JP5406481B2 - Embryo culture vessel - Google Patents

Embryo culture vessel Download PDF

Info

Publication number
JP5406481B2
JP5406481B2 JP2008210756A JP2008210756A JP5406481B2 JP 5406481 B2 JP5406481 B2 JP 5406481B2 JP 2008210756 A JP2008210756 A JP 2008210756A JP 2008210756 A JP2008210756 A JP 2008210756A JP 5406481 B2 JP5406481 B2 JP 5406481B2
Authority
JP
Japan
Prior art keywords
embryo
embryos
embryo culture
culture
pdmsw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008210756A
Other languages
Japanese (ja)
Other versions
JP2010045980A (en
Inventor
和弘 佐伯
暢宏 加藤
俊仁 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Original Assignee
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University filed Critical Kinki University
Priority to JP2008210756A priority Critical patent/JP5406481B2/en
Publication of JP2010045980A publication Critical patent/JP2010045980A/en
Application granted granted Critical
Publication of JP5406481B2 publication Critical patent/JP5406481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/06Bioreactors or fermenters specially adapted for specific uses for in vitro fertilization
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

この発明は、体外受精胚やクローン胚を培養するための胚培養容器に関する。   The present invention relates to an embryo culture container for culturing in vitro fertilized embryos or cloned embryos.

哺乳動物胚の体外培養技術の進歩により、体外受精胚や体細胞クローン胚を胚盤胞期まで発生させることができるようになっている。哺乳動物胚の体外培養は、プラスチックシャーレ(培養容器)内に50μl程度の培養液のドロップを載せ、このドロップをミネラルオイルで被覆したのち、ドロップ内に胚を導入して胚を培養する方法、により行うのが一般的である。ただ、この方法では、数10個の胚を同一の培養液のドロップ内で集合培養しなければ、胚盤胞期胚を効率的に得ることができない(非特許文献1を参照。)。   Advances in in vitro culture techniques for mammalian embryos have made it possible to generate in vitro fertilized embryos and somatic cell cloned embryos up to the blastocyst stage. In vitro culture of mammalian embryos is a method of placing a drop of about 50 μl of a culture solution in a plastic petri dish (culture vessel), coating this drop with mineral oil, and then introducing the embryo into the drop to culture the embryo, It is common to do this. However, according to this method, a blastocyst stage embryo cannot be efficiently obtained unless several tens of embryos are assembled and cultured in a drop of the same culture solution (see Non-Patent Document 1).

一方、体細胞クローン胚のように作製が困難な胚は、多数の胚を同時に作製・培養するこができない。そのため、前記方法によって体細胞クローン胚などから効率よく胚盤胞期胚を得ることは困難であり、少数胚でも効率的に発生させることができる培養系の開発が求められている。   On the other hand, embryos that are difficult to produce, such as somatic cell clone embryos, cannot produce and culture many embryos simultaneously. Therefore, it is difficult to efficiently obtain a blastocyst stage embryo from a somatic cell clone embryo or the like by the above method, and development of a culture system capable of efficiently generating even a small number of embryos is required.

近年、培養皿の底面に穿設した微小なウェル内で胚を培養する方法(Well of well; WOW法)によって、少数胚でも効率的に胚盤胞へ発生させることができることが報告されている。しかし、この方法は、微小なウェルを手作業で穿設するため、同一形状のウェルを安定的に穿設することが難しく、容易に製造できなかった(非特許文献2を参照。)。
Nagao Y, Iijima R and Saeki K. Interaction between embryos and culture conditions during in vitro development of bovine early embryos. Zygote. 2008;16: 127-133. Vajta G, Peura TT, Holm P, Paldi A, Greve T, Trounson AO, Callesen H. New method for culture of zona-included or zona-free embryos: the Well of the Well (WOW) system. Mol Reprod Dev. 2000; 55: 256-264.
In recent years, it has been reported that a small number of embryos can be efficiently generated into blastocysts by a method of culturing embryos in minute wells drilled in the bottom of the culture dish (Well of well; WOW method). . However, since this method manually pierces minute wells, it is difficult to stably pierce wells having the same shape and cannot be easily manufactured (see Non-Patent Document 2).
Nagao Y, Iijima R and Saeki K. Interaction between embryos and culture conditions during in vitro development of bovine early embryos.Zygote. 2008; 16: 127-133. Vajta G, Peura TT, Holm P, Paldi A, Greve T, Trounson AO, Callesen H. New method for culture of zona-included or zona-free embryos: the Well of the Well (WOW) system.Mol Reprod Dev. 2000 ; 55: 256-264.

そこで、この発明は、体細胞クローン胚のように多数の胚を作製することが困難であるため集合培養が困難な胚を、一つ一つ個別に培養することで胚盤胞期胚まで効率よく発生させることができるとともに、容易に製造できる胚培養容器を提供することを課題とする。   Therefore, the present invention is efficient to blastocyst stage embryos by individually culturing embryos that are difficult to cultivate individually because it is difficult to produce a large number of embryos such as somatic cell clone embryos. It is an object to provide an embryo culture vessel that can be generated well and can be easily manufactured.

この発明の発明者らが、鋭意研究した結果、胚培養装置の表面に設けられているウェル内外における物質交換を抑制・防止することによって、少数胚であっても高効率かつ高品質で培養できることを発見し、この発明を完成させた。   As a result of intensive studies by the inventors of the present invention, it is possible to culture even a small number of embryos with high efficiency and high quality by suppressing / preventing material exchange inside and outside the well provided on the surface of the embryo culture apparatus. And the present invention was completed.

すなわち、この発明の請求項1に記載の胚培養容器は、胚を収容して培養するためのウェルを有する胚培養容器であって、合成樹脂を減圧下で成形してなり、成形後のウェルの内壁面に直径0.2μm以上の孔が存在せず、かつ直径200μm〜500μm、深さ100μm〜300μmの円柱状のウェルが複数形成されていることを特徴とするものである。 That is, embryo culture container according to claim 1 of the present invention, in the embryo culture vessel having wells for culturing accommodating the embryo, Ri synthetic resin name by molding under reduced pressure, after molding there is no inner wall surface diameter 0.2μm or more holes in the wells, and the diameter 200Myuemu~500myuemu, is shall be and wherein the cylindrical well of depth 100μm~300μm are formed.

この発明の請求項に記載の胚培養容器は、請求項1に記載の胚培養容器であって、合成樹脂が熱硬化性樹脂のものである。 The embryo culture container according to claim 2 of the present invention is the embryo culture container according to claim 1 , wherein the synthetic resin is a thermosetting resin.

この発明の請求項に記載の胚培養容器は、請求項に記載の胚培養容器であって、熱硬化性樹脂がシリコーン樹脂のものである。 The embryo culture container according to claim 3 of the present invention is the embryo culture container according to claim 2 , wherein the thermosetting resin is of a silicone resin.

この発明の請求項に記載の胚培養容器は、請求項に記載の胚培養容器であって、シリコーン樹脂がポリジメチルシロキサンのものである。 The embryo culture container according to claim 4 of the present invention is the embryo culture container according to claim 3 , wherein the silicone resin is polydimethylsiloxane.

この発明の胚培養容器を使用すれば、体外受精胚やクローン胚などの少数胚を高効率で培養することができ、得られる胚の品質も高い。そのため、哺乳動物の体外受精や体細胞クローンをより高効率で行うことができ、哺乳動物の品種改良等に貢献できる。また、ヒト胚の培養への適用により、生殖補助医療技術の改善にも貢献ができる。   By using the embryo culture container of the present invention, a small number of embryos such as in vitro fertilized embryos and cloned embryos can be cultured with high efficiency, and the quality of the resulting embryos is high. Therefore, in vitro fertilization and somatic cell cloning of mammals can be performed with higher efficiency, which can contribute to the improvement of mammalian varieties. In addition, application to human embryo culture can contribute to the improvement of assisted reproduction technology.

この発明の胚培養容器は、胚を収容して培養するためのウェルを有する胚培養容器であって、ウェル内壁面の多孔度が低く、ウェルの内外で実質的に物質交換できないものである。以下にその詳細について説明する。   The embryo culture container of the present invention is an embryo culture container having a well for containing and cultivating an embryo, and has a low porosity on the inner wall surface of the well, and the substance cannot be exchanged substantially inside and outside the well. The details will be described below.

胚培養容器1は、図1に示すように、胚を収容して培養するためのウェル2が表面に設けられたものであり、その形状は特に限定する必要はないが、一般的には長方形のものが好ましい。また、胚培養容器1の材質についても、ウェル2の内外で実質的に物質交換できないのであれば特に限定する必要はなく、合成樹脂に加えてガラス等も使用できる。また、培養容器1は単独の材料だけで製造してもよいが、複数の材料を組み合わせて使用してもよい。   As shown in FIG. 1, the embryo culture vessel 1 is provided with a well 2 on the surface for accommodating and culturing an embryo. The shape of the embryo culture vessel 1 is not particularly limited, but is generally rectangular. Are preferred. Further, the material of the embryo culture vessel 1 is not particularly limited as long as the material cannot be exchanged substantially inside and outside the well 2, and glass or the like can be used in addition to the synthetic resin. Moreover, although the culture container 1 may be manufactured only with a single material, you may use it combining a some material.

ウェル2の形状は、一般的な円柱状のほか、細胞を集めやすい断面がU字状のもの、V字状のもの、半球状のものが挙げられる。また、ウェル2の大きさは、1〜数個程度の胚が入る程度の大きさであり、ウェル2の形状が円柱状の場合、その直径は200μm〜500μm程度であり、深さは100μm〜300μm程度である。   Examples of the shape of the well 2 include a general cylindrical shape, and a U-shaped, V-shaped, and hemispherical cross section that facilitates cell collection. In addition, the size of the well 2 is such that about 1 to several embryos can enter. When the shape of the well 2 is cylindrical, the diameter is about 200 μm to 500 μm, and the depth is 100 μm to It is about 300 μm.

ウェル2の内壁面は多孔度が低く、ウェルの内外で蛋白質、ホルモン、酸素等の各種の物質交換ができないようになっている。そのため、胚から分泌された物質がウェルの内部に蓄積し、分泌された物質が胚自らに作用(オートクライン、autocrine)することで、胚の生育が促進される。   The inner wall surface of the well 2 has a low porosity so that various substances such as proteins, hormones and oxygen cannot be exchanged inside and outside the well. Therefore, the substance secreted from the embryo accumulates inside the well, and the secreted substance acts on the embryo itself (autocrine), thereby promoting the growth of the embryo.

なお、ここでいう多孔度とは、一定面積に開いている孔の数のことであり、原子間力顕微鏡(AFM)で観察することによって計測する。また、多孔度が低いとは、直径0.2〜0.5μmの孔が1,000,000個/mm2以下しか存在しないことを意味している。 Here, the porosity is the number of holes opened in a certain area, and is measured by observing with an atomic force microscope (AFM). Further, the low porosity means that there are only 1,000,000 holes / mm 2 or less of pores having a diameter of 0.2 to 0.5 μm.

このような胚培養容器1は、例えば、胚培養容器の母型を準備しておき、この母型に熱硬化性樹脂を注いだのち、熱硬化性樹脂を減圧下でヒータ等によって加熱・硬化して成形することによって製造できる。なお、減圧下とは、培養容器周囲の気圧を大気圧よりも低くすることであり、多孔率をより効率よく低くするため、減圧して真空にすることが好ましい。   Such an embryo culture container 1 is prepared, for example, by preparing a mother mold of an embryo culture container, pouring a thermosetting resin into the mother mold, and then heating and curing the thermosetting resin with a heater or the like under reduced pressure. And can be manufactured by molding. Note that “under reduced pressure” means that the pressure around the culture vessel is lower than atmospheric pressure, and it is preferable to reduce the pressure to a vacuum in order to lower the porosity more efficiently.

前記熱硬化性樹脂としては、ウェルの内壁面の多孔度が低くなるのであれば特に限定することなく使用できる。中でも、成形が容易で低コストであり、生体親和性も高いことから、シリコーン樹脂、特にポリジメチルシロキサン(以下、PDMSと略記する。)が好ましい。   The thermosetting resin can be used without particular limitation as long as the porosity of the inner wall surface of the well is lowered. Among these, a silicone resin, particularly polydimethylsiloxane (hereinafter abbreviated as PDMS) is preferable because it is easy to mold and low cost and has high biocompatibility.

なお、この発明の胚培養容器は、胚培養容器の母型に光硬化性樹脂を注いだのち、減圧下で光硬化性樹脂に紫外線等の光を照射して成形することによっても製造できる。さらに、この発明の胚培養容器は、多孔度が低く物質透過性の低い樹脂、例えばポリスチレン樹脂等をウェルの内壁面にコーティングすることによっても製造できる。加えて、この発明の胚培養容器は、抜き勾配を有する母型と離型剤を使用して、ポリスチレンなどの熱可塑性樹脂を減圧下で射出成形することによっても製造できる。   The embryo culture container of the present invention can also be produced by pouring a photocurable resin into the matrix of the embryo culture container and then irradiating the photocurable resin with light such as ultraviolet rays under reduced pressure. Furthermore, the embryo culture container of the present invention can also be produced by coating the inner wall surface of a well with a resin having low porosity and low material permeability, such as polystyrene resin. In addition, the embryo culture container of the present invention can also be produced by injection molding a thermoplastic resin such as polystyrene under reduced pressure using a matrix having a draft and a release agent.

以下、この発明について実施例に基づいてより詳細に説明する。ただし、以下の実施例によって、この発明の特許請求の範囲は如何なる意味においても制限されるものではない。   Hereinafter, the present invention will be described in more detail based on examples. However, the scope of claims of the present invention is not limited in any way by the following examples.

体外受精胚を使用して、培養容器の違いが胚盤胞期胚の発生率に与える影響について、PDMSを減圧下で成形してなる胚培養容器(以下、PDMSW-LPと省略する。)、PDMSを大気圧下で成形してなる胚培養容器(以下、PDMSW-APと省略する。)、従来技術であるWOW法による胚培養容器、市販の細胞培養プレートを使用して調べた。以下にその詳細について説明する。   An embryo culture container formed by molding PDMS under reduced pressure (hereinafter abbreviated as PDMSW-LP) for the effect of differences in culture containers on the development rate of blastocyst stage embryos using in vitro fertilized embryos, An embryo culture vessel formed by molding PDMS under atmospheric pressure (hereinafter abbreviated as PDMSW-AP), a conventional embryo culture vessel using the WOW method, and a commercially available cell culture plate were used for examination. The details will be described below.

1.胚培養容器の作製
PDMSW-APとPDMSW-LPは母型を利用して作製した。母型は以下のようにして作製した。まず、片面研磨した3インチのシリコンウェハ上にネガ型厚膜フォトレジスト(SU-8 3050、化薬マイクロケム製)を1インチ角あたり1ml載せ、スピンコーター(1H-D7、MIKASA製)により2000rpmで5秒間コーティングした。定温乾燥炉(DO-300FPA、アズワン製)により90℃で40分間ソフトベーキングし、フォトレジストから溶媒を除去した。
1. Preparation of embryo culture container
PDMSW-AP and PDMSW-LP were fabricated using the matrix. The matrix was produced as follows. First, 1 ml of negative type thick film photoresist (SU-8 3050, manufactured by Kayaku Microchem) is placed on a 3 inch silicon wafer that has been polished on one side, and 2000 rpm using a spin coater (1H-D7, manufactured by MIKASA). For 5 seconds. The solvent was removed from the photoresist by soft baking at 90 ° C. for 40 minutes in a constant temperature drying oven (DO-300FPA, manufactured by ASONE).

レジスト面に目的のパターンを描いたフォトマスク(特注品、トピック製)を接触させながら、自作の簡易露光装置により、365nmの紫外光を18.5秒間照射した。90℃で40分間ベークしたのち、現像液に約10分間浸して、余分なレジストを除去し、イソプロパノールで洗浄した。   While contacting a photomask (custom product, manufactured by Topic) with the desired pattern on the resist surface, ultraviolet light at 365 nm was irradiated for 18.5 seconds using a simple exposure device. After baking at 90 ° C. for 40 minutes, the substrate was immersed in a developer for about 10 minutes to remove excess resist and washed with isopropanol.

完成した母型を、培養皿の底面に接着剤により固定した。一方、PDMS(Slygard184、東レ・ダウコーニング製)を母剤10:触媒1(重量比)となるように、混合・攪拌した。混合したPDMSを真空デシケータ(240型、アズワン製)に移し、約40分間脱気した。   The completed matrix was fixed to the bottom of the culture dish with an adhesive. On the other hand, PDMS (Slygard184, manufactured by Toray Dow Corning) was mixed and stirred so as to be a base 10: catalyst 1 (weight ratio). The mixed PDMS was transferred to a vacuum desiccator (240 type, manufactured by ASONE) and degassed for about 40 minutes.

PDMSW-APの場合は、脱気したPDMSを母型に注ぎ、大気圧下でフィルムヒータ(5Ω、共立電子製)により約120分間加熱してPDMSを固化し、PDMSフィルムを得た。また、PDMSW-LPの場合には、母型を真空デシケータ(240型、アズワン製)に入れ、脱気したPDMSを母型に注ぎ、真空デシケータ内で脱気(-0.08Mpaに減圧)しながら、フィルムヒータにより120分間加熱してPDMSを固化した。   In the case of PDMSW-AP, degassed PDMS was poured into a matrix and heated for about 120 minutes under atmospheric pressure with a film heater (5Ω, manufactured by Kyoritsu Denshi) to solidify PDMS to obtain a PDMS film. In the case of PDMSW-LP, put the master mold in a vacuum desiccator (240 type, manufactured by ASONE), pour the degassed PDMS into the master mold, and deaerate (depressurize to -0.08Mpa) in the vacuum desiccator The PDMS was solidified by heating with a film heater for 120 minutes.

得られたPDMSシートをガラスボトムディッシュ(日本ジェネティックス製)の底面に酸素プラズマ処理によって接着させた。その結果、直径300μm、深さ200μmの円柱状のウェルが形成された胚培養容器、PDMSW-AP及びPDMSW-LPが得られた。   The obtained PDMS sheet was bonded to the bottom of a glass bottom dish (manufactured by Nippon Genetics) by oxygen plasma treatment. As a result, embryo culture containers, PDMSW-AP and PDMSW-LP in which cylindrical wells having a diameter of 300 μm and a depth of 200 μm were formed were obtained.

得られた胚培養容器、PDMSW-APとPDMSW-LPの表面を原子間力顕微鏡(SPI3800、SII製)で観察した。その結果を図2に示す。なお、図2(a)はPDMSW-APの観察結果であり、図2(b)はPDMSW-LPの観察結果である。   The surfaces of the obtained embryo culture containers, PDMSW-AP and PDMSW-LP were observed with an atomic force microscope (SPI3800, manufactured by SII). The result is shown in FIG. 2A shows the observation result of PDMSW-AP, and FIG. 2B shows the observation result of PDMSW-LP.

この図から、大気圧下で作製したPDMSW-APの表面には0.2〜0.5μmの穴が10μm×10μmの中に128個(=1,000,000個以上/mm2以上)開いている(多孔度が高い)ことが確認できた。これに対して、減圧下でPDMSを固化したPDMSW-LPの表面には穴が開いていない(多孔度が低い)ことが確認できた。 From this figure, the surface of PDMSW-AP fabricated under atmospheric pressure has 128 holes (= 1,000,000 holes / mm 2 or more) in 10 μm x 10 μm (high porosity) ) Was confirmed. In contrast, it was confirmed that there were no holes (low porosity) on the surface of PDMSW-LP solidified PDMS under reduced pressure.

なお、WOW法による培養容器は、前記非特許文献2に記載の方法を一部修正して作製した。具体的には、アグリゲーションニードル(BLS製)を使用してペトリディッシュ(Becton Dickinson製)底面に微小なウェル(直径約300μm、深さ約250μm)を設けることにより、作製した。また、対照区(集合培養法)には、ペトリディッシュ(Becton Dickinson製)を使用した。   The culture vessel by the WOW method was prepared by partially modifying the method described in Non-Patent Document 2. Specifically, it was prepared by providing a microwell (diameter: about 300 μm, depth: about 250 μm) on the bottom of a petri dish (Becton Dickinson) using an aggregation needle (BLS). A Petri dish (manufactured by Becton Dickinson) was used as a control group (aggregate culture method).

2.体外授精及び体外受精胚の培養
体外受精及び体外受精胚の培養は、下記のSaekiらによる文献1及び2、Brackettらによる文献に従って、以下の(1)から(4)に記載の手順に沿って行った。
Saekiらによる文献1:Saeki K, Hoshi M, Leibfried-Rutledge ML, First NL. In vitro fertilization and development of bovine oocytes matured in serum-free medium. Biol Reprod. 1991; 44: 256-260.
Saekiらによる文献2:Saeki K, Nagao Y, Kishi M, Nagai M, Iritani A. Timing of completion of the first meiotic division in bovine oocytes after maintenance of meiotic arrest with cycloheximide and their subsequent development. J Vet Med Sci. 1998; 60: 523-526.
Brackettらによる文献:Brackett BG, and Oliphant G. Capacitation of rabbit spermatozoa in vitro. Biol Reprod. 1975; 12: 260-274
2. In vitro fertilization and in vitro fertilized embryo culture In vitro fertilization and in vitro fertilized embryo culture are performed according to the procedures described in the following (1) to (4) according to the literatures 1 and 2 by Saeki et al. And the literature by Brackett et al. went.
Reference 1: Saeki K, Hoshi M, Leibfried-Rutledge ML, First NL. In vitro fertilization and development of bovine oocytes matured in serum-free medium. Biol Reprod. 1991; 44: 256-260.
Reference 2: Saeki K, Nagao Y, Kishi M, Nagai M, Iritani A. Timing of completion of the first meiotic division in bovine oocytes after maintenance of meiotic arrest with cycloheximide and their subsequent development. J Vet Med Sci. 1998 ; 60: 523-526.
Literature by Brackett et al .: Brackett BG, and Oliphant G. Capacitation of rabbit spermatozoa in vitro. Biol Reprod. 1975; 12: 260-274

(1)ウシ卵子の体外成熟培養
食肉処理場で採取したウシ卵巣を25℃の生理食塩水で保温しながら実験室に持ち帰った。持ち帰ったウシ卵巣から、21G注射針(テルモ製)を装着した10mlシリンジ(テルモ製)を使用して、直径2-8mmの卵胞内から卵丘卵子複合体(以下、COCsと省略する。)を吸引採取した。採取したCOCsから、緊密な卵丘細胞層が3層以上付着したCOCsのみを選別したのち、5%牛胎子血清(Bio West製。以下、FBSと省略する。)を含む199培地(Earle塩、GIBCO製)中で21時間体外成熟培養した(5%CO2、95%空気、39℃、飽和湿度)。
(1) In vitro maturation culture of bovine ovum The bovine ovary collected at the slaughterhouse was brought back to the laboratory while being kept warm with 25 ° C. physiological saline. Using the 10ml syringe (made by Terumo) equipped with 21G injection needle (made by Terumo), the cumulus egg complex (hereinafter abbreviated as COCs) from the follicle 2-8mm in diameter from the bovine ovary brought home. Aspiration was collected. After selecting only COCs with 3 or more layers of tight cumulus cell layers attached from the collected COCs, 199 medium containing 5% fetal calf serum (Bio West, hereinafter abbreviated as FBS) (Earle salt, In vitro matured culture (5% CO 2 , 95% air, 39 ° C., saturated humidity) in GIBCO).

(2)精子液の調製
黒毛和種の凍結精液を融解し、この凍結精液融解液を45%及び90%パーコール溶液の入った遠心管に積層したのち、25℃、700xgで30分間遠心して、正常精子と不良精子を分離した(不連続密度勾配法)。上清を除去したのち、沈殿した正常精子を受精用培養液に浮遊させ、25℃、700xgで10分間遠心することにより精子を洗浄した。
(2) Preparation of sperm solution After thawing the frozen semen of Japanese black hair and laminating this frozen semen lysate in a centrifuge tube containing 45% and 90% Percoll solution, centrifuge at 25 ° C, 700xg for 30 minutes, Normal sperm and bad sperm were separated (discontinuous density gradient method). After removing the supernatant, the precipitated normal sperm was suspended in a fertilization culture solution, and the sperm was washed by centrifugation at 25 ° C. and 700 × g for 10 minutes.

なお、受精用培養液は、defined medium(以下、DMと省略する。)からグルコースを除去し、ペニシリンに替えて1%(v/v)抗生物質-抗真菌剤溶液(GIBCO製)を添加した修正受精用培養液(以下、修正DMと省略する。)を使用した。   In addition, the fertilization culture solution was prepared by removing glucose from a defined medium (hereinafter abbreviated as DM) and adding 1% (v / v) antibiotic-antifungal solution (GIBCO) instead of penicillin. A culture medium for corrected fertilization (hereinafter abbreviated as corrected DM) was used.

(3)体外受精
21時間体外成熟培養したCOCsを、流動パラフィン下の10μg/mlへパリンを含む修正DMにより2×106精子/mlまで希釈した精子懸濁液に導入して18時間培養(39℃、5%CO2、95%空気、飽和湿度)することにより、受精させた。培養後、卵子に付着した精子および卵丘細胞を卵子直径に加工したパスツールピペットを使用して剥離除去した。
(3) In vitro fertilization
COCs cultured in vitro for 21 hours were introduced into a sperm suspension diluted to 2 × 10 6 sperm / ml with modified DM containing 10 μg / ml parin under liquid paraffin and cultured for 18 hours (39 ° C., 5% Fertilized by CO 2 , 95% air, saturated humidity). After culturing, sperm and cumulus cells adhering to the ovum were peeled off using a Pasteur pipette that had been processed into an ovum diameter.

(4)細胞培養
得られた胚を修正合成卵管液培養液(以下、mSOFMと省略する。)内に導入して、使用するマイクロプレートに応じて、以下に示す方法で受精後168時間まで培養した(39℃、5%CO2、5%O2、90%N2、飽和湿度)。
(4) Cell culture The obtained embryo is introduced into a modified synthetic oviduct culture medium (hereinafter abbreviated as mSOFM), and up to 168 hours after fertilization by the method shown below depending on the microplate used Cultured (39 ° C., 5% CO 2 , 5% O 2 , 90% N 2 , saturation humidity).

集合培養法(対照区)の場合は、流動パラフィンが重層されている50μlのmSOFMドロップ内に胚を25個ずつ導入して培養した。また、WOW法、PDMSW-AP法、PDMSW-LP法の場合は、各ウェル当たり胚1個となるように導入して培養した。なお、PDMSW-AP,PDMSW-LPをmSOFMで覆う際に形成されたウェル内の気泡については、真空デシケータで空気を吸引して除去した。   In the case of the mass culture method (control group), 25 embryos were introduced into each 50 μl mSOFM drop layered with liquid paraffin and cultured. In the case of the WOW method, the PDMSW-AP method, and the PDMSW-LP method, each embryo was introduced and cultured so that there was one embryo per well. Note that air bubbles in the wells formed when PDMSW-AP and PDMSW-LP were covered with mSOFM were removed by sucking air with a vacuum desiccator.

3.観察と測定
実体顕微鏡を使用して受精してから48時間後に胚を観察して卵割した胚の数を数えて卵割率を計算し、同様に受精168時間後に胚を観察して発生した胚盤胞期胚を数えて発生率を調べた。その結果を表1に示す。なお、表1は同一の実験を3回行った結果をまとめたものである。
3. Observation and measurement 48 hours after fertilization using a stereomicroscope, observe the embryos, count the number of embryos split, calculate the cleavage rate, and similarly observe the embryos 168 hours after fertilization. The blastocyst stage embryos that developed were counted and the incidence was examined. The results are shown in Table 1. Table 1 summarizes the results of performing the same experiment three times.

表1に示すように、各実験区において、その卵割率は大差なく同程度(約70%)であった。また、PDMSW-APで培養した胚はほとんど胚盤胞へ発生しなかった(発生率4%)。これに対して、PDMSW-LPで培養した胚は、対照区とほぼ同等の割合(発生率24〜25%)で胚盤胞期胚へ発生した。   As shown in Table 1, the cleavage rate in each experimental group was almost the same (about 70%). In addition, embryos cultured with PDMSW-AP hardly developed into blastocysts (incidence 4%). In contrast, embryos cultured with PDMSW-LP developed into blastocyst-stage embryos at a rate approximately equal to that of the control group (incidence: 24-25%).

胚盤胞期胚の個体発生能は、胚に含まれる内部細胞塊(Inner cell mass 以下、ICMと省略する。)と栄養膜細胞(Trophectoderm 以下、TEと省略する。)の数や割合に関係することが知られている。そこで、胚盤胞期胚について、下記のThouasらの文献に従って細胞数を計測した。具体的には、以下のようにして計測した。
Thouasらの文献:Thouas GA, Korfiatis NA, French AJ, Jones GM, Trounson AO. Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod Biomed Online. 2001; 3: 25-29.
The ontogenic potential of blastocyst-stage embryos is related to the number and percentage of inner cell mass (hereinafter referred to as ICM) and trophoblast cells (hereinafter referred to as TE) contained in the embryo. It is known to do. Therefore, the number of cells in the blastocyst stage embryo was counted according to the following literature by Thouas et al. Specifically, it measured as follows.
Thouas et al .: Thouas GA, Korfiatis NA, French AJ, Jones GM, Trounson AO. Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod Biomed Online. 2001; 3: 25-29.

まず、胚盤胞期胚を1% Triton-X100(SIGMA製)を含む0.1mg/ml propidium iodide(PI、SIGMA製)液に移し、30秒間静置することでTEを赤色蛍光染色した。つぎに、胚盤胞期胚を10mg/ml hoechst 33342(SIGMA製)を含む4%(w/v)パラホルムアルデヒド液に移して、30分間暗所で静置し、胚の全ての細胞を青色蛍光染色した。さらに、VECTA SHIELD(Vector Laboratory製)を使用して、染色した胚盤胞期胚をスライドガラス上に封入した。最後に、スライドガラスを蛍光顕微鏡観察して、得られた蛍光染色像から、総細胞数、ICM及びTEの細胞数を数え、胚全体に占めるICMの割合を算出した。その結果を表2に示す。なお、表中の細胞数は平均値である。   First, the blastocyst stage embryo was transferred to a 0.1 mg / ml propidium iodide (PI, SIGMA) solution containing 1% Triton-X100 (manufactured by SIGMA), and left still for 30 seconds to stain TE with red fluorescence. Next, the blastocyst stage embryo is transferred to a 4% (w / v) paraformaldehyde solution containing 10mg / ml hoechst 33342 (manufactured by SIGMA) and left in the dark for 30 minutes. Fluorescently stained. Further, using VECTA SHIELD (manufactured by Vector Laboratory), the stained blastocyst stage embryo was encapsulated on a slide glass. Finally, the slide glass was observed with a fluorescence microscope, and the total number of cells, the number of ICM and TE cells were counted from the obtained fluorescence-stained images, and the ratio of ICM in the whole embryo was calculated. The results are shown in Table 2. In addition, the number of cells in the table is an average value.

表2に示すように、対照区とPDMSW-LPでは、総細胞数(Total)と胚全体に占めるICMの割合(ICM/Total)はほぼ等しかった。このことから、多孔率が低い胚培養容器(PDMSW-LP)でウシ体外受精胚を培養することによって、質的にも優れた胚盤胞期胚が得られることが分かった。   As shown in Table 2, in the control group and PDMSW-LP, the total number of cells (Total) and the ratio of ICM in the whole embryo (ICM / Total) were almost equal. From this, it was found that by culturing bovine in vitro fertilized embryos in an embryo culture vessel (PDMSW-LP) having a low porosity, a blastocyst stage embryo excellent in quality can be obtained.

この発明の胚培養装置の外観斜視図である。It is an external appearance perspective view of the embryo culture apparatus of this invention. PDMSW-APとPDMSW-LPの表面を原子間力顕微鏡で観察した結果である。It is the result of having observed the surface of PDMSW-AP and PDMSW-LP with an atomic force microscope.

Claims (4)

胚を収容して培養するためのウェルを有する胚培養容器であって、
合成樹脂を減圧下で成形してなり、
成形後のウェルの内壁面に直径0.2μm以上の孔が存在せず、かつ直径200μm〜500μm、深さ100μm〜300μmの円柱状のウェルが複数形成されていることを特徴とする胚培養容器。
An embryo culture container having a well for containing and culturing an embryo,
Ri synthetic resin name by molding under reduced pressure,
An embryo culture vessel characterized in that a plurality of cylindrical wells having a diameter of 200 μm to 500 μm and a depth of 100 μm to 300 μm are formed on the inner wall surface of the well after molding without a hole having a diameter of 0.2 μm or more .
合成樹脂が熱硬化性樹脂である請求項1に記載の胚培養容器。 The embryo culture container according to claim 1, wherein the synthetic resin is a thermosetting resin. 熱硬化性樹脂がシリコーン樹脂である請求項に記載の胚培養容器。 The embryo culture container according to claim 2 , wherein the thermosetting resin is a silicone resin. シリコーン樹脂が、ポリジメチルシロキサンである請求項に記載の胚培養容器。 The embryo culture container according to claim 3 , wherein the silicone resin is polydimethylsiloxane.
JP2008210756A 2008-08-19 2008-08-19 Embryo culture vessel Active JP5406481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008210756A JP5406481B2 (en) 2008-08-19 2008-08-19 Embryo culture vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008210756A JP5406481B2 (en) 2008-08-19 2008-08-19 Embryo culture vessel

Publications (2)

Publication Number Publication Date
JP2010045980A JP2010045980A (en) 2010-03-04
JP5406481B2 true JP5406481B2 (en) 2014-02-05

Family

ID=42063648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008210756A Active JP5406481B2 (en) 2008-08-19 2008-08-19 Embryo culture vessel

Country Status (1)

Country Link
JP (1) JP5406481B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966581B (en) * 2017-11-03 2023-08-29 同济大学 Zebra fish embryo microplate arrangement adding device
CN110042057A (en) * 2019-05-07 2019-07-23 遵义医学院附属医院 It is a kind of for external seminal fluid collecting and the device of Embryo Culture

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233777A (en) * 1987-03-24 1988-09-29 Sumitomo Electric Ind Ltd Apparatus for cell culture
JPH0723245B2 (en) * 1988-04-15 1995-03-15 三菱化学株式会社 Calcium silicate compact
JP3634521B2 (en) * 1996-10-02 2005-03-30 東海電化工業株式会社 Seamless belt made of semiconductive polyester resin
US6291050B1 (en) * 1998-10-30 2001-09-18 The Procter & Gamble Company Topsheet systems for absorbent articles exhibiting improved hydrophilicity gradients
US20050244961A1 (en) * 2002-08-22 2005-11-03 Robert Short Cell culture surface
JP2006098337A (en) * 2004-09-30 2006-04-13 Shin Etsu Polymer Co Ltd Multi-well plate and its manufacturing method
JP4827458B2 (en) * 2005-08-19 2011-11-30 ダイセルポリマー株式会社 Thermoplastic resin composition having antistatic properties and transparency
US20070084706A1 (en) * 2005-10-18 2007-04-19 Shuichi Takayama Microfluidic cell culture device and method for using same

Also Published As

Publication number Publication date
JP2010045980A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
Zhu et al. In situ generation of human brain organoids on a micropillar array
Komeya et al. Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device
Kashaninejad et al. Advances in microfluidics‐based assisted reproductive technology: From sperm sorter to reproductive system‐on‐a‐chip
Sakalem et al. Historical evolution of spheroids and organoids, and possibilities of use in life sciences and medicine
Baert et al. Mouse in vitro spermatogenesis on alginate-based 3D bioprinted scaffolds
Esteves et al. A microfluidic system supports single mouse embryo culture leading to full-term development
Soong et al. Cardiac differentiation of human embryonic stem cells and their assembly into engineered heart muscle
Lee et al. A hollow sphere soft lithography approach for long-term hanging drop methods
Honegger Aggregating neural cell cultures
WO2006095480A1 (en) Cell culture chamber
Wei-Xuan et al. Artificial uterus on a microfluidic chip
Katzenell et al. Isolation, purification, and culture of primary murine sensory neurons
KR101264243B1 (en) method for culturing embryonic stem cells having excellent undifferentiation capability and culture medium thereof
Fasano et al. Culture of postnatal mesencephalic dopamine neurons on an astrocyte monolayer
Kieslinger et al. In vitro development of donated frozen-thawed human embryos in a prototype static microfluidic device: a randomized controlled trial
Gerlach et al. Dynamic 3D culture promotes spontaneous embryonic stem cell differentiation in vitro
Völkner et al. The mouse retinal organoid trisection recipe: efficient generation of 3D retinal tissue from mouse embryonic stem cells
Bonner et al. Microfluidic systems for modeling human development
JP5406481B2 (en) Embryo culture vessel
Eyni et al. Advanced bioengineering of male germ stem cells to preserve fertility
JP6382938B2 (en) Cell culture jig and cell culture method using the cell culture jig
Chew et al. Generating cerebral organoids from human pluripotent stem cells
Kimura et al. On-chip single embryo coculture with microporous-membrane-supported endometrial cells
Tae et al. Sterile filtered paraffin oil supports in vitro developmental competence in bovine embryos comparable to co-culture
Helfer et al. Frame-hydrogel methodology for engineering highly functional cardiac tissue constructs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131101

R150 Certificate of patent or registration of utility model

Ref document number: 5406481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250