JP5407643B2 - Method for producing fluorine-containing copolymer - Google Patents

Method for producing fluorine-containing copolymer Download PDF

Info

Publication number
JP5407643B2
JP5407643B2 JP2009179466A JP2009179466A JP5407643B2 JP 5407643 B2 JP5407643 B2 JP 5407643B2 JP 2009179466 A JP2009179466 A JP 2009179466A JP 2009179466 A JP2009179466 A JP 2009179466A JP 5407643 B2 JP5407643 B2 JP 5407643B2
Authority
JP
Japan
Prior art keywords
chain transfer
polymerization
transfer agent
copolymer
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009179466A
Other languages
Japanese (ja)
Other versions
JP2011032363A (en
Inventor
真治 和田
茂 相田
博志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2009179466A priority Critical patent/JP5407643B2/en
Publication of JP2011032363A publication Critical patent/JP2011032363A/en
Application granted granted Critical
Publication of JP5407643B2 publication Critical patent/JP5407643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、含フッ素共重合体の製造方法に関する。   The present invention relates to a method for producing a fluorinated copolymer.

含フッ素共重合体の中で、特に、エチレン/テトラフルオロエチレン共重合体(以下、ETFEと記す。)及びエチレン/クロロトリフルオロエチレン共重合体(以下、ECTFEと記す。)は、耐熱性、耐溶剤性、耐薬品性、機械特性等に優れる機能材料として種々の産業分野で用いられる。   Among the fluorine-containing copolymers, in particular, ethylene / tetrafluoroethylene copolymer (hereinafter referred to as ETFE) and ethylene / chlorotrifluoroethylene copolymer (hereinafter referred to as ECTFE) are heat resistant, It is used in various industrial fields as a functional material excellent in solvent resistance, chemical resistance, mechanical properties and the like.

一般に、含フッ素共重合体の製造には、その分子量を制御する目的で連鎖移動剤が使用される。連鎖移動剤は、その分子中に炭素原子−水素原子結合等の結合エネルギーの小さな結合を有し、水素原子等が成長するポリマー鎖ラジカルに引き抜かれ易い。そのため、ポリマー鎖の成長反応を停止させる性質を有する。そして、水素原子等の引き抜きによって、ラジカルを生じた連鎖移動剤が、モノマーであるフルオロオレフィン等と反応することにより新しくモノマーの重合を開始し、新規のポリマー鎖の成長反応が進行する。このような反応の結果、連鎖移動剤は末端基としてポリマー鎖に結合し、ポリマーの性質及び安定性に影響を与えることから、その選択は重要な課題となっている。   In general, a chain transfer agent is used in the production of a fluorinated copolymer for the purpose of controlling its molecular weight. The chain transfer agent has a bond with a small bond energy such as a carbon atom-hydrogen atom bond in the molecule, and is easily extracted to a polymer chain radical in which a hydrogen atom or the like grows. Therefore, it has the property of stopping the growth reaction of the polymer chain. The chain transfer agent that generates radicals by drawing out hydrogen atoms or the like reacts with the fluoroolefin or the like that is a monomer to newly start polymerization of the monomer, and a growth reaction of a new polymer chain proceeds. As a result of such a reaction, the chain transfer agent binds to the polymer chain as an end group, which affects the properties and stability of the polymer, so the selection is an important issue.

これまで含フッ素共重合体の製造に用いられる連鎖移動剤としては、ヒドロカーボン(以下、HCと記す。)、ヒドロクロロカーボン(以下、HCCと記す。)、ヒドロクロロフルオロカーボン(以下、HCFCと記す。)などが知られている。しかし、HCを用いると、生成した含フッ素共重合体の熱安定性が充分でない場合がある。また、HCCやHCFCは、塩素原子を含有することから、オゾン破壊係数が高く、また燃焼によりダイオキシン等を発生する可能性があり、環境及び健康面に悪影響を及ぼす可能性がある。   Conventional chain transfer agents used for the production of fluorine-containing copolymers include hydrocarbon (hereinafter referred to as HC), hydrochlorocarbon (hereinafter referred to as HCC), hydrochlorofluorocarbon (hereinafter referred to as HCFC). .) Etc. are known. However, when HC is used, the thermal stability of the produced fluorine-containing copolymer may not be sufficient. Moreover, since HCC and HCFC contain a chlorine atom, they have a high ozone depletion coefficient and may generate dioxins and the like by combustion, which may adversely affect the environment and health.

連鎖移動剤の特性としては、塩素原子を含まないこと、オゾン層破壊を引き起こさないこと、含フッ素共重合体の性質及び安定性にほとんど影響を与えないことが好ましい。さらに、室温で液体であることが、取り扱い性に優れるので好ましい。室温で気体又は蒸気圧が高い連鎖移動剤は、モノマーのリサイクル時にモノマーに混入しやすく、リサイクルプロセスにおける操作が煩雑になる可能性がある。   As the characteristics of the chain transfer agent, it is preferable that no chlorine atom is contained, ozone layer destruction is not caused, and the properties and stability of the fluorinated copolymer are hardly affected. Furthermore, it is preferable that it is liquid at room temperature because it is excellent in handleability. A chain transfer agent having a high gas or vapor pressure at room temperature is likely to be mixed into the monomer when the monomer is recycled, and the operation in the recycling process may be complicated.

このような特性を満たす連鎖移動剤として、CHOCFCFH等の化合物が報告された(特許文献1を参照。)。特許文献1の実施例では、この連鎖移動剤が、テトラフルオロエチレン(以下、TFEという。)とヘキサフルオロプロピレンとの共重合等に適用され、優れた分子量制御効果を有することが示された。しかし、驚くべきことに、該連鎖移動剤を、含フッ素共重合体であるETFEの製造に適用したところ、まったく連鎖移動せず、ETFEの分子量を制御できないことがわかった。したがって、塩素原子を含まず、オゾン層破壊を引き起こさず、製造される含フッ素共重合体の性質及び安定性にほとんど影響を与えない、という特性を有し、含フッ素共重合体の製造に適用できる連鎖移動剤が求められていた。 Compounds such as CH 3 OCF 2 CF 2 H have been reported as chain transfer agents satisfying such characteristics (see Patent Document 1). In the examples of Patent Document 1, this chain transfer agent was applied to copolymerization of tetrafluoroethylene (hereinafter referred to as TFE) and hexafluoropropylene, and the like, and was shown to have an excellent molecular weight control effect. However, surprisingly, when the chain transfer agent was applied to the production of ETFE, which is a fluorine-containing copolymer, it was found that the chain transfer was not carried out at all and the molecular weight of ETFE could not be controlled. Therefore, it has the characteristics that it does not contain chlorine atoms, does not cause ozone layer destruction, and has almost no effect on the properties and stability of the produced fluorine-containing copolymer, and is applicable to the production of fluorine-containing copolymers. There was a need for a chain transfer agent that could be used.

特表2003−524675号公報Special Table 2003-524675

本発明の目的は、上記問題点を解決し、塩素を含まず、オゾン層破壊を引き起こさず、常温で液体であり、製造される含フッ素共重合体の性質及び安定性にほとんど影響を与えない、という特性を有する連鎖移動剤を用いて、耐熱性、耐溶剤性、耐薬品性に優れ、適切に制御された分子量を有するETFE及びECTFEを効率よく製造する方法を提供することである。   The object of the present invention is to solve the above-mentioned problems, does not contain chlorine, does not cause destruction of the ozone layer, is liquid at room temperature, and hardly affects the properties and stability of the produced fluorine-containing copolymer. The present invention provides a method for efficiently producing ETFE and ECTFE having excellent heat resistance, solvent resistance, and chemical resistance, and having a properly controlled molecular weight, using a chain transfer agent having the characteristics of.

本発明は、以下の構成を有する含フッ素共重合体の製造方法を提供する。   The present invention provides a method for producing a fluorinated copolymer having the following constitution.

[1]重合連鎖移動剤の存在下にフッ素モノマーとエチレンとをラジカル重合する含フッ素共重合体の製造方法において、連鎖移動剤がCH CH CH OCF CF であることを特徴とする、含フッ素共重合体の製造方法。 [1] In the method for producing a fluorinated copolymer in which a fluorine monomer and ethylene are radically polymerized in the presence of a polymerization chain transfer agent, the chain transfer agent is CH 3 CH 2 CH 2 OCF 2 CF 2 H A method for producing a fluorine-containing copolymer.

[2]前記連鎖移動剤の使用量が、重合系に導入したモノマーの総質量に対して、連鎖移動剤/重合系に導入したモノマーの質量比で、0.10〜10である[1]に記載の含フッ素共重合体の製造方法。 [2] The amount of the chain transfer agent used is 0.10 to 10 in terms of the mass ratio of the chain transfer agent / monomer introduced into the polymerization system with respect to the total mass of monomers introduced into the polymerization system. [1] A process for producing the fluorine-containing copolymer according to 1.

[3]含フッ素共重合体が、エチレン/テトラフルオロエチレン共重合体及びエチレン/クロロトリフルオロエチレン共重合体である[1]又は[2]に記載の含フッ素共重合体の製造方法。 [3] The method for producing a fluorinated copolymer according to [1] or [2], wherein the fluorinated copolymer is an ethylene / tetrafluoroethylene copolymer and an ethylene / chlorotrifluoroethylene copolymer.

[4]重合媒体として、ペルフルオロカーボン類、ヒドロフルオカーボン類及びCH CH CH OCF CF Hを除くヒドロフルオロエーテル類からなる群から選ばれる少なくとも1種を用いる[1]〜[3]のいずれかに記載の含フッ素共重合体の製造方法。 [4] As the polymerization medium, at least one selected from the group consisting of perfluorocarbons, hydrofluorocarbons and hydrofluoroethers excluding CH 3 CH 2 CH 2 OCF 2 CF 2 H is used [1] to [3 ] The manufacturing method of the fluorine-containing copolymer in any one of.

本発明の含フッ素共重合体の製造方法によれば、塩素を含まず、オゾン層破壊を引き起こさず、常温で液体であり、フッ素モノマーとエチレンとをラジカル重合して製造される含フッ素共重合体の性質及び安定性にほとんど影響を与えない、連鎖移動剤を用いて、耐熱性、耐溶剤性、耐薬品性に優れ、分子量が任意に制御された、含フッ素共重合体を効率よく製造できる。   According to the method for producing a fluorine-containing copolymer of the present invention, fluorine-containing copolymer produced by radical polymerization of fluorine monomer and ethylene, which does not contain chlorine, does not cause destruction of the ozone layer, is liquid at room temperature, and Efficient production of fluorine-containing copolymers with excellent heat resistance, solvent resistance, chemical resistance, and arbitrarily controlled molecular weight using chain transfer agents that have little effect on the properties and stability of coalescence it can.

本発明における重合連鎖移動剤は、ヒドロフルオロアルキルエーテルであるCH CH CH OCF CF である。 Chain transfer agent in the present invention is a human mud fluoroalkyl ether CH 3 CH 2 CH 2 OCF 2 CF 2 H.

連鎖移動剤の使用量は、重合系に導入したモノマーの総質量に対して、連鎖移動剤/重合系に導入したモノマーの質量比で、0.10〜10が好ましく、0.15〜4.0がより好ましく、0.20〜2.0が最も好ましい。連鎖移動剤の使用量がこれらの範囲よりも少ないと、分子量が大きくなりすぎる。また、連鎖移動剤の使用量がこの範囲より多いと、分子量が小さくなりすぎる。   The amount of the chain transfer agent used is preferably a mass ratio of the chain transfer agent / the monomer introduced into the polymerization system to the total mass of the monomer introduced into the polymerization system, preferably 0.10 to 10, preferably 0.15 to 4. 0 is more preferable, and 0.20 to 2.0 is most preferable. If the amount of chain transfer agent used is less than these ranges, the molecular weight will be too large. On the other hand, when the amount of the chain transfer agent used is larger than this range, the molecular weight becomes too small.

連鎖移動剤であるヒドロフルオロエーテルの製造には、種々の方法を用いることができる。例えば、特許文献1に記載されているように、アルコールのフルオロオレフィンへの付加反応を用いる合成方法が簡便で好ましい。   Various methods can be used for production of the hydrofluoroether which is a chain transfer agent. For example, as described in Patent Document 1, a synthesis method using an addition reaction of an alcohol to a fluoroolefin is simple and preferable.

本発明における含フッ素共重合体は、含フッ素モノマーとエチレンとの共重合体であり、ETFE及びECTFEが好ましく、ETFEがより好ましい。
本発明の含フッ素共重合体がETFEの場合、TFEに基づく繰返し単位とエチレンに基づく繰返し単位との含有比率は、モル比で、80/20〜40/60が好ましく、70/30〜45/55がより好ましく、65/35〜50/50が最も好ましい。この組成の範囲であると、製造されたETFEは耐熱性や機械物性のバランスに優れる。
The fluorine-containing copolymer in the present invention is a copolymer of a fluorine-containing monomer and ethylene, preferably ETFE and ECTFE, and more preferably ETFE.
When the fluorine-containing copolymer of the present invention is ETFE, the content ratio of the repeating unit based on TFE and the repeating unit based on ethylene is preferably 80/20 to 40/60, and 70/30 to 45 / 55 is more preferable, and 65/35 to 50/50 is most preferable. Within this composition range, the produced ETFE is excellent in the balance between heat resistance and mechanical properties.

本発明の製造法で製造されるETFEは、エチレンに基づく繰返し単位及びTFEに基づく繰返し単位以外に、その他のモノマーに基づく繰返し単位を含んでも良い。その他のモノマーの具体例としては、トリフルオロエチレン、フッ化ビニリデン、フッ素ビニル等のフルオロエチレン、ヘキサフルオロプロピレン(HFP)、(2−ヒドロペンタフルオロプロピレン)等のフルオロプロピレン、クロロトリフルオロエチレン(CTFE)、X(CF2)nCY=CH2(ここで、X、Yは、水素原子又はフッ素原子であり、nは2〜8の整数を示す)で表されるポリフルオロアルキルエチレン、ペルフルオロ(メチルビニルエーテル)、ペルフルオロ(エチルビニルエーテル)、ペルフルオロ(プロピルビニルエーテル)(PPVE)、CF=CFOCFCF(CF)O(CFCF、CF=CFO(CFO(CFCF、CF=CFO(CFCF(CF)O)(CFCF、CF=CFOCFCF(CF)O(CFCF、CF=CFOCFCF=CF、CF=CFO(CFCF=CF等のフルオロビニルエーテル類、CF=CFO(CFCOCH、CF=CFOCFCF(CF)O(CFCOCH、CF=CFOCFCF(CF)O(CFSOF等の官能基含有フルオロビニルエーテル類などが挙げられる。 The ETFE produced by the production method of the present invention may contain a repeating unit based on another monomer in addition to the repeating unit based on ethylene and the repeating unit based on TFE. Specific examples of other monomers include fluoroethylene such as trifluoroethylene, vinylidene fluoride, and vinyl fluoride, fluoropropylene such as hexafluoropropylene (HFP) and (2-hydropentafluoropropylene), and chlorotrifluoroethylene (CTFE). ), X (CF2) nCY = CH2 (wherein X and Y are a hydrogen atom or a fluorine atom, and n is an integer of 2 to 8), polyfluoroalkylethylene, perfluoro (methyl vinyl ether) , Perfluoro (ethyl vinyl ether), perfluoro (propyl vinyl ether) (PPVE), CF 2 ═CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 CF 3 , CF 2 ═CFO (CF 2 ) 3 O (CF 2 ) 2 CF 3 , CF 2 = CFO (CF 2 CF (C F 3) O) 2 (CF 2) 2 CF 3, CF 2 = CFOCF 2 CF (CF 3) O (CF 2) 2 CF 3, CF 2 = CFOCF 2 CF = CF 2, CF 2 = CFO (CF 2 ) fluoro vinyl ethers such as 2 CF = CF 2, CF 2 = CFO (CF 2) 3 CO 2 CH 3, CF 2 = CFOCF 2 CF (CF 3) O (CF 2) 3 CO 2 CH 3, CF 2 = Examples thereof include functional group-containing fluorovinyl ethers such as CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 2 F.

さらに、ペルフルオロ(2,2−ジメチル−1,3−ジオキソール)、2,2,4−トリフルオロ−5−トリフルオロメトキシ−1,3−ジオキソール、ペルフルオロ(2−メチレン−4−メチル−1,3−ジオキソラン)等の脂肪族環構造を有する含フッ素モノマーが挙げられる。また、フッ素を含まない成分としては、プロピレン、イソブテン等のオレフィン、酢酸ビニル等のビニルエステル、エチルビニルエーテル、ブチルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシブチルビニルエーテル等のビニルエーテル、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水ハイミック酸(5−ノルボルネン−2,3−ジカルボン酸無水物)などの酸無水物が挙げられる。その他のモノマーは、1種単独で用いてもよく2種以上を併用してもよい。   Further, perfluoro (2,2-dimethyl-1,3-dioxole), 2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole, perfluoro (2-methylene-4-methyl-1, And fluorine-containing monomers having an aliphatic ring structure such as 3-dioxolane). Components that do not contain fluorine include olefins such as propylene and isobutene, vinyl esters such as vinyl acetate, vinyl ethers such as ethyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether, and hydroxybutyl vinyl ether, maleic anhydride, itaconic anhydride, and citraconic anhydride. And acid anhydrides such as acid and hymic anhydride (5-norbornene-2,3-dicarboxylic anhydride). Other monomers may be used alone or in combination of two or more.

X(CFCY=CHで表されるポリフルオロアルキルエチレンにおいて、nは2〜6が好ましく、2〜4がより好ましい。その具体例としては、CFCFCH=CH、CFCFCFCFCH=CH、CFCFCFCFCF=CH、CFHCFCFCF=CH、CFHCFCFCF=CHなどが挙げられる。 In the polyfluoroalkylethylene represented by X (CF 2 ) n CY═CH 2 , n is preferably 2 to 6, and more preferably 2 to 4. Specific examples, CF 3 CF 2 CH = CH 2, CF 3 CF 2 CF 2 CF 2 CH = CH 2, CF 3 CF 2 CF 2 CF 2 CF = CH 2, CF 2 HCF 2 CF 2 CF = CH 2, such as CF 2 HCF 2 CF 2 CF = CH 2 and the like.

ETFEにおけるその他のモノマーとしては、前記ポリフルオロアルキルエチレン、HFP、PPVE、酢酸ビニル、無水イタコン酸、無水ハイミック酸が好ましく、HFP、PPVE、CFCFCH=CH、CF(CFCH=CH、無水イタコン酸、無水ハイミック酸がより好ましく、HFP、PPVE、CFCFCH=CH、CF(CFCH=CHが最も好ましい。 As other monomers in ETFE, the above-mentioned polyfluoroalkylethylene, HFP, PPVE, vinyl acetate, itaconic anhydride, and hymic anhydride are preferable. HFP, PPVE, CF 3 CF 2 CH═CH 2 , CF 3 (CF 2 ) 3 CH 2 ═CH, itaconic anhydride, and hymic anhydride are more preferable, and HFP, PPVE, CF 3 CF 2 CH═CH 2 , and CF 3 (CF 2 ) 3 CH 2 ═CH are most preferable.

ETFEが、その他のモノマーに基づく繰返し単位を含有する場合には、その含有量は、0.01〜20mol%が好ましく、0.10〜15mol%がより好ましく、0.20〜10mol%が最も好ましい。その他のモノマーを含むETFEの組成がこの範囲であると、耐熱性や機械物性のバランスに優れる。
本発明の製造法で製造されるECTFEは、CTFEに基づく繰返し単位とエチレンに基づく繰返し単位との含有比率は、モル比で、80/20〜30/70が好ましく、70/30〜45/55がより好ましく、65/35〜50/50が最も好ましい。
When ETFE contains a repeating unit based on another monomer, the content is preferably 0.01 to 20 mol%, more preferably 0.10 to 15 mol%, most preferably 0.20 to 10 mol%. . When the composition of ETFE containing other monomers is within this range, the balance between heat resistance and mechanical properties is excellent.
In the ECTFE produced by the production method of the present invention, the content ratio of the repeating unit based on CTFE and the repeating unit based on ethylene is preferably 80/20 to 30/70, and 70/30 to 45/55 in terms of molar ratio. Is more preferable, and 65/35 to 50/50 is most preferable.

また、エチレンに基づく繰返し単位及びクロロトリフルオロエチレンに基づく繰返し単位以外に、その他のモノマーに基づく繰返し単位を含んでも良い。その他のモノマーの具体例としては、ETFEにおける上記その他のモノマーと同じものが挙げられ、前記ポリフルオロアルキルエチレン、HFP、PPVE、酢酸ビニル、無水イタコン酸、無水ハイミック酸が好ましく、HFP、PPVE、CFCFCH=CH、CF(CFCH=CH、無水イタコン酸、無水ハイミック酸がより好ましく、HFP、PPVE、CFCFCH=CH、CF(CFCH=CHが最も好ましい。 In addition to the repeating unit based on ethylene and the repeating unit based on chlorotrifluoroethylene, a repeating unit based on another monomer may be included. Specific examples of other monomers include the same as the above-mentioned other monomers in ETFE, and the polyfluoroalkylethylene, HFP, PPVE, vinyl acetate, itaconic anhydride, and hymic anhydride are preferable, and HFP, PPVE, CF 3 CF 2 CH═CH 2 , CF 3 (CF 2 ) 3 CH 2 ═CH, itaconic anhydride, and hymic anhydride are more preferable, and HFP, PPVE, CF 3 CF 2 CH═CH 2 , CF 3 (CF 2 ) Most preferred is 3 CH 2 ═CH.

ECTFEが、その他のモノマーに基づく繰返し単位を含有する場合には、その含有量は、0.01〜20mol%が好ましく、0.10〜15mol%がより好ましく、0.20〜10mol%が最も好ましい。その他のモノマーを含むECTFEの組成がこの範囲であると、耐熱性や機械物性のバランスに優れる。   When ECTFE contains repeating units based on other monomers, the content is preferably 0.01 to 20 mol%, more preferably 0.10 to 15 mol%, most preferably 0.20 to 10 mol%. . When the composition of ECTFE containing other monomers is within this range, the balance between heat resistance and mechanical properties is excellent.

本発明の含フッ素共重合体製造方法における重合方法としては、溶液重合、懸濁重合、乳化重合、塊状重合が挙げられる。中でも溶液重合及び懸濁重合が好ましい。   Examples of the polymerization method in the method for producing a fluorinated copolymer of the present invention include solution polymerization, suspension polymerization, emulsion polymerization, and bulk polymerization. Of these, solution polymerization and suspension polymerization are preferred.

溶液重合の場合、用いられる重合媒体としては、連鎖移動係数の小さな化合物が好ましい。また、環境保全の側面から塩素を含有しない化合物が好ましい。重合媒体の具体例としては、ペルフルオロカーボン類、ヒドロフルオカーボン類及びCH CH CH OCF CF を除くヒドロフルオロエーテル類からなる群から選ばれる少なくとも1種を用いることが好ましい。
該ぺルフルオロカーボン類としては、n−ペルフルオロヘキサン、n−ペルフルオロヘプタン、ペルフルオロシクロブタン、ペルフルオロシクロヘキサン、ペルフルオロベンゼン等が挙げられる。
In the case of solution polymerization, the polymerization medium used is preferably a compound having a small chain transfer coefficient. Moreover, the compound which does not contain chlorine from the aspect of environmental conservation is preferable. As a specific example of the polymerization medium, it is preferable to use at least one selected from the group consisting of perfluorocarbons, hydrofluorocarbons, and hydrofluoroethers excluding CH 3 CH 2 CH 2 OCF 2 CF 2 H.
Examples of the perfluorocarbons include n-perfluorohexane, n-perfluoroheptane, perfluorocyclobutane, perfluorocyclohexane, perfluorobenzene and the like.

該ヒドロフルオロカーボン類としては、CFCFHCFCFCF、CF(CFH、CFCFCFHCFCF、CFCFHCFHCFCF、CFHCFHCFCFCF、CF(CFH、CFCH(CF)CFCFCF、CFCF(CF)CFHCFCF、CFCF(CF)CFHCFHCF、CFCH(CF)CFHCFCF、CFCFCHCH、CF(CFCHCH等が挙げられる。
該ヒドロフルオロエーテル類としては、CFCHOCFCFH、CF(CFCFCFOCH、CF(CFOCH等のヒドロフルオロエーテル類が挙げられる。
Examples of the hydrofluorocarbon include CF 3 CFHCF 2 CF 2 CF 3 , CF 3 (CF 2 ) 4 H, CF 3 CF 2 CFHCF 2 CF 3 , CF 3 CFHCFHCCF 2 CF 3 , CF 2 HCFHCF 2 CF 2 CF 3 , CF 3 (CF 2 ) 5 H, CF 3 CH (CF 3 ) CF 2 CF 2 CF 3 , CF 3 CF (CF 3 ) CFHCF 2 CF 3 , CF 3 CF (CF 3 ) CFHCHFHCF 3 , CF 3 CH (CF 3) CFHCF 2 CF 3, CF 3 CF 2 CH 2 CH 3, CF 3 (CF 2) 3 CH 2 CH 3 and the like.
Examples of the hydrofluoroethers include hydrofluoroethers such as CF 3 CH 2 OCF 2 CF 2 H, CF 3 (CF 3 ) 2 CFCF 2 OCH 3 , and CF 3 (CF 2 ) 3 OCH 3 .

重合媒体としては、CF(CFH、CFCHOCFCFH、CF(CFCHCHがより好ましく、CF(CFH、CFCHOCFCFHが最も好ましい。重合媒体は、1種単独で用いてもよく2種以上を併用してもよい。重合媒体の沸点は、30〜150℃が好ましく、30〜120℃がより好ましい。また、室温で液体であることが好ましい。沸点が150℃より高いと、含フッ素共重合体との分離が困難になる。また、30℃より低いと、モノマーガスとの分離が困難になるので好ましくない。 The polymerization medium is more preferably CF 3 (CF 2 ) 5 H, CF 3 CH 2 OCF 2 CF 2 H, or CF 3 (CF 2 ) 3 CH 2 CH 3 , and CF 3 (CF 2 ) 5 H, CF 3 CH 2 OCF 2 CF 2 H is most preferred. A polymerization medium may be used individually by 1 type, and may use 2 or more types together. The boiling point of the polymerization medium is preferably 30 to 150 ° C, more preferably 30 to 120 ° C. Moreover, it is preferable that it is a liquid at room temperature. When the boiling point is higher than 150 ° C., separation from the fluorine-containing copolymer becomes difficult. On the other hand, if it is lower than 30 ° C., separation from the monomer gas becomes difficult, which is not preferable.

また、溶液重合の場合には、重合媒体の使用量は、連鎖移動剤と重合媒体との合計質量に対して、50%以上が好ましく、60%以上がより好ましく、70%以上が最も好ましい。重合媒体は連鎖移動剤に比べモノマーを良く溶かすため、重合媒体の使用量がこれよりも少ないと反応系中でのモノマー濃度が減り、反応速度が遅くなる。また、ポリマーが連鎖移動剤よりも重合媒体に良く膨潤するため、重合媒体の使用量がこれよりも少ないと、バッチあたりのポリマー収量を高くした際、良好な攪拌状態を維持するのが困難になるので好ましくない。   In the case of solution polymerization, the amount of the polymerization medium used is preferably 50% or more, more preferably 60% or more, and most preferably 70% or more based on the total mass of the chain transfer agent and the polymerization medium. Since the polymerization medium dissolves the monomer better than the chain transfer agent, if the amount of the polymerization medium used is less than this, the monomer concentration in the reaction system decreases and the reaction rate becomes slow. Also, because the polymer swells better in the polymerization medium than the chain transfer agent, if the amount of the polymerization medium used is less than this, it is difficult to maintain a good stirring state when the polymer yield per batch is increased. This is not preferable.

本発明の含フッ素共重合体製造方法におけるラジカル重合開始剤としては、重合させるモノマーの種類、反応媒体、反応条件等により適宜選択される。ラジカル開始剤の具体例としては、ビス(クロロフルオロアシル)ペルオキシド、ビス(ペルフルオロアシル)ペルオキシド、ビス(ω−ヒドロペルフルオロアシル)ペルオキシド、tert−ブチルペルオキシイソブチレート、tert−ブチルペルオキシピバレート、ジイソプロピルペルオキシジカーボネート等の有機過酸化物、アゾビスイソブチロニトリル等のアゾ化合物などが挙げられる。   The radical polymerization initiator in the method for producing a fluorinated copolymer of the present invention is appropriately selected depending on the kind of monomer to be polymerized, reaction medium, reaction conditions, and the like. Specific examples of the radical initiator include bis (chlorofluoroacyl) peroxide, bis (perfluoroacyl) peroxide, bis (ω-hydroperfluoroacyl) peroxide, tert-butylperoxyisobutyrate, tert-butylperoxypivalate, diisopropyl Examples thereof include organic peroxides such as peroxydicarbonate and azo compounds such as azobisisobutyronitrile.

重合温度としては、0〜100℃が好ましく、20℃〜90℃がより好ましく、30℃〜80℃が最も好ましい。重合圧力としては、常圧〜10MPaが好ましく、0.5MPa〜3MPaがより好ましく、1.0MPa〜2.0MPaが最も好ましい。   The polymerization temperature is preferably 0 to 100 ° C, more preferably 20 ° C to 90 ° C, and most preferably 30 ° C to 80 ° C. The polymerization pressure is preferably normal pressure to 10 MPa, more preferably 0.5 MPa to 3 MPa, and most preferably 1.0 MPa to 2.0 MPa.

本発明の含フッ素共重合体の製造方法で製造された含フッ素共重合体の容量流速(以下、Q値ともいう。)は、0.50〜1000が好ましく、1.0〜500がより好ましく、2.0〜50が最も好ましい。容量流速は分子量の指標であり、低い値ほど高分子量である。容量流速は、本発明における連鎖移動剤の使用量を調節することにより、容易に制御できる。Q値がこの範囲より高いと機械物性が低下する。Q値がこの範囲より低いと成形性が低下するので好ましくない。   The volume flow rate (hereinafter also referred to as Q value) of the fluorinated copolymer produced by the method for producing a fluorinated copolymer of the present invention is preferably 0.50 to 1000, more preferably 1.0 to 500. 2.0 to 50 is most preferable. The volume flow rate is an index of molecular weight, and the lower the value, the higher the molecular weight. The volume flow rate can be easily controlled by adjusting the amount of the chain transfer agent used in the present invention. If the Q value is higher than this range, the mechanical properties deteriorate. If the Q value is lower than this range, the moldability is lowered, which is not preferable.

以下に実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されない。含フッ素共重合体の特性は以下の方法で測定した。
〔Q値(単位:mm/秒〕フローテスター(島津製作所製CFT100D)を用い、297℃で溶融した含フッ素重合体を、内径2.1mm、長さ8mmのダイスから圧力0.7MPaで押出された含フッ素共重合体の容量流速である。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto. The characteristics of the fluorinated copolymer were measured by the following methods.
[Q value (unit: mm 3 / sec)] Using a flow tester (CFT100D manufactured by Shimadzu Corporation), a fluoropolymer melted at 297 ° C was extruded from a die having an inner diameter of 2.1 mm and a length of 8 mm at a pressure of 0.7 MPa. It is the capacity | capacitance flow rate of the made fluorine-containing copolymer.

〔ポリマー組成(モル%)〕FT−IRによって決定した。
〔融点(℃)〕走査型示差熱分析計(SII社製DSC7020)を用いて、空気雰囲気下に300℃まで10℃/分で加熱した際の吸熱ピークから求めた。
[Polymer composition (mol%)] Determined by FT-IR.
[Melting point (° C.)] Using a scanning differential thermal analyzer (DSC7020 manufactured by SII), the melting point was determined from the endothermic peak when heated to 300 ° C. at 10 ° C./min in an air atmosphere.

〔合成例1〕
内容積1.2リットルのステンレス鋼製反応器を脱気し、メタノールの476g、水酸化カリウムの113.3gを入れて攪拌し、反応器内温が50℃になるように加熱した。続いてTFEを0.2MPaGになるまで反応器に導入し、反応を開始した。反応中は圧力が0.2MPaGを維持するようにTFEをフィードし、TFEが543g消費されたところで反応を終了させた。反応液を濾過し、ろ液をイオン交換水にて数回水洗し、CHOCFCFHの520gを得た。分析はNMR及びガスクロマトグラフ分析(以下GCという)で行い、純度は99.8%であった。合成した含フッ素エーテルの沸点は37.2℃で、室温で液体であった。
[Synthesis Example 1]
A stainless steel reactor having an internal volume of 1.2 liters was degassed, 476 g of methanol and 113.3 g of potassium hydroxide were added and stirred, and the reactor internal temperature was heated to 50 ° C. Subsequently, TFE was introduced into the reactor until the pressure reached 0.2 MPaG, and the reaction was started. During the reaction, TFE was fed so that the pressure was maintained at 0.2 MPaG, and the reaction was terminated when 543 g of TFE was consumed. The reaction solution was filtered, and the filtrate was washed with ion exchange water several times to obtain 520 g of CH 3 OCF 2 CF 2 H. Analysis was performed by NMR and gas chromatographic analysis (hereinafter referred to as GC), and the purity was 99.8%. The synthesized fluorine-containing ether had a boiling point of 37.2 ° C. and was liquid at room temperature.

〔合成例2〕
メタノールをエタノールの473gに変更する以外は、合成例1と同様に反応を行った。TFEが603g消費されたところで反応を終了させ、合成例1と同様の精製を行い、CHCHOCFCFHの688gを得た。分析はNMR及びGCで行い、純度は99.8%以上であった。合成した含フッ素エーテルの沸点は56.7℃で、室温で液体であった。
[Synthesis Example 2]
The reaction was performed in the same manner as in Synthesis Example 1 except that methanol was changed to 473 g of ethanol. The reaction was terminated when 603 g of TFE was consumed, and the same purification as in Synthesis Example 1 was performed to obtain 688 g of CH 3 CH 2 OCF 2 CF 2 H. Analysis was performed by NMR and GC, and the purity was 99.8% or more. The synthesized fluorine-containing ether had a boiling point of 56.7 ° C. and was liquid at room temperature.

〔合成例3〕
メタノールをn−プロパノールの483gに変更する以外は、合成例1と同様に反応を行った。TFEが701g消費されたところで反応を終了させ、合成例1と同様の精製を行い、CHCHCHOCFCFHの840gを得た。分析はNMR及びGCで行い、純度は99.8%以上であった。合成した含フッ素エーテルの沸点は77.2℃で、室温で液体であった。
[Synthesis Example 3]
The reaction was performed in the same manner as in Synthesis Example 1 except that methanol was changed to 483 g of n-propanol. The reaction was terminated when 701 g of TFE was consumed, and purification was performed in the same manner as in Synthesis Example 1 to obtain 840 g of CH 3 CH 2 CH 2 OCF 2 CF 2 H. Analysis was performed by NMR and GC, and the purity was 99.8% or more. The synthesized fluorine-containing ether had a boiling point of 77.2 ° C. and was liquid at room temperature.

〔実施例1〕
内容積1.2リットルのステンレス鋼製反応容器を脱気し、重合媒体としてCF(CFHの939.3g、連鎖移動剤としてCHCHCHOCFCFHの206.2g、(ペルフルオロブチル)エチレン(以下、PFBEという。)の3.5g、TFEの154.3g、エチレン(以下、Eという。)の9.2gを仕込んだ。温度を66℃に保持して、重合開始剤としてターシャリーブチルペルオキシペルピバレートの1質量%CF3(CF2)5H溶液の2.0mLを仕込み、重合反応を開始させた。
[Example 1]
A stainless steel reaction vessel having an internal volume of 1.2 liters was degassed, and 939.3 g of CF 3 (CF 2 ) 5 H as a polymerization medium and 206 of CH 3 CH 2 CH 2 OCF 2 CF 2 H as a chain transfer agent. .2 g, 3.5 g of (perfluorobutyl) ethylene (hereinafter referred to as PFBE), 154.3 g of TFE, and 9.2 g of ethylene (hereinafter referred to as E) were charged. While maintaining the temperature at 66 ° C., 2.0 mL of a 1 mass% CF 3 (CF 2) 5H solution of tertiary butyl peroxy perpivalate as a polymerization initiator was charged to initiate the polymerization reaction.

重合反応中、重合内にTFEとEの混合ガス(組成TFE/E=54/46(モル比))を導入、反応圧力を1.5MPaGに保持し、同時にPFBEをTFE/Eの混合ガスに対して0.7モル%の割合で連続添加した。3.1時間後にTFE/E混合ガスの90gが反応器内に導入された時点で重合を終了し、反応器を室温まで冷却し、残モノマーガスをパージして含フッ素共重合体1のスラリーの約1400gを得た。該スラリー全量をフラスコに移し、水1000mlを注いだ後、ロータリーエバポレーターにて重合媒体と連鎖移動剤を留去し、濾過して水と分離した含フッ素共重合体1を乾燥して、約90gの含フッ素共重合体1の粉末を得た。該含フッ素共重合体1の共重合組成は、TFEに基づく重合単位/Eに基づく重合単位/PFBEに基づく重合単位=52.5/46.8/0.7(モル%)、Q値は15mm/秒、融点は269℃であった。 During the polymerization reaction, a mixed gas of TFE and E (composition TFE / E = 54/46 (molar ratio)) is introduced into the polymerization, the reaction pressure is maintained at 1.5 MPaG, and at the same time, PFBE is used as a mixed gas of TFE / E. On the other hand, it was continuously added at a ratio of 0.7 mol%. 3. After 90 hours, when 90 g of the TFE / E mixed gas was introduced into the reactor, the polymerization was completed, the reactor was cooled to room temperature, and the remaining monomer gas was purged to obtain a slurry of the fluorinated copolymer 1. About 1400 g of was obtained. The whole amount of the slurry was transferred to a flask, and after pouring 1000 ml of water, the polymerization medium and the chain transfer agent were distilled off with a rotary evaporator, and the fluorine-containing copolymer 1 separated from the water by filtration was dried to obtain about 90 g. Of the fluorocopolymer 1 was obtained. The copolymer composition of the fluorinated copolymer 1 is as follows: polymer unit based on TFE / polymer unit based on E / polymer unit based on PFBE = 52.5 / 46.8 / 0.7 (mol%), Q value is The melting point was 269 ° C. at 15 mm 3 / sec.

本実施例において、連鎖移動剤の使用量は、重合系に導入したモノマーの総質量に対する質量比で0.77であり、連鎖移動剤と重合媒体との合計質量を基準として18.0質量%であった。   In this example, the amount of the chain transfer agent used is 0.77 in terms of a mass ratio with respect to the total mass of the monomers introduced into the polymerization system, and 18.0% by mass based on the total mass of the chain transfer agent and the polymerization medium. Met.

〔実施例2〕
重合媒体としてCF(CFHの1010.7g、連鎖移動剤としてCHCH2CHOCFCFHを157.7g使用した以外は実施例1と同様に重合し、3.1時間後にTFE/E混合ガスの90gが反応器内に導入された時点で重合を終了し、含フッ素共重合体2のスラリー約1400gを得た。続いて実施例1と同様に精製を行い、約90gの含フッ素共重合体2の粉末を得た。該含フッ素共重合体2の共重合組成は、TFEに基づく重合単位/Eに基づく重合単位/PFBEに基づく重合単位=52.5/46.7/0.8(モル%)、Q値は2.7mm/秒、融点は269℃であった。
[Example 2]
Polymerization was carried out in the same manner as in Example 1 except that 1010.7 g of CF 3 (CF 2 ) 5 H was used as a polymerization medium and 157.7 g of CH 3 CH 2 CH 2 OCF 2 CF 2 H was used as a chain transfer agent, and 3.1 hours. Later, when 90 g of the TFE / E mixed gas was introduced into the reactor, the polymerization was terminated, and about 1400 g of a slurry of the fluorinated copolymer 2 was obtained. Subsequently, purification was carried out in the same manner as in Example 1 to obtain about 90 g of the fluorinated copolymer 2 powder. The copolymer composition of the fluorinated copolymer 2 is as follows: polymer unit based on TFE / polymer unit based on E / polymer unit based on PFBE = 52.5 / 46.7 / 0.8 (mol%), Q value is The melting point was 269 ° C. at 2.7 mm 3 / sec.

本実施例において、連鎖移動剤の使用量は、重合に導入したモノマーの総質量に対する質量比で、0.59であり、連鎖移動剤と重合媒体との合計質量に対して13.5質量%であった。   In this example, the amount of the chain transfer agent used is 0.59 in terms of the mass ratio to the total mass of monomers introduced into the polymerization, and 13.5% by mass with respect to the total mass of the chain transfer agent and the polymerization medium. Met.

〔実施例3〕
重合媒体としてCF(CFHの848.3g、連鎖移動剤としてCHCHCHOCFCFHの267.9gを使用した以外は実施例1と同様に重合し、3.3時間後に混合ガス90gが反応器系内に導入された時点で重合を終了し、含フッ素共重合体3のスラリー約1400gを得た。続いて実施例1と同様に精製を行い、約90gの含フッ素共重合体3の粉末を得た。該含フッ素共重合体3の共重合組成は、TFEに基づく重合単位/Eに基づく重合単位/PFBEに基づく重合単位=52.5/46.8/0.7(モル%)、Q値は49mm/秒、融点は268℃であった。
本実施例において、連鎖移動剤の使用量は、重合系に導入したモノマーの総質量に対する質量比で、1.00であり、連鎖移動剤と重合媒体との合計質量に対して24.0質量%であった。
Example 3
Polymerization was conducted in the same manner as in Example 1 except that 848.3 g of CF 3 (CF 2 ) 5 H was used as the polymerization medium, and 267.9 g of CH 3 CH 2 CH 2 OCF 2 CF 2 H was used as the chain transfer agent. Polymerization was terminated when 90 g of the mixed gas was introduced into the reactor system after 3 hours, and about 1400 g of a slurry of the fluorinated copolymer 3 was obtained. Subsequently, purification was performed in the same manner as in Example 1 to obtain about 90 g of a powder of the fluorinated copolymer 3. The copolymer composition of the fluorinated copolymer 3 is as follows: polymer unit based on TFE / polymer unit based on E / polymer unit based on PFBE = 52.5 / 46.8 / 0.7 (mol%), Q value is The melting point was 49 mm 3 / sec and the melting point was 268 ° C.
In this example, the amount of the chain transfer agent used is 1.00 by mass ratio with respect to the total mass of monomers introduced into the polymerization system, and 24.0 mass with respect to the total mass of the chain transfer agent and the polymerization medium. %Met.

〔比較例1〕
重合媒体としてCF(CFHの865.1g、連鎖移動剤としてCHCHCHOCFCFHに代えてCHOCFCFHの273.2gを用いる以外は、実施例1と同様に反応を行い、2.9時間後に含フッ素共重合体4のスラリー約1400gを得た。続いて実施例1と同様に精製を行い、約90gの含フッ素共重合体4の粉末を得た。該含フッ素共重合体4の共重合組成は、TFEに基づく重合単位/Eに基づく重合単位/PFBEに基づく重合単位=52.0/46.8/1.2(モル%)であった。該含フッ素共重合体4のQ値の測定を試みたがまったく流動しなかった。融点は269℃であった。
本比較例において、連鎖移動剤の使用量は、重合系に導入したモノマーの総質量に対する質量比で、1.02であり、連鎖移動剤と重合媒体との合計質量に対して24.0質量%であった。
[Comparative Example 1]
CF 3 (CF 2) of 5 H 865.1g as the polymerization medium, except for using 273.2g of CH 3 CH 2 CH 2 OCF 2 CF 2 instead of H CH 3 OCF 2 CF 2 H as a chain transfer agent, The reaction was carried out in the same manner as in Example 1, and about 1400 g of a slurry of the fluorinated copolymer 4 was obtained after 2.9 hours. Subsequently, purification was performed in the same manner as in Example 1 to obtain about 90 g of a powder of the fluorinated copolymer 4. The copolymer composition of the fluorinated copolymer 4 was: polymer unit based on TFE / polymer unit based on E / polymer unit based on PFBE = 52.0 / 46.8 / 1.2 (mol%). An attempt was made to measure the Q value of the fluorinated copolymer 4, but it did not flow at all. The melting point was 269 ° C.
In this comparative example, the amount of the chain transfer agent used is 1.02 in terms of a mass ratio with respect to the total mass of monomers introduced into the polymerization system, and 24.0 mass relative to the total mass of the chain transfer agent and the polymerization medium. %Met.

〔比較例2〕
重合媒体としてCF(CFHの882.3g、連鎖移動剤としてCHCHCHOCFCFHに代えてCHCHOCFCFHの278.6gを用いる以外は、実施例1と同様に反応を行い、3.3時間後に含フッ素共重合体5のスラリー約1400gを得た。続いて実施例1と同様に精製を行い、約90gの含フッ素共重合体5の粉末を得た。該含フッ素共重合体5の共重合組成は、TFEに基づく重合単位/Eに基づく重合単位/PFBEに基づく重合単位=52.5/46.7/0.8(モル%)、Q値は0.46であり、非常に小さく、流動性に乏しかった。融点は270℃であった。
本比較例において、連鎖移動剤の使用量は、重合系に導入したモノマーの総質量に対する質量比で、1.04であり、連鎖移動剤と重合媒体との合計質量に対して24.0質量%であった。
[Comparative Example 2]
CF 3 (CF 2) of 5 H 882.3g as the polymerization medium, but using 278.6g of CH 3 CH 2 OCF 2 CF 2 H instead of CH 3 CH 2 CH 2 OCF 2 CF 2 H as a chain transfer agent Reacted in the same manner as in Example 1 to obtain about 1400 g of a slurry of the fluorinated copolymer 5 after 3.3 hours. Subsequently, purification was performed in the same manner as in Example 1 to obtain about 90 g of a powder of the fluorinated copolymer 5. The copolymer composition of the fluorinated copolymer 5 is as follows: polymer unit based on TFE / polymer unit based on E / polymer unit based on PFBE = 52.5 / 46.7 / 0.8 (mol%), Q value is It was 0.46, very small, and poor in fluidity. The melting point was 270 ° C.
In this comparative example, the amount of the chain transfer agent used is 1.04 in terms of a mass ratio with respect to the total mass of monomers introduced into the polymerization system, and 24.0 mass with respect to the total mass of the chain transfer agent and the polymerization medium. %Met.

本発明の含フッ素共重合体の製造方法によれば、特定の連鎖移動剤を用いて、耐熱性、耐溶剤性、耐薬品性に優れ、分子量が任意に制御された、含フッ素共重合体を効率よく製造できる。本発明の製造方法は、フッ素モノマーとエチレンとの共重合体のみでなく、フッ素モノマーと、エチレン以外の炭化水素モノマーとからの含フッ素共重合体、及び、その他の含フッ素共重合体等の製造にも適用可能である。   According to the method for producing a fluorine-containing copolymer of the present invention, a fluorine-containing copolymer having excellent heat resistance, solvent resistance, chemical resistance, and molecular weight arbitrarily controlled using a specific chain transfer agent. Can be manufactured efficiently. The production method of the present invention includes not only a copolymer of a fluorine monomer and ethylene, but also a fluorine-containing copolymer from a fluorine monomer and a hydrocarbon monomer other than ethylene, and other fluorine-containing copolymers. It can also be applied to manufacturing.

Claims (4)

重合連鎖移動剤の存在下にフッ素モノマーとエチレンとをラジカル重合する含フッ素共重合体の製造方法において、重合連鎖移動剤がCH CH CH OCF CF であることを特徴とする含フッ素共重合体の製造方法。 In the method for producing a fluorine-containing copolymer in which a fluorine monomer and ethylene are radically polymerized in the presence of a polymerization chain transfer agent, the polymerization chain transfer agent is CH 3 CH 2 CH 2 OCF 2 CF 2 H. A method for producing a fluorinated copolymer. 前記連鎖移動剤の使用量が、重合系に導入したモノマーの総質量に対して、連鎖移動剤/重合系に導入したモノマーの質量比で、0.10〜10である請求項1に記載の含フッ素共重合体の製造方法。   The amount of the chain transfer agent used is 0.10 to 10 in terms of a mass ratio of the chain transfer agent / monomer introduced into the polymerization system to the total mass of monomers introduced into the polymerization system. A method for producing a fluorinated copolymer. 含フッ素共重合体が、エチレン/テトラフルオロエチレン共重合体及びエチレン/クロロトリフルオロエチレン共重合体である請求項1又は2に記載の含フッ素共重合体の製造方法。   The method for producing a fluorinated copolymer according to claim 1 or 2, wherein the fluorinated copolymer is an ethylene / tetrafluoroethylene copolymer and an ethylene / chlorotrifluoroethylene copolymer. 重合媒体としてペルフルオロカーボン類、ヒドロフルオカーボン類、CH CH CH OCF CF を除くヒドロフルオロエーテル類からなる群から選ばれる少なくとも1種を用いる請求項1〜3のいずれかに記載の含フッ素共重合体の製造方法。 Perfluorocarbons as the polymerization medium, hydrofluoride carbon compounds, according to claim 1, using at least one selected from the group consisting of hydrofluoroethers excluding CH 3 CH 2 CH 2 OCF 2 CF 2 H A method for producing a fluorine-containing copolymer.
JP2009179466A 2009-07-31 2009-07-31 Method for producing fluorine-containing copolymer Expired - Fee Related JP5407643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179466A JP5407643B2 (en) 2009-07-31 2009-07-31 Method for producing fluorine-containing copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009179466A JP5407643B2 (en) 2009-07-31 2009-07-31 Method for producing fluorine-containing copolymer

Publications (2)

Publication Number Publication Date
JP2011032363A JP2011032363A (en) 2011-02-17
JP5407643B2 true JP5407643B2 (en) 2014-02-05

Family

ID=43761762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179466A Expired - Fee Related JP5407643B2 (en) 2009-07-31 2009-07-31 Method for producing fluorine-containing copolymer

Country Status (1)

Country Link
JP (1) JP5407643B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106459291B (en) 2014-05-30 2019-07-12 Agc株式会社 Fluoropolymer-containing manufacturing method
CN116178598A (en) * 2022-06-20 2023-05-30 福建海德福新材料有限公司 Tetrafluoroethylene-based polymer resin and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192507A (en) * 1997-07-24 1999-04-06 Asahi Glass Co Ltd Manufacture of fluorinated polymer
US6399729B1 (en) * 1998-11-30 2002-06-04 E. I. Du Pont De Nmeours And Company Fluoromonomer polymerization
EP1392744B1 (en) * 2001-05-02 2008-07-09 3M Innovative Properties Company Emulsifier free aqueous emulsion polymerization process for making fluoropolymers
JP2006504844A (en) * 2002-10-31 2006-02-09 スリーエム イノベイティブ プロパティズ カンパニー Emulsifier-free aqueous emulsion polymerization to produce copolymers of fluorinated olefins and hydrocarbon olefins
JP4144463B2 (en) * 2003-07-07 2008-09-03 旭硝子株式会社 Fluorine-containing copolymer and method for producing granulated product thereof

Also Published As

Publication number Publication date
JP2011032363A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5290494B2 (en) Perfluoroelastomer
RU2158273C2 (en) Fluorinated thermoplastic elastomers and method of preparation thereof
KR100791504B1 (en) Fluorovinylethers and polymers obtainable therefrom
US11572343B2 (en) Perfluoro diacyl peroxide as polymerization initiator and polymer preparation method
JP5663839B2 (en) Ethylene / tetrafluoroethylene copolymer and process for producing the same
KR101342912B1 (en) Fluoroelastomers
JP2006045566A (en) Fluoroelastomer
JP7360058B2 (en) Method of manufacturing fluoropolymer
JP2023158062A (en) Method for producing fluoropolymer, method for producing polytetrafluoroethylene, method for producing perfluoroelastomer, and composition
WO1999005179A1 (en) Process for producing fluoropolymer
JP4144463B2 (en) Fluorine-containing copolymer and method for producing granulated product thereof
JP5407643B2 (en) Method for producing fluorine-containing copolymer
JP3993239B2 (en) Partially fluorinated polymer
JP4415665B2 (en) Tetrafluoroethylene copolymer
JP7185161B2 (en) Method for producing fluoropolymer
JP4363113B2 (en) Method for producing polytetrafluoroethylene
WO2023189629A1 (en) Method for producing fluorine-containing copolymer
WO2023277140A1 (en) Method for producing high-purity fluoropolymer-containing composition, and high-purity fluoropolymer-containing composition
WO2022163814A1 (en) Method for producing fluoropolymer composition
WO2023282188A1 (en) Perfluoro compound production method and fluorine-containing polymer production method
JPH06157614A (en) Production of fluoropolymer
JPH06157612A (en) Production of fluoropolymer
JPH06184208A (en) Production of fluorine-containing polymer
JPH06157611A (en) Production of fluoropolymer
JP2006016540A (en) Tetrafluoroethylene copolymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R151 Written notification of patent or utility model registration

Ref document number: 5407643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees