JP5408630B2 - Acid-resistant repair material and repair method using the same - Google Patents

Acid-resistant repair material and repair method using the same Download PDF

Info

Publication number
JP5408630B2
JP5408630B2 JP2011181638A JP2011181638A JP5408630B2 JP 5408630 B2 JP5408630 B2 JP 5408630B2 JP 2011181638 A JP2011181638 A JP 2011181638A JP 2011181638 A JP2011181638 A JP 2011181638A JP 5408630 B2 JP5408630 B2 JP 5408630B2
Authority
JP
Japan
Prior art keywords
cement
ash
acid
mortar
pfbc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011181638A
Other languages
Japanese (ja)
Other versions
JP2012066997A (en
Inventor
博 檀
広喜 芦田
政司 添田
芳武 江藤
貞則 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Fukuoka University
Original Assignee
Kyushu Electric Power Co Inc
Fukuoka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Fukuoka University filed Critical Kyushu Electric Power Co Inc
Priority to JP2011181638A priority Critical patent/JP5408630B2/en
Publication of JP2012066997A publication Critical patent/JP2012066997A/en
Application granted granted Critical
Publication of JP5408630B2 publication Critical patent/JP5408630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、コンクリート構造物の表面の補修に適した、耐酸性補修材およびそれを用いた補修方法に関する。   The present invention relates to an acid-resistant repair material suitable for repairing the surface of a concrete structure and a repair method using the same.

下水道や温泉地帯等の設備においては、コンクリートの表面が酸等で腐食されやすい環境にあるので、耐酸性を回復させるために表面の補修が行われる。
このような補修材としては、通常の、セメントを主体とする補修材では耐酸性が不足するために、耐酸性を付与した成分とすることが要求される。
In facilities such as sewers and hot springs, the surface of concrete is easily corroded by acid, etc., so the surface is repaired to restore acid resistance.
As such a repair material, since a normal repair material mainly composed of cement lacks acid resistance, it is required to use a component imparted with acid resistance.

特許文献1には、セメント、該セメント100質量部当たり、40〜300質量部の骨材及び20〜70質量部の0〜−45℃の範囲内のガラス転移点を有する合成樹脂を含有し、JASS15M−103に規定されるフロー値が10〜30cmの範囲内に調整された第一のポリマーモルタル組成物を鉄筋コンクリート構造体のコンクリート表面に適用して、厚さ2〜5mmの第一層を形成させ、固化した該第一層の上に、セメント、該セメント100質量部当たり、100〜400質量部の骨材及び2〜30質量部の10〜−15℃の範囲内のガラス転移点を有する合成樹脂を含有して成る第二のモルタル組成物を、厚さ5〜50mmの第二層として積層形成させることを特徴とするかぶり厚不足の鉄筋コンクリート構造体の補修方法が開示されている。   Patent Document 1 contains cement, 40 to 300 parts by weight of aggregate and 20 to 70 parts by weight of a synthetic resin having a glass transition point in the range of 0 to −45 ° C. per 100 parts by weight of the cement, A first polymer mortar composition having a flow value specified in JASS15M-103 adjusted within a range of 10 to 30 cm is applied to a concrete surface of a reinforced concrete structure to form a first layer having a thickness of 2 to 5 mm. And having a glass transition point in the range of 10 to −15 ° C. of 100 to 400 parts by mass of aggregate and 2 to 30 parts by weight of cement per 100 parts by weight of cement. A method for repairing a reinforced concrete structure with insufficient cover thickness, characterized in that a second mortar composition containing a synthetic resin is laminated and formed as a second layer having a thickness of 5 to 50 mm. It is.

また、特許文献2には、アルミナセメント、ポルトランドセメント及び石膏からなる水硬性成分と、水酸化カルシウム微粉末と、フライアッシュ微粉末とを含む水硬性組成物が開示されている。   Patent Document 2 discloses a hydraulic composition containing a hydraulic component made of alumina cement, Portland cement and gypsum, calcium hydroxide fine powder, and fly ash fine powder.

特許文献3には、高炉スラグ細骨材(A)、並びに高炉スラグ微粉末(B)及びポルトランドセメント(C)を含む結合材(D)を含有するモルタル又はコンクリート用組成物であって、高炉スラグ細骨材(A)は非晶質であり、高炉スラグ微粉末(B)の比表面積がブレーン値で2500〜7000cm2/gであり、かつ、結合材(D)に対するポルトランドセメント(C)の質量比(C/D)が0.3〜0.9であることを特徴とするモルタル又はコンクリート用組成物が開示されている。 Patent Document 3 discloses a mortar or concrete composition containing a blast furnace slag fine aggregate (A) and a binder (D) containing blast furnace slag fine powder (B) and Portland cement (C), The slag fine aggregate (A) is amorphous, the specific surface area of the blast furnace slag fine powder (B) is 2500 to 7000 cm 2 / g in terms of Blaine, and Portland cement (C) to the binder (D) A mortar or concrete composition characterized by a mass ratio (C / D) of 0.3 to 0.9 is disclosed.

一方、特許文献4には、高炉スラグ微粉末等の結合材、砂等の細骨材、および水を含むモルタル組成物において、結合材として、セメント全量をPFBC灰に変えるモルタル組成物が開示されている。   On the other hand, Patent Document 4 discloses a mortar composition in which the total amount of cement is changed to PFBC ash as a binder in a mortar composition containing a binder such as blast furnace slag fine powder, a fine aggregate such as sand, and water. ing.

特開2006−124232号公報JP 2006-124232 A 特開2009−221038号公報JP 2009-221038 A 特開2010−1208号公報JP 2010-1208 A 特開2007−197263号公報JP 2007-197263 A

前掲の特許文献1に開示された鉄筋コンクリート構造体の補修方法では、コンクリートの中性化を抑制し、強度を向上させるためにポリマー系の有機系材料を使用しているが、有機系材料を用いると環境負荷の懸念が大きくなり、また、コストも高くなる。
特許文献2に開示された水硬性組成物は、汎用性のある一般に流通した市販の材料ではなく、アルミナセメントという特殊なセメントを使用するので、一般の補修材料としては品質管理が難しく、またコストも高くなる。
特許文献3に開示されたモルタル又はコンクリート用組成物は、結合材として砂の代わりに特殊材料である高炉スラグ細骨材を使用しており、一般の補修材料としては汎用性に乏しく、また貯蔵管理が難しいためコストも高くなる。
特許文献4に開示されたモルタル組成物では、セメント全量をPFBC灰に置き換えているが、PFBC灰のみでは、酸による侵食には強いが、強度面で下水道基準を満足しないという問題がある。
また、これらの特許文献1〜4に共通することであるが、これらの組成物は、コンクリート補修面に耐酸性は付与できるものの、左官工事による手塗りで補修面を施工する際に、補修材の流動性が低いため、例えば20mm厚の補修層を設けたい場合、一度では塗布できず、二度塗りする必要があった。すなわち、一層目がある程度乾燥してから二層目を塗布する必要があるために、手間と時間がかかるという施工性の問題がある。
In the repair method of a reinforced concrete structure disclosed in the above-mentioned Patent Document 1, a polymer-based organic material is used to suppress the neutralization of concrete and improve the strength. However, an organic material is used. This raises concerns about environmental impact and increases costs.
The hydraulic composition disclosed in Patent Document 2 is not a commercially available general-purpose material that is widely used, but uses a special cement called alumina cement. Therefore, quality control is difficult and costly as a general repair material. Also gets higher.
The composition for mortar or concrete disclosed in Patent Document 3 uses a blast furnace slag fine aggregate which is a special material instead of sand as a binder, and is not widely used as a general repair material. Cost is high due to difficult management.
In the mortar composition disclosed in Patent Document 4, the total amount of cement is replaced with PFBC ash. However, PFBC ash alone is resistant to acid erosion, but has a problem that it does not satisfy sewer standards in terms of strength.
Moreover, although it is common to these patent documents 1-4, although these compositions can provide acid resistance to a concrete repair surface, when constructing a repair surface by hand painting by plastering work, it is a repair material. For example, when it is desired to provide a repair layer having a thickness of 20 mm, it was not possible to apply it once, and it was necessary to apply it twice. That is, since it is necessary to apply the second layer after the first layer is dried to some extent, there is a problem of workability that takes time and labor.

本発明は、ポリマー系の有機系材料やアルミナセメント等の特殊な材料を使用せず、環境負荷の低減効果が高く、汎用性の高い一般に流通している材料と、産業副産物であるPFBC灰との組み合わせにより、耐酸性、施工性に優れ、かつ低コストの補修材およびそれを用いた補修方法を提供することを目的とする。   The present invention does not use special materials such as polymer-based organic materials or alumina cement, and has a high environmental load reduction effect, a highly versatile material that is generally distributed, and PFBC ash that is an industrial byproduct. An object of the present invention is to provide a repair material that is excellent in acid resistance, workability, and low cost, and a repair method using the repair material.

本願発明者らは、補修材の材料および組み合わせについて、種々検討を行った結果、PFBC灰と高炉セメントB種とフライアッシュを適量混合したものが、耐酸性のみならず、施工性にも優れた材料となることを見出した。   As a result of various investigations regarding the materials and combinations of the repair materials, the inventors of the present application have mixed PFBC ash, blast furnace cement B type and fly ash in an appropriate amount, and are excellent not only in acid resistance but also in workability. I found it to be a material.

本発明の耐酸性補修材は、PFBC灰100質量部に対して、高炉セメントB種95〜105質量部、フライアッシュ36〜53質量部、細骨材396〜540質量部を混合したことを特徴とする。
また、本発明の補修方法は、前記の耐酸性補修材100質量部に、混和剤を適量加えた水10〜12質量部で混練し、補修箇所に施工することを特徴とする。
The acid-resistant repair material of the present invention is characterized by mixing 95 to 105 parts by mass of blast furnace cement type B, 36 to 53 parts by mass of fly ash, and 396 to 540 parts by mass of fine aggregate with respect to 100 parts by mass of PFBC ash. And
The repair method of the present invention is characterized in that the acid-resistant repair material is kneaded with 10 to 12 parts by weight of water with an appropriate amount of admixture added to 100 parts by weight of the acid-proof repair material, and applied to the repair site.

加圧流動床複合発電方式(PFBC:Pressurized Fluidized Bed Combustion)の火力発電所の副産物であるPFBC灰は、自硬性を有し、通常のモルタルに比べて優れた耐酸性を期待でき、CO2発生の面でも環境に優しい材料であるが、PFBC灰単体では流動性が低く、施工性が悪い。そこで、これも産業副産物であるフライアッシュを一定量混和し、JIS R 5211に規定する高炉セメントB種(スラグの分量が30%を超え、60%以下)と組み合わせて補修材として使用することで、流動性を改善し、施工性のよい耐酸性補修材とすることができる。 PFBC ash, a by-product of the pressurized fluidized bed combined power generation (PFBC) thermal power plant, has self-hardening properties and can be expected to have superior acid resistance compared to ordinary mortar, generating CO 2 However, the PFBC ash alone has low fluidity and poor workability. Therefore, a certain amount of fly ash, which is also an industrial by-product, is mixed and used as a repair material in combination with blast furnace cement type B (the amount of slag exceeds 30% and 60% or less) specified in JIS R 5211. It is possible to improve fluidity and to make an acid-resistant repair material with good workability.

混和剤は、単位水量の低減、流動性改善を目的とするものであり、AE減水剤、特に、高性能AE減水剤が好適に使用できる。   The admixture is intended to reduce the amount of unit water and improve fluidity, and an AE water reducing agent, particularly a high performance AE water reducing agent, can be suitably used.

高炉セメントB種の割合が上記範囲よりも低ければ強度が低下し、高ければ耐酸性が低下するため、上記範囲が適当である。また、フライアッシュが上記範囲よりも低ければ流動性が低下して所定の厚みが得られず、高ければ粘度が高くなって施工性が悪くなるため、上記範囲が適当である。   If the ratio of the blast furnace cement type B is lower than the above range, the strength is lowered, and if it is high, the acid resistance is lowered. Further, if the fly ash is lower than the above range, the fluidity is lowered and a predetermined thickness cannot be obtained. If the fly ash is high, the viscosity is increased and the workability is deteriorated. Therefore, the above range is appropriate.

なお、耐酸性補修材としては、細骨材、具体的には砂(川砂、海砂、珪砂等)を予め混入したものを提供することもできる。この場合、使用時には、適量の減水剤と水を加えて混練することで使用できる In addition, as an acid-proof repair material, the thing which mixed fine aggregate, specifically sand (river sand, sea sand, quartz sand, etc.) previously can also be provided. In this case, at the time of use, it can be used by adding an appropriate amount of water reducing agent and water and kneading .

本発明によれば、ポリマー系の有機系材料やアルミナセメント等の特殊な材料を使用せず、環境負荷の低減効果が高く、汎用性の高い一般に流通している材料と産業副産物であるPFBC灰との組み合わせにより、耐酸性、施工性に優れ、かつ低コストの補修材およびそれを用いた補修方法が得られる。   According to the present invention, PFBC ash which is a commonly distributed material and an industrial by-product having high environmental load reduction effect and high versatility without using special materials such as polymer organic materials and alumina cement. In combination with the above, it is possible to obtain a repair material that is excellent in acid resistance and workability and is low in cost, and a repair method using the repair material.

(a)はPFBC灰の顕微鏡写真、(b)は対照のフライアッシュの顕微鏡写真である。(A) is a photomicrograph of PFBC ash, and (b) is a photomicrograph of a control fly ash. 実施例及び比較例におけるセメントの種類・PFBC灰混合率と圧縮強度試験結果を示すグラフである。It is a graph which shows the kind of cement, PFBC ash mixing rate, and a compressive strength test result in an Example and a comparative example. 実施例及び比較例におけるセメントの種類・PFBC灰混合率と曲げ強度試験結果を示すグラフである。It is a graph which shows the kind of cement, PFBC ash mixing rate, and a bending strength test result in an Example and a comparative example. 実施例及び比較例における水結合材比(W/B)と圧縮強度を示すグラフである。It is a graph which shows the water binder ratio (W / B) and compressive strength in an Example and a comparative example. 実施例及び比較例における水結合材比(W/B)と曲げ強度を示すグラフである。It is a graph which shows the water binder ratio (W / B) and bending strength in an Example and a comparative example. 実施例及び比較例における細骨材セメント比(S/C)と圧縮強度を示すグラフである。It is a graph which shows the fine aggregate cement ratio (S / C) and compressive strength in an Example and a comparative example. 実施例及び比較例における細骨材セメント比(S/C)と曲げ強度を示すグラフである。It is a graph which shows the fine aggregate cement ratio (S / C) and bending strength in an Example and a comparative example. 実施例及び比較例におけるセメントの種類・PFBC灰混合率と耐酸性試験のうち質量変化率結果を示すグラフである。It is a graph which shows a mass change rate result among the kind of cement, PFBC ash mixing rate, and an acid resistance test in an Example and a comparative example. 実施例及び比較例における耐酸性試験のうち質量変化率結果(S/C、W/Bの条件を変えた)を示すグラフである。It is a graph which shows the mass change rate result (S / C, the conditions of W / B were changed) among the acid resistance tests in an Example and a comparative example. 実施例及び比較例におけるセメントの種類・PFBC灰混合率と耐酸性試験のうち硫酸浸透深さ試験結果を示すグラフである。It is a graph which shows the sulfuric acid penetration depth test result among the kind of cement, PFBC ash mixing rate, and an acid resistance test in an Example and a comparative example. 実施例及び比較例における耐酸性試験のうち硫酸浸透深さ試験結果(S/C、W/Bの条件を変えた)を示すグラフである。It is a graph which shows a sulfuric-acid penetration depth test result (S / C, W / B conditions were changed) among the acid resistance tests in an Example and a comparative example. 本発明に係るBC−P50のEPMA分析結果を示す断面写真である。It is a cross-sectional photograph which shows the EPMA analysis result of BC-P50 which concerns on this invention. 実施例及び比較例におけるセメントの種類・PFBC灰混合率と細孔径分布試験結果を示すグラフである。It is a graph which shows the kind of cement, PFBC ash mixing rate, and a pore size distribution test result in an Example and a comparative example. 実施例及び比較例におけるセメントの種類・PFBC灰混合率と総細孔量と硫酸侵食速度係数の関係を示すグラフである。It is a graph which shows the relationship of the kind of cement, PFBC ash mixing rate, total pore amount, and sulfuric acid erosion rate coefficient in an Example and a comparative example. 実施例及び比較例におけるセメントの種類・PFBC灰混合率と総細孔量と硫酸浸透速度係数の関係を示すグラフである。It is a graph which shows the relationship between the kind of cement, PFBC ash mixing rate, total pore amount, and a sulfuric acid osmosis | permeation rate coefficient in an Example and a comparative example. 実施例及び比較例における2年塩害環境下での浸漬暴露におけるClイオンの浸透深さに関するEPMA分析結果の写真である。It is a photograph of the EPMA analysis result regarding the penetration depth of Cl ion in the immersion exposure in a salt damage environment in Examples and Comparative Examples. 実施例及び比較例における実効拡散係数による耐遮塩性効果を示すグラフである。It is a graph which shows the salt-proofing effect by the effective diffusion coefficient in an Example and a comparative example. 実施例及び比較例におけるCO2排出量を示すグラフである。Is a graph showing the CO 2 emissions in the examples and comparative examples.

以下、本発明の実施の形態を説明する。
まず、本発明で耐酸性材料として使用するPFBC灰について説明する。
Embodiments of the present invention will be described below.
First, PFBC ash used as an acid resistant material in the present invention will be described.

PFBC灰は、環境負荷低減やエネルギー問題を考慮した加圧流動床複合発電方式(PFBC:Pressurized Fluidized Bed Combustion)の発電プラントから発生する石炭灰である。PFBC方式の発電所は、燃料である石炭を、圧力容器内に収容した流動床ボイラーで、脱硫剤である石灰石(CaCO3)と流動状態で燃焼させ、発生した高温・高圧の蒸気により蒸気タービンを回して発電するとともに、ボイラーの排ガスによりガスタービンを回して発電する方式である。PFBC灰は、従来のフライアッシュとは性質が異なりCaOが多く、SiO2が少なく、自硬性を有するという特徴がある。
PFBC灰とフライアッシュの成分、比表面積の例を表1に示す。
PFBC ash is coal ash generated from a pressurized fluidized bed combustion (PFBC) power plant that takes into consideration environmental load reduction and energy issues. The PFBC power plant uses a fluidized bed boiler in which coal as fuel is stored in a pressure vessel to burn in a fluidized state with limestone (CaCO 3 ) as a desulfurizing agent. The power is generated by turning the gas turbine and the gas turbine is turned by the exhaust gas from the boiler. PFBC ash is different from conventional fly ash in that it has characteristics that it has a large amount of CaO, a small amount of SiO 2, and is self-hardening.
Examples of PFBC ash and fly ash components and specific surface areas are shown in Table 1.

PFBC灰の顕微鏡写真を図1(a)に示す。図1(b)は対照のフライアッシュの顕微鏡写真を示す。   A photomicrograph of PFBC ash is shown in FIG. FIG. 1 (b) shows a micrograph of a control fly ash.

一方、近年化学的侵食によるコンクリート構造物の性能低下が問題となっており、その対策として、表面保護工法が用いられている。そこで、本実験では、表面被覆材や断面修復材へPFBC灰の適用性を検討するため、強度および耐酸性試験を行った。   On the other hand, in recent years, performance degradation of concrete structures due to chemical erosion has become a problem, and surface protection methods are used as countermeasures. Therefore, in this experiment, strength and acid resistance tests were performed to examine the applicability of PFBC ash to surface coating materials and cross-section repair materials.

1.実験概要
1.1 使用材料及び配合
セメントは、普通ポルトランドセメント(略号OPC:密度3.16g/cm3,比表面積3,280cm2/g)、高炉セメントB種(略号BC:密度3.02g,/cm3,比表面積3,920cm2/g)、アルミナセメント(略号AC:密度3.01g/cm3,比表面積4,750cm2/g)を使用した。PFBC灰(略号P:密度2.64g/cm3,比表面積4,250cm2/g)をセメント代替として使用した。フライアッシュは、JISII種(略号FA:密度2.28g/cm3,比表面積4,180cm2/g)を使用した。細骨材に海砂(S:表乾密度2.58g/cm3,吸水率0.96%)を使用した。混和剤は高性能AE減水剤(SP:高性能AE減水剤)を用いた。なお、アルミナセメントは早強性と化学的抵抗性に優れた特長を持っているため、本実験では結合材として使用した。表2に本実験で使用した耐酸性モルタルの配合を示す。表中の配合名P50,P60はPFBC灰のセメントに対しての置換率を示しており、一般的な1:3(質量比)モルタルを基本に、モルタルフロー値は160mmで、水結合材比(W/B)を40%とした8種類の供試体を作製した。
1. 1. Outline of Experiment 1.1 Materials Used and Formulation Cement is ordinary Portland cement (abbreviation OPC: density 3.16 g / cm 3 , specific surface area 3,280 cm 2 / g), blast furnace cement B type (abbreviation BC: density 3.02 g, / Cm 3 , specific surface area 3,920 cm 2 / g), and alumina cement (abbreviation AC: density 3.01 g / cm 3 , specific surface area 4,750 cm 2 / g) were used. PFBC ash (abbreviation P: density 2.64 g / cm 3 , specific surface area 4,250 cm 2 / g) was used as a cement substitute. As the fly ash, JIS II species (abbreviation FA: density 2.28 g / cm 3 , specific surface area 4,180 cm 2 / g) was used. Sea sand (S: surface dry density 2.58 g / cm 3 , water absorption 0.96%) was used as the fine aggregate. As the admixture, a high performance AE water reducing agent (SP: high performance AE water reducing agent) was used. Alumina cement was used as a binder in this experiment because of its excellent early strength and chemical resistance. Table 2 shows the composition of the acid-resistant mortar used in this experiment. The compound names P50 and P60 in the table indicate the substitution rate of PFBC ash with respect to the cement, based on a general 1: 3 (mass ratio) mortar, the mortar flow value is 160 mm, and the water binder ratio Eight types of specimens with 40% (W / B) were produced.

凡例
OPC :セメント全量を普通ポルトランドセメント
BC :セメント全量を高炉セメントB種
AC :セメント全量をアルミナセメント
P−100:セメント全量をPFBC灰で置換
BC−P50:BCの50%をPFBC灰で置換
W :水
B :結合材
S :細骨材
FA :フライアッシュ(細骨材代替)
SP :高性能AE減水剤
Legend OPC: Total amount of cement is normal Portland cement BC: Total amount of cement is blast furnace cement type B AC: Total amount of cement is alumina cement P-100: Total amount of cement is replaced with PFBC ash BC-P50: 50% of BC is replaced with PFBC ash W : Water B: Binder S: Fine aggregate FA: Fly ash (substitute for fine aggregate)
SP: High performance AE water reducing agent

1.2 実験方法
耐酸性補修材の試験項目とそれぞれの目標値を表3に示す。圧縮強度試験および曲げ強度試験は、水中養生した4×4×16cmの角柱供試体を用いてJIS R 5201に準拠して材齢7日,28日で行った。耐酸性試験はφ7.5cm×15cmの円柱供試体を用い、質量濃度5%硫酸水溶液に浸漬して行った。なお浸漬試験は、浸漬槽に供試体3本ずつ適宜な間隔を取って供試体全体を浸漬し、溶液の交換周期を7日毎とした。
1.2 Experimental method Table 3 shows the test items and target values of the acid-resistant repair materials. The compressive strength test and the bending strength test were carried out at a material age of 7 days and 28 days according to JIS R 5201 using a 4 × 4 × 16 cm prismatic specimen cured in water. The acid resistance test was performed by immersing in a sulfuric acid aqueous solution having a mass concentration of 5% using a cylindrical specimen of φ7.5 cm × 15 cm. In the immersion test, the entire specimen was immersed in an immersion tank at an appropriate interval of three specimens, and the exchange period of the solution was set every 7 days.

質量変化率の測定は1,3,7,14,21,28日で行い、硫酸浸透深さの測定は、浸漬終了した供試体の中央部をカッターにより切断し、切断面にフェノールフタレイン1%溶液を噴霧して赤く呈色した範囲をノギスで測定した。   The mass change rate was measured on 1, 3, 7, 14, 21, and 28 days, and the sulfuric acid penetration depth was measured by cutting the center of the immersed specimen with a cutter, and phenolphthalein 1 on the cut surface. The range in which the% solution was sprayed and turned red was measured with calipers.

2.配合
PFBC灰のモルタルに関して、フライアッシュを置換しない場合、流動性は安定しなく、再現性が難しいため、フライアッシュを細骨材の質量に対して全て10%置換している。PFBC灰は、産業副産物であり、JISで品質規格が設定されておらず、粒径も歪なものが多く流動性改善効果が期待できない可能性が高いことから、利用に当たっては流動性改善を図る必要性が生じた。流動性改善には、PFBC灰と同様の原料で相性的に高いと判断され、コンクリートの流動性改善でも実績のあるフライアッシュをPFBC灰モルタルに適用した結果、流動性の安定が見られ、品質の安定が確認できた。
フライアッシュを細骨材の一部に置換した理由について、図2より、混和したものBC−P50、混和していないものBC−P50(FA0)では、混和したものの方が強度発現性は良好な結果となっている。これは、図1から、PFBC灰は歪な形状のものが多く、フライアッシュを混和しなければ、使用する細骨材の種類によっては強度の安定性を欠き、充填性が悪いと判断された。このため、これら性状の安定を確保するためフライアッシュを利用した。細骨材の比率については後述するが、細骨材とフライアッシュの比率は質量比で9:1が好ましい。これ以上比率が大きいと粘度が高くなって施工性が悪くなる。
2. Regarding the PFBC ash mortar, when the fly ash is not replaced, the flowability is not stable and the reproducibility is difficult. Therefore, the fly ash is replaced by 10% with respect to the mass of the fine aggregate. Since PFBC ash is an industrial by-product, quality standards are not set by JIS, and there are many cases where the particle size is distorted, and there is a high possibility that fluidity improvement effect cannot be expected. The need arises. The improvement of fluidity is judged to be compatible with the same raw materials as PFBC ash, and as a result of applying fly ash with a proven track record in improving the fluidity of concrete to PFBC ash mortar, the stability of fluidity is seen. Was confirmed to be stable.
As for the reason why fly ash is replaced with a part of fine aggregate, it can be seen from FIG. 2 that the mixed BC-P50 and the non-mixed BC-P50 (FA0) have better strength development. It is the result. This is because, from FIG. 1, PFBC ash is often distorted, and unless fly ash is mixed, depending on the type of fine aggregate used, it is judged that the strength is not stable and the filling property is poor. . For this reason, fly ash was used to ensure the stability of these properties. Although the ratio of the fine aggregate will be described later, the ratio of the fine aggregate and fly ash is preferably 9: 1 by mass ratio. If the ratio is larger than this, the viscosity increases and the workability deteriorates.

3.室内試験結果
3.1 圧縮強度及び曲げ強度
図2、図3に圧縮強度試験および曲げ強度試験結果を示す。これらの図より、P100単味で用いた場合は、材齢28日で圧縮強度は3.2N/mm2であり自硬性を有することが確認された。BCにPFBC灰を40%、50%置換したBC−P40とBC−P50の場合、初期材齢の圧縮強度はOPCより小さいが、材齢28日ではほぼ同等になることがわかる。しかし、PFBC灰を60%置換したBC−P60の場合は、高炉セメントの含有量が少ないため、水和反応が疎かになり強度発現が遅延したと考えられる。これより、PFBC灰を用いて汎用性のある材料と組み合わせることで、副産物の有効利用を含めた環境負荷低減を最大限に引き出すことを含めて、目標強度を満足させるためにはPFBC灰の置換率を50%以下とする必要がある。
一方、アルミナセメントを使用した配合では、材齢の経過とともに強度が低下する傾向にあった。この要因としては、結晶転移が生じて結晶粒子間の空隙が増加し硬化体が多孔質となって強度が低下するためと考えられる。また、PFBC灰を置換した配合では、BCと同様、PFBC灰の置換率を増加すると強度が小さくなる傾向にあった。
強度の安定的な伸び、初期強度の確保、基準強度の確保、およびセメントの汎用性、経済性等を考慮すると、強度面ではBC−P40とBC−P50の組合せ(PFBC灰の置換率を40%〜50%)が良好と判断される。
3. Laboratory test results 3.1 Compressive strength and bending strength Figures 2 and 3 show the results of the compressive strength test and the bending strength test. From these figures, when P100 was used alone, it was confirmed that the compressive strength was 3.2 N / mm 2 at the age of 28 days and it had self-hardness. In the case of BC-P40 and BC-P50 in which PFBC ash is replaced by 40% and 50% of BC, the compressive strength of the initial age is smaller than that of OPC, but it can be seen that the age is 28 days. However, in the case of BC-P60 in which PFBC ash is substituted by 60%, the content of blast furnace cement is small, so the hydration reaction is weak and it is considered that the development of strength is delayed. From this, in order to satisfy the target strength by combining PFBC ash with general-purpose materials to maximize the reduction of environmental impact including effective use of by-products, replacement of PFBC ash The rate needs to be 50% or less.
On the other hand, in the combination using alumina cement, the strength tends to decrease with the lapse of age. This is presumably because crystal transition occurs, voids between crystal grains increase, the cured body becomes porous, and the strength decreases. Further, in the case of blending with PFBC ash substituted, the strength tended to decrease as the substitution rate of PFBC ash increased as in BC.
Considering the stable elongation of strength, securing of initial strength, securing of standard strength, general versatility of cement, economic efficiency, etc., in terms of strength, the combination of BC-P40 and BC-P50 (PFBC ash substitution rate is 40 % To 50%) is judged good.

図4、図5に水結合材比(W/B)と圧縮強度試験および曲げ強度試験結果を示す。なお、耐酸性モルタルのPFBC灰置換率は50%を基本とした。
水結合材比が45%より大きくなると圧縮強度が目標強度を下回る結果となった。また、42%より小さくなると、強度確保は可能であるものの、粘性が著しく強くなり、目標とするフレッシュ性状でのモルタルフロー値で160mm以上に調整できなかった。このため水結合材比として42%〜45%の範囲が最適となった。
4 and 5 show the water binder ratio (W / B), compression strength test, and bending strength test results. In addition, the PFBC ash substitution rate of acid-resistant mortar was basically 50%.
When the water binder ratio was greater than 45%, the compressive strength was lower than the target strength. On the other hand, if it is less than 42%, the strength can be secured, but the viscosity becomes extremely strong, and the mortar flow value in the target fresh property cannot be adjusted to 160 mm or more. For this reason, the range of 42% to 45% was optimal as the water binder ratio.

図6、図7に細骨材セメント比(S/C)と圧縮強度試験および曲げ強度試験結果を示す。なお、耐酸性モルタルのPFBC灰置換率は50%を基本とした。
細骨材セメント比は、3.0は良好な結果が出ることが確認でき、予備試験でこれより大きくなると目標強度を確保するのが困難であった。このため、良好な強度発現性を期待しつつ、細骨材セメント比で粉体(セメント類)をどの程度まで増やすことが可能か検討した。細骨材セメント比が2.0以下になると、粘性が強く、ミキサ撹拌も容易でなくなる傾向を示し、目標の強度性状を確保でき、ミキサ撹拌が可能な最小値は2.2程度であるが、施工性を勘案すると2.6程度の確保が要求される。このため砂セメント比は2.2〜3.0の範囲であるが好ましくは2.6〜3.0の範囲と判断される。
6 and 7 show the fine aggregate cement ratio (S / C), the compressive strength test, and the bending strength test results. In addition, the PFBC ash substitution rate of acid-resistant mortar was basically 50%.
It was confirmed that a fine aggregate cement ratio of 3.0 gave good results, and it was difficult to ensure the target strength when the fine aggregate cement ratio was larger than this in a preliminary test. For this reason, it was examined how much powder (cements) could be increased with a fine aggregate cement ratio while expecting good strength development. When the fine aggregate ratio is 2.0 or less, the viscosity tends to be strong and the mixer agitation tends to be difficult, the target strength property can be secured, and the minimum value at which the mixer agitation is possible is about 2.2. Considering the workability, securing of about 2.6 is required. For this reason, the sand cement ratio is in the range of 2.2 to 3.0, but is preferably determined to be in the range of 2.6 to 3.0.

3.2 耐酸性試験のうち質量変化率
図8に5%硫酸水溶液に浸漬した供試体の質量変化率を示す。浸漬期間28日終了時で目標値の質量変化率±10%を満足できたのは、BC−P40、BC−P50、BC−P60、AC、P−100の5配合であった。9配合ともモルタル表面の剥落の程度は異なっており、質量変化率はAC−P60が最も大きく、次いでOPC、AC−P50の順となった。使用したセメントの種類による影響では、高炉セメントB種を使用したBCは目標値を満たせなかったがBC−P40、BC−P50、BC−P60は満足することができた。一般的な硫酸劣化のメカニズムは、セメント水和物であるCa(OH)2と硫酸イオンSO3との反応により石膏CaSO4・2H2Oが生成され、その石膏がセメント化合物のC3A(アルミン酸三カルシウム)と反応し、膨張性のエトリンガイトを生成して破壊に至ると言われている。このため、セメント水和物の生成量が少ないBC−P40、BC−P50、BC−P60は硫酸劣化が抑制されたと考えられる。次に、アルミナセメントを使用した配合では、AC単味では目標値を満足することができたが、ACに対してPFBC灰の置換率が増加すると、質量変化率もそれに伴って減少する結果となった。これは、ACがアルミン酸カルシウムを主要鉱物としていることから、化学抵抗性を有しているためと考えられる。また、PFBC灰はセメントを使用せず、Ca(OH)2生成量も少ないためP−100も目標値を満足したと考えられる。
また、図9に別途実施した砂セメント比と水結合材比を変えた結果も合わせて示す。
砂セメント比2.6〜3.0、水結合材比42%〜45%であれば、ほぼ同様な耐酸性が期待できる結果となった。
3.2 Mass change rate in acid resistance test FIG. 8 shows the mass change rate of a specimen immersed in a 5% sulfuric acid aqueous solution. The combination of BC-P40, BC-P50, BC-P60, AC, and P-100 satisfied the mass change rate of the target value ± 10% at the end of the immersion period of 28 days. The degree of exfoliation on the surface of the mortar was different for all nine formulations, and the rate of mass change was greatest for AC-P60, followed by OPC and AC-P50. As a result of the type of cement used, BC using Blast Furnace Cement B could not meet the target value, but BC-P40, BC-P50, and BC-P60 could be satisfied. The general mechanism of sulfuric acid degradation is that gypsum CaSO 4 .2H 2 O is produced by the reaction of cement hydrate Ca (OH) 2 and sulfate ions SO 3, and the gypsum is C 3 A ( It is said that it reacts with tricalcium aluminate) to produce expansive ettringite, leading to destruction. For this reason, it is considered that BC-P40, BC-P50, and BC-P60, in which the amount of cement hydrate produced is small, are inhibited from sulfuric acid degradation. Next, with the formulation using alumina cement, the target value was satisfied with AC alone, but when the substitution rate of PFBC ash increased with respect to AC, the mass change rate also decreased accordingly. became. This is considered because AC has chemical resistance because calcium aluminate is the main mineral. Moreover, since PFBC ash does not use cement and the production amount of Ca (OH) 2 is small, it is considered that P-100 also satisfied the target value.
FIG. 9 also shows the results of changing the sand cement ratio and the water binder ratio separately implemented.
When the sand cement ratio was 2.6 to 3.0 and the water binder ratio was 42% to 45%, almost the same acid resistance was expected.

3.3 耐酸性試験のうち硫酸浸透深さ
図10に耐酸性試験のうち硫酸浸透深さの結果を示す。硫酸浸透深さは、侵食深さと、中性化領域を合わせた深さであり、材齢28日で硫酸浸透深さが、OPCより大きい配合が、P−100とAC−P60となり、AC−P50もOPCと同程度であった。セメント単独使用のBC、ACは、OPCの半分以下程度となり、さらに高炉セメントB種にPFBC灰を置換したBC−P60、BC−P50は硫酸浸透深さが小さく、特にBC−P50は全てのモルタルの中で最も硫酸浸透深さが小さく、OPCの1/5以下となり硫酸劣化に対して高い効果があることが確認された。この結果、耐酸モルタルの条件を満足するモルタル配合は、BC−P50とBC−P60のみであった。
PFBC灰を置換したいずれの配合もセメントの組合せによって侵食と中性化のパターンが異なることが実験的に確認され、この両方のバランスとしてBC−P50が最も硫酸浸透深さを抑制できることが確認された。
図11に別途実施した砂セメント比と水結合材比を変えた結果も合わせて示す。砂セメント比に関わらず水結合材比が45%では目標値を若干外れる結果となった。この結果、水結合材比は42%程度が最も良好であることが確認できる。
3.3 Sulfuric acid penetration depth in acid resistance test Figure 10 shows the results of sulfuric acid penetration depth in the acid resistance test. The sulfuric acid penetration depth is a depth that combines the erosion depth and the neutralization region. When the material age is 28 days, the combination of sulfuric acid penetration depth greater than OPC becomes P-100 and AC-P60, and AC- P50 was also comparable to OPC. BC and AC with cement alone are less than half of OPC, and BC-P60 and BC-P50, in which BFBC ash is substituted for B-type blast furnace cement, have a low sulfuric acid penetration depth. In particular, BC-P50 is all mortar. Among them, the sulfuric acid penetration depth was the smallest, and it was confirmed that it was 1/5 or less of OPC and had a high effect on sulfuric acid degradation. As a result, BC-P50 and BC-P60 were the only mortar formulations that satisfied the conditions for acid-resistant mortar.
It has been experimentally confirmed that any combination of PFBC ash is different in the pattern of erosion and neutralization depending on the combination of cement, and it is confirmed that BC-P50 can suppress the sulfuric acid penetration depth most as a balance of both. It was.
FIG. 11 also shows the results of changing the sand cement ratio and the water binder ratio separately implemented. Regardless of the sand-cement ratio, when the water binder ratio was 45%, the target value was slightly off. As a result, it can be confirmed that the water binder ratio is most favorable at about 42%.

3.4 PFBC灰の硫酸劣化に対する有効性
(1) EPMA分析
図12にBC−P50のEPMA結果を示す。モルタルの硫酸劣化は水酸化カルシウムCa(OH)2と硫酸イオンSO3の反応で石膏CaSO4・2H2Oを生成し、その石膏がC3A(アルミン酸三カルシウム)と更に反応して膨張性のエトリンガイトを生成し、この膨張圧で硫酸劣化を起こすものである。BC−P50は図12のように石膏が生成したにも関わらず侵食が軽微であった要因としては、水酸化カルシウムがOPC、BCよりも少ないこと、さらにPFBC灰で置換したことでポゾラン反応による水酸化カルシウムが消費することに加えて、後述する細孔構造の結果からBCに比べて細孔空隙量が多いことから、侵食を生じるような膨張圧に至らなかったことが考えられる。
3.4 Effectiveness of PFBC ash against sulfuric acid degradation (1) EPMA analysis Fig. 12 shows the EPMA results of BC-P50. The sulfuric acid deterioration of mortar produces gypsum CaSO 4 · 2H 2 O by the reaction of calcium hydroxide Ca (OH) 2 and sulfate ion SO 3 , and the gypsum further reacts with C 3 A (tricalcium aluminate) to expand. The ettringite is produced and sulfuric acid is deteriorated by this expansion pressure. BC-P50 caused slight erosion despite the fact that gypsum was formed as shown in FIG. 12 because the calcium hydroxide was less than OPC and BC, and the substitution with PFBC ash caused the pozzolanic reaction. In addition to the consumption of calcium hydroxide, it can be considered that the expansion pressure that caused erosion was not reached because the pore volume was larger than that of BC from the results of the pore structure described later.

(2) 細孔径分布
図13に細孔径分布試験結果を示す。PFBC灰の置換率を大きくするほど細孔容積が大きくなり、PFBC灰の利用・置換によって細孔構造が緻密になるものでなく疎となっている。
この緻密さと硫酸劣化の関係について、図14と図15に総細孔量と硫酸侵食速度の関係、総細孔量と硫酸浸透速度の関係を示す。侵食速度と総細孔量の間には相関は認められず、総細孔量と硫酸浸透速度の係数はPFBC灰を置換していない配合は一次の高相関関係が認められるものの、PFBC灰を置換した配合は明瞭でない。これにより、細孔量は硫酸浸透に及ぼす影響因子の一つである可能性が高いものの、PFBC灰を置換した配合においてはこれに該当しない可能性が高い。PFBC灰のモルタル配合は特有の性質を有しており、最適な置換率が存在する可能性が高く、強度特性、耐酸性等の結果よりBC−P50が現状で最適である結果となった。すなわち、PFBC灰を出来るだけ用いたいという考えの中ではBC−P50が最適となる。
(2) Pore size distribution Fig. 13 shows the results of the pore size distribution test. The larger the substitution rate of PFBC ash, the larger the pore volume, and the pore structure becomes sparse rather than dense due to the use / substitution of PFBC ash.
14 and 15 show the relationship between the total pore amount and the sulfuric acid erosion rate, and the relationship between the total pore amount and the sulfuric acid permeation rate. There is no correlation between the erosion rate and the total pore volume, and the coefficient of the total pore volume and the sulfuric acid permeation rate has a first-order high correlation in the composition in which the PFBC ash is not substituted, but the PFBC ash The substituted formulation is not clear. Thereby, although the possibility that the amount of pores is one of the influential factors on sulfuric acid permeation is high, there is a high possibility that this is not the case in the formulation in which PFBC ash is substituted. The mortar formulation of PFBC ash has unique properties, and there is a high possibility that an optimum substitution rate exists. Based on the results of strength characteristics, acid resistance, etc., BC-P50 is the optimum result at present. That is, BC-P50 is optimal in the desire to use PFBC ash as much as possible.

4.まとめ
この硫酸劣化(膨張圧)に対応するためには、水酸化カルシウムの生成量だけでなく、細孔構造(細孔空隙量)も影響することが明らかとなった。本実験では汎用性の高いセメントとPFBC灰と組合せることを前提に、表3に示す目標の強度、耐酸性における質量変化率および硫酸浸透深さの条件を満足し、高炉セメントに対してPFBC灰を50%置換し、PFBC灰100質量部に対して、高炉セメントB種95〜105質量部、フライアッシュ36〜53質量部、細骨材396〜540質量部としたものは、耐酸性(ポリマーセメント)モルタルと同等の性能を持った耐酸性補修モルタルといえる。耐酸性モルタルの品質条件に対して、PFBC灰を100%置換したモルタル配合(P−100)は、侵食がほとんどないものの、硫酸浸透深さがOPCよりも大きくなった。高炉セメントB種と組み合わせたBC−P50は侵食深さも小さく、硫酸浸透深さもOPCの1/5以下(硫酸浸漬28日)となり、硫酸劣化に対してPFBC灰を用いたことで高耐久なモルタル配合となった。
4). Summary In order to cope with this sulfuric acid deterioration (expansion pressure), it became clear that not only the amount of calcium hydroxide produced but also the pore structure (pore void amount) affected. In this experiment, on the premise of combining a highly versatile cement and PFBC ash, the target strength, acid resistance mass change rate and sulfuric acid penetration depth conditions shown in Table 3 are satisfied. The ash was replaced by 50%, and the blast furnace cement type B 95-105 parts by mass, fly ash 36-53 parts by mass, fine aggregate 396-540 parts by mass with respect to 100 parts by mass of PFBC ash was acid-resistant ( It can be said to be an acid-resistant repair mortar having the same performance as a polymer cement) mortar. The mortar formulation (P-100) with 100% substitution of PFBC ash with respect to the quality condition of acid-resistant mortar had almost no erosion, but the sulfuric acid penetration depth became larger than OPC. BC-P50 combined with blast furnace cement type B has a small erosion depth and sulfuric acid penetration depth is 1/5 or less of OPC (sulfuric acid soaked for 28 days). Highly durable mortar by using PFBC ash for sulfuric acid deterioration Blended.

5.現場施工試験
5.1 施工試験の概要
現場施工試験により、PFBC灰モルタルの「耐酸性補修材」(防食被覆・断面修復材)としての有効性を確保するとともに、良好な施工性を有する配合検討を実施した。その配合を用いて現場施工試験を行い、左官工による作業性の確認等に関する基礎データの収集を行った。
5. On-site construction test 5.1 Outline of construction test The on-site construction test ensures the effectiveness of PFBC ash mortar as an “acid-proof repair material” (anti-corrosion coating and cross-section repair material), and has a favorable formulation. Carried out. A field construction test was conducted using the formulation, and basic data on workability confirmation by plasterers was collected.

5.2 施工試験の結果
BC−P50の配合において、W/B=48%以下では、耐酸性の品質基準を満足する配合になることが確認できた。
室内試験では、W/B40%、モルタルフロー値160mmと設定していたものの、施工試験では良好な施工性が得られないことが確認された。左官工による実作業性を考慮した結果、施工性の面で推奨するW/Bの範囲として46%〜48%の範囲となり、このときのモルタルフロー値は180mm〜200mm程度の範囲となった。
上記について、PFBC灰モルタルは粘性が強く、通常のモルタルのような垂れが少ないため、ある程度フロー値を大きくしても、垂れる心配がない。逆に施工性を向上するための流動性を確保するために、W/B、モルタルフロー値とも大きくする必要がある。
W/B46%〜48%の範囲、モルタルフロー値180mm〜200mmの範囲におけるPFBC灰モルタルは、下水道基準に比して、曲げ強度、圧縮強度、耐酸性、硫酸浸透深さに関して条件をクリアした。
付着強度はポリマーセメントと同程度を確保するとともに、通常の補修材と同様にプライマー処理を実施した方が付着強度も強いことを確認した。
5.2 Results of Construction Test In the blending of BC-P50, it was confirmed that when W / B = 48% or less, the blending satisfies the acid-resistant quality standard.
In the laboratory test, the W / B was set to 40% and the mortar flow value was set to 160 mm. However, it was confirmed that good workability could not be obtained in the construction test. As a result of considering the actual workability by the plasterer, the W / B range recommended in terms of workability was in the range of 46% to 48%, and the mortar flow value at this time was in the range of about 180 mm to 200 mm.
About the above, since PFBC ash mortar has strong viscosity and there is little dripping like normal mortar, there is no fear of dripping even if the flow value is increased to some extent. Conversely, in order to ensure fluidity for improving workability, it is necessary to increase both W / B and mortar flow values.
The PFBC ash mortar in the range of W / B 46% to 48% and the mortar flow value of 180 mm to 200 mm cleared the conditions regarding bending strength, compressive strength, acid resistance, and sulfuric acid penetration depth as compared with the sewer standards.
It was confirmed that the adhesion strength was as high as that of the polymer cement, and that the adhesion strength was stronger when the primer treatment was performed in the same manner as a normal repair material.

5.3 現場施工試験
表4に施工性評価結果を示す。W/B=46%、48%の配合において、現場施工試験を実施した結果、品質、施工および付着性に問題がないことを確認した。
5.3 On-site construction test Table 4 shows the results of workability evaluation. As a result of carrying out an on-site construction test in the composition of W / B = 46% and 48%, it was confirmed that there was no problem in quality, construction and adhesion.

※1:BCは高炉セメントB種、OPCは普通ポルトランドセメント
※2:品質基準について
○:表3の目標を満足したもの
△:設計基準強度(24N/mm2)以上あり補修材料としての強度を満足するもの
×:表3の目標を満足しないもの
※3:施工性について(左官作業聞き取りを通じて)
○:ポリマーセメントと同等以上の施工性を確保したもの
×:補修材としての施工性が確保できないもの
※4:付着強度について(日本道路公団JHS319参照)
○は1.0N/mm2以上を確保したもの
×は1.0N/mm2以上を確保しないもの
* 1: BC is blast furnace cement type B, OPC is ordinary Portland cement * 2: Quality standards ○: Satisfies the target of Table 3 △: Design standard strength (24N / mm 2 ) or more and strength as repair material Satisfied x: Not satisfying the targets in Table 3 * 3: About workability (through interviewing plastering work)
○: Workability equal to or better than polymer cement ×: Workability as repair material cannot be ensured * 4: Adhesive strength (see Japan Highway Public Corporation JHS319)
○ indicates that 1.0 N / mm 2 or more is secured × indicates that 1.0 N / mm 2 or more is not secured

試験施工に携わった左官工からは、ポリマーセメントモルタルに比べて適度な粘性で施工がしやすく、また、垂れが少なく厚塗りが可能である等のコメントを得た。(通常20mmの補修厚さでは10mmずつ2回に分けるが1回でできる)
ここで、PFBC灰を基準にして、高炉セメントB種、細骨材、フライアッシュ、水の比率を変えた場合の施工性の評価を表5に示す。
We received comments from the plasterer who was involved in the test construction that the construction was easier with moderate viscosity than the polymer cement mortar, and that it could be thickly coated with less dripping. (Normally, 20mm repair thickness is divided into 10mm twice, but can be done once.)
Here, Table 5 shows the evaluation of workability when the ratio of blast furnace cement B type, fine aggregate, fly ash, and water is changed based on PFBC ash.

以上の評価から、施工性が良好である範囲は、PFBC灰を100質量部として、高炉セメントB種BCは略等量、細骨材Sは好ましくは396〜540質量部、フライアッシュFAは36〜53質量部、水Wは84〜96質量部という結果が得られた。   From the above evaluation, the range in which the workability is good is that PFBC ash is 100 parts by mass, the blast furnace cement type B BC is substantially equal, the fine aggregate S is preferably 396 to 540 parts by mass, and the fly ash FA is 36 The result of -53 mass parts and 84-96 mass parts of water W was obtained.

6.環境負荷低減効果(CO2削減効果)
CO2削減効果について、PFBC灰はフライアッシュと同様の石炭灰であり、CO2排出原単位は表6のフライアッシュと同様である。
PFBC灰モルタルのCO2削減効果について、表7の配合を基に検討した結果を表8と図18に示す。
この結果より、産業副産物であるPFBC灰の利用率が多いほどCO2削減効果が高く、環境負荷低減効果が高い配合となることが確認できる。
6). Environmental impact reduction effect (CO 2 reduction effect)
Regarding the CO 2 reduction effect, PFBC ash is coal ash similar to fly ash, and the CO 2 emission intensity is the same as that of fly ash in Table 6.
Table 8 and FIG. 18 show the results of studies on the CO 2 reduction effect of PFBC ash mortar based on the formulation in Table 7.
From this result, it can be confirmed that the higher the utilization rate of PFBC ash, which is an industrial by-product, the higher the CO 2 reduction effect and the higher the environmental impact reduction effect.

7.耐遮塩性試験
7.1 耐遮塩性効果の検証試験の概要
室内試験、現地暴露試験により、PFBC灰モルタルの「耐遮塩性補修材」(防食被覆・断面修復材)としての有効性に関する検討を実施した。
7). Outline of salt-proofing test 7.1 Salt-proofing effect verification test Effectiveness of PFBC ash mortar as “salt-proofing repair material” (corrosion-proof coating and cross-sectional restoration material) through laboratory tests and field exposure tests The examination about was carried out.

7.2 室内試験の結果
(1) 試験方法
表9の配合にて試験を実施した。
電気泳動試験は、28日間の水中養生を行ったφ10×5cmの円柱供試体を用いてJSCE−G571に準じて行い実効拡散係数で評価した。
7.2 Results of laboratory test (1) Test method A test was conducted with the formulation shown in Table 9.
The electrophoresis test was performed according to JSCE-G571 using a φ10 × 5 cm cylindrical specimen subjected to water curing for 28 days and evaluated by an effective diffusion coefficient.

(2)試験の結果
図17の耐久性上問題となる塩化物イオンの移動を示す実効拡散係数は、BC−P50,BC,OPCの順に大きくなる。BC−P50は、OPCの1/2程度、BCの3/4程度を示した。このことから、PFBC灰モルタルは塩害劣化で問題となる自由塩化物イオンに対する抵抗性を有していることが分かった。
(2) Test results The effective diffusion coefficient indicating the migration of chloride ions, which is a problem in durability in FIG. 17, increases in the order of BC-P50, BC, and OPC. BC-P50 showed about 1/2 of OPC and about 3/4 of BC. From this, it was found that PFBC ash mortar has resistance to free chloride ions, which is a problem in salt damage deterioration.

7.3 現地暴露試験
(1)試験方法
実塩害環境下において2年間浸漬暴露試験を実施した。BC−P50(PFBC灰モルタル配合)と比較として、従来耐遮塩性効果が高いとされるBC(結合材に高炉セメントのみを使用したモルタル配合)と、標準のモルタルOPC(結合材に普通ポルトランドセメントのみを使用したモルタル配合)で実施した。
評価手法としては、EPMA分析による塩素イオン濃度(Cl-)の測定を実施した。
図16に2年間浸漬暴露した試験体のEPMA分析結果を示す。
塩分(Cl)について、BC−P50の浸透深さが7mmであるのに対して、OPCが12mm、BCが10mmまでの深さの範囲で高い濃度の分布が認められた。また、塩分の浸透状況は、BC−P50が2〜3mmの浸透深さの位置を中心に内部方向に向かって濃度が低くなるのに対して、OPC、BCとも1mm程度の浸透深さの位置を中心に濃度が低くなっている。このことから、PFBC灰を用いたBC−P50は他の配合に比べて遮塩性が高く、特に耐遮塩性に効果が高いとされる高炉セメントよりも良好な耐遮塩性効果が認められた。
7.3 Field exposure test (1) Test method An immersion exposure test was conducted for 2 years in an actual salt damage environment. Compared to BC-P50 (PFBC ash mortar blend), BC (mortar blend using only blast furnace cement as a binder) and standard mortar OPC (ordinary Portland cement as a binder) are considered to have a high anti-salt effect. In a mortar formulation using only the soldering agent).
As an evaluation method, measurement of the chlorine ion concentration (Cl ) by EPMA analysis was performed.
FIG. 16 shows the results of EPMA analysis of a test specimen exposed to immersion for 2 years.
Regarding the salinity (Cl), a BC-P50 penetration depth was 7 mm, whereas a high concentration distribution was observed in the depth range of OPC to 12 mm and BC to 10 mm. Further, the salt penetration state is such that the concentration of BC-P50 decreases toward the inner direction centering on the penetration depth position of 2 to 3 mm, whereas the penetration depth of OPC and BC is about 1 mm. The concentration is low centering on From this, BC-P50 using PFBC ash has higher salt-blocking properties than other blends, and in particular, better salt-proofing effect than blast furnace cement, which is said to be highly effective in salt-blocking properties. It was.

本発明は、加圧流動床燃焼方式の発電設備から排出されるPFBC灰の有効利用を図り、耐酸性および施工性に優れた補修材として、下水道や温泉地帯等の設備の補修分野に好適に利用することができる。   INDUSTRIAL APPLICABILITY The present invention is intended for effective use of PFBC ash discharged from a pressurized fluidized bed combustion power generation facility, and is suitable for repairing facilities such as sewers and hot springs as a repair material having excellent acid resistance and workability. Can be used.

Claims (2)

PFBC灰100質量部に対して、高炉セメントB種95〜105質量部、フライアッシュ36〜53質量部、細骨材396〜540質量部を混合した耐酸性補修材。   An acid-resistant repair material in which 95 to 105 parts by mass of blast furnace cement type B, 36 to 53 parts by mass of fly ash, and 396 to 540 parts by mass of fine aggregate are mixed with 100 parts by mass of PFBC ash. 請求項に記載された耐酸性補修材100質量部に、混和剤を適量加えた水10〜12質量部で混練し、補修箇所に施工することを特徴とする耐酸性補修材を用いた補修方法。 Repair using an acid-resistant repair material characterized in that it is kneaded with 10 to 12 parts by weight of water with an appropriate amount of admixture added to 100 parts by weight of the acid-resistant repair material described in claim 1 and applied to the repair site. Method.
JP2011181638A 2010-08-26 2011-08-23 Acid-resistant repair material and repair method using the same Active JP5408630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011181638A JP5408630B2 (en) 2010-08-26 2011-08-23 Acid-resistant repair material and repair method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010189704 2010-08-26
JP2010189704 2010-08-26
JP2011181638A JP5408630B2 (en) 2010-08-26 2011-08-23 Acid-resistant repair material and repair method using the same

Publications (2)

Publication Number Publication Date
JP2012066997A JP2012066997A (en) 2012-04-05
JP5408630B2 true JP5408630B2 (en) 2014-02-05

Family

ID=46164721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011181638A Active JP5408630B2 (en) 2010-08-26 2011-08-23 Acid-resistant repair material and repair method using the same

Country Status (1)

Country Link
JP (1) JP5408630B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10981831B2 (en) * 2017-09-21 2021-04-20 Crown Products & Services, Inc. Dry mix and concrete composition containing bed ash and related methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3429689B2 (en) * 1998-10-20 2003-07-22 株式会社熊谷組 Corrosion resistant mortar
JP4502298B2 (en) * 2000-10-16 2010-07-14 電気化学工業株式会社 Cement composition and acid resistant cement / concrete using the same
JP4088434B2 (en) * 2001-10-11 2008-05-21 中国電力株式会社 Hydrated cured body

Also Published As

Publication number Publication date
JP2012066997A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
KR101694807B1 (en) Mortar with chloride resistance and acid resistance for repairing and reinforcing concrete using eco-friendly green cement, finishing materials for protecting concrete surface and method for repairing and reinforcing concrete using the same
WO2011108065A1 (en) Cement admixture and cement composition
KR20200091532A (en) concrete composition for ocean having salt-resistance
JP4382614B2 (en) Cement admixture and cement composition using the same
KR100715517B1 (en) Salt damage-preventing additive for concrete having high durability and concrete composition using it
Demir et al. Performance of cement mortars replaced by ground waste brick in different aggressive conditions
JP2007119263A (en) Spray material and spray constructing method
Nadir et al. The mechanisms of sulphate attack in concrete–a review
JP2007153714A (en) Cement admixture and cement composition
JP2018002509A (en) Neutralization suppression of cement-based cured product and chloride ion permeation suppression method
JP5408630B2 (en) Acid-resistant repair material and repair method using the same
JP5345821B2 (en) Cement admixture and cement composition
JP2011127157A (en) Method for preventing corrosion of reinforcing bar in reinforced concrete
JP5728545B2 (en) Hardened salt-resistant cement
JP5340692B2 (en) Cement admixture and cement composition
JP2008195544A (en) Steel-reinforced hydraulically hardened body excellent in carbonation resistance
KR100519605B1 (en) The manufacturing method and composition of Restoration mortar with function of sulfuric acid resistance
JP6735624B2 (en) Concrete surface modifier and method for improving surface quality of concrete using the same
JP7005719B1 (en) Repair mortar material, repair mortar composition and cured product
Sadawy Effect of Al2O3 additives on the corrosion and electrochemical behavior of steel embedded in ordinary Portland cement concrete
JP5345820B2 (en) Cement admixture and cement composition
JP4509015B2 (en) Cement admixture and cement composition
JP5020543B2 (en) Mortar or concrete processing method and hardened cement
JP6577785B2 (en) Hardened concrete for salt damage prevention and manufacturing method thereof
JP5313623B2 (en) Cement admixture and cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5408630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250