in claim 4, a pure water storage tank for storing pure water and a supply source of pure water to the outside air introduction pipe are provided from inside the sealed container. Switching means for switching to the deionized water storage tank, and when the amount of pure water in the sealed container falls below a specified value, the switching means is operated to switch the pure water supply source to the deionized water storage tank and to store the deionized water in the sealed container It is preferable to include control means for operating the switching means to switch the source of pure water into the sealed container when the amount of water is greater than or equal to the specified value. In this case, when the amount of pure water in the sealed container is reduced, it is possible to replenish pure water from the pure water storage tank. Therefore, the amount of pure water in the sealed container is kept constant over a long period of time. be able to. Moreover, it is possible to replenish pure water into the sealed container through the outside air introduction pipe without stopping the introduction of the measured outside air from the outside air introduction pipe into the sealed container. It is possible to replenish pure water while continuing.

また、請求項3に記載の気中塩分測定システムにおいて、請求項5に記載したように、外気導入管のフィルタ部材と外気排出部との間に外気導入管よりも外径の小さな管が並列して複数本備えられているものとすることが好ましい。この場合、外気導入管よりも外径の小さな複数本の管に被測定外気と純水とが流通することによって、被測定外気と純水との接触面積が増加して被測定外気に含まれる塩分が純水に溶け込み易くなる。   Further, in the air salinity measurement system according to claim 3, as described in claim 5, a pipe having a smaller outer diameter than the outside air introduction pipe is arranged in parallel between the filter member of the outside air introduction pipe and the outside air discharge portion. It is preferable that a plurality of them are provided. In this case, when the measured outside air and pure water flow through a plurality of tubes having an outer diameter smaller than that of the outside air introduction pipe, the contact area between the measured outside air and pure water increases and is included in the measured outside air. Salinity easily dissolves in pure water.

さらに、請求項3に記載の気中塩分測定システムにおいて、請求項6に記載したように、下端から上端に向けて内径を漸次縮径する逆漏斗形状の環状部材が外気排出部を包囲するように外気導入管に備えられ、またはその上端と外気排出部を接続するように外気導入管に備えられていることが好ましい。この場合、外気導入管の外気排出部から滴下する塩分を含む純水が排気装置によって排気されるのを確実に防ぐことができる。   Furthermore, in the air salinity measurement system according to claim 3, as described in claim 6, an annular member having a reverse funnel shape whose inner diameter is gradually reduced from the lower end toward the upper end surrounds the outside air discharge portion. It is preferable to be provided in the outside air introduction pipe or to be provided in the outside air introduction pipe so as to connect the upper end of the outside air introduction pipe. In this case, it is possible to reliably prevent the pure water containing salt dripping from the outside air discharge portion of the outside air introduction pipe from being exhausted by the exhaust device.

また、請求項3に記載の気中塩分測定システムにおいて、請求項7に記載したように、密閉容器内に圧縮ガスを供給する圧縮機を備え、排気装置を停止すると共に圧縮機から圧縮ガスを密閉容器内に供給して圧縮ガスを外気排出部から外気吸引部に向けて流通させ、フィルタ部材を閉塞している付着物及びフィルタ部材上に堆積している固形物を外気導入管の外気吸引部から排出するものとすることが好ましい。この場合、外気導入管からの被測定外気の密閉容器内への導入を阻害する要因となる、フィルタ部材を閉塞している付着物及びフィルタ部材上に堆積している固形物を定期的にあるいは随意に除去して、外気導入管からの被測定外気の密閉容器内への導入を長期間良好なものに維持することができる。また、密閉容器内の純水の交換作業の際には、圧縮機から圧縮ガスを密閉容器内の純水に供給してバブリングを行い、密閉容器の内壁を洗浄することが好ましい。 Further, in the air salinity measurement system according to claim 3, as described in claim 7, the air salinity measurement system includes a compressor that supplies compressed gas into the sealed container, stops the exhaust device, and supplies compressed gas from the compressor The compressed gas is supplied from the outside air discharge part to the outside air suction part by supplying it into the sealed container, and the adhering matter blocking the filter member and the solid matter accumulated on the filter member are sucked into the outside air from the outside air introduction pipe. It is preferable to discharge from the part. In this case, the deposits blocking the filter member and the solid matter deposited on the filter member, which are factors that hinder the introduction of the measured outside air from the outside air introduction pipe into the sealed container, are periodically or It can be optionally removed, and the introduction of the outside air to be measured from the outside air introduction pipe into the sealed container can be kept good for a long time. In addition, when exchanging pure water in the sealed container, it is preferable to supply the compressed gas from the compressor to the pure water in the sealed container and perform bubbling to clean the inner wall of the sealed container.

請求項1に記載の気中塩分測定方法及び請求項3に記載の気中塩分測定システムによれば、外気導入管内の外気吸引部とフィルタ部材との間の位置に密閉容器内の純水を供給して外気導入管内に純水を流通させるようにしているので、外気導入管内を流通する被測定外気に含まれる塩分をこの純水に溶け込ませることができる。そして、塩分が溶け込んだ純水は外気導入管の外気排出部から流下ないしは滴下するので、従来の気中塩分測定方法のように被測定外気と純水とを接触させて発生させた霧よりも排気されにくいものとなる。したがって、従来の気中塩分測定方法よりも測定精度を向上させることができる。また、外気導入管に設けられたフィルタ部材によって被測定外気に含まれる固形物を除去しながら被測定外気を密閉容器内に導入すると共に、外気導入管内の外気吸引部とフィルタ部材との間の位置に密閉容器内の純水を供給するようにしているので、フィルタ部材に捕捉された被測定外気由来の土埃や塩分が純水に溶けてフィルタ部材から除去され、土埃や塩分の結晶による外気導入管の詰まりが生じない。しかも、被測定外気由来の塩分を純水に溶かし込んで測定に供することができるので、被測定外気に含まれる塩分を余すことなく測定して従来の気中塩分測定方法よりも測定精度を向上させることができる。さらには、外気導入管に設けられたフィルタ部材によって、昆虫等の固形物が密閉容器内に入り込んで、配管等が閉塞されてしまうようなトラブルも回避できる。   According to the air salinity measuring method according to claim 1 and the air salinity measuring system according to claim 3, the pure water in the sealed container is placed at a position between the outside air suction part and the filter member in the outside air introduction pipe. Since the pure water is supplied and circulated in the outside air introduction pipe, the salt contained in the measured outside air flowing through the outside air introduction pipe can be dissolved in the pure water. Since pure water in which salt is dissolved flows down or drops from the outside air discharge part of the outside air introduction pipe, it is more than the mist generated by contacting the air to be measured and pure water as in the conventional air salinity measurement method. It becomes difficult to be exhausted. Therefore, measurement accuracy can be improved as compared with the conventional air salinity measurement method. In addition, while removing solids contained in the measured outside air by the filter member provided in the outside air introduction pipe, the outside air to be measured is introduced into the sealed container, and between the outside air suction part in the outside air introduction pipe and the filter member. Since the pure water in the sealed container is supplied to the position, dirt and salt derived from the measured outside air trapped in the filter member are dissolved in the pure water and removed from the filter member. The inlet pipe is not clogged. In addition, the salt content derived from the outside air to be measured can be dissolved in pure water for measurement, so that the salt content in the outside air to be measured can be measured without any excess, improving measurement accuracy over conventional air salinity measurement methods. Can be made. Furthermore, it is possible to avoid a trouble that solid matter such as insects enters the sealed container and the piping is blocked by the filter member provided in the outside air introduction pipe.

請求項2に記載の気中塩分測定方法及び請求項4に記載の気中塩分測定システムによれば、密閉容器内の純水の量が低下したときに純水貯留タンクからの純水の補充が可能となるので、密閉容器内の純水の量を長期に亘り一定量に維持し続けることができる。しかも、外気導入管からの被測定外気の密閉容器内への導入を停止することなく、外気導入管を介して密閉容器内への純水の補充を行うことができ、気中塩分の測定を継続しながらの純水の補充が可能である。したがって、気中塩分測定を長期間に亘り継続して実施することが可能となる。   According to the air salinity measurement method according to claim 2 and the air salinity measurement system according to claim 4, when pure water in the sealed container is reduced, pure water is replenished from the pure water storage tank. Therefore, the amount of pure water in the sealed container can be kept constant for a long time. Moreover, it is possible to replenish pure water into the sealed container through the outside air introduction pipe without stopping the introduction of the measured outside air from the outside air introduction pipe into the sealed container. It is possible to replenish pure water while continuing. Therefore, air salinity measurement can be continuously performed over a long period of time.

請求項5に記載の気中塩分測定システムによれば、外気導入管よりも外径の小さな複数本の管に被測定外気と純水とが流通することによって、被測定外気と純水との接触面積が増加して被測定外気に含まれる塩分が純水に溶け込み易くなる。したがって、外気導入管の長さを短くしても被測定外気に含まれる塩分の純水への溶け込みが十分に起こるので、外気導入管の長さを短くしてシステム全体の構成をコンパクトなものとすることが可能となる。   According to the air salinity measuring system according to claim 5, the measured outside air and pure water are circulated through a plurality of tubes having an outer diameter smaller than that of the outside air introduction pipe, whereby the measured outside air and pure water are The contact area increases and the salt contained in the outside air to be measured is easily dissolved in pure water. Therefore, even if the length of the outside air introduction pipe is shortened, the salt contained in the outside air to be measured is sufficiently dissolved in the pure water, so the length of the outside air introduction pipe is shortened and the overall system configuration is compact. It becomes possible.

請求項6に記載の気中塩分測定システムによれば、外気導入管の外気排出部から滴下する塩分を含む純水が排気装置によって排気されるのを確実に防ぐことができる。したがって、従来の気中塩分測定方法と比較して測定精度を大幅に向上させることができる。   According to the air salinity measurement system of the sixth aspect, it is possible to reliably prevent the pure water containing salt dripped from the outside air discharge portion of the outside air introduction pipe from being exhausted by the exhaust device. Therefore, the measurement accuracy can be greatly improved as compared with the conventional air salinity measurement method.

請求項7に記載の気中塩分測定システムによれば、この場合、外気導入管からの被測定外気の密閉容器内への導入を阻害する要因となる、フィルタ部材を閉塞している付着物及びフィルタ部材上に堆積している固形物を定期的にあるいは随意に除去して、外気導入管からの被測定外気の密閉容器内への導入状態を長期間良好なものに維持することが可能となる。   According to the air salinity measuring system according to claim 7, in this case, the adhering matter blocking the filter member, which is a factor that hinders introduction of the measured outside air from the outside air introduction pipe into the sealed container, and The solid matter accumulated on the filter member can be removed periodically or voluntarily, and the state of introduction of the measured outside air from the outside air introduction pipe into the sealed container can be maintained for a long time. Become.

本発明の気中塩分測定システムにより気中塩分を測定する場合の実施形態の一例を示す図である。It is a figure which shows an example of embodiment in the case of measuring air salinity by the air salinity measuring system of this invention. 本発明の気中塩分測定システムにより気中塩分を測定しながら密閉容器内に水を補給する場合の実施形態の一例を示す図である。It is a figure which shows an example of embodiment in the case of supplying water in an airtight container, measuring air salinity by the air salinity measuring system of this invention. 本発明の気中塩分測定システムによりフィルタ部材の目詰まりを除去する場合の実施形態の一例を示す図である。It is a figure which shows an example of embodiment in the case of removing clogging of a filter member by the air salinity measuring system of this invention. 本発明の気中塩分測定システムにおいて、密閉容器内の純水の交換を行う場合の実施形態の一例を示す図である。In the air salinity measurement system of this invention, it is a figure which shows an example of embodiment in the case of replacing | exchanging the pure water in an airtight container. 本実施形態におけるフィルタ部材の形態の一例を示す図である。It is a figure which shows an example of the form of the filter member in this embodiment. 本実施形態において、外気導入管に備えられる接触管の形態の一例を示す図である。In this embodiment, it is a figure which shows an example of the form of the contact tube with which an external air introduction pipe is equipped. 比較例におけるガーゼ法と図7に示す気中塩分測定システムの比較実験結果を示す図である。It is a figure which shows the comparison experiment result of the gauze method in a comparative example, and the air salinity measuring system shown in FIG. 本発明の気中塩分測定システムを用いた場合の回収率(捕集効率)を示す図である。It is a figure which shows the recovery rate (collection efficiency) at the time of using the air salinity measuring system of this invention. 従来の気中塩分測定システムを示す図である。It is a figure which shows the conventional air salinity measurement system.

以下、本発明を実施するための形態について、図面に基づいて詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

本発明の気中塩分測定方法は、被測定外気に含まれる塩分を測定する気中塩分測定方法であって、純水を入れた密閉容器に、両端が開口している外気導入管を差し込み、密閉容器の外側に位置する開口部を外気吸引部とすると共に密閉容器の内側に位置する開口部を外気排出部とし、且つ外気排出部は密閉容器内の純水と接触しない位置に配置し、外気導入管内にはフィルタ部材を設け、外気導入管内の外気吸引部とフィルタ部材との間の位置に密閉容器内の純水を供給して外気排出部に向けて純水を流通させることにより、密閉容器内の純水が外気導入管内を流通して外気排出部から再び密閉容器内に戻る純水循環路を形成する一方で、密閉容器内を排気することにより、被測定外気に含まれる固形物をフィルタ部材で除去しながら被測定外気を外気導入管の外気吸引部から外気排出部に向けて流通させて、外気導入管内を流通する純水に被測定外気に含まれる塩分を溶け込ませ、密閉容器内の純水の電気伝導度の測定値から被測定外気に含まれる塩分を測定するようにしている。   The air salinity measurement method of the present invention is an air salinity measurement method for measuring the salinity contained in the outside air to be measured, and an air introduction pipe having both ends opened is inserted into a sealed container containing pure water, The opening located outside the sealed container is used as an outside air suction part and the opening located inside the sealed container is used as an outside air discharge part, and the outside air discharge part is arranged at a position where it does not come into contact with pure water in the sealed container, By providing a filter member in the outside air introduction pipe, supplying pure water in the sealed container to a position between the outside air suction part and the filter member in the outside air introduction pipe, and circulating the pure water toward the outside air discharge part, The pure water in the sealed container circulates in the outside air introduction pipe and forms a pure water circulation path that returns from the outside air discharge part back into the sealed container. On the other hand, by exhausting the inside of the sealed container, solids contained in the measured outside air Measured while removing objects with filter member Air is circulated from the outside air suction part of the outside air introduction pipe to the outside air discharge part, so that the salt contained in the measured outside air is dissolved in the pure water flowing through the outside air introduction pipe, and the electric conductivity of the pure water in the sealed container The salinity contained in the outside air to be measured is measured from the measured value.

本発明の気中塩分測定方法は、例えば図1〜図4に示す気中塩分測定システムにより実施される。本実施形態における気中塩分測定システム1は、純水を入れた密閉容器2と、両端が開口している管であって密閉容器2に差し込まれて密閉容器2の外側に位置する開口部を外気吸引部3aとすると共に密閉容器2の内側に位置する開口部を外気排出部3bとし且つ外気排出部3bは密閉容器2内の純水と接触しない位置に配置されている外気導入管3と、密閉容器2内を排気する排気装置4と、外気導入管3内に設けられたフィルタ部材5と、密閉容器2内の純水に一端が接触された第1配管6と、外気導入管3の外気吸引部3aとフィルタ部材5との間の位置に一端が接続された第2配管7と、第1配管6の他端と第2配管7の他端とを接続する送液ポンプ8と、密閉容器2内の純水の電気伝導度を測定する測定装置12とを少なくとも備え、送液ポンプ8を稼働させることにより、密閉容器2内の純水が第1配管6、第2配管7及び外気導入管3の順で流通して外気排出部3bから再び密閉容器2内に戻る純水循環路が形成される一方で、排気装置4を稼働させることにより、被測定外気に含まれる固形物をフィルタ部材5で除去しながら被測定外気を外気導入管3の外気吸引部3aから外気排出部3bに向けて流通させて、外気導入管3内を流通する純水に被測定外気に含まれる塩分を溶け込ませ、測定装置12により得られる密閉容器2内の純水の電気伝導度の測定値から被測定外気の塩分を測定するものとしている。尚、図1〜4において、バルブ(あるいは電磁弁)が黒塗りの場合には閉状態であることを意味しており、黒塗りでない場合には開状態であることを意味している。   The air salinity measurement method of the present invention is implemented, for example, by an air salinity measurement system shown in FIGS. The air salinity measurement system 1 according to the present embodiment includes a sealed container 2 containing pure water, and a pipe that is open at both ends and is inserted into the sealed container 2 and located outside the sealed container 2. The outside air suction part 3a and the opening located inside the sealed container 2 are used as the outside air discharge part 3b, and the outside air discharge part 3b is disposed outside the sealed container 2 so as not to come into contact with the pure water. The exhaust device 4 for exhausting the inside of the sealed container 2, the filter member 5 provided in the outside air introduction pipe 3, the first pipe 6 whose one end is in contact with the pure water in the sealed container 2, and the outside air introduction pipe 3 A second pipe 7 having one end connected to a position between the outside air suction part 3a and the filter member 5, and a liquid feed pump 8 connecting the other end of the first pipe 6 and the other end of the second pipe 7. And a measuring device 12 for measuring the electrical conductivity of pure water in the sealed container 2 at least. In addition, by operating the liquid feed pump 8, the pure water in the sealed container 2 flows in the order of the first pipe 6, the second pipe 7 and the outside air introduction pipe 3, and again enters the sealed container 2 from the outside air discharge part 3b. On the other hand, the pure water circulation path is formed, while the exhaust device 4 is operated, so that the solid matter contained in the measured outside air is removed by the filter member 5 and the measured outside air is removed from the outside air introduction pipe 3. The salt water contained in the outside air to be measured is dissolved in the pure water flowing through the outside air introduction pipe 3 from the 3a to the outside air discharge section 3b. The salinity of the outside air to be measured is measured from the measured conductivity value. In FIGS. 1 to 4, when the valve (or electromagnetic valve) is black, it means that the valve is closed, and when it is not black, it means that the valve is open.

密閉容器2は、塩分が溶け込んだ純水による腐食等が起こりにくい材質、例えばガラス製の容器とすればよいが、これに限定されるものではない。   The sealed container 2 may be made of a material that is unlikely to be corroded by pure water in which salt is dissolved, for example, a glass container, but is not limited thereto.

また、密閉容器2には、純水が入れられている。純水は、電気伝導度による塩分の測定に影響を与える量の金属イオン等を実質的に含まない水であり、例えば蒸留水等を用いることができる。   The sealed container 2 contains pure water. Pure water is water that does not substantially contain an amount of metal ions or the like that affects the measurement of salinity by electrical conductivity. For example, distilled water or the like can be used.

外気導入管3は、両端が開口している管である。尚、ここでいう「管」とは、例えばガラス製の管の様に形状が固定されたものだけでなく、フレキシブルなチューブ等も含む。   The outside air introduction tube 3 is a tube that is open at both ends. The “tube” referred to here includes not only a tube whose shape is fixed, such as a glass tube, but also a flexible tube.

外気導入管3は、密閉容器2に差し込まれ、密閉容器2の外側に位置する開口部を外気吸引部3aとし、密閉容器2の内側に位置する開口部を外気排出部3bとしている。尚、外気吸引部3aと外気排出部3bの位置の上下関係については、外気吸引部3aを外気排出部3bよりも上側に配置して、純水の一部が外気吸引部3aから流れ落ちるのを防ぐようにしている。本実施形態では、外気吸引部3aを外気排出部3bよりも上側に配置し且つ密閉容器2内の純水の水面に対して略垂直にして、外気導入管3aに供給される純水を外気排出部3bから流下ないしは滴下させるようにしている。但し、外気吸引部3aと外気排出部3bの位置の上下関係については、この形態に限定されるものではなく、例えば、外気吸引部3aを外気排出部3bと等しい高さ、あるいは外気吸引部3aを外気排出部3bよりも下側に配置し、外気導入管3を外気吸引部3aの近傍で屈曲させて、外気吸引部3aを上向きに開口させるようにすることで、外気吸引部3aから純水が流れ落ちるのを防ぎながらも、送液ポンプ8の送液力によって、外気導入管3内に純水を流通させることが可能である。   The outside air introduction pipe 3 is inserted into the sealed container 2, and an opening located outside the sealed container 2 is an outside air suction part 3 a, and an opening located inside the sealed container 2 is an outside air discharge part 3 b. In addition, regarding the vertical relationship between the positions of the outside air suction unit 3a and the outside air discharge unit 3b, the outside air suction unit 3a is disposed above the outside air discharge unit 3b so that a part of pure water flows down from the outside air suction unit 3a. I try to prevent it. In this embodiment, the outside air suction part 3a is arranged above the outside air discharge part 3b and is substantially perpendicular to the surface of the pure water in the sealed container 2, so that pure water supplied to the outside air introduction pipe 3a is outside air. It is made to flow down or drop from the discharge part 3b. However, the vertical relationship between the positions of the outside air suction part 3a and the outside air discharge part 3b is not limited to this form. For example, the outside air suction part 3a has the same height as the outside air discharge part 3b or the outside air suction part 3a. Is disposed below the outside air discharge portion 3b, the outside air introduction tube 3 is bent in the vicinity of the outside air suction portion 3a, and the outside air suction portion 3a is opened upward. While preventing the water from flowing down, the pure water can be circulated in the outside air introduction pipe 3 by the liquid feeding force of the liquid feeding pump 8.

また、本実施形態において、外気導入管3の外気排出部3b(外気導入管3の密閉容器内側の端面)は、密閉容器2内の純水とは接触しない位置に配置されるようにしている。これにより、被測定外気が外気排出部3bから排出され、被測定外気を密閉容器2内に導入することができる。尚、外気排出部3bと密閉容器2内の純水の水面との距離については、外気排出部3bから塩分を含む純水が流下ないしは滴下したときに、水面から飛沫が発生し難い距離とすることが好適である。これにより、水面からの飛沫が排気装置4により排気されることによる測定精度の低下を抑えることができる。   In the present embodiment, the outside air discharge portion 3b of the outside air introduction pipe 3 (the end surface inside the outside container of the outside air introduction pipe 3) is arranged at a position that does not come into contact with the pure water in the inside container 2. . As a result, the measured outside air is discharged from the outside air discharge portion 3 b, and the measured outside air can be introduced into the sealed container 2. The distance between the outside air discharge unit 3b and the surface of the pure water in the sealed container 2 is a distance at which splashing hardly occurs from the water surface when pure water containing salt flows down or drops from the outside air discharge unit 3b. Is preferred. Thereby, the fall of the measurement accuracy by the splash from a water surface being exhausted by the exhaust apparatus 4 can be suppressed.

ここで、本発明の気中塩分測定システムにおいては、外気導入管3の外気排出部3bから塩分を含む純水をそのまま流下ないしは滴下させることで、従来の気中塩分測定方法において発生する霧よりも塩分を含む純水が排気され難くなって、測定精度を向上させることができるが、本実施形態のように、下端から上端に向けて内径を漸次縮径する逆漏斗形状の環状部材13が外気排出部3bを包囲するように外気導入管3に備えられて、外気導入管3の外気排出部3bから滴下する塩分を含む純水を内壁を伝わせて流れ落ちるようにすることがより好ましい。外気排出部3bから排出される塩分を含む純水は、大部分が流下するものの、一部は滴状となって滴下する。滴状となって滴下する純水は、排気装置4により排気されやすい。そこで、環状部材13を外気導入管3の外気排出部3bに装着することで、滴状となって滴下する純水が排気されたときに、この純水を環状部材13の内壁に衝突させることができる。ここで、環状部材13は、下端13bから上端13aに向けて内径を漸次縮径する逆漏斗形状としていることから、内壁に衝突した純水の雫は密閉容器2内の純水の水面に流れ落ちる。したがって、外気排出部3bから排出される塩分を含む純水が排気装置4により排気されることなく密閉容器2内に回収される。また、環状部材13がその上端と外気排出部3bを接続するように外気導入管3に備えられるようにしてもよい。この場合には、外気排出部3bから排出される塩分を含む純水が環状部材13の内壁を伝って流れ落ちるので、外気排出部3bから排出される純水が滴状となって滴下し難くなり、純水が排気されるのを防ぐことができる。また、外気排出部3bでは被測定外気が排出されやすくなる。尚、環状部材13の下端は、密閉容器2内の純水とは接触しない位置に配置し、且つ下端から流れ落ちる純水によって密閉容器2内の純水の水面から飛沫が発生し難い距離に配置することが好適である。   Here, in the air salinity measuring system according to the present invention, pure water containing salt is allowed to flow down or dripped as it is from the outside air discharge part 3b of the outside air introduction pipe 3, thereby reducing the fog generated in the conventional air salinity measuring method. The pure water containing salt can hardly be exhausted, and the measurement accuracy can be improved. However, as in this embodiment, the reverse funnel-shaped annular member 13 that gradually reduces the inner diameter from the lower end toward the upper end is provided. It is more preferable that the outside air introduction pipe 3 is provided so as to surround the outside air discharge part 3b and that pure water containing salt dripping from the outside air discharge part 3b of the outside air introduction pipe 3 flows down along the inner wall. Although most of the pure water containing salt discharged from the outside air discharge unit 3b flows down, a part of the pure water drops in the form of drops. Pure water dropped in the form of droplets is easily exhausted by the exhaust device 4. Therefore, by attaching the annular member 13 to the outside air discharge portion 3b of the outside air introduction pipe 3, when the pure water that drops and drops is exhausted, the pure water collides with the inner wall of the annular member 13. Can do. Here, since the annular member 13 has a reverse funnel shape in which the inner diameter gradually decreases from the lower end 13b toward the upper end 13a, the pure water trough colliding with the inner wall flows down to the surface of the pure water in the sealed container 2. . Therefore, pure water containing salt discharged from the outside air discharge unit 3 b is collected in the sealed container 2 without being exhausted by the exhaust device 4. Moreover, you may make it the annular member 13 be provided in the external air introduction pipe | tube 3 so that the upper end and the external air discharge part 3b may be connected. In this case, pure water containing salt discharged from the outside air discharge portion 3b flows down along the inner wall of the annular member 13, so that the pure water discharged from the outside air discharge portion 3b becomes droplets and hardly drops. Pure water can be prevented from being exhausted. In addition, the outside air to be measured is easily discharged from the outside air discharge unit 3b. In addition, the lower end of the annular member 13 is disposed at a position where it does not come into contact with the pure water in the sealed container 2, and is disposed at a distance at which it is difficult for the pure water flowing from the lower end to splash from the surface of the pure water in the sealed container 2. It is preferable to do.

また、本実施形態において、外気導入管3内には、フィルタ部材5が設けられている。フィルタ部材5により、被測定外気に含まれる固形物を除去しながら、外気排出部3bに向けて被測定外気を流通させることができる。したがって、外気排出部3bが土埃や塩分の結晶で詰まったり、昆虫等の固形物が密閉容器2内に入り込んで配管等を閉塞することにより気中塩分測定システムが故障するのを防ぐことができる。   In the present embodiment, a filter member 5 is provided in the outside air introduction tube 3. The filter member 5 can circulate the measured outside air toward the outside air discharge part 3b while removing solids contained in the measured outside air. Therefore, it is possible to prevent the outside air discharge unit 3b from being clogged with dirt or salt crystals, or a solid matter such as insects from entering the sealed container 2 to close the piping or the like, thereby causing the air salinity measurement system to fail. .

尚、本実施形態において、フィルタ部材5は、図5に示されるように、フィルタ部材5を円柱状の筐体内に設けて、筐体の両端の略中央部の開口部に配管を備え、この配管を外気導入管3に接続するようにしているが、外気導入管3内にフィルタ部材を直接設けるようにしても勿論よい。   In this embodiment, as shown in FIG. 5, the filter member 5 is provided with a filter member 5 in a cylindrical casing, and provided with pipes at openings at substantially central portions at both ends of the casing. Although the pipe is connected to the outside air introduction pipe 3, the filter member may of course be provided directly in the outside air introduction pipe 3.

フィルタ部材5は、例えば目開き0.1mm〜1.0mm、好適には0.8mm程度のメッシュ素材等とすればよいが、被測定外気に含まれる固形物を除去しながらも、被測定外気の密閉容器2内への導入を阻害することのないものであれば、これに限定されるものではない。尚、被測定外気に含まれる固形物とは、例えば、土埃等のごみ、塩分、昆虫等である。   The filter member 5 may be, for example, a mesh material having a mesh size of 0.1 mm to 1.0 mm, preferably about 0.8 mm, but the outside air to be measured while removing solids contained in the outside air to be measured. As long as it does not impede the introduction into the sealed container 2, it is not limited to this. The solid matter contained in the outside air to be measured is, for example, dust such as dust, salt, insects, and the like.

外気導入管3には、外気吸引部3aとフィルタ部材5との間の位置に第2配管7の一端が接続されている。第2配管7の他端は送液ポンプ8に接続されている。また、密閉容器2内の純水に第1配管6の一端が接触され、他端が送液ポンプ8に接続されている。   One end of a second pipe 7 is connected to the outside air introduction pipe 3 at a position between the outside air suction part 3 a and the filter member 5. The other end of the second pipe 7 is connected to the liquid feed pump 8. Further, one end of the first pipe 6 is brought into contact with the pure water in the sealed container 2, and the other end is connected to the liquid feed pump 8.

送液ポンプ8を稼働させると、密閉容器2内の純水が第1配管6と第2配管7を介して外気導入管3内の外気吸引部3aとフィルタ部材5との間の位置に供給される。そして、外気導入管3に供給された純水は、外気排出部3bから流下ないしは滴下されて、再び密閉容器2内に戻る。つまり、本発明の気中塩分測定システムでは、密閉容器2内の純水が外気導入管3を介して再び密閉容器2内に戻る純水循環路が形成される。   When the liquid feed pump 8 is operated, the pure water in the sealed container 2 is supplied to the position between the outside air suction part 3a in the outside air introduction pipe 3 and the filter member 5 through the first pipe 6 and the second pipe 7. Is done. Then, the pure water supplied to the outside air introduction pipe 3 flows down or drops from the outside air discharge part 3b and returns to the sealed container 2 again. That is, in the air salinity measurement system of the present invention, a pure water circulation path is formed in which pure water in the sealed container 2 returns to the sealed container 2 again through the outside air introduction pipe 3.

また、排気装置4を稼働させると、外気導入管3の外気吸引部3aから外気排出部3bに向けて被測定外気が流通する。外気導入管3を流通する被測定外気は、外気導入管3に供給された純水と接触し、被測定外気に含まれる塩分がこの純水に溶け込む。ここで、外気導入管3の外気吸引部3aから外気排出部3bに向けて被測定外気を流通させると、フィルタ部材5には、被測定外気に含まれる塩分が付着する場合がある。本実施形態では、外気導入管3内の外気吸引部3aとフィルタ部材5との間の位置に密閉容器2内の純水を供給するようにしているので、フィルタ部材5に付着した被測定外気由来の塩分を純水に溶け込ませて回収することができる。また、外気導入管3の壁面に付着した被測定外気由来の塩分も純水に溶け込ませて回収することもできる。したがって、被測定外気に含まれる塩分を漏れなく純水に溶け込ませて回収し易い。   When the exhaust device 4 is operated, the measured outside air flows from the outside air suction part 3a of the outside air introduction pipe 3 toward the outside air discharge part 3b. The measured outside air flowing through the outside air introduction pipe 3 comes into contact with the pure water supplied to the outside air introduction pipe 3, and the salt contained in the outside air to be measured is dissolved in this pure water. Here, when the measured outside air is circulated from the outside air suction part 3 a of the outside air introduction pipe 3 toward the outside air discharge part 3 b, salt contained in the measured outside air may adhere to the filter member 5. In the present embodiment, since the pure water in the sealed container 2 is supplied to a position between the outside air suction part 3a and the filter member 5 in the outside air introduction pipe 3, the measured outside air adhering to the filter member 5 is provided. The derived salt can be recovered by dissolving in pure water. Further, the salt content derived from the outside air to be measured attached to the wall surface of the outside air introduction pipe 3 can also be dissolved in pure water and recovered. Therefore, it is easy to recover the salt contained in the outside air to be measured by dissolving it in pure water without leakage.

尚、排気装置4には、例えば吸引ポンプ等を用いることができる。また、本実施形態では、異常検知用タンク40を備え、この異常検知用タンク40を介して密閉容器2内を排気するようにしている。これにより、密閉容器2内の純水が規定値以上に増加し続けたときに、異常検知用タンク40に密閉容器2内の純水が送液されて、異常検知用タンク40に送液された純水の液面が液位計41に接触したときに、警報を発するようにすることができる。但し、異常検知用タンク40は必ずしも備える必要は無く、密閉容器2内を排気装置4により直接排気するようにしても勿論よい。   Note that a suction pump or the like can be used for the exhaust device 4, for example. In the present embodiment, the abnormality detection tank 40 is provided, and the inside of the sealed container 2 is exhausted through the abnormality detection tank 40. Thereby, when the pure water in the sealed container 2 continues to increase to a specified value or more, the pure water in the sealed container 2 is sent to the abnormality detection tank 40 and sent to the abnormality detection tank 40. When the liquid level of pure water touches the liquid level meter 41, an alarm can be issued. However, it is not always necessary to provide the abnormality detection tank 40, and the inside of the sealed container 2 may be directly exhausted by the exhaust device 4.

ここで、被測定外気に含まれる塩分の純水への溶け込みは、被測定外気と純水の接触時間が長い程起こりやすくなる。したがって、外気導入管3の純水供給位置(第2配管7と外気導入管3との接続部)から外気排出部3bまでの距離をできるだけ長くすることが好適である。例えば、外気導入管3の純水供給位置(第2配管7と外気導入管3との接続部)から外気排出部3bまでを螺旋状にすることで、コンパクトな構成としながらも被測定外気に含まれる塩分を純水に溶け込ませ易くすることができる。   Here, the dissolution of the salt contained in the outside air to be measured into the pure water is more likely to occur as the contact time between the outside air to be measured and the pure water is longer. Therefore, it is preferable to make the distance from the pure water supply position of the outside air introduction pipe 3 (the connection part between the second pipe 7 and the outside air introduction pipe 3) to the outside air discharge part 3b as long as possible. For example, by forming a spiral from the pure water supply position of the outside air introduction pipe 3 (connection portion between the second pipe 7 and the outside air introduction pipe 3) to the outside air discharge part 3b, the outside air to be measured can be made compact while having a compact configuration. The contained salt can be easily dissolved in pure water.

また、被測定外気に含まれる塩分の純水への溶け込みは、被測定外気と純水の接触面積が大きい程起こりやすくなる。そこで、外気導入管3のフィルタ部材5と外気排出部3bとの間に、外気導入管3よりも外径の小さな管10aが並列して複数本備えるようにすることが好ましい。これにより、複数本の管10aに被測定外気と純水とがそれぞれ流入して接触して、同じ長さの外気導入管3と比較して被測定外気と純水との接触面積を向上させることができる。したがって、被測定外気に含まれる塩分を純水に溶け込み易くすることができる。   Further, the dissolution of salt contained in the outside air to be measured into the pure water is more likely to occur as the contact area between the outside air to be measured and the pure water increases. Therefore, it is preferable that a plurality of tubes 10a having a smaller outer diameter than the outside air introduction tube 3 are provided in parallel between the filter member 5 of the outside air introduction tube 3 and the outside air discharge portion 3b. As a result, the outside air to be measured and pure water flow into and come into contact with the plurality of tubes 10a, respectively, and the contact area between the outside air to be measured and pure water is improved as compared with the outside air introduction pipe 3 having the same length. be able to. Therefore, the salt contained in the measured outside air can be easily dissolved in pure water.

本実施形態では、図5に示す接触管10を外気導入管3のフィルタ部材5と外気排出部3bとの間に備えるようにしている。この接触管10は、以下のように構成される。即ち、両端の略中央部が開口されている円柱状の筐体10a内に、この筐体10aの高さよりも短く且つこの筐体10aの内径よりも外径の小さな細管10bが複数本並列に充填される。そして、筐体10a内に複数本並列に充填された細管10bの両端には、複数の穴が開けられた仕切り板10cが備えられる。ここで、仕切り版10cと筐体10aの両端との間には隙間10d、10eを設けておき、筐体10aに流入した純水および被測定外気が隙間10dで広がってから細管10bに流入されると共に、細管10bから流出する純水および被測定外気が隙間10eに排出されてから流出するようにしている。そして、筐体10aの両端の開口部には、管10f、10gが接続され、外気導入管3内に接続可能としている。このように構成することで、複数本の細管10b全てに純水と被測定外気とが流入しやすくなって、細管10b内部で被測定外気に含まれる塩分が純水に溶け込みやすくなり、短い距離でも被測定外気に含まれる塩分を純水に溶け込みやすくすることができる。したがって、外気導入管3の長さを長くすることなく、システム全体の構成をコンパクトなものとすることができる。   In this embodiment, the contact tube 10 shown in FIG. 5 is provided between the filter member 5 of the outside air introduction tube 3 and the outside air discharge part 3b. The contact tube 10 is configured as follows. That is, a plurality of thin tubes 10b, which are shorter than the height of the casing 10a and smaller in outer diameter than the inner diameter of the casing 10a, are arranged in parallel in a cylindrical casing 10a that is open at substantially the center of both ends. Filled. A partition plate 10c having a plurality of holes is provided at both ends of the thin tubes 10b filled in parallel in the housing 10a. Here, gaps 10d and 10e are provided between the partition plate 10c and both ends of the casing 10a, and the pure water and the outside air to be measured flowing into the casing 10a spread in the gap 10d and then flow into the narrow tube 10b. At the same time, the pure water and the outside air to be measured flowing out from the narrow tube 10b are discharged after being discharged into the gap 10e. And the pipe | tubes 10f and 10g are connected to the opening part of the both ends of the housing | casing 10a, and it can be connected in the external air introduction pipe | tube 3. FIG. By configuring in this way, pure water and the outside air to be measured easily flow into all of the plurality of thin tubes 10b, and salt contained in the outside air to be measured is easily dissolved in the pure water inside the thin tubes 10b, and the distance is short. However, the salt contained in the outside air to be measured can be easily dissolved in pure water. Therefore, the configuration of the entire system can be made compact without increasing the length of the outside air introduction tube 3.

密閉容器2内の純水の電気伝導度は、純水に浸漬された電極を介して電気伝導度測定装置12(例えば、東亜DKK株式会社社製の電気導電率計)により測定され、データロガーにより測定値が記録される。そして、電気伝導度の測定値から、純水に溶解している塩分量と電気伝導度について予め求められた関係に基づいて、純水の溶解塩分量、即ち被測定外気に含まれていた塩分量を求めることができる。   The electric conductivity of pure water in the sealed container 2 is measured by an electric conductivity measuring device 12 (for example, an electric conductivity meter manufactured by Toa DKK Co., Ltd.) through an electrode immersed in pure water, and is a data logger. The measured value is recorded by. Then, based on the relationship between the amount of salt dissolved in pure water and the electrical conductivity determined in advance from the measured value of electrical conductivity, the amount of salt dissolved in pure water, that is, the amount of salt contained in the outside air to be measured. The amount can be determined.

以上、図1に示す気中塩分測定システムでは、排気装置4が稼働して密閉容器2内を排気し、被測定外気が外気導入管3の外気吸引部3aから外気排出部3bに向けて流通している。その一方で、送液ポンプ8も稼働しており、密閉容器2内の純水が外気導入管3を介して密閉容器2内に再び戻っている。即ち純水循環路が形成されている。したがって、外気導入管3及び接触管10内では、被測定外気と純水とが同時に流通して接触し、被測定外気に含まれる塩分が純水に溶け込んで、密閉容器2内に戻る。そして、密閉容器2内の純水の電気伝導度の測定値から被測定外気に含まれる塩分量が測定される。   As described above, in the air salinity measurement system shown in FIG. 1, the exhaust device 4 is operated to exhaust the inside of the sealed container 2, and the measured outside air flows from the outside air suction part 3 a to the outside air discharge part 3 b of the outside air introduction pipe 3. doing. On the other hand, the liquid feed pump 8 is also operating, and the pure water in the sealed container 2 returns again into the sealed container 2 through the outside air introduction pipe 3. That is, a pure water circulation path is formed. Therefore, in the outside air introduction pipe 3 and the contact pipe 10, the outside air to be measured and the pure water are circulated and contacted at the same time, and the salt contained in the outside air to be measured is dissolved in the pure water and returned to the sealed container 2. Then, the amount of salt contained in the outside air to be measured is measured from the measured value of the electrical conductivity of pure water in the sealed container 2.

ここで、本実施形態では、図2に示すように、密閉容器2内の純水の量が低下したときに、外気導入管3内の外気吸引部3aとフィルタ部材5との間の位置に純水を供給することにより、密閉容器2内に純水を補給するようにしている。具体的には、純水を貯留する純水貯留タンク16と、外気導入管3への純水の供給源を密閉容器2内から純水貯留タンク16に切り替える切替手段17と、密閉容器2内の純水の量が規定値より低下したときには切替手段17を作動させて純水の供給源を純水貯留タンク16に切り替えると共に密閉容器2内の純水の量が規定値以上のときには切替手段17を作動させて純水の供給源を密閉容器2内に切り替える制御手段18とを備えるものとしている。   Here, in the present embodiment, as shown in FIG. 2, when the amount of pure water in the sealed container 2 is reduced, the pure water in the outside air introduction pipe 3 is placed at a position between the outside air suction portion 3 a and the filter member 5. Pure water is supplied into the sealed container 2 by supplying pure water. Specifically, the pure water storage tank 16 for storing pure water, the switching means 17 for switching the supply source of pure water to the outside air introduction pipe 3 from the sealed container 2 to the pure water storage tank 16, and the sealed container 2 When the amount of pure water falls below the specified value, the switching means 17 is operated to switch the pure water supply source to the pure water storage tank 16, and when the amount of pure water in the sealed container 2 is greater than the specified value, the switching means. The control means 18 which operates 17 and switches the supply source of a pure water in the airtight container 2 shall be provided.

本実施形態では、第1配管6の側面に第3配管19の一端を接続し、他端を純水貯留タンク16内の純水に接触させるようにしている。そして、第1配管6と第3配管19との接続部に切替手段17として電磁弁17aを備え、さらに第1容器6の第1配管6と第3配管19との接続部と密閉容器2との間に電磁弁17bと、第3配管19に電磁弁17cが備えられている。密閉容器2内の純水の量が規定値より低下したことを密閉容器2内に備えられた液面センサ20が検知すると、信号が制御手段18に送られ、制御手段18が電磁弁17a、17b、17cを作動させて純水の供給源を純水貯留タンク16に切り替える。即ち、電磁弁17bを閉じ、電磁弁17cを開け、電磁弁17aを作動させて純水貯留タンク16から送液ポンプ8に純水を供給可能とすることにより、密閉容器2内から送液ポンプ8への純水の流路を遮断すると共に、純水貯留タンク16から送液ポンプ8への純水の流路を確保する。尚、第1配管6の側面に第3配管19を接続することで、送液ポンプ8により純水貯留タンク16からの純水の汲み上げを行うことができる。つまり、送液ポンプ8を、密閉容器2内の純水と純水貯留タンク16の純水の双方の汲み上げに利用することができるので、システムのコンパクト化及び低コスト化を図ることができる。但し、送液ポンプ8とは別の送液ポンプによって、純水貯留タンク16から第2配管7へ純水を供給したり、あるいは外気導入管3の外気吸引部3aとフィルタ部材5との間の位置に直接純水を供給するようにすることも可能である。また、密閉容器2内の純水の量が規定値以上であることを密閉容器2内に備えられた液面センサ20が検知すると、信号が制御手段18に送られ、制御手段18が電磁弁17を作動させて純水の供給源を密閉容器2内に切り替える。即ち、電磁弁17bを開け、電磁弁17cを閉じ、電磁弁17aを作動させて密閉容器2内から送液ポンプ8に純水を供給可能とすることにより、密閉容器2内から送液ポンプ8への純水の流路を確保すると共に、純水貯留タンク16から送液ポンプ8への純水の流路を遮断する。   In the present embodiment, one end of the third pipe 19 is connected to the side surface of the first pipe 6 and the other end is brought into contact with the pure water in the pure water storage tank 16. The connecting part between the first pipe 6 and the third pipe 19 is provided with an electromagnetic valve 17a as the switching means 17, and the connecting part between the first pipe 6 and the third pipe 19 of the first container 6 and the sealed container 2 The electromagnetic valve 17b is provided between the electromagnetic valve 17b and the third pipe 19. When the liquid level sensor 20 provided in the sealed container 2 detects that the amount of pure water in the sealed container 2 has decreased below the specified value, a signal is sent to the control means 18, and the control means 18 is connected to the electromagnetic valve 17 a, 17 b and 17 c are operated to switch the pure water supply source to the pure water storage tank 16. That is, the solenoid valve 17b is closed, the solenoid valve 17c is opened, and the solenoid valve 17a is operated so that pure water can be supplied from the pure water storage tank 16 to the liquid feed pump 8. The flow path of pure water to 8 is blocked, and the flow path of pure water from the pure water storage tank 16 to the liquid feed pump 8 is secured. In addition, by connecting the 3rd piping 19 to the side surface of the 1st piping 6, the liquid pump 8 can pump up the pure water from the pure water storage tank 16. FIG. That is, since the liquid feed pump 8 can be used to pump both pure water in the sealed container 2 and pure water in the pure water storage tank 16, the system can be made compact and the cost can be reduced. However, pure water is supplied from the pure water storage tank 16 to the second pipe 7 by a liquid feed pump different from the liquid feed pump 8, or between the outside air suction part 3 a of the outside air introduction pipe 3 and the filter member 5. It is also possible to supply pure water directly to the position. When the liquid level sensor 20 provided in the sealed container 2 detects that the amount of pure water in the sealed container 2 is equal to or greater than a specified value, a signal is sent to the control means 18 and the control means 18 17 is operated to switch the supply source of pure water into the sealed container 2. That is, the electromagnetic valve 17b is opened, the electromagnetic valve 17c is closed, and the electromagnetic valve 17a is operated so that pure water can be supplied from the sealed container 2 to the liquid feed pump 8, whereby the liquid feed pump 8 from the sealed container 2 is supplied. The pure water flow path from the pure water storage tank 16 to the liquid feed pump 8 is blocked.

尚、本実施形態では、切替手段17として、3つの電磁弁17a、17b及び17cを備えるようにしているが、電磁弁17aのみでも純水の供給源の切り替えを行うことは可能であるから、電磁弁17bと17cとを省略してもよい。また、電磁弁17bと17c純水の供給源の切り替えを行うことは可能であるから、電磁弁17aを省略してもよい。   In the present embodiment, the switching means 17 includes the three electromagnetic valves 17a, 17b and 17c. However, it is possible to switch the supply source of pure water using only the electromagnetic valve 17a. The solenoid valves 17b and 17c may be omitted. Moreover, since it is possible to switch the supply source of the solenoid valves 17b and 17c pure water, the solenoid valve 17a may be omitted.

また、本実施形態では、純水貯留タンク16に液面センサ42、43を備えて、純水貯留タンク16内の純水の量が低下して液面センサ42の先端(下端)よりも水位が低下したときに、純水貯留タンク16内に純水が補給され、液面センサ43の先端(下端)に純水が接したときに純水貯留タンク16内への純水の補給が停止して、純水貯留タンク16内の水位が液面センサ42の先端から液面センサ43の先端までの間に常時維持されるようにしているが、液面センサは1つだけ備えるようにしてもよいし、液面センサを備えずに定期的にあるいは随意に純水を純水貯留タンク16に補充するようにしても勿論よい。   Further, in the present embodiment, the pure water storage tank 16 is provided with the liquid level sensors 42 and 43, and the amount of pure water in the pure water storage tank 16 decreases and the water level is higher than the tip (lower end) of the liquid level sensor 42. When pure water is reduced, pure water is replenished into the pure water storage tank 16, and when pure water comes into contact with the tip (lower end) of the liquid level sensor 43, replenishment of pure water into the pure water storage tank 16 is stopped. Thus, the water level in the pure water storage tank 16 is always maintained between the tip of the liquid level sensor 42 and the tip of the liquid level sensor 43, but only one liquid level sensor is provided. Of course, pure water may be replenished to the pure water storage tank 16 periodically or optionally without the liquid level sensor.

密閉容器2内に備えられる液面センサ20は、例えばレーザーを利用した液面センサ(例えば、株式会社旭製作所社製の液面コントローラー)等を用いることができる。この液面センサは、先端部が空気に晒されているときには、先端部の素材と空気との屈折率の差が大きいため、光源からの光が全反射して受光部に戻り、先端部が液体に接触しているときには、先端部の素材と液体との屈折率の差が小さくなって、光源からの光が液体中に放射され受光部に戻らなくなることを利用したものである。つまり、先端部で液体の存在の有無を検出することができるセンサである。純水の液面の位置が規定値よりも低下して液面センサ20の先端部が純水の液面と接触しなくなると、液面センサ20から制御手段18に信号が送られ、この信号を受けた制御手段18が切替手段17を作動させ、純水貯留タンク16から外気導入管3を介して密閉容器2内に純水が補給される。そして、純水の液面の位置が規定値以上になると、液面センサ20の先端部が純水の液面と接触し。液面センサ20から制御手段18に信号が送られ、この信号を受けた制御手段18が切替手段17を作動させ、密閉容器2内の純水が外気導入管3に供給される。これにより、密閉容器2内の純水の液面は、常時液面センサ20の先端部の位置付近に制御されることとなる。しかも、純水貯留タンク16から純水を補給する際に、排気装置4を停止する必要はなく、気中塩分測定を継続することができるので、長期間継続して気中塩分測定を実施することができる。尚、異常検知用タンク40に備えられる液位計41、純水貯留タンク16に備えられる液面センサ42、43にも、上記と同様の液面センサを用いることができる。   As the liquid level sensor 20 provided in the sealed container 2, for example, a liquid level sensor using a laser (for example, a liquid level controller manufactured by Asahi Seisakusho Co., Ltd.) or the like can be used. In this liquid level sensor, when the tip is exposed to air, the difference in refractive index between the material of the tip and air is large, so that the light from the light source is totally reflected and returns to the light receiver, and the tip is When the liquid is in contact with the liquid, the difference in refractive index between the material at the tip and the liquid becomes small, and light from the light source is emitted into the liquid and does not return to the light receiving unit. That is, it is a sensor that can detect the presence or absence of liquid at the tip. When the position of the pure water level falls below a specified value and the tip of the liquid level sensor 20 does not come into contact with the pure water level, a signal is sent from the liquid level sensor 20 to the control means 18, and this signal The control means 18 that has received the operation operates the switching means 17 so that pure water is replenished from the pure water storage tank 16 into the sealed container 2 through the outside air introduction pipe 3. Then, when the position of the pure water level exceeds a specified value, the tip of the liquid level sensor 20 comes into contact with the pure water level. A signal is sent from the liquid level sensor 20 to the control means 18, and the control means 18 that has received this signal operates the switching means 17, and the pure water in the sealed container 2 is supplied to the outside air introduction pipe 3. Thereby, the liquid level of the pure water in the sealed container 2 is always controlled in the vicinity of the position of the tip of the liquid level sensor 20. In addition, when the pure water is replenished from the pure water storage tank 16, it is not necessary to stop the exhaust device 4, and the air salinity measurement can be continued. Therefore, the air salinity measurement is continuously performed for a long time. be able to. The liquid level sensor similar to the above can be used for the liquid level meter 41 provided in the abnormality detection tank 40 and the liquid level sensors 42 and 43 provided in the pure water storage tank 16.

ここで、長期間継続して気中塩分測定を実施すると、フィルタ部材5に固形物が付着してフィルタ部材5の目が一部閉塞したり、フィルタ部材5上に固形物が堆積することによって、被測定外気の密閉容器2内への導入が阻害される場合がある。そこで、本発明では、フィルタ部材5の目詰まり等を解消するためのシステム構成を備えている。その稼働状態を図3に示す。図3に示す気中塩分測定システムでは、排気装置4を停止してバルブ32を閉じ、送液ポンプ8も停止して、バルブ33を開けて圧縮機14を稼働させる。そして、圧縮ガス、例えば圧縮空気等を密閉容器2内に供給する。これにより、圧縮ガスが外気導入管3の外気排出部3bから外気吸引部3aに向けて流れ、その際にフィルタ部材5を閉塞する付着物やフィルタ部材5の上に堆積している固形物が外気吸引部3aに向けて吹き上げられて排出される。この操作を定期的にあるいは随意に行うことによって、フィルタ部材5の通気性が確保され、長期に亘って安定に外気を導入しながら、気中塩分測定を実施することが可能となる。   Here, when air salinity measurement is carried out continuously for a long period of time, solid matter adheres to the filter member 5 to partially close the eyes of the filter member 5 or solid matter accumulates on the filter member 5. The introduction of the outside air to be measured into the sealed container 2 may be hindered. Therefore, in the present invention, a system configuration for eliminating clogging and the like of the filter member 5 is provided. The operating state is shown in FIG. In the air salinity measurement system shown in FIG. 3, the exhaust device 4 is stopped, the valve 32 is closed, the liquid feed pump 8 is also stopped, the valve 33 is opened, and the compressor 14 is operated. Then, a compressed gas such as compressed air is supplied into the sealed container 2. As a result, the compressed gas flows from the outside air discharge portion 3b of the outside air introduction pipe 3 toward the outside air suction portion 3a, and at that time, the adhering matter that closes the filter member 5 and the solid matter deposited on the filter member 5 are collected. It is blown up and discharged toward the outside air suction part 3a. By performing this operation periodically or arbitrarily, the air permeability of the filter member 5 is ensured, and the air salinity measurement can be performed while stably introducing the outside air over a long period of time.

また、長期間継続して気中塩分測定を実施すると、密閉容器2内の純水の電気伝導度測定値に変化が見られなくなる場合がある。即ち、塩分が高濃度に溶け込むことによって、測定装置12では測定できない程に電気伝導度が上昇した結果として、電気伝導度の測定値が一定値を示すようになる場合がある。そのような場合には、以下の手順により純水の交換作業を行う。図5に示すように、まず、密閉容器2の下にあるバルブ30を開けて純水を抜く。そして純水貯留タンク16から純水を密閉容器2内に補充する。ここで、密閉容器2の内壁には塩分や被測定外気に含まれていた微粒子によって汚れが発生している場合がある。そこで、圧縮機14から純水に圧縮ガスを供給してバブリングを行い、密閉容器2の内壁を洗浄する。その際、密閉容器2内の圧力上昇による破損を防止するために、排気バルブ31を開けて、密閉容器2を開放しておく。このように、気中塩分測定システム1に圧縮機14を備えることで、フィルタ部材5の目詰まりの解消のみならず、バブリングによる密閉容器2内の洗浄も容易に行うことが可能となる。そして塩分や汚れが溶け込んだ水を排水して、再度純水を供給し、密閉容器2内の純水の電気伝導度が十分に低くなっていることを確認してから、気中塩分測定を再開する。   Further, if air salinity measurement is carried out continuously for a long period of time, there may be no change in the measured value of the electrical conductivity of pure water in the sealed container 2. That is, as a result of the increase in electrical conductivity that cannot be measured by the measuring device 12 due to the high concentration of salinity, the measured value of electrical conductivity may show a constant value. In such a case, the pure water is replaced by the following procedure. As shown in FIG. 5, first, the valve 30 under the sealed container 2 is opened to drain pure water. Then, pure water is replenished from the pure water storage tank 16 into the sealed container 2. Here, the inner wall of the sealed container 2 may be contaminated with salt or fine particles contained in the air to be measured. Therefore, the compressed gas is supplied from the compressor 14 to the pure water to perform bubbling, and the inner wall of the sealed container 2 is cleaned. At that time, the exhaust valve 31 is opened and the sealed container 2 is opened in order to prevent breakage due to pressure increase in the sealed container 2. Thus, by providing the air salinity measurement system 1 with the compressor 14, not only the clogging of the filter member 5 but also the cleaning of the sealed container 2 by bubbling can be easily performed. Then, drain the water in which salt and dirt are dissolved, supply pure water again, confirm that the electrical conductivity of the pure water in the sealed container 2 is sufficiently low, and then measure the salinity in the air. Resume.

上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention.

例えば、上述の実施形態では、異常検知タンク40を介して密閉容器2内を排気装置4により排気するようにして、液面センサ20の故障等により密閉容器2内の純水が増加したときに、異常検知タンク40にこの純水を送液して検知するようにしていたが、密閉容器2内に液面センサ20とは別に液面センサをもう一つ備えておき、その先端の位置を液面センサ20よりも高くしておいて、液面センサ20の故障等により密閉容器2内の純水が増加してこの液面センサの先端に純水が接したときに警報を発するようにしてもよい。この場合、異常検知タンク40を省略して、排気装置4で密閉容器2内を直接排気しながらも、密閉容器2内の異常増水時に警報を発するようにすることができる。   For example, in the above-described embodiment, when the inside of the sealed container 2 is exhausted by the exhaust device 4 through the abnormality detection tank 40 and the pure water in the sealed container 2 increases due to a failure of the liquid level sensor 20 or the like. The pure water is supplied to the abnormality detection tank 40 for detection. However, another liquid level sensor is provided in the sealed container 2 in addition to the liquid level sensor 20, and the position of the tip is determined. It is set higher than the liquid level sensor 20, and an alarm is issued when the pure water in the sealed container 2 increases due to a failure of the liquid level sensor 20 and the pure water contacts the tip of the liquid level sensor. May be. In this case, the abnormality detection tank 40 can be omitted, and the exhaust device 4 can exhaust the inside of the sealed container 2 directly, but an alarm can be issued when abnormal water increases in the sealed container 2.

以下に本発明の実施例を説明するが、本発明はこれら実施例に限られるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(比較例)
従来の気中塩分測定方法を改良した気中塩分測定システムにより、大気中の塩分の測定を実施した。具体的には、密閉容器101内の純水102の量が規定値よりも低下したときに、外気導入管103を介して密閉容器101内に純水102を補給することにより、土埃や塩分の結晶によるノズル103aの詰まりを防ぐようにした気中塩分測定システムとし、従来と同様、霧吹装置105から霧110を発生させるようにした。このシステムにより気中塩分の測定を700時間連続して実施した。以降の説明では、このシステムをエジェクタ方式の改良システムと呼ぶこととする。
(Comparative example)
The salinity measurement in the atmosphere was carried out by the air salinity measurement system improved from the conventional air salinity measurement method. Specifically, when the amount of pure water 102 in the sealed container 101 falls below a specified value, the pure water 102 is replenished into the sealed container 101 via the outside air introduction pipe 103, so that dirt and salt content are reduced. The air salinity measurement system is configured to prevent clogging of the nozzle 103a due to crystals, and the mist 110 is generated from the mist blowing device 105 as in the prior art. With this system, air salinity was continuously measured for 700 hours. In the following description, this system will be referred to as an improved ejector system.

まず、エジェクタ方式の改良システムについて、気中塩分の回収効率を検討した。具体的には、エジェクタ方式の改良システムを2つ用い、1つめのシステムにより大気を被測定外気として取り込むと共に、1つめのシステムから排気されるガスを2つめのシステムの被測定外気として取り込むように連結した。   First, we investigated the recovery efficiency of airborne salinity for the improved ejector system. Specifically, using two improved ejector systems, the first system takes in the atmosphere as the measured outside air, and the gas exhausted from the first system is taken in as the measured outside air of the second system. Connected.

ここで、エジェクタ方式の改良システムによる気中塩分の回収率をαとし、気中塩分濃度をCとすると、1つめのシステムにおいて回収される塩分濃度X(塩分が溶け込んだ純水の塩分濃度)は、以下の式で表される。
X = C×α ・・・・(1)
Here, when the recovery rate of the air salinity by the improved ejector system is α and the air salinity is C, the salinity concentration X recovered in the first system (the salinity of pure water in which the salinity is dissolved) Is represented by the following equation.
X = C × α (1)

1つめのシステムから排気されるガスの塩分濃度はC−C×αとなる。したがって、2つめのシステムにおいて回収される塩分濃度Yは、以下の式で表される。
Y = (C−C×α)×α ・・・・(2)
The salinity of the gas exhausted from the first system is C−C × α. Accordingly, the salinity concentration Y recovered in the second system is expressed by the following equation.
Y = (C−C × α) × α (2)

(1)式及び(2)式より、以下の関係式が成立する。
X/Y = (C×α)/{(C−C×α)×α}
つまり、X/Y = 1/(1−α)・・・・(3)
From the expressions (1) and (2), the following relational expression is established.
X / Y = (C × α) / {(C−C × α) × α}
That is, X / Y = 1 / (1-α) (3)

塩分濃度X及びYは各システムの純水の電気伝導度を測定することにより得られるので、(3)式を用いることで、エジェクタ方式の改良システムによる気中塩分の回収率αを求めることができる。   Since the salinity concentrations X and Y are obtained by measuring the electric conductivity of pure water in each system, the recovery rate α of air salinity by the improved ejector system can be obtained by using the equation (3). it can.

測定結果を表1に示す。尚、表1において、%を付した数値以外の数値の単位は、「μg/m as Cl」である。 The measurement results are shown in Table 1. In Table 1, the unit of numerical values other than the numerical value with% is “μg / m 3 as Cl”.

表1に示される結果から、回収率は60〜80%程度であると共に、期間毎の変動も大きく、測定精度が十分なものとは言えないことが明らかとなった。   From the results shown in Table 1, it has been clarified that the recovery rate is about 60 to 80%, and the fluctuation for each period is large, so that the measurement accuracy cannot be said to be sufficient.

次に、エジェクタ方式の改良システムで、気中塩分の測定を700時間連続して実施し、その測定結果を、ガーゼ法(JIS Z 2382)を用いた場合を想定し、気象データ、海からの距離、風速、湿度等を加味して理論計算した結果と比較した。   Next, with the improved ejector system, air salinity is measured continuously for 700 hours, and the measurement results are assumed to be based on the gauze method (JIS Z 2382). The results were compared with the theoretical calculation results including distance, wind speed, humidity, etc.

結果を図7に示す。ガーゼ法の場合には数値が一定あるいは上昇している箇所において、エジェクタ方式の改良システムでは、数値が低下する場合があった。   The results are shown in FIG. In the case of the gauze method, the numerical value may decrease in the ejector-type improved system at a place where the numerical value is constant or increased.

この結果から、エジェクタ方式により発生させた霧が排気され、本来経時的に上昇すべきはずの塩分濃度が低下してしまうことが考えられた。   From this result, it was considered that the mist generated by the ejector method is exhausted, and the salt concentration that should be increased over time is lowered.

(実施例)
エジェクタ方式を採用しない本発明の気中塩分測定システムによる回収率について検討した。具体的には、比較例と同様に2つのシステムを連結して回収率を求めた。また、パラメータとして、送液流量と、接触管10の有無、外気導入管3の長さを振って実験を行った。但し、外気導入管3の外気吸引部3aから外気吸引部3aとフィルタ部材5との間の純水供給位置までの長さは全て一定とした。
(Example)
The recovery rate by the air salinity measurement system of the present invention not adopting the ejector method was examined. Specifically, the recovery rate was obtained by connecting two systems as in the comparative example. Further, the experiment was performed by changing the flow rate of the liquid, the presence / absence of the contact tube 10, and the length of the outside air introduction tube 3 as parameters. However, the length from the outside air suction part 3a of the outside air introduction pipe 3 to the pure water supply position between the outside air suction part 3a and the filter member 5 was all constant.

本実施例では、図1に示す気中塩分測定システムを用いた。密閉容器2の容積は0.4Lとした。また、排気装置(吸引ポンプ)4による排気速度は10L/minとした。   In this example, the air salinity measurement system shown in FIG. 1 was used. The volume of the sealed container 2 was 0.4 L. The exhaust speed by the exhaust device (suction pump) 4 was 10 L / min.

外気導入管3の内径は8mmとした。フィルタ部材5は目開き0.8mmのものを用いた。また、接触管は、筐体10aの外径を12mm、内径を9mmとし、管10bの長さを16mm、管10bの外径を1.5mm、内径を1.0mmとし、本数を30本とした。また、筐体10bの両端の開口部に接続される管10f及び10gは、外径6mm、内径 4mmとした。仕切り版10cと筐体10aの両端との間の隙間10d、10eは0.2 mmとした。   The inside diameter of the outside air introduction tube 3 was 8 mm. A filter member 5 having an aperture of 0.8 mm was used. The contact tube has an outer diameter of 12 mm, an inner diameter of 9 mm, a length of the tube 10 b of 16 mm, an outer diameter of the tube 10 b of 1.5 mm, an inner diameter of 1.0 mm, and a number of 30 tubes. did. Further, the tubes 10f and 10g connected to the openings at both ends of the housing 10b have an outer diameter of 6 mm and an inner diameter of 4 mm. The gaps 10d and 10e between the partition plate 10c and both ends of the housing 10a were set to 0.2 mm.

また、環状部材13は、上端の内径を6mm、下端の内径を25mmとして、外気排出部3bを包囲するように外気導入管3に装着した。また、外気排出部3bから密閉容器2内の純水の水面までの距離はおよそ15mmとし、環状部材13の下端から密閉容器2内の純水の水面までの距離はおよそ3mmとし、外気排出部3bからの純水の流下ないしは滴下による密閉容器2内の純水の水面での純水の飛散が殆ど起こらないことを確認した。送液ポンプ8による純水の送液流量は約10〜40mL/minに設定した。   The annular member 13 was attached to the outside air introduction tube 3 so as to surround the outside air discharge part 3b with an inside diameter at the upper end of 6 mm and an inside diameter at the lower end of 25 mm. The distance from the outside air discharge part 3b to the pure water level in the sealed container 2 is about 15 mm, and the distance from the lower end of the annular member 13 to the pure water level in the sealed container 2 is about 3 mm, and the outside air discharge part It was confirmed that there was almost no scattering of pure water on the surface of pure water in the sealed container 2 due to the flow of pure water from 3b or dripping. The liquid flow rate of pure water by the liquid feed pump 8 was set to about 10 to 40 mL / min.

結果を図8に示す。▲が外気導入管3の長さが120cmで接触管10が無い場合の結果を示し、■が外気導入管3の長さが120cmで接触管10が有る場合の結果を示し、○が外気導入管3の長さが250cmで接触管10が無い場合の結果を示し、×が外気導入管3の長さが150cmで接触管10が有る場合の結果を示している。いずれの場合にも、回収率(捕集効率)は97%を超え、比較例で使用したエジェクタ方式の改良システムと比較して極めて高い回収率を達成できることが明らかとなった。外気導入管3の長さを長くするほど、また送液流量を多くするほど、回収率が高まることが明らかとなった。また、接触管10を備えることで、外気導入管3の長さを短くしても、極めて高い回収率(99〜100%)を達成できることが明らかとなった。   The results are shown in FIG. ▲ indicates the result when the outside air introduction tube 3 is 120 cm long and there is no contact tube 10, ■ indicates the result when the outside air introduction tube 3 is 120 cm long and has the contact tube 10, and ○ indicates outside air introduction The result when the length of the tube 3 is 250 cm and there is no contact tube 10 is shown, and x shows the result when the length of the outside air introduction tube 3 is 150 cm and the contact tube 10 is present. In any case, the recovery rate (collection efficiency) exceeded 97%, and it became clear that an extremely high recovery rate could be achieved as compared with the improved ejector system used in the comparative example. It has been clarified that the recovery rate increases as the length of the outside air introduction pipe 3 is increased and the liquid feeding flow rate is increased. Moreover, it became clear by providing the contact tube 10 that even if the length of the outside air introduction tube 3 is shortened, an extremely high recovery rate (99 to 100%) can be achieved.

1 気中塩分測定システム
2 密閉容器
3 外気導入管
3a 外気吸引部
3b 外気排出部
4 排気装置
5 フィルタ部材
6 第1配管
7 第2配管
8 送液ポンプ
10 接触管
12 測定装置
13 環状部材
14 圧縮機
16 純水貯留タンク
17 切替手段
18 制御手段
DESCRIPTION OF SYMBOLS 1 Air salinity measurement system 2 Sealed container 3 Outside air introduction pipe 3a Outside air suction part 3b Outside air discharge part 4 Exhaust device 5 Filter member 6 1st piping 7 2nd piping 8 Liquid feed pump 10 Contact pipe 12 Measuring device 13 Annular member 14 Compression Machine 16 Pure water storage tank 17 Switching means 18 Control means

Claims (7)

被測定外気に含まれる塩分を測定する気中塩分測定方法であって、
純水を入れた密閉容器に、両端が開口している外気導入管を差し込み、前記密閉容器の外側に位置する開口部を外気吸引部とすると共に前記密閉容器の内側に位置する開口部を外気排出部とし、且つ前記外気排出部は前記密閉容器内の純水と接触しない位置に配置し、前記外気導入管内にはフィルタ部材を設け、
前記外気導入管内の前記外気吸引部と前記フィルタ部材との間の位置に前記密閉容器内の純水を供給して前記外気排出部に向けて前記純水を流通させることにより、前記密閉容器内の純水が前記外気導入管内を流通して前記外気排出部から再び前記密閉容器内に戻る純水循環路を形成する一方で、
前記密閉容器内を排気することにより、前記被測定外気に含まれる固形物を前記フィルタ部材で除去しながら前記被測定外気を前記外気導入管の前記外気吸引部から前記外気排出部に向けて流通させて、前記外気導入管内を流通する前記純水に前記被測定外気に含まれる塩分、前記フィルタ部材に付着した前記被測定外気由来の塩分及び前記外気導入管の壁面に付着した前記被測定外気由来の塩分を溶け込ませ、
前記密閉容器内の純水の電気伝導度の測定値から前記被測定外気に含まれる塩分を測定することを特徴とする気中塩分測定方法。
An air salinity measuring method for measuring the salinity contained in the outside air to be measured,
An outside air introduction pipe having both ends opened is inserted into a sealed container containing pure water, and the opening located outside the sealed container is used as an outside air suction part and the opening located inside the sealed container is outside air. A discharge portion, and the outside air discharge portion is disposed at a position not in contact with the pure water in the sealed container, and a filter member is provided in the outside air introduction pipe,
By supplying pure water in the sealed container to a position between the outside air suction part and the filter member in the outside air introduction pipe, and flowing the pure water toward the outside air discharge part, the inside of the sealed container While forming a pure water circulation path through which the pure water circulates in the outside air introduction pipe and returns from the outside air discharge portion to the inside of the sealed container,
By evacuating the inside of the sealed container, the measured outside air is circulated from the outside air suction portion of the outside air introduction pipe to the outside air discharge portion while removing solid matter contained in the outside air to be measured by the filter member. The salt water contained in the measured outside air in the pure water flowing through the outside air introducing pipe, the salt derived from the measured outside air attached to the filter member, and the measured outside air attached to the wall surface of the outside air introducing pipe Dissolve the salt from the origin ,
A method for measuring a salinity in air, wherein the salinity contained in the outside air to be measured is measured from a measured value of electrical conductivity of pure water in the sealed container.
前記密閉容器内の純水の量が低下したときに、前記外気導入管内の前記外気吸引部と前記フィルタ部材との間の位置に純水を供給することにより、前記密閉容器内に純水を補給する請求項1に記載の気中塩分測定方法。 When the amount of pure water in the sealed container decreases, pure water is supplied into the sealed container by supplying pure water to a position between the outside air suction part and the filter member in the outside air introduction pipe. The method for measuring air salinity according to claim 1, wherein replenishment is performed. 被測定外気に含まれる塩分を測定する気中塩分測定システムであって、
純水を入れた密閉容器と、
両端が開口している管であって前記密閉容器に差し込まれて前記密閉容器の外側に位置する開口部を外気吸引部とすると共に前記密閉容器の内側に位置する開口部を外気排出部とし且つ前記外気排出部は前記密閉容器内の純水と接触しない位置に配置されている外気導入管と、
前記密閉容器内を排気する排気装置と、
前記外気導入管内に設けられたフィルタ部材と、
前記密閉容器内の純水に一端が接触された第1配管と、
前記外気導入管の前記外気吸引部と前記フィルタ部材との間の位置に一端が接続された第2配管と、
前記第1配管の他端と前記第2配管の他端とを接続する送液ポンプと、
前記密閉容器内の純水の電気伝導度を測定する測定装置とを少なくとも備え、
前記送液ポンプを稼働させることにより、前記密閉容器内の純水が前記第1配管、前記第2配管及び前記外気導入管の順で流通して前記外気排出部から再び前記密閉容器内に戻る純水循環路が形成される一方で、
前記排気装置を稼働させることにより、前記被測定外気に含まれる固形物を前記フィルタ部材で除去しながら前記被測定外気を前記外気導入管の前記外気吸引部から前記外気排出部に向けて流通させて、前記外気導入管内を流通する前記純水に前記被測定外気に含まれる塩分、前記フィルタ部材に付着した前記被測定外気由来の塩分及び前記外気導入管の壁面に付着した前記被測定外気由来の塩分を溶け込ませ、
前記測定装置により得られる前記密閉容器内の純水の電気伝導度の測定値から前記被測定外気の塩分を測定することを特徴とする気中塩分測定システム。
An air salinity measurement system for measuring the salinity contained in the outside air to be measured,
An airtight container containing pure water;
An opening that is open at both ends and is inserted into the sealed container and located outside the sealed container serves as an outside air suction part, and an opening located inside the sealed container serves as an outside air discharge part and The outside air discharge section is arranged at a position not contacting the pure water in the sealed container; and
An exhaust device for exhausting the inside of the sealed container;
A filter member provided in the outside air introduction pipe;
A first pipe having one end in contact with pure water in the sealed container;
A second pipe having one end connected to a position between the outside air suction part of the outside air introduction pipe and the filter member;
A liquid feed pump connecting the other end of the first pipe and the other end of the second pipe;
And at least a measuring device for measuring the electrical conductivity of pure water in the sealed container,
By operating the liquid feed pump, the pure water in the sealed container flows in the order of the first pipe, the second pipe, and the outside air introduction pipe, and returns to the sealed container from the outside air discharge unit again. While a pure water circuit is formed,
By operating the exhaust device, the measured outside air is circulated from the outside air suction portion of the outside air introduction pipe to the outside air discharge portion while removing solid matter contained in the outside air to be measured by the filter member. The salt contained in the measured outside air in the pure water flowing through the outside air introducing pipe, the salt derived from the measured outside air attached to the filter member, and the measured outside air attached to the wall surface of the outside air introducing pipe The salt content of
An air salinity measurement system for measuring the salinity of the outside air to be measured from a measured value of electric conductivity of pure water in the sealed container obtained by the measuring device.
純水を貯留する純水貯留タンクと、
前記外気導入管への前記純水の供給源を前記密閉容器内から前記純水貯留タンクに切り替える切替手段と、
前記密閉容器内の純水の量が規定値より低下したときには前記切替手段を作動させて前記純水の供給源を前記純水貯留タンクに切り替えると共に前記密閉容器内の純水の量が規定値以上のときには前記切替手段を作動させて前記純水の供給源を前記密閉容器内に切り替える制御手段とを備える請求項3に記載の気中塩分測定システム。
A pure water storage tank for storing pure water;
Switching means for switching the source of pure water to the outside air introduction pipe from the sealed container to the pure water storage tank;
When the amount of pure water in the sealed container falls below a specified value, the switching means is operated to switch the pure water supply source to the pure water storage tank and the amount of pure water in the sealed container is a specified value. 4. The air salinity measurement system according to claim 3, further comprising control means for operating the switching means to switch the supply source of the pure water into the sealed container.
前記外気導入管の前記フィルタ部材と前記外気排出部との間に前記外気導入管よりも外径の小さな管が並列して複数本備えられている請求項3に記載の気中塩分測定システム。 The air salinity measurement system according to claim 3, wherein a plurality of pipes having an outer diameter smaller than that of the outside air introduction pipe are provided in parallel between the filter member of the outside air introduction pipe and the outside air discharge portion. 下端から上端に向けて内径を漸次縮径する逆漏斗形状の環状部材が前記外気排出部を包囲するように前記外気導入管に備えられ、またはその上端と前記外気排出部を接続するように前記外気導入管に備えられている請求項3に記載の気中塩分測定システム。 A reverse funnel-shaped annular member that gradually reduces the inner diameter from the lower end toward the upper end is provided in the outside air introduction pipe so as to surround the outside air discharge portion, or the upper end and the outside air discharge portion are connected to each other. The air salinity measurement system according to claim 3, which is provided in an outside air introduction pipe. 前記密閉容器内に圧縮ガスを供給する圧縮機を備え、
前記排気装置を停止すると共に前記圧縮機から前記圧縮ガスを前記密閉容器内に供給して前記圧縮ガスを前記外気排出部から前記外気吸引部に向けて流通させ、前記フィルタ部材を閉塞している付着物及び前記フィルタ部材上に堆積した固形物を前記外気導入管の前記外気吸引部から排出し
前記密閉容器内の純水の交換作業の際には、前記圧縮機から前記圧縮ガスを前記密閉容器内の純水に供給してバブリングを行い、前記密閉容器の内壁を洗浄する請求項3に記載の気中塩分測定システム。
A compressor for supplying compressed gas into the sealed container;
The exhaust device is stopped, the compressed gas is supplied from the compressor into the sealed container, and the compressed gas is circulated from the outside air discharge portion toward the outside air suction portion, thereby closing the filter member. Discharging the deposits and solid matter deposited on the filter member from the outside air suction part of the outside air introduction pipe ,
4. In the operation of exchanging pure water in the sealed container, the compressed gas is supplied from the compressor to pure water in the sealed container to perform bubbling, and the inner wall of the sealed container is cleaned. The air salinity measurement system described.
JP2009188233A 2009-08-17 2009-08-17 Air salinity measuring method and measuring system Active JP5409185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009188233A JP5409185B2 (en) 2009-08-17 2009-08-17 Air salinity measuring method and measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009188233A JP5409185B2 (en) 2009-08-17 2009-08-17 Air salinity measuring method and measuring system

Publications (2)

Publication Number Publication Date
JP2011038956A JP2011038956A (en) 2011-02-24
JP5409185B2 true JP5409185B2 (en) 2014-02-05

Family

ID=43766878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009188233A Active JP5409185B2 (en) 2009-08-17 2009-08-17 Air salinity measuring method and measuring system

Country Status (1)

Country Link
JP (1) JP5409185B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014049716A1 (en) * 2012-09-26 2014-04-03 中国電力株式会社 Dispersed salt collecting device
CN110320244B (en) * 2019-07-29 2021-08-24 山东省科学院海洋仪器仪表研究所 Seawater salinity measuring system and method based on quadrature phase-locked amplification technology

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265561A (en) * 1985-05-20 1986-11-25 Shimizu Constr Co Ltd Apparatus for automatically measuring concentration of ionized substance in air
JPS6234042A (en) * 1985-08-08 1987-02-14 Central Res Inst Of Electric Power Ind Method for measuring salt in air
JPH04212051A (en) * 1990-04-16 1992-08-03 Sumitomo Chem Co Ltd Atmospheric salt content concentration measuring device
JPH05346417A (en) * 1992-04-14 1993-12-27 Hitachi Ltd Ionic gas analyzer
JPH0843337A (en) * 1994-07-30 1996-02-16 Shimada Phys & Chem Ind Co Ltd Measuring method for ionic steam in air and instrument thereof
JP3409975B2 (en) * 1996-09-11 2003-05-26 株式会社東芝 Pollutant analyzer
JP2003344237A (en) * 2002-05-31 2003-12-03 Mitsubishi Heavy Ind Ltd Sampling probe, and exhaust gas-sampling device provided therewith
JP2005102648A (en) * 2003-10-01 2005-04-21 Mitsubishi Electric Corp Bacteriological testing apparatus and bacteriological testing method
JP4305876B2 (en) * 2006-11-07 2009-07-29 株式会社オーバル Mixed liquid extraction device and mixed liquid density measuring device

Also Published As

Publication number Publication date
JP2011038956A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
KR101750647B1 (en) Liquid supply device and substrate processing device
CN102533536A (en) Meter assembly, sheath fluid impedance meter and flow cytometer
JP2012115735A (en) Exhaust gas treatment apparatus
JP5409185B2 (en) Air salinity measuring method and measuring system
KR101433502B1 (en) Device for supplying electrolyte solution
CN101172276B (en) Parts washer heater pump module
JP2020138191A (en) Wet scrubber
JP2007130566A (en) Breakage sensing method of filter cloth of dust collector
US7367225B2 (en) Apparatus for measuring mecury contained in gaseous medium
RU2465037C1 (en) Fibrous filter
JPWO2016031379A1 (en) Particle suction trapping mechanism and plug opening device equipped with particle suction trapping mechanism
TWI755971B (en) Light Scattering Detector
WO2021199506A1 (en) Inkjet recording device and method for cleaning inkjet recording device
JP5455942B2 (en) Ozone liquid generator, water purifier and cleaning method thereof
JP5243924B2 (en) Air salinity measurement method and system
KR20160119619A (en) Flushing system and method of pipe using micro bubble and the ship or offshore plant including the same
JP6234215B2 (en) Air cleaner
TWI755972B (en) Fluorine gas production method and fluorine gas production device
CN107063986B (en) Corrosion box and corrosion test device
CN113874554B (en) Method and apparatus for producing fluorine gas
KR100508665B1 (en) Powder trap for use in an apcvd apparatus
CN113950542B (en) Method for producing fluorine gas and apparatus for producing fluorine gas
JP6920672B1 (en) Liquid collecting member for gas purifier and gas purifier
CN110517978B (en) Overflow structure of container
CN113874555B (en) Method for producing fluorine gas and apparatus for producing fluorine gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R150 Certificate of patent or registration of utility model

Ref document number: 5409185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250