JP5405794B2 - Furnace pressure control device and furnace pressure control method - Google Patents

Furnace pressure control device and furnace pressure control method Download PDF

Info

Publication number
JP5405794B2
JP5405794B2 JP2008264494A JP2008264494A JP5405794B2 JP 5405794 B2 JP5405794 B2 JP 5405794B2 JP 2008264494 A JP2008264494 A JP 2008264494A JP 2008264494 A JP2008264494 A JP 2008264494A JP 5405794 B2 JP5405794 B2 JP 5405794B2
Authority
JP
Japan
Prior art keywords
pressure
furnace
pressure control
chamber
secondary chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008264494A
Other languages
Japanese (ja)
Other versions
JP2010091239A (en
Inventor
康修 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2008264494A priority Critical patent/JP5405794B2/en
Publication of JP2010091239A publication Critical patent/JP2010091239A/en
Application granted granted Critical
Publication of JP5405794B2 publication Critical patent/JP5405794B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、工業炉等の炉の圧力を制御する炉圧制御装置および炉圧制御方法に関するものである。   The present invention relates to a furnace pressure control device and a furnace pressure control method for controlling the pressure of a furnace such as an industrial furnace.

従来より、工業炉等の炉の圧力を制御するには、例えば特許文献1、特許文献2、特許文献3に示されるものにあっては、炉に圧力を計測する炉圧計を設け、電動の制御弁を備えた制圧用空気流入路を炉に接続すると共に前記制御弁を駆動する制御機を設け、前記炉圧計の計測信号を基に、前記制御弁を制御して制圧用空気流路を介して流入させる制圧用空気の流量を調整して、炉内の圧力を制御するものであった。   Conventionally, in order to control the pressure of a furnace such as an industrial furnace, for example, in those shown in Patent Document 1, Patent Document 2, and Patent Document 3, a furnace pressure gauge for measuring pressure is provided in the furnace, A pressure control air inflow passage having a control valve is connected to the furnace, and a controller for driving the control valve is provided. Based on a measurement signal of the furnace pressure gauge, the control valve is controlled to control the pressure control air flow path. The pressure in the furnace was controlled by adjusting the flow rate of the control air that flows in through the furnace.

また特許文献4に示されるものは、炉に圧力を計測する炉圧計を設け、炉に炉内の排気ガスを排出する排気煙道を接続すると共に、前記排気煙道内にダンパを設け、前記炉圧計の計測信号を基に、前記ダンパを制御して炉内の圧力を制御するものであった。
特願平6−102073号 特開2001−82737公報 特開2002−220620号公報 特公昭61−34048号公報
Further, in Patent Document 4, a furnace pressure gauge for measuring pressure is provided in the furnace, an exhaust flue for discharging exhaust gas in the furnace is connected to the furnace, a damper is provided in the exhaust flue, and the furnace Based on the measurement signal of the pressure gauge, the pressure inside the furnace was controlled by controlling the damper.
Japanese Patent Application No. 6-102073 JP 2001-82737 A JP 2002-220620 A Japanese Patent Publication No.61-34048

上記従来例にあっては、炉に炉圧計を設けたり、電動の制御弁や制御機を設けたり、排気煙道内にダンパを設けたりする必要があった。このため、部品点数が多くなってしまい、制御弁や制御機やダンパ等は可動部分があり、且つ高温に曝されるため信頼性や耐久性に劣り調整が必要であり、また電力が必要である、といった欠点があるものであった。   In the above conventional example, it was necessary to provide a furnace pressure gauge in the furnace, an electric control valve and a controller, and a damper in the exhaust flue. For this reason, the number of parts increases, and control valves, controllers, dampers, etc. have moving parts and are exposed to high temperatures, so they are inferior in reliability and durability and need to be adjusted. There was the fault that there was.

本発明は上記の点に鑑みてなされたものであり、その目的とするところは、炉圧計や制御弁や制御機やダンパが不要で、部品点数が少なく、炉内の高温に直接曝される部品がなく、可動部分が少なくて信頼性や耐久性に優れると共に調整が特に必要なく、電力を必要とせず、安価である、炉圧制御装置および炉圧制御方法を提供することある。 The present invention has been made in view of the above points, and the object of the present invention is that a furnace pressure gauge, a control valve, a controller and a damper are not required, the number of parts is small, and it is directly exposed to a high temperature in the furnace. An object of the present invention is to provide a furnace pressure control device and a furnace pressure control method that have no parts, have few movable parts, are excellent in reliability and durability, do not require adjustment, require no electric power, and are inexpensive.

上記課題を解決するために請求項1に係る発明は、炉1に加熱手段としての燃焼装置2を設けると共に排気煙道3を接続し、前記排気煙道3に制圧用空気流路4を接続し、前記制圧用空気流路4に均圧弁5を設けた炉圧制御装置であって、均圧弁5は、内部に弁体6が接続されるダイヤフラム51にて仕切られた一次室52と二次室53とを有し、一次室52と二次室53はそれぞれ内外を連通する導入孔52a、53aを備え、一次室52の導入孔52aと炉1に形成され炉1の内外を連通する導出孔との間に導圧管13を接続すると共に、二次室53の導入孔53aと目標圧力の気体を有する空間とを連通し、二次室53の圧力と比較して一次室52の圧力が高い程、制圧用空気流路4の開度を小さくして成ることを特徴とするものである。   In order to solve the above-mentioned problems, the invention according to claim 1 is provided with a combustion device 2 as a heating means in a furnace 1 and an exhaust flue 3 connected thereto, and a pressure control air flow path 4 connected to the exhaust flue 3. A pressure equalizing valve 5 is provided in the pressure control air flow path 4, and the pressure equalizing valve 5 is connected to a primary chamber 52 partitioned by a diaphragm 51 to which a valve body 6 is connected. The primary chamber 52 and the secondary chamber 53 have introduction holes 52 a and 53 a that communicate with the inside and the outside, respectively, and are formed in the introduction hole 52 a of the primary chamber 52 and the furnace 1 and communicate with the inside and outside of the furnace 1. The pressure guiding tube 13 is connected between the outlet hole and the introduction hole 53a of the secondary chamber 53 and the space having the target pressure gas are communicated, and the pressure of the primary chamber 52 is compared with the pressure of the secondary chamber 53. The higher the value, the smaller the opening of the air flow path 4 for suppression. .

上記のような均圧弁5を用いることで、従来例と異なり、炉圧計や制御弁や制御機やダンパが不要で、部品点数を少なくすることができ、また、炉1内の高温に直接曝される部品がなく、また、可動部分がダイヤフラム51(および弁体6)のみと少ないため信頼性や耐久性に優れると共に調整が特に必要なく、また、電力を必要とせず、安価に行うことが可能となる。   By using the pressure equalizing valve 5 as described above, unlike a conventional example, a furnace pressure gauge, a control valve, a controller and a damper are unnecessary, the number of parts can be reduced, and direct exposure to the high temperature in the furnace 1 can be achieved. There are no parts to be used, and since there are only a few movable parts such as the diaphragm 51 (and the valve body 6), it is excellent in reliability and durability, and adjustment is not particularly required. It becomes possible.

また請求項2に係る発明は、加熱手段としての燃焼装置2を備えると共に排気煙道3を接続してなる炉1の炉圧制御方法であって、前記排気煙道3に制圧用空気流路4を接続すると共に、前記制圧用空気流路4に内部にダイヤフラム51にて仕切られた一次室52と二次室53とを有する均圧弁5を設け、一次室52に炉1内の気体を導入して一次室52の気圧を炉圧と同じにすると共に、二次室53に目標圧力の気体を導入して二次室53の気圧を目標圧力とし、二次室53の圧力と比較して一次室52の圧力が高い程、制圧用空気流路4の開度を小さくするように調節して制圧用空気の流量を制御し、炉圧を目標圧力とすることを特徴とするものである。
The invention according to claim 2 is a furnace pressure control method for a furnace 1 provided with a combustion device 2 as a heating means and having an exhaust flue 3 connected thereto. 4 and a pressure equalizing valve 5 having a primary chamber 52 and a secondary chamber 53 partitioned by a diaphragm 51 are provided in the pressure control air flow path 4, and the gas in the furnace 1 is supplied to the primary chamber 52. introduction to with the pressure in the primary chamber 52 to the same as the furnace pressure, the target pressure of the pressure in the secondary chamber 53 by introducing a gas target pressure in the secondary chamber 53, compared to the pressure in the secondary chamber 53 Then, the higher the pressure in the primary chamber 52, the smaller the opening degree of the suppression air passage 4 is adjusted to control the flow rate of the suppression air, and the furnace pressure is set as the target pressure. It is.

上記のような均圧弁5を用いた方法とすることで、従来例と異なり、炉圧計や制御弁や制御機やダンパが不要で、部品点数を少なくすることができ、また、炉1内の高温に直接曝される部品がなく、また、可動部分がダイヤフラム51(および弁体6)のみと少ないため信頼性や耐久性に優れると共に調整が特に必要なく、また、電力を必要とせず、安価に行うことが可能となる。   By using the pressure equalizing valve 5 as described above, unlike a conventional example, a furnace pressure gauge, a control valve, a controller, and a damper are unnecessary, and the number of parts can be reduced. There are no parts that are directly exposed to high temperatures, and since there are only a few movable parts such as the diaphragm 51 (and the valve body 6), it is excellent in reliability and durability, and no adjustment is required, and no electric power is required. Can be performed.

本発明にあっては、簡単な構成で容易に安価に炉圧を一定に維持することが可能となるものである。   In the present invention, the furnace pressure can be kept constant easily and inexpensively with a simple configuration.

以下、本発明の一実施形態について図1に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIG.

炉1は、例えば鍛造炉をはじめとする加熱炉や熱処理炉といった様々な工業炉が挙げられるが、他の炉であってもよく特に限定されない。   Examples of the furnace 1 include various industrial furnaces such as a heating furnace and a heat treatment furnace including a forging furnace, but other furnaces may be used.

炉1は、炉壁11、炉床、炉天井に囲まれて密閉される炉内空間を有し、炉壁11に出入口を形成して開閉自在な扉を設けてある。また、炉壁11又は炉天井に排気口12を設けると共に、前記排気口12に内部が排気煙道3となるダクト30を接続してある。そして、炉壁11に加熱手段としての燃焼装置2を設けてある。図中の符号20は燃焼装置2に空気を送るためのブロアであり、符号31は排気煙道3に設けられる誘引ファンである。   The furnace 1 has a furnace inner space surrounded by a furnace wall 11, a hearth, and a furnace ceiling, and is provided with a door that can be opened and closed by forming an entrance / exit in the furnace wall 11. In addition, an exhaust port 12 is provided in the furnace wall 11 or the furnace ceiling, and a duct 30, the inside of which forms the exhaust flue 3, is connected to the exhaust port 12. And the combustion apparatus 2 as a heating means is provided in the furnace wall 11. FIG. Reference numeral 20 in the figure is a blower for sending air to the combustion device 2, and reference numeral 31 is an induction fan provided in the exhaust flue 3.

本発明では、排気煙道3を接続した炉1において、炉1内の圧力を適正に保つため制圧用空気を排気煙道3内に導入するもので、具体的には、排気煙道3に、内部が制圧用空気流路4となる制圧用空気管40の下流側の端部を接続すると共に、制圧用空気管40に均圧弁5を設けるものである。なお、制圧用空気流路4の上流側の端部は、本実施形態では大気に開放されている。   In the present invention, in the furnace 1 to which the exhaust flue 3 is connected, the air for controlling pressure is introduced into the exhaust flue 3 in order to keep the pressure in the furnace 1 properly. In addition to connecting the downstream end of the pressure control air pipe 40, the inside of which is the pressure control air flow path 4, the pressure equalizing valve 5 is provided in the pressure control air pipe 40. In addition, the upstream end portion of the suppression air passage 4 is open to the atmosphere in the present embodiment.

均圧弁5は、図2に示すように、外殻ケーシング50aを有する本体部50と、本体部50から突出する弁体6と、制圧用空気流路4に設けられ前記弁体6にて開度が調節される弁開口42とで主体が構成される。   As shown in FIG. 2, the pressure equalizing valve 5 is provided in a main body 50 having an outer casing 50 a, a valve body 6 protruding from the main body 50, and the pressure-control air flow path 4 and is opened by the valve body 6. The main body is constituted by the valve opening 42 whose degree is adjusted.

本体部50は、密閉された内部にダイヤフラム51にて仕切られた一次室52と二次室53とを有し、一次室52と二次室53のそれぞれの壁部に、内外を連通する導入孔52a、53aを貫通して形成してある。そして、一次室52の壁部に形成した導入孔52aと、炉1の炉壁11に形成され炉1の内外を連通する導出孔との間に導圧管13を接続する。導圧管13を接続したことで、一次室52と炉内空間とが連通し、一次室52に炉1内の気体を導入して一次室52の気圧を炉圧と略同じにすることが可能となる。   The main body 50 has a primary chamber 52 and a secondary chamber 53 which are partitioned by a diaphragm 51 inside a sealed interior, and is introduced to communicate with the respective wall portions of the primary chamber 52 and the secondary chamber 53 from inside and outside. The holes 52a and 53a are formed so as to penetrate therethrough. The pressure guiding tube 13 is connected between the introduction hole 52 a formed in the wall portion of the primary chamber 52 and the lead-out hole formed in the furnace wall 11 of the furnace 1 and communicating with the inside and outside of the furnace 1. By connecting the pressure guiding tube 13, the primary chamber 52 communicates with the space in the furnace, and the gas in the furnace 1 can be introduced into the primary chamber 52 to make the pressure in the primary chamber 52 substantially the same as the furnace pressure. It becomes.

また、二次室53の導入孔53aは、目標圧力の気体を有する空間と連通させるもので、前記空間と連通する流路を二次室53の導入孔53aに接続したり、目標圧力の気体が大気である場合には導入孔53aを介して二次室53を大気開放する。二次室53に目標圧力の気体を導入して、二次室53の気圧を目標圧力とすることができる。   The introduction hole 53a of the secondary chamber 53 communicates with a space having a gas having a target pressure, and a flow path communicating with the space is connected to the introduction hole 53a of the secondary chamber 53 or a gas having a target pressure. In the atmosphere, the secondary chamber 53 is opened to the atmosphere through the introduction hole 53a. By introducing a gas having a target pressure into the secondary chamber 53, the atmospheric pressure in the secondary chamber 53 can be set as the target pressure.

ダイヤフラム51には上述した弁体6が接続される。更に説明すると、弁体6は、基端部がダイヤフラム51に接続され、中間部が外殻ケーシング50aの壁部に形成された挿通孔50bを介して外殻ケーシング50a外に突出し、その先端部が弁開口42の開度を調節する弁部61となっている。   The above-described valve body 6 is connected to the diaphragm 51. More specifically, the valve body 6 has a base end portion connected to the diaphragm 51 and an intermediate portion protruding outside the outer shell casing 50a through an insertion hole 50b formed in the wall portion of the outer shell casing 50a. Is a valve portion 61 for adjusting the opening degree of the valve opening 42.

制圧用空気管40には、側壁の一部に貫通孔41が形成され、この貫通孔41と均圧弁5の外郭ケーシングの挿通孔50bとを連通するように外殻ケーシング50aが取り付けられる。制圧用空気管40の貫通孔41と外郭ケーシングの挿通孔50bは、弁体6の移動方向に垂直な断面における断面積と略同じとなっていて、弁体6が挿通されると隙間が閉塞され、貫通孔41および挿通孔50bを介した気体の流出入はない。そして、制圧用空気管40の貫通孔41を介して挿入される弁部61に対応する位置に、上記弁開口42が設けられる。弁開口42は、制圧用空気管40内に、制圧用空気流路4の流路面積を絞る絞りの絞られた開口として設けられるもので、本実施形態では、制圧用空気流路4に垂直な方向に移動する弁部61に合わせて、弁開口42も制圧用空気流路4に垂直な方向を向くように設けてある。   A through hole 41 is formed in a part of the side wall of the pressure suppression air pipe 40, and an outer casing 50 a is attached so that the through hole 41 communicates with the insertion hole 50 b of the outer casing of the pressure equalizing valve 5. The through hole 41 of the air suppression pressure tube 40 and the insertion hole 50b of the outer casing have substantially the same cross-sectional area in a cross section perpendicular to the moving direction of the valve body 6, and when the valve body 6 is inserted, the gap is closed. The gas does not flow in and out through the through hole 41 and the insertion hole 50b. And the said valve opening 42 is provided in the position corresponding to the valve part 61 inserted through the through-hole 41 of the air pipe 40 for pressure suppression. The valve opening 42 is provided in the suppression air pipe 40 as a throttled aperture for reducing the flow passage area of the suppression air passage 4. In this embodiment, the valve opening 42 is perpendicular to the suppression air passage 4. The valve opening 42 is also provided so as to face the direction perpendicular to the air flow path 4 for pressure control in accordance with the valve portion 61 that moves in any direction.

そして弁体6は、ダイヤフラム51の撓みに応じて外殻ケーシング50aからの突出量が変化して、弁部61の位置が移動し、弁部61と弁開口42との間の流路の面積が変化することで、開度が調節される。本実施形態では、図2に示すように、均圧弁5の本体部50の制圧用空気管40に近い方の空気室を一次室52とすると共に他方を二次室53とし、ダイヤフラム51が一次室52側に撓む程、制圧用空気流路4の開度が大きくなるものであるが、二次室53側に撓む程開度が大きくなるようにも設定することができ、また、一次室52と二次室53の配置も逆に設定することができ、これらは任意に設計可能な事項である。   And the valve body 6 changes the amount of protrusion from the outer shell casing 50 a according to the deflection of the diaphragm 51, the position of the valve portion 61 moves, and the area of the flow path between the valve portion 61 and the valve opening 42. The opening degree is adjusted by changing. In the present embodiment, as shown in FIG. 2, the air chamber closer to the pressure suppression air pipe 40 of the main body 50 of the pressure equalizing valve 5 is the primary chamber 52 and the other is the secondary chamber 53, and the diaphragm 51 is the primary. The degree of opening of the pressure control air flow path 4 increases as it bends toward the chamber 52 side, but it can also be set so that the degree of opening increases as it bends toward the secondary chamber 53 side. The arrangement of 52 and the secondary chamber 53 can also be set in reverse, and these are matters that can be arbitrarily designed.

以上のように構成される炉圧制御装置を用いた炉圧制御方法について説明する。   A furnace pressure control method using the furnace pressure control apparatus configured as described above will be described.

まず、炉圧が目標圧力と同じである場合には、一次室52と二次室53の圧力が均衡し、ダイヤフラム51は撓みのない自然状態となる。この時、開度が所定の値となって所定量の制圧用空気が流れる状態となり、この状態が平衡状態となって炉圧は一定(目標圧力)に維持される。   First, when the furnace pressure is the same as the target pressure, the pressures in the primary chamber 52 and the secondary chamber 53 are balanced, and the diaphragm 51 is in a natural state without bending. At this time, the opening degree becomes a predetermined value and a predetermined amount of pressure-controlling air flows, and this state becomes an equilibrium state and the furnace pressure is maintained constant (target pressure).

平衡状態から炉圧が低くなると、一次室52の圧力が二次室53の圧力よりも低くなってダイヤフラム51は一次室52側に撓み、弁体6が外殻ケーシング50aから突出する方向に移動して、開度が大きくなり、排気煙道3内に流入する制圧用空気の流量が増加する。排気煙道3内を上昇する排気ガスの温度よりも低い制圧用空気の流量が増加することで、排気煙道3内を上昇する排気ガスと制圧用空気とからなる新たな排気ガスの温度が元の排気ガスの温度よりも低下することによるドラフトの減少と、排気煙道3内を上昇する排気ガス(新たな排気ガス)の流量増加による流路抵抗の増加の二つの効果により、炉圧が高くなる方に振れる。炉圧が高くなると、ダイヤフラム51は二次室53側に撓んで排気煙道3内に流入する制圧用空気の流量が減少し、上記二つの効果と逆の効果、すなわち、制圧用空気の流量が増加して排気煙道3内を上昇する新たな排気ガスの温度が上昇することによるドラフトの増加と、排気煙道3内を上昇する排気ガスの流量減少による流路抵抗の減少の二つの効果により、炉圧が低くなる方に振れるため、目標圧力でバランスして平衡状態となる。また、平衡状態から炉圧が高くなる場合も、上記説明における圧力の高低や流量の増減等を逆にした説明が成り立ち、目標圧力でバランスして平衡状態となる。   When the furnace pressure is lowered from the equilibrium state, the pressure in the primary chamber 52 becomes lower than the pressure in the secondary chamber 53, the diaphragm 51 is bent toward the primary chamber 52, and the valve body 6 moves in a direction protruding from the outer casing 50a. Thus, the opening degree increases and the flow rate of the suppression air flowing into the exhaust flue 3 increases. By increasing the flow rate of the control air that is lower than the temperature of the exhaust gas rising in the exhaust flue 3, the temperature of the new exhaust gas composed of the exhaust gas rising in the exhaust flue 3 and the control air is reduced. The furnace pressure is reduced by two effects: a reduction in draft due to a drop in the temperature of the original exhaust gas and an increase in flow resistance due to an increase in the flow rate of exhaust gas (new exhaust gas) rising in the exhaust flue 3. Swing towards higher. When the furnace pressure increases, the diaphragm 51 bends toward the secondary chamber 53 and the flow rate of the control air flowing into the exhaust flue 3 decreases, and the opposite effect to the above two effects, that is, the flow rate of the control air. The draft increases due to the rise in the temperature of the new exhaust gas rising in the exhaust flue 3 and the flow resistance decreases due to the decrease in the flow rate of the exhaust gas rising in the exhaust flue 3. Due to the effect, the furnace pressure swings toward the lower side, so that the equilibrium is achieved in balance with the target pressure. Also, when the furnace pressure increases from the equilibrium state, the explanation in which the level of pressure and the increase / decrease in the flow rate in the above description are reversed holds, and the equilibrium state is achieved by balancing with the target pressure.

本発明の炉圧制御装置を用いた炉圧制御方法にあっては、上述した均圧弁5を用いることで、従来例と異なり、炉圧計や制御弁や制御機やダンパが不要で、部品点数を少なくすることができ、また、炉1内の高温に直接曝される部品がなく、また、可動部分がダイヤフラム51(および弁体6)のみと少なく信頼性や耐久性に優れると共に調整が特に必要なく、また、電力を必要とせず、安価に行うことが可能となる。   In the furnace pressure control method using the furnace pressure control device of the present invention, the pressure equalizing valve 5 described above is used, and unlike the conventional example, a furnace pressure gauge, a control valve, a controller, and a damper are not required, and the number of parts is reduced. In addition, there are no parts that are directly exposed to the high temperature in the furnace 1, and there are only a few movable parts such as the diaphragm 51 (and the valve body 6). This is unnecessary and does not require power and can be performed at low cost.

また、図1に示す例のように排気煙道3に誘引ファン31を設けていない場合には、図3に示す例のように制圧用空気流路4の上流側の端部にブロア43を接続したり、図4に示す例のように制圧用空気流路4の上流側の端部に燃焼装置2に空気を送るブロア20からの分岐流路44を接続することで、制圧用空気の排気煙道3への流入を確保することができる。   Further, when the induction fan 31 is not provided in the exhaust flue 3 as in the example shown in FIG. 1, the blower 43 is provided at the upstream end of the suppression air passage 4 as in the example shown in FIG. 3. By connecting or connecting a branch flow path 44 from the blower 20 that sends air to the combustion device 2 to the upstream end of the pressure suppression air flow path 4 as in the example shown in FIG. Inflow to the exhaust flue 3 can be ensured.

また図3に示す例を更に改良した例として、図5に示すように、制圧用空気流路4の下流側の端部に、排気煙道3内に配置されるノズル45を設けてもよい。図1乃至図4に示す例では、制圧用空気流路4の下流端を排気煙道3のダクト30の側壁に接続しただけであるが、図5に示す例では、制圧用空気流路4の下流端を更に延長して排気煙道3の略中央部に配置すると共に、その先端に排気煙道3の上流側に向けて制圧用空気を噴出するノズル45を設けてある。またなお、本例では図3に示す例のように制圧用空気流路4の上流端に専用のブロア20を接続しているが、図4に示す例のように燃焼装置2に空気を送るブロア20と共用としてもよい。   Further, as an example in which the example shown in FIG. 3 is further improved, as shown in FIG. 5, a nozzle 45 disposed in the exhaust flue 3 may be provided at the downstream end of the air flow passage 4 for suppression. . In the example shown in FIGS. 1 to 4, the downstream end of the suppression air passage 4 is simply connected to the side wall of the duct 30 of the exhaust flue 3, but in the example shown in FIG. 5, the suppression air passage 4 The downstream end of the exhaust flue 3 is further extended and disposed at a substantially central portion of the exhaust flue 3, and a nozzle 45 is provided at the tip of the exhaust flue 3 toward the upstream side of the exhaust flue 3. In this example, a dedicated blower 20 is connected to the upstream end of the air flow path 4 for suppression as in the example shown in FIG. 3, but air is sent to the combustion device 2 as in the example shown in FIG. It may be shared with the blower 20.

本例では、平衡状態から炉圧が低くなると、ダイヤフラム51は一次室52側に撓んで開度が大きくなり、排気煙道3内に流入する制圧用空気の流量が増加する。制圧用空気は排気煙道3の上流側に向けて噴出されるため、排気煙道3内を上昇する排気ガスと制圧用空気とからなる新たな排気ガスの流量が低下し、炉圧が高くなる方に振れる。炉圧が低くなる場合は炉圧が高くなる方に振れ、目標圧力でバランスして平衡状態となる。   In this example, when the furnace pressure is lowered from the equilibrium state, the diaphragm 51 is bent toward the primary chamber 52 side, the opening degree is increased, and the flow rate of the suppression air flowing into the exhaust flue 3 is increased. Since the pressure control air is ejected toward the upstream side of the exhaust flue 3, the flow rate of the new exhaust gas composed of the exhaust gas rising in the exhaust flue 3 and the pressure control air is reduced, and the furnace pressure is increased. Swing to become. When the furnace pressure decreases, the furnace pressure swings toward the higher one and balances with the target pressure to achieve an equilibrium state.

また図6に示すように、ノズル45の向きを、排気煙道3の下流側に向けて制圧用空気を噴出するように設け、ノズル45の先端部において、排気煙道3のダクト30の内壁を内方に膨出させてスロート部32を形成し、排気煙道3を絞ってもよい。   Further, as shown in FIG. 6, the direction of the nozzle 45 is provided so as to eject the air for controlling the pressure toward the downstream side of the exhaust flue 3, and the inner wall of the duct 30 of the exhaust flue 3 is provided at the tip of the nozzle 45. May be bulged inward to form the throat portion 32 and the exhaust flue 3 may be throttled.

本例では、制圧用空気の流量が増加すると、エゼクタ効果により排気煙道3内を上昇する排気ガスの流量が増加し、炉圧が低くなる方に振れるため、炉圧が高くなると制圧用空気の流量が増加するように設定する必要がある。すなわち、均圧弁5の本体部50の制圧用空気管40に近い方の空気室を二次室53とすると共に他方を一次室52とするか、あるいは一次室52と二次室53はそのままにして、弁体6が外殻ケーシング50aから突出する方向に移動するほど開度が小さくなるようにする必要がある。   In this example, when the flow rate of the suppression air increases, the flow rate of the exhaust gas rising in the exhaust flue 3 increases due to the ejector effect and swings toward the lower furnace pressure. It is necessary to set so that the flow rate increases. That is, the air chamber closer to the pressure control air pipe 40 of the main body 50 of the pressure equalizing valve 5 is used as the secondary chamber 53 and the other is used as the primary chamber 52, or the primary chamber 52 and the secondary chamber 53 are left as they are. Thus, it is necessary to make the opening degree smaller as the valve body 6 moves in a direction protruding from the outer casing 50a.

図5、図6に示す例でも、上述した図1乃至図4に示す例と同様の効果が得られる。   The examples shown in FIGS. 5 and 6 can provide the same effects as the examples shown in FIGS.

次に、他の実施形態について図7に基づいて説明する。なお、図1乃至図6に示す上実施形態と同様の説明は省略し、異なる部分について説明する。   Next, another embodiment will be described with reference to FIG. The description similar to that of the above embodiment shown in FIGS. 1 to 6 is omitted, and different portions will be described.

本実施形態では、燃焼装置2として蓄熱式交番燃焼装置2を用い、排気煙道3を用いない点で異なっている。   The present embodiment is different in that the regenerative alternating combustion device 2 is used as the combustion device 2 and the exhaust flue 3 is not used.

蓄熱式交番燃焼装置2は、一対のバーナ21を交番燃焼させるもので、図7に示すように、炉壁11に一対のバーナ21を設けると共に、この一対のバーナ21にそれぞれ蓄熱体22を収容した蓄熱室23を付設する。そして、給気ブロア24および排気ブロア25を四方弁26を介して両方のバーナ21にそれぞれ接続し、両方のバーナ21を交互に燃焼させて、一方のバーナ21の燃焼中に、他方のバーナ21を通して炉1内の高温の排気ガスを排出すると共にこの時に蓄熱体22で熱回収を行い、次に、この他方のバーナ21が燃焼する時に蓄熱体22で回収した熱で燃焼用空気を予熱するものである。図中の符号27は給気ブロア24と四方弁26とを接続する給気管であり、符号28は排気ブロア25と四方弁26とを接続する排気管である。なお、四方弁26を用いずに、給気ブロア24および排気ブロア25をそれぞれ両方のバーナ21に別々に接続して、各接続管の弁の開閉により制御してもよい。   The regenerative alternating combustion apparatus 2 alternately burns a pair of burners 21, and as shown in FIG. 7, a pair of burners 21 are provided on the furnace wall 11, and a heat storage body 22 is accommodated in each of the pair of burners 21. The heat storage chamber 23 is attached. Then, the supply blower 24 and the exhaust blower 25 are respectively connected to both burners 21 via the four-way valve 26, and both the burners 21 are alternately burned, and the other burner 21 is burned while one burner 21 is burning. The exhaust gas at high temperature in the furnace 1 is discharged through this time, and at this time, the heat storage body 22 recovers heat, and then the combustion air is preheated with the heat recovered by the heat storage body 22 when the other burner 21 burns. Is. Reference numeral 27 in the drawing is an air supply pipe that connects the air supply blower 24 and the four-way valve 26, and reference numeral 28 is an exhaust pipe that connects the exhaust blower 25 and the four-way valve 26. Instead of using the four-way valve 26, the air supply blower 24 and the exhaust blower 25 may be separately connected to both the burners 21 and controlled by opening and closing the valves of the respective connecting pipes.

このため、炉1には排気煙道3を設ける必要がなく、排気ガスを排出する側のバーナ21を介した流路が排気煙道3として機能する。   For this reason, it is not necessary to provide the exhaust flue 3 in the furnace 1, and the flow path through the burner 21 on the exhaust gas exhaust side functions as the exhaust flue 3.

そして制圧用空気流路4は、下流側の端部を排気管28に接続している。均圧弁5は、図1に示す例と同様に、一次室52の導入孔52aと炉壁11の導出孔との間に導圧管13を接続し、二次室53の導入孔53aを目標圧力となる大気に開放している。   The pressure-control air flow path 4 has a downstream end connected to the exhaust pipe 28. As in the example shown in FIG. 1, the pressure equalizing valve 5 connects the pressure guiding tube 13 between the introduction hole 52 a of the primary chamber 52 and the lead-out hole of the furnace wall 11, and the introduction hole 53 a of the secondary chamber 53 serves as a target pressure. Open to the atmosphere.

炉圧が目標圧力と同じである場合には、一次室52と二次室53の圧力が均衡してダイヤフラム51は自然状態となり、均圧弁5の開度が所定の値となって所定量の制圧用空気が流れる平衡状態となって炉圧は目標圧力に維持される。   When the furnace pressure is the same as the target pressure, the pressures in the primary chamber 52 and the secondary chamber 53 are balanced, the diaphragm 51 is in a natural state, the opening of the pressure equalizing valve 5 is a predetermined value, and a predetermined amount. The furnace pressure is maintained at the target pressure in an equilibrium state where the air for controlling pressure flows.

平衡状態から炉圧が低くなると、一次室52の圧力が二次室53の圧力よりも低くなって開度が大きくなり、排気管28内に流入する制圧用空気の流量が増加する。排気管28内を流れる排気ガスの温度が低下してドラフトが減少すると共に、排気管28内を流れる排気ガスの流量増加による流路抵抗の増加の二つの効果により、炉圧が高くなる方に振れる。炉圧が高くなると、開度が小さくなって排気管28内に流入する制圧用空気の流量が減少し、炉圧が低くなる方に振れる。これにより、目標圧力でバランスして平衡状態となる。   When the furnace pressure is lowered from the equilibrium state, the pressure in the primary chamber 52 becomes lower than the pressure in the secondary chamber 53, the opening degree is increased, and the flow rate of the control air flowing into the exhaust pipe 28 is increased. The temperature of the exhaust gas flowing in the exhaust pipe 28 is lowered to reduce the draft, and the furnace pressure is increased by two effects of increasing the flow resistance due to the increase in the flow rate of the exhaust gas flowing in the exhaust pipe 28. Swing. When the furnace pressure is increased, the opening degree is decreased, the flow rate of the control air flowing into the exhaust pipe 28 is reduced, and the furnace pressure is oscillated. Thereby, it balances with target pressure and will be in an equilibrium state.

図7に示す例では、制圧用空気流路4の上流側の端部を大気に開放していて、自然吸気により大気中の空気を吸引しているが、図8に示す例のように、制圧用空気流路4の上流側の端部を給気管27の途中に接続して、給気ブロア24からの空気を供給することで、制圧用空気の流量を確保することができる。   In the example shown in FIG. 7, the upstream end of the suppression air flow path 4 is opened to the atmosphere, and air in the atmosphere is sucked by natural intake, but as in the example shown in FIG. By connecting the upstream end of the pressure control air passage 4 to the middle of the air supply pipe 27 and supplying air from the air supply blower 24, the flow rate of the pressure control air can be secured.

本実施形態においても、炉圧計や制御弁や制御機やダンパが不要で、部品点数を少なくすることができ、また、炉1内の高温に直接曝される部品がなく、また、可動部分がダイヤフラム51(および弁体6)のみと少なく信頼性や耐久性に優れると共に調整が特に必要なく、また、電力を必要とせず、安価に行うことが可能となる。   Also in this embodiment, a furnace pressure gauge, a control valve, a controller, and a damper are unnecessary, the number of parts can be reduced, there are no parts that are directly exposed to the high temperature in the furnace 1, and there are no movable parts. Only the diaphragm 51 (and the valve body 6) is small, and it is excellent in reliability and durability, is not particularly required to be adjusted, does not require electric power, and can be performed at low cost.

本発明の一実施形態の炉圧制御装置を設けた炉の断面図である。It is sectional drawing of the furnace which provided the furnace pressure control apparatus of one Embodiment of this invention. 同上の炉圧制御装置における均圧弁および制圧用空気流路の断面図である。It is sectional drawing of the pressure equalization valve and the air flow path for pressure control in a furnace pressure control apparatus same as the above. 同上の実施形態の炉圧制御装置を設けた炉の他例の断面図である。It is sectional drawing of the other example of the furnace which provided the furnace pressure control apparatus of embodiment same as the above. 同上の実施形態の炉圧制御装置を設けた炉の更に他例の断面図である。It is sectional drawing of the further another example of the furnace which provided the furnace pressure control apparatus of embodiment same as the above. 同上の実施形態の炉圧制御装置を設けた炉の更に他例の断面図である。It is sectional drawing of the further another example of the furnace which provided the furnace pressure control apparatus of embodiment same as the above. 同上の実施形態の炉圧制御装置を設けた炉の更に他例の断面図である。It is sectional drawing of the further another example of the furnace which provided the furnace pressure control apparatus of embodiment same as the above. 他の実施形態の炉圧制御装置を設けた炉の断面図である。It is sectional drawing of the furnace which provided the furnace pressure control apparatus of other embodiment. 同上の実施形態の炉圧制御装置を設けた炉の他例の断面図である。It is sectional drawing of the other example of the furnace which provided the furnace pressure control apparatus of embodiment same as the above.

符号の説明Explanation of symbols

1 炉
10 炉内空間
11 炉壁
12 排気口
13 導圧管
2 燃焼装置
20 ブロア
21 バーナ
22 蓄熱体
23 蓄熱室
24 給気ブロア
25 排気ブロア
26 四方弁
27 給気管
3 排気煙道
30 ダクト
31 誘引ファン
32 スロート部
4 制圧用空気流路
40 制圧用空気管
41 貫通孔
42 弁開口
43 ブロア
44 分岐流路
45 ノズル
5 均圧弁
50 本体部
50a 外殻ケーシング
50b 挿通孔
51 ダイヤフラム
52 一次室
52a 導入孔
53 二次室
53a 導入孔
6 弁体
61 弁部
DESCRIPTION OF SYMBOLS 1 Furnace 10 Furnace space 11 Furnace wall 12 Exhaust port 13 Pressure guiding pipe 2 Combustion device 20 Blower 21 Burner 22 Heat storage body 23 Heat storage chamber 24 Supply air blower 25 Exhaust air blower 26 Four-way valve 27 Supply air pipe 3 Exhaust flue 30 Duct 31 Induction fan Reference Signs List 32 Throat part 4 Air flow path for pressure suppression 40 Air pipe for pressure suppression 41 Through hole 42 Valve opening 43 Blower 44 Branching flow path 45 Nozzle 5 Pressure equalizing valve 50 Main body part 50a Outer shell casing 50b Insertion hole 51 Diaphragm 52 Primary chamber 52a Introduction hole 53 Secondary chamber 53a Introduction hole 6 Valve body 61 Valve part

Claims (2)

炉に加熱手段としての燃焼装置を設けると共に排気煙道を接続し、前記排気煙道に制圧用空気流路を接続し、前記制圧用空気流路に均圧弁を設けた炉圧制御装置であって、均圧弁は、内部に弁体が接続されるダイヤフラムにて仕切られた一次室と二次室とを有し、一次室と二次室はそれぞれ内外を連通する導入孔を備え、一次室の導入孔と炉に形成され炉内外を連通する導出孔との間に導圧管を接続すると共に、二次室の導入孔と目標圧力の気体を有する空間とを連通し、二次室の圧力と比較して一次室の圧力が高い程、制圧用空気流路の開度を小さくして成ることを特徴とする炉圧制御装置。   A furnace pressure control device provided with a combustion device as a heating means in a furnace, connected to an exhaust flue, connected to the exhaust flue with a pressure control air flow path, and provided with a pressure equalizing valve in the pressure control air flow path. The pressure equalizing valve has a primary chamber and a secondary chamber that are partitioned by a diaphragm to which a valve body is connected, and the primary chamber and the secondary chamber each have an introduction hole that communicates the inside and the outside. A pressure guiding tube is connected between the inlet hole formed in the furnace and the outlet hole formed in the furnace and communicating with the inside and outside of the furnace, and the inlet hole of the secondary chamber communicates with the space having the target pressure gas to A furnace pressure control device characterized in that the higher the pressure in the primary chamber is, the smaller the opening of the air flow passage for pressure control is. 加熱手段としての燃焼装置を備えると共に排気煙道を接続してなる炉の炉圧制御方法であって、前記排気煙道に制圧用空気流路を接続すると共に、前記制圧用空気流路に内部にダイヤフラムにて仕切られた一次室と二次室とを有する均圧弁を設け、一次室に炉内の気体を導入して一次室の気圧を炉圧と同じにすると共に、二次室に目標圧力の気体を導入して二次室の気圧を目標圧力とし、二次室の圧力と比較して一次室の圧力が高い程、制圧用空気流路の開度を小さくするように調節して制圧用空気の流量を制御し、炉圧を目標圧力とすることを特徴とする炉圧制御方法。 A furnace pressure control method for a furnace provided with a combustion device as a heating means and connected to an exhaust flue, wherein a pressure control air flow path is connected to the exhaust flue, and the pressure control air flow path is internally to a pressure equalizing valve having a primary chamber and a secondary chamber which is partitioned by a diaphragm provided with the pressure in the primary chamber by introducing the gas in the furnace in the primary chamber same as furnace pressure, the secondary chamber Introduce a target pressure gas to set the secondary chamber air pressure as the target pressure, and adjust the opening of the suppression air flow path to be smaller as the primary chamber pressure is higher than the secondary chamber pressure. A furnace pressure control method characterized by controlling the flow rate of the control air and setting the furnace pressure as a target pressure.
JP2008264494A 2008-10-10 2008-10-10 Furnace pressure control device and furnace pressure control method Expired - Fee Related JP5405794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008264494A JP5405794B2 (en) 2008-10-10 2008-10-10 Furnace pressure control device and furnace pressure control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008264494A JP5405794B2 (en) 2008-10-10 2008-10-10 Furnace pressure control device and furnace pressure control method

Publications (2)

Publication Number Publication Date
JP2010091239A JP2010091239A (en) 2010-04-22
JP5405794B2 true JP5405794B2 (en) 2014-02-05

Family

ID=42254131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008264494A Expired - Fee Related JP5405794B2 (en) 2008-10-10 2008-10-10 Furnace pressure control device and furnace pressure control method

Country Status (1)

Country Link
JP (1) JP5405794B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564497B2 (en) * 1988-07-21 1996-12-18 日立金属株式会社 Reactor pressure control method
JPH04107256A (en) * 1990-08-28 1992-04-08 Nippon Seiko Kk Carburizing furnace
JPH07280461A (en) * 1994-04-05 1995-10-27 Nippon Steel Corp Furnace pressure controlling method for heating furnace
JPH0875377A (en) * 1994-09-08 1996-03-19 Nkk Corp Furnace pressure controlling method for heating furnace
JP3071134B2 (en) * 1995-10-27 2000-07-31 日本碍子株式会社 Furnace pressure control device
JPH10102139A (en) * 1996-09-30 1998-04-21 Nkk Corp Operation of heating furnace

Also Published As

Publication number Publication date
JP2010091239A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
CN106642711B (en) Dual sensing combustion system
CN102155794B (en) A header box for a furnace, a furnace including the header box and a method of constructing a furnace
JP5800226B2 (en) boiler
US6702571B2 (en) Flex-flame burner and self-optimizing combustion system
JP2008157553A (en) Fuel conditioning device for boiler
JP5405794B2 (en) Furnace pressure control device and furnace pressure control method
JP5360560B2 (en) boiler
US20110143291A1 (en) Flue gas recirculation method and system for combustion systems
US10982848B2 (en) Baffle design for furnace burner box
JP5679698B2 (en) Fuel gas supply amount adjusting device and boiler having the device
ITMI20111825A1 (en) INSTANT GAS WATER HEATER
JP6170744B2 (en) Air ratio control device and combustion system
JP4873530B2 (en) Combustion device
WO2016157925A1 (en) Boiler device
JP7006363B2 (en) Boiler device
CN111850211B (en) Off-line drying method of hot blast stove
KR20160062533A (en) Gas amount control apparatus of combustor and the method thereof
CN216897287U (en) Combustion system for polar fleece machine
EP3365600B1 (en) Method for reducing harmful gas emissions from a gas-fired sealed combustion chamber forced-draught boiler using flue gas recirculation and according boiler
TWI486540B (en) Direct pressure water heater and its control method
JP7436000B2 (en) Water heater
JP7069803B2 (en) Combustion device
JP5725608B2 (en) Combustion multi-position control boiler
US784073A (en) Heating system.
JP2023034570A (en) boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

R150 Certificate of patent or registration of utility model

Ref document number: 5405794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees