JP5405786B2 - Method for producing acid-type carboxymethylcellulose - Google Patents

Method for producing acid-type carboxymethylcellulose Download PDF

Info

Publication number
JP5405786B2
JP5405786B2 JP2008241458A JP2008241458A JP5405786B2 JP 5405786 B2 JP5405786 B2 JP 5405786B2 JP 2008241458 A JP2008241458 A JP 2008241458A JP 2008241458 A JP2008241458 A JP 2008241458A JP 5405786 B2 JP5405786 B2 JP 5405786B2
Authority
JP
Japan
Prior art keywords
cmc
water
acid
carbon dioxide
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008241458A
Other languages
Japanese (ja)
Other versions
JP2010070686A (en
Inventor
伸夫 古野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fine Clay Co Ltd
Original Assignee
Fine Clay Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fine Clay Co Ltd filed Critical Fine Clay Co Ltd
Priority to JP2008241458A priority Critical patent/JP5405786B2/en
Publication of JP2010070686A publication Critical patent/JP2010070686A/en
Application granted granted Critical
Publication of JP5405786B2 publication Critical patent/JP5405786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

本発明は、酸型カルボキシメチルセルロースを製造するための方法、および当該方法で製造された酸型カルボキシメチルセルロースに関するものである。   The present invention relates to a method for producing acid-type carboxymethylcellulose, and acid-type carboxymethylcellulose produced by the method.

カルボキシメチルセルロースは、パルプなどに含まれるセルロースに水酸化ナトリウムとモノクロロ酢酸を反応させることにより製造することができる。この技術が開発された1950年頃には、この反応の溶媒として水が用いられていたが、生産規模が拡大するにつれて大量の廃水の処理が問題となった。しかし、有機溶媒を用いて閉鎖系で行うことができる有機溶媒法が開発され、カルボキシメチルセルロースが大量に安定生産できるようになった。現在では、カルボキシメチルセルロースは非常に安価である上に、水溶性であるので扱い易く且つ安全であることから、食品分野から土木建設工事にまで、増粘剤や接着剤などとして幅広く用いられている。   Carboxymethyl cellulose can be produced by reacting cellulose contained in pulp or the like with sodium hydroxide and monochloroacetic acid. Around 1950, when this technology was developed, water was used as a solvent for this reaction. However, as the production scale increased, treatment of a large amount of wastewater became a problem. However, an organic solvent method that can be performed in a closed system using an organic solvent has been developed, and carboxymethyl cellulose can be stably produced in large quantities. At present, carboxymethylcellulose is widely used as a thickener, adhesive, etc. from the food field to civil engineering construction because it is very inexpensive and easy to handle and safe because it is water-soluble. .

水溶性であることや上記の製造条件から分かるように、一般に流通しているカルボキシメチルセルロースはナトリウム塩(以下、カルボキシメチルセルロースのナトリウム塩を「CMC−Na」と略す)である。   As can be seen from the fact that it is water-soluble and the production conditions described above, the commonly distributed carboxymethyl cellulose is a sodium salt (hereinafter, the sodium salt of carboxymethyl cellulose is abbreviated as “CMC-Na”).

一方、カルボキシ基をそのまま有するカルボキシメチルセルロース(以下、「CMC−H」と略す場合がある)は、中性の水に不溶であることから、CMC−Naほど一般的ではない。しかし、CMC−H自体もカルシウム塩やアンモニウム塩などの製造原料などとしても使われる。よって、CMC−Hの製造方法も検討されている。   On the other hand, carboxymethylcellulose having a carboxy group as it is (hereinafter sometimes abbreviated as “CMC-H”) is not as common as CMC-Na because it is insoluble in neutral water. However, CMC-H itself is also used as a raw material for production such as calcium salt and ammonium salt. Therefore, a method for producing CMC-H is also being studied.

CMC−Hは、一般的に、希硫酸とCMC−Naの水溶液とを反応させて、生じた沈殿を分離取得した後、水洗により過剰の硫酸や硫酸ナトリウムなどを除去する方法により製造される。しかしながら、洗浄処理や廃水処理の経費が高いため、現状では特殊な用途のためにのみ製造されている。また、特許文献1〜2に記載の技術のように、酸処理時におけるゲル化を抑制するために、酸と共に無機カルシウム塩等を添加したり、酸を添加する前にアルデヒド類で処理するといった改良方法が開発されている。
特開平4−314702号公報 特開平11−246601号公報
CMC-H is generally produced by a method in which a dilute sulfuric acid and an aqueous solution of CMC-Na are reacted to separate and acquire the resulting precipitate, and then excess sulfuric acid, sodium sulfate, and the like are removed by washing with water. However, due to the high cost of cleaning and wastewater treatment, it is currently produced only for special purposes. Moreover, in order to suppress the gelatinization at the time of an acid treatment like the technique of patent documents 1-2, an inorganic calcium salt etc. are added with an acid, or it treats with aldehydes before adding an acid. Improvement methods have been developed.
JP-A-4-314702 Japanese Patent Laid-Open No. 11-246601

上述した様に、これまでにもCMC−Hの製法が検討されており、何れの方法でも、酸を使ってCMC−Naのナトリウムイオンを水素イオンに交換した後、過剰の酸や生成した塩などを水洗により除去することが基本とされている。ここで、実験室レベルの製造では洗浄水として脱イオン水や逆浸透濾過水などの純水を用いることも可能であるが、工業的な大量合成ではコストの問題から純水が用いられることはなく、専ら水道水や地下水が用いられる。   As described above, the production method of CMC-H has been studied so far. In any method, after exchanging sodium ions of CMC-Na with hydrogen ions using acid, excess acid or generated salt is used. It is assumed that these are removed by washing with water. Here, pure water such as deionized water or reverse osmosis filtered water can be used as washing water in laboratory-level production, but pure water is used in industrial mass synthesis due to cost problems. However, only tap water and groundwater are used.

ところが、水道水や井戸水の中には微量ながら様々な不純物が含まれている。例えば、一般的な水道水には数十ppmのナトリウムイオンや塩化物イオンが含まれていることが多い。その結果、CMC−Hのカルボキシ基の水素イオンがナトリウムイオンなどにイオン交換されて親水性が高まり、濾過などによる脱水の効率が低下する場合がある。また、この段階で水が十分に除去できないと、洗浄水に含まれる不純物がCMC中に残留することになる。このようなCMC−Hを原料として、例えばカルボキシメチルセルロースのアンモニウム塩(以下、「CMC−NH4」と略す)を製造すると、当該CMC−NH4にはナトリウムイオンと共に塩化物イオンが含まれる結果となる。 However, tap water and well water contain various impurities even in trace amounts. For example, general tap water often contains several tens of ppm of sodium ions and chloride ions. As a result, the hydrogen ion of the carboxy group of CMC-H is ion-exchanged with sodium ion or the like to increase the hydrophilicity, and the efficiency of dehydration by filtration or the like may be reduced. Further, if water cannot be sufficiently removed at this stage, impurities contained in the cleaning water remain in the CMC. For example, when an ammonium salt of carboxymethyl cellulose (hereinafter abbreviated as “CMC-NH 4 ”) is produced using such CMC-H as a raw material, the CMC-NH 4 contains chloride ions as well as sodium ions. Become.

さらに、一般的には水道水などで洗浄されたCMC−Hでも十分に使用可能であるが、微量の不純物が問題となる場合がある。例えば、CMC−Hから製造されるCMC−NH4は電池の電極におけるバインダーや二次電池の電解質液の粘度調整剤として用いられることがあるが、CMC−NH4に塩化物イオンが残留していると、電池機能が低下してしまう。この塩化物イオンは、原料であるCMC−Hにナトリウムイオンが残留していると、完全に除去することは極めて難しい。また、CMC−NH4は塗料のマトリクス樹脂として用いられることがあるが、イオンが残留していると、基材金属の錆や剥離の原因となる。さらに、CMC−NH4にアルカリ金属イオンが残留していると、塗料、接着剤、フィルム材料などとして利用した場合に、耐水性が損なわれるという問題もある。 Furthermore, in general, CMC-H washed with tap water or the like can be sufficiently used, but a trace amount of impurities may cause a problem. For example, CMC-NH 4 produced from CMC-H may be used as a binder in a battery electrode or as a viscosity modifier for an electrolyte solution in a secondary battery, but chloride ions remain in CMC-NH 4. If so, the battery function will be reduced. It is very difficult to completely remove this chloride ion when sodium ions remain in the raw material CMC-H. CMC-NH 4 may be used as a matrix resin for paints, but if ions remain, it causes rust and peeling of the base metal. Furthermore, when alkali metal ions remain in CMC-NH 4 , there is a problem that water resistance is impaired when used as a paint, an adhesive, a film material, or the like.

そこで本発明の解決課題は、洗浄水として安価な水道水や地下水などを用いても、ナトリウムイオンなどの不純物の含量が顕著に低減されている酸型カルボキシメチルセルロースを製造するための方法と、当該方法で製造されたものであり、不純物含量が低く高品質な酸型カルボキシメチルセルロースを提供することにある。   Therefore, the problem to be solved by the present invention is to provide a method for producing acid-type carboxymethyl cellulose in which the content of impurities such as sodium ions is remarkably reduced even when inexpensive tap water or groundwater is used as washing water, and An object of the present invention is to provide a high-quality acid-type carboxymethylcellulose produced by the method and having a low impurity content.

本発明者は、上記課題を解決すべく鋭意研究を進めた。その結果、洗浄水として安価な水道水や地下水などを用いた場合であっても、二酸化炭素を添加することにより洗浄水を弱酸性に維持すれば、洗浄水に含まれる陽イオンがCMC−Hの塩の形成や脱水効率低下の原因となることがない上に、二酸化炭素自体がCMC−Hに残留しないことを見出して、本発明を完成した。   The present inventor has intensively studied to solve the above problems. As a result, even when inexpensive tap water or groundwater is used as the washing water, if the washing water is kept weakly acidic by adding carbon dioxide, the cation contained in the washing water will be CMC-H. It was found that carbon dioxide itself does not remain in CMC-H, and the present invention was completed.

本発明に係る酸型カルボキシメチルセルロースの製造方法は、カルボキシメチルセルロースの塩の水溶液と酸とを反応させることにより沈殿を得る工程、および、得られた沈殿を水で洗浄する工程を含み、且つ、洗浄水へ二酸化炭素を添加することを特徴とする。   The method for producing acid-type carboxymethyl cellulose according to the present invention includes a step of obtaining a precipitate by reacting an aqueous solution of a salt of carboxymethyl cellulose with an acid, and a step of washing the obtained precipitate with water. It is characterized by adding carbon dioxide to water.

上記方法におけるカルボキシメチルセルロースの塩の水溶液は、水溶媒中、バイオマス由来のセルロース原料、塩基およびモノハロゲン化酢酸を反応させる工程により、製造することが好ましい。一般的に、市販のカルボキシメチルセルロースの塩は粉末粒体であり、短繊維化されていたり微粒子化されているために濾過され難く、脱水効率が低いといえる。それに対してバイオマス由来のセルロース原料から得られたカルボキシメチルセルロースの塩を用いれば、本発明本来の効果と相まって、脱水効率が飛躍的に高まる。また、本発明によりバイオマス由来のセルロース原料から製造された酸型カルボキシメチルセルロースは、長繊維ゆえに耐水性にも極めて優れている。   The aqueous solution of the carboxymethylcellulose salt in the above method is preferably produced by a step of reacting a biomass-derived cellulose raw material, a base and monohalogenated acetic acid in an aqueous solvent. Generally, a commercially available salt of carboxymethyl cellulose is a powder granule, and since it is shortened or finely divided, it is difficult to filter, and it can be said that dehydration efficiency is low. On the other hand, when a salt of carboxymethyl cellulose obtained from a biomass-derived cellulose raw material is used, the dehydration efficiency is dramatically increased in combination with the original effect of the present invention. Moreover, the acid-type carboxymethyl cellulose produced from the biomass-derived cellulose raw material according to the present invention is extremely excellent in water resistance because of the long fibers.

本発明の酸型カルボキシメチルセルロースは、上記方法で製造され、且つアルカリ金属含有量が1000ppm以下であることを特徴とする。   The acid-type carboxymethyl cellulose of the present invention is produced by the above method and has an alkali metal content of 1000 ppm or less.

上記酸型カルボキシメチルセルロースとしては、水分含量が40質量%以上、80質量%以下であり、且つ含有水における二酸化炭素濃度が0.01g/kg以上であるものが好適である。通常のCMC製品は、輸送コストを考慮して乾燥されている。ところが乾燥されたCMC−Hは水などに対する親和性が低いため、アンモニア塩などにする場合の反応性が低い。よって、CMC製品はある程度の水分を含んでいる方がよい。ところが水分を含んでいるCMC製品は、貯蔵時に腐敗し易い。しかし、本発明方法で製造されたCMC−Hは、含有水に二酸化炭素が含まれているので腐敗し難い。   As the acid-type carboxymethyl cellulose, those having a water content of 40% by mass or more and 80% by mass or less and a carbon dioxide concentration in the contained water of 0.01 g / kg or more are suitable. Normal CMC products are dried in consideration of transportation costs. However, since the dried CMC-H has a low affinity for water or the like, the reactivity in the case of using an ammonia salt or the like is low. Therefore, it is better that the CMC product contains a certain amount of moisture. However, CMC products containing moisture are susceptible to spoilage during storage. However, CMC-H produced by the method of the present invention is difficult to rot because the contained water contains carbon dioxide.

本発明方法によれば、洗浄水として安価な水道水や地下水などを用いた場合であっても、不純物含量が顕著に低減された高品質な酸型カルボキシメチルセルロースを効率的に製造することが可能であり、さらに、当該酸型カルボキシメチルセルロースを原料として、高品質なカルボキシメチルセルロースの塩を製造することができる。   According to the method of the present invention, it is possible to efficiently produce high-quality acid-type carboxymethylcellulose having a significantly reduced impurity content even when inexpensive tap water or groundwater is used as washing water. Furthermore, a high-quality carboxymethylcellulose salt can be produced using the acid-type carboxymethylcellulose as a raw material.

例えば、本発明に係るCMC−Hを原料として製造された高品質のCMC−NH4は、電池の電極のバインダーや電解質液の粘度調整剤、塗料、接着剤、半透膜などのフィルムの材料、中空糸膜の材料として有用である。また、本発明に係るCMC−Hから、高品質なCMC−Li、CMC−K、CMC−Naなどを製造することもできる。その他、本発明に係るCMC−Hから、高品質なCMCのアルカリ土類金属塩やCMCの多価金属塩を製造することも可能である。これらは水に不溶性であり、様々な用途に適用できる。例えば、ある種のCMC多価金属塩は、触媒として有用である。 For example, high-quality CMC-NH 4 manufactured using CMC-H according to the present invention as a raw material is a material for films such as battery electrode binders, electrolyte solution viscosity modifiers, paints, adhesives, and semipermeable membranes. It is useful as a material for hollow fiber membranes. Moreover, high quality CMC-Li, CMC-K, CMC-Na, etc. can also be manufactured from CMC-H which concerns on this invention. In addition, it is also possible to produce high-quality CMC alkaline earth metal salt or CMC polyvalent metal salt from CMC-H according to the present invention. These are insoluble in water and can be used in various applications. For example, certain CMC polyvalent metal salts are useful as catalysts.

このように、本発明によれば非常に高品質なCMC−Hを製造することができ、本発明に係る高品質CMC−Hは、高品質なCMC塩の原料となる。かかる高品質CMC塩は、様々な用途において非常に有用である。   Thus, according to this invention, very high quality CMC-H can be manufactured, and the high quality CMC-H which concerns on this invention becomes a raw material of high quality CMC salt. Such high quality CMC salts are very useful in various applications.

本発明に係る酸型カルボキシメチルセルロースの製造方法は、カルボキシメチルセルロース(以下、単に「CMC」と略す場合がある)の塩の水溶液と酸とを反応させることにより沈殿を得る工程、および、得られた沈殿を水で洗浄する工程を含み、且つ、洗浄水へ二酸化炭素を添加することを特徴とする。以下、本発明方法を実施の順番に従って説明する。   The method for producing acid-type carboxymethylcellulose according to the present invention includes a step of obtaining a precipitate by reacting an aqueous solution of a salt of carboxymethylcellulose (hereinafter sometimes simply referred to as “CMC”) with an acid, and And a step of washing the precipitate with water, and adding carbon dioxide to the washing water. Hereinafter, the method of the present invention will be described in the order of execution.

(1) CMCの塩の水溶液の調整工程
本発明方法の原料であるCMCの塩は、一般に水溶性を示す一価金属などの塩であれば特にその種類は問わない。例えば、リチウム塩、ナトリウム塩、カリウム塩などのアルカリ金属塩や;アンモニウム塩などを用いることができる。これらの中でも、容易に調製できることからアルカリ金属塩を好適に用い、特に、安価であり入手し易いことからナトリウム塩を好適に用いる。
(1) CMC salt aqueous solution adjustment step The CMC salt, which is a raw material for the method of the present invention, is not particularly limited as long as it is a salt of a monovalent metal or the like that is generally water-soluble. For example, alkali metal salts such as lithium salts, sodium salts, potassium salts, and ammonium salts can be used. Among these, alkali metal salts are preferably used because they can be easily prepared, and sodium salts are particularly preferably used because they are inexpensive and easily available.

CMCの塩は、市販のものを用いてもよいし、別途調製してもよい。しかし、市販のCMCの塩の中には、微粒子化されていたり短繊維化されていたりする場合があるので、好適にはバイオマス由来のセルロース原料から別途調製する。微粒子化や短繊維化されていると脱水効率が悪くなり、不純物含量が高まるおそれがあると共に、セルロース本来の繊維の特徴が生かされないことがある。   A commercially available salt of CMC may be used, or may be prepared separately. However, some commercially available salts of CMC may be finely divided or shortened, so that it is preferably prepared separately from a biomass-derived cellulose raw material. If the particles are made finer or shorter, the efficiency of dehydration is deteriorated, the impurity content may be increased, and the original fiber characteristics of cellulose may not be utilized.

市販のCMCの塩を用いる場合には、CMCの塩を単に水へ溶解するのみでよい。ここでの水は、蒸留水や脱イオン水などの純水である必要はなく、不溶成分が混入していなければ、水道水や井戸水、排水をある程度精製したものなどを用いてもよい。   When a commercially available CMC salt is used, the CMC salt is simply dissolved in water. The water here does not need to be pure water such as distilled water or deionized water. If insoluble components are not mixed, tap water, well water, or water purified to some extent may be used.

当該水溶液の濃度は適宜調整すればよいが、例えば5質量%以上、20質量%以下程度とすることができる。   The concentration of the aqueous solution may be adjusted as appropriate, and may be, for example, about 5% by mass or more and 20% by mass or less.

バイオマス由来のセルロース原料からCMCの塩の水溶液を調製する場合は、常法を用いることができる。即ち、水溶媒中、バイオマス由来のセルロース原料、塩基およびモノハロゲン化酢酸を反応させ、セルロースをカルボキシメチルエーテル化すればよい。   When preparing an aqueous solution of CMC salt from biomass-derived cellulose raw material, a conventional method can be used. That is, the cellulose may be converted into carboxymethyl ether by reacting a biomass-derived cellulose raw material, a base and monohalogenated acetic acid in an aqueous solvent.

バイオマス由来のセルロース原料の種類は、特に制限されない。例えば、麻、ケナフ、サトウキビ、トウモロコシの茎や葉;ヤシガラ;籾殻;木材チップダスト;剪定枝;廃木材;間伐材などを粉砕し、脱色やリグニンなどの不純物を除去したものを用いることができる。また、紙、トイレットペーパー、キッチンタオルなどのパルプ製品を用いることも可能であるので、本発明をバイオマス資源のリサイクルに適用することもできる。さらに、レーヨン、セルロイド、セロファン、半透膜、木綿糸などの上質なパルプをセルロース原料とすることもできる。   The kind of cellulose raw material derived from biomass is not particularly limited. For example, hemp, kenaf, sugar cane, corn stalks and leaves; coconut husks; rice husks; wood chip dust; pruned branches; waste wood; thinned wood, etc. are crushed to remove impurities such as decolorization and lignin . Moreover, since it is also possible to use pulp products, such as paper, toilet paper, and a kitchen towel, this invention can also be applied to recycling of biomass resources. Furthermore, high-quality pulp such as rayon, celluloid, cellophane, semipermeable membrane, and cotton yarn can be used as the cellulose raw material.

バイオマス由来のセルロース原料からCMCの塩の水溶液を調製するには、セルロース原料にモノハロゲン化酢酸と塩基を作用させればよい。より具体的には、先ずセルロース原料を5質量倍以上、15質量倍以下程度のアルカリ水溶媒に浸潤する。当該浸潤液へ、モノハロゲン化酢酸と塩基を加える。添加順序を変えて、まずモノハロゲン化酢酸およびまたはその水溶液にセルロース原料を浸潤せしめた上で、塩基を加えて熟成させてもよい。当該熟成の時間は10分以上とすることが好ましく、一日や一週間程度としてもよい。   In order to prepare an aqueous solution of CMC salt from a biomass-derived cellulose raw material, monohalogenated acetic acid and a base may be allowed to act on the cellulose raw material. More specifically, the cellulose raw material is first infiltrated into an alkaline water solvent having a mass ratio of 5 to 15 times. Add monohalogenated acetic acid and base to the infiltrate. The order of addition may be changed, and the cellulose raw material may first be infiltrated into monohalogenated acetic acid and / or an aqueous solution thereof, followed by aging by adding a base. The aging time is preferably 10 minutes or longer, and may be about one day or one week.

モノハロゲン化酢酸としては、モノクロロ酢酸、モノブロモ酢酸、モノヨウ化酢酸を用いることができる。塩基としては、水酸化ナトリウムや水酸化カリウムなどのアルカリ金属水酸化物を用いることができる。   As monohalogenated acetic acid, monochloroacetic acid, monobromoacetic acid, monoiodinated acetic acid can be used. As the base, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide can be used.

セルロースはグルコースの重合体であり、末端部以外の各グルコース単位は3個の水酸基を有する。この水酸基がカルボキシメチル基により置換される。   Cellulose is a polymer of glucose, and each glucose unit other than the terminal part has three hydroxyl groups. This hydroxyl group is substituted by a carboxymethyl group.

モノハロゲン化酢酸と塩基の使用量によって、カルボキシメチルエーテル化度を調整することができる。詳しくは、セルロース原料の質量から、当該セルロースを構成するグルコースのモル数を計算することができる。全ての水酸基をエーテル化するのは困難であるが、できるだけエーテル化したい場合にはグルコースのモル数の3倍モル以上のモノハロゲン化酢酸を用いればよいし、適度にエーテル化したい場合には所望の割合のモノハロゲン化酢酸を用いればよい。グルコース1分子当たりのエーテル化の割合をエーテル化度という場合があり、通常、当該エーテル化度は0.5以上、2.5以下程度とするが、当該エーテル化度に応じて使用するモノハロゲン化酢酸の量を決定すればよい。また、塩基は、モノハロゲン化酢酸の0.9モル倍以上、1.2モル倍以下程度用いればよい。塩基は1%以上、5%以下程度の水溶液として添加してもよい。   The degree of carboxymethyl etherification can be adjusted by the amounts of monohalogenated acetic acid and base used. Specifically, the number of moles of glucose constituting the cellulose can be calculated from the mass of the cellulose raw material. Although it is difficult to etherify all the hydroxyl groups, monohalogenated acetic acid having a molar number of 3 times or more of the number of moles of glucose may be used when etherification is desired, and desired when appropriate etherification is desired. The monohalogenated acetic acid at a ratio of The ratio of etherification per molecule of glucose is sometimes referred to as the degree of etherification. Usually, the degree of etherification is about 0.5 or more and 2.5 or less, but the monohalogen used depending on the degree of etherification The amount of acetic acid chloride may be determined. The base may be used in an amount of about 0.9 to 1.2 mol times that of monohalogenated acetic acid. The base may be added as an aqueous solution of about 1% or more and 5% or less.

反応温度や反応時間は適宜調整すればよい。反応温度については、30℃程度以上に加温することが好適であるが、高温になるほどモノハロゲン化酢酸が分解し易くなるので、一般的には60℃程度以下にすることが好ましい。反応時間は、通常、5時間以上、30時間以下程度が好ましいが、比較的低温で反応を行なう場合には、数ヶ月まで時間をかけてゆっくり反応させてもよい。なお、反応の進行度は、反応液の濁度や透視度で判断することができる。即ち、反応が十分に進行していない場合は、セルロースが溶解していないため、反応液の濁度は高く、透視度は低い。よって、予備実験などにより反応液の濁度等と反応の進行度との関係を明らかにしておき、反応液試料を取得してその濁度等を測定することにより、反応の終点を決定することができる。   What is necessary is just to adjust reaction temperature and reaction time suitably. The reaction temperature is preferably about 30 ° C. or higher, but the monohalogenated acetic acid is more likely to be decomposed as the temperature is higher. Usually, the reaction time is preferably about 5 hours or more and about 30 hours or less. However, when the reaction is performed at a relatively low temperature, the reaction may be performed slowly over several months. The progress of the reaction can be determined by the turbidity or transparency of the reaction solution. That is, when the reaction does not proceed sufficiently, the cellulose is not dissolved, so the turbidity of the reaction solution is high and the transparency is low. Therefore, determine the end point of the reaction by clarifying the relationship between the turbidity etc. of the reaction solution and the progress of the reaction by preliminary experiments, etc., obtaining the reaction solution sample and measuring its turbidity etc. Can do.

反応終了後、生成したCMCの塩は水に可溶性を示し、反応液は均一溶液となる。当該溶液は、そのまま次工程で用いることができる。   After completion of the reaction, the produced CMC salt is soluble in water, and the reaction solution becomes a homogeneous solution. The solution can be used in the next step as it is.

(2) CMC−H生成工程
次に、CMCの塩の水溶液と酸とを反応させることにより、CMC−Hの沈殿を得る。
(2) CMC-H production | generation process Next, precipitation of CMC-H is obtained by making the aqueous solution of the salt of CMC and an acid react.

ここで用いられる酸は、水溶性の無機塩であれば特に制限されないが、例えば、硫酸、塩酸、硝酸、リン酸などを用いることができ、この中では硫酸が好適である。その使用量は適宜調整すればよいが、少なくとも全ての−CO2 -基を−CO2Hへ変換するに十分量の酸を用いる必要がある。また、酸の濃度が低過ぎるとゲル化するおそれがあり得る一方で、濃度が高過ぎると着色する場合があり得る。よって、具体的には0.1N以上、2N以下程度の濃度の酸を、CMCの塩の水溶液の1.5質量倍以上、5質量倍以下程度用いればよい。 Although the acid used here will not be restrict | limited especially if it is water-soluble inorganic salt, For example, a sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid etc. can be used, and a sulfuric acid is suitable in this. The amount used may be appropriately adjusted, but it is necessary to use a sufficient amount of acid to convert at least all of the —CO 2 groups to —CO 2 H. Further, if the acid concentration is too low, gelation may occur, while if the acid concentration is too high, coloring may occur. Therefore, specifically, an acid having a concentration of about 0.1 N or more and about 2 N or less may be used in an amount of about 1.5 to 5 times that of the CMC salt aqueous solution.

具体的には、酸を攪拌しながら、CMCの塩の水溶液を少しずつ加えることが好ましい。酸の添加後、さらに反応混合液をゆっくり攪拌してから静置しておけば、CMC−Hの沈殿が得られる。   Specifically, it is preferable to add an aqueous solution of a salt of CMC little by little while stirring the acid. After the addition of the acid, the reaction mixture is further stirred slowly and then allowed to stand to obtain CMC-H precipitate.

生成した沈殿は、反応液から分離する。陽イオンなどの不純物をできる限り低減するために、この段階で液体はできる限り除去しておいた方がよい。分離手段は特に制限されず、濾過、遠心分離、デカンテーション、およびこれらの2以上の組合せを用いることができる。但し、CMC−Hが直接空気に触れると品質が低下する場合があるので、固液分離処理においてはCMC−Hを空気に曝さないように注意することが好ましい。   The produced precipitate is separated from the reaction solution. In order to reduce impurities such as cations as much as possible, the liquid should be removed as much as possible at this stage. The separation means is not particularly limited, and filtration, centrifugation, decantation, and combinations of two or more thereof can be used. However, since the quality may deteriorate when CMC-H is directly exposed to air, it is preferable to take care not to expose CMC-H to air in the solid-liquid separation process.

(3) 洗浄工程
得られた沈殿を洗浄水で洗浄するに当たり、洗浄水へ二酸化炭素を添加する。
(3) Washing process In washing the obtained precipitate with washing water, carbon dioxide is added to the washing water.

洗浄水としては、蒸留水や脱イオン水、逆浸透濾過水などの純水を用いることが理想的ではある。しかし、CMC−Hの工業的な大量合成においては、コストの高い純水を洗浄水として用いることは現実的でない。一方、水道水や地下水などは低コストであるが、従来技術では、水道水等を用いると不純物として含まれるイオンがCMC−H中のカルボキシ基の一部を塩に変換してしまったり、或いは不純物としてCMC−Hに付着してしまう。例えば、ナトリウムイオンや塩化物イオンはCMC−Hの特性を損なうし、鉄イオン等はCMC−Hを着色する。しかし本発明によれば、洗浄水として水道水等を用いても、極めて高品質なCMC−Hを効率良く製造することができる。但し、コストが問題とならないのであれば、洗浄水として純水を用いることにより、より簡便に高品質のCMC−Hを得ることが可能である。   As the washing water, it is ideal to use pure water such as distilled water, deionized water, and reverse osmosis filtered water. However, in industrial large-scale synthesis of CMC-H, it is not realistic to use high-cost pure water as cleaning water. On the other hand, tap water and groundwater are low-cost, but in the prior art, when tap water or the like is used, ions contained as impurities may convert some of the carboxy groups in CMC-H into salts, or It adheres to CMC-H as an impurity. For example, sodium ions and chloride ions impair the properties of CMC-H, and iron ions and the like color CMC-H. However, according to the present invention, extremely high quality CMC-H can be efficiently produced even when tap water or the like is used as the cleaning water. However, if cost does not matter, it is possible to obtain high-quality CMC-H more easily by using pure water as the cleaning water.

洗浄方法としては、常法を用いることができる。例えば、得られたCMC−Hを分離取得した後、CMC−Hができる限り空気に直接接触しないよう速やかに洗浄液を加えてから、気泡が抜けるまでゆっくりと軽く攪拌する。次いで、十分に静置した後に脱水するという操作を数回繰り返せばよい。使用する洗浄水の量は適宜調整すればよいが、通常、CMC−H沈殿の3質量倍以上、10質量倍以下程度とすることができる。また、CMC−H沈殿と洗浄水との混合物の静置時間は、10分間以上とすることが好ましく、静置したままで次の工程まで貯蔵しておくことも可能である。   As a cleaning method, a conventional method can be used. For example, after the obtained CMC-H is separated and obtained, a cleaning solution is quickly added so that the CMC-H does not come into direct contact with air as much as possible, and then gently stirred until bubbles are removed. Then, the operation of dehydrating after standing still may be repeated several times. The amount of washing water to be used may be adjusted as appropriate, but it can usually be about 3 to 10 times the CMC-H precipitation. Further, the standing time of the mixture of the CMC-H precipitate and the washing water is preferably 10 minutes or more, and can be stored until the next step while being left standing.

なお、従来方法では、洗浄水に含まれる陽イオンがCMC−H中のカルボキシ基の水素イオンと交換してしまう。その結果、CMC−Hの疎水性が低下してしまう一方で親水性が顕在して粘り気が生じ、脱水処理工程の効率が低下する。また、親水性が上がったCMCが洗浄水に混入し、処理が必要となる場合もある。しかし本発明方法においては、洗浄水に二酸化炭素を添加しており、そのpHは約4以下になっているので、陽イオンの存在にもかかわらずCMC−H中のカルボキシ基は塩になり難い。よって、CMC−Hの疎水性は維持されているので、脱水処理工程の効率が低下することはない。   In the conventional method, the cation contained in the washing water is exchanged with the hydrogen ion of the carboxy group in CMC-H. As a result, the hydrophobicity of CMC-H is lowered, while hydrophilicity is manifested to cause stickiness, and the efficiency of the dehydration process is lowered. In addition, the CMC having improved hydrophilicity may be mixed in the washing water, requiring treatment. However, in the method of the present invention, carbon dioxide is added to the washing water, and the pH is about 4 or less, so that the carboxy group in CMC-H is hardly converted to a salt despite the presence of a cation. . Therefore, since the hydrophobicity of CMC-H is maintained, the efficiency of the dehydration process does not decrease.

本発明方法では、洗浄水に二酸化炭素を添加する。その具体的な方法は特に制限されず、常法を用いればよい。例えば、高圧により液化した二酸化炭素を、微細管を通じて液体のまま洗浄水へ添加することができる。また、事前に洗浄水へ気体状の二酸化炭素を十分に吹き込んでもよい。二酸化炭素を添加した洗浄水は、直ぐにCMC−Hへ添加することが好ましい。さらに、CMC−Hと洗浄水の混合物へ二酸化炭素を添加してもよい。また、洗浄水へ二酸化炭素を添加してから混合物を静置する場合には、二酸化炭素が蒸散しないように、容器を密閉してもよい。   In the method of the present invention, carbon dioxide is added to the washing water. The specific method is not particularly limited, and a conventional method may be used. For example, carbon dioxide liquefied by high pressure can be added to the washing water as a liquid through a fine tube. In addition, gaseous carbon dioxide may be sufficiently blown into the washing water in advance. It is preferable that the washing water added with carbon dioxide is immediately added to CMC-H. Further, carbon dioxide may be added to the mixture of CMC-H and washing water. Further, when the mixture is allowed to stand after adding carbon dioxide to the washing water, the container may be sealed so that carbon dioxide does not evaporate.

洗浄水に対する二酸化炭素の溶解度は温度に大きく依存するので、溶解度を高めるべく、洗浄水の温度を0℃超、20℃以下程度に冷却することが好ましい。洗浄液中の二酸化炭素が実質的に飽和状態にあるか否かは判断が難しいが、洗浄水へ二酸化炭素が十分に添加されているか否かは、洗浄水のpHが約4以下であることにより容易に確認することができる。   Since the solubility of carbon dioxide in the washing water greatly depends on the temperature, it is preferable that the temperature of the washing water is cooled to more than 0 ° C. and about 20 ° C. or less in order to increase the solubility. Although it is difficult to judge whether or not carbon dioxide in the cleaning liquid is substantially saturated, whether or not carbon dioxide is sufficiently added to the cleaning water depends on the pH of the cleaning water being about 4 or less. It can be easily confirmed.

洗浄の回数は適宜決定すればよい。例えば、洗浄水に含まれる陽イオンの濃度を原子吸光度分析やICP発光分析により定量測定し、使用後の洗浄液の測定値が使用前の洗浄液の測定値と同等になるまで洗浄を繰り返せばよい。また、使用後の洗浄液に含まれる陽イオンの存在を炎色反応により定性的に確認することにより、洗浄の効果を確認してもよい。   What is necessary is just to determine the frequency | count of washing | cleaning suitably. For example, the concentration of the cation contained in the cleaning water is quantitatively measured by atomic absorption analysis or ICP emission analysis, and the cleaning is repeated until the measured value of the cleaning liquid after use becomes equal to the measured value of the cleaning liquid before use. Moreover, you may confirm the effect of washing | cleaning by confirming presence of the cation contained in the washing | cleaning liquid after use qualitatively by flame reaction.

洗浄水に陽イオンが含まれている場合には、洗浄後のCMC−Hに付着している洗浄水の量に応じて陽イオンがCMC−Hに残留することになる。かかる陽イオンは極めて微量ではあるが、確実に製品品質を損なうので、より高品質なCMC−Hを得るためには、最後の洗浄後における脱水処理を徹底的に行うか、或いは最後の洗浄においてのみ二酸化炭素を添加した純水を洗浄水として用いてもよい。かかる純水としては、その電気伝導度が理論純水の0.054μS/cmに近いものが好ましい。   When the washing water contains a cation, the cation remains in the CMC-H according to the amount of the washing water adhering to the washed CMC-H. Although such cations are very small, they will surely impair the product quality, so in order to obtain a higher quality CMC-H, the dehydration after thorough washing should be carried out thoroughly or in the last washing. Only pure water to which carbon dioxide is added may be used as cleaning water. Such pure water is preferably one whose electrical conductivity is close to 0.054 μS / cm of theoretical pure water.

(4) 乾燥工程
一般的な固液分離処理によりCMC−Hから水を完全に除去することは困難であり、固液分離処理されたCMC−Hは、通常、水を含んでいる。本発明に係るCMC−Hは含有水を含んでいることが好ましいが、必要に応じて乾燥してもよい。
(4) Drying process It is difficult to completely remove water from CMC-H by a general solid-liquid separation process, and CMC-H subjected to the solid-liquid separation process usually contains water. The CMC-H according to the present invention preferably contains water, but may be dried as necessary.

乾燥する場合には、60℃以上、120℃以下程度で1時間以上、6時間以下程度加熱することができる。或いは、CMC−Hの空気への接触を抑制するために、20℃以上、100℃以下程度で1時間以上、6時間以下程度で減圧乾燥することが好ましい。   In the case of drying, it can be heated at 60 ° C. or more and 120 ° C. or less for 1 hour or more and 6 hours or less. Alternatively, in order to suppress contact of CMC-H with air, it is preferable to dry under reduced pressure at about 20 ° C. or more and 100 ° C. or less for about 1 hour or more and about 6 hours or less.

上記方法により得られたCMC−Hは、陽イオンなどの不純物の含量が、従来製品に見られない程度まで顕著に低減されている高品質なものである。特に、従来方法では必然的に残留していた、カルボキシメチルエーテル化工程で用いられるアルカリ金属の含有量が顕著に低減されている。具体的には、アルカリ金属含有量は1000ppm以下である。   CMC-H obtained by the above method is a high-quality product in which the content of impurities such as cations is significantly reduced to a level not found in conventional products. In particular, the content of alkali metal used in the carboxymethyl etherification step, which inevitably remains in the conventional method, is significantly reduced. Specifically, the alkali metal content is 1000 ppm or less.

CMC−Hに残留するアルカリ金属の含有量は、以下の方法により測定することができる。即ち、CMC−Hを110℃で3時間加熱して、CMC−Hの質量を測定する。次いで、1100℃で3時間加熱することにより、有機分を燃焼させて灰分を得る。得られた灰を濃塩酸に加えて加熱溶解し、当該溶液をICP分光分析装置で分析してアルカリ金属の発光強度を測定し、標準液の強度と比較することで含有量を求めることができる。   The content of alkali metal remaining in CMC-H can be measured by the following method. That is, CMC-H is heated at 110 ° C. for 3 hours, and the mass of CMC-H is measured. Next, the organic component is burned by heating at 1100 ° C. for 3 hours to obtain ash. The obtained ash is added to concentrated hydrochloric acid, dissolved by heating, the solution is analyzed with an ICP spectrometer, the emission intensity of the alkali metal is measured, and the content can be determined by comparing with the intensity of the standard solution. .

本発明に係るCMC−Hとしては、40質量%以上、80質量%以下の水分を含んでいるものが好ましい。一般的なCMC製品は乾燥されており、溶媒へ分散させるためには時間がかかる。しかし水分含量が40質量%以上であれば、特に工業的な大量生産において、溶媒への分散など次工程で速やかに利用することができる。一方、水分含量が80質量%を超えると、製品重量が過剰に重くなり輸送コストが問題になり得る。   As CMC-H concerning this invention, what contains the water | moisture content of 40 to 80 mass% is preferable. Common CMC products are dried and take time to disperse in the solvent. However, if the water content is 40% by mass or more, it can be quickly used in the next step such as dispersion in a solvent, particularly in industrial mass production. On the other hand, when the water content exceeds 80% by mass, the product weight becomes excessively heavy, and the transportation cost may be a problem.

CMC−Hの水分含量は、試料を精秤した後、アルカリ金属の含有量測定と同様に試料を110℃で3時間加熱することにより水分を完全に除去した上で精秤し、これら測定値から算出することができる。   The moisture content of CMC-H was measured accurately after the sample was precisely weighed and the moisture was completely removed by heating the sample at 110 ° C. for 3 hours in the same manner as the alkali metal content measurement. It can be calculated from

本発明に係るCMC−Hが含有する水分における二酸化炭素の濃度は、0.01g/kg以上であることが好ましい。通常、CMCが水分を含んでいると、貯蔵時における腐敗が問題となる。しかし本発明に係るCMC−Hは、二酸化炭素が添加された洗浄水で洗浄しているため、その含有水には二酸化炭素が所定値以上含まれている。この二酸化炭素の濃度が0.01g/kg以上であれば、腐敗の問題はほとんど生じない。当該濃度としては、0.05g/kg以上がより好ましく、0.1g/kg以上がさらに好ましい。一方、当該濃度の上限は特に制限されないが、飽和濃度以下とする。   The concentration of carbon dioxide in the water contained in the CMC-H according to the present invention is preferably 0.01 g / kg or more. Usually, when CMC contains moisture, rot during storage becomes a problem. However, since CMC-H according to the present invention is washed with washing water to which carbon dioxide is added, the contained water contains carbon dioxide in a predetermined value or more. If the concentration of carbon dioxide is 0.01 g / kg or more, the problem of decay hardly occurs. The concentration is more preferably 0.05 g / kg or more, and further preferably 0.1 g / kg or more. On the other hand, the upper limit of the concentration is not particularly limited, but is set to a saturation concentration or less.

CMC−Hの含有水分における二酸化炭素濃度は、次のとおり測定することができる。まず、試料の水分含量を測定した上で試料を40〜100℃に加熱し、生じた気体を水酸化カルシウム溶液に導入する。その結果、生じた炭酸カルシウムを分離乾燥し、秤量する。それにより、CMC−Hの含有水分から生じた二酸化炭素の量を求めることができるので、当該量と試料の水分含量から、含有水分における二酸化炭素濃度を算出することができる。   The carbon dioxide concentration in the water content of CMC-H can be measured as follows. First, after measuring the moisture content of the sample, the sample is heated to 40 to 100 ° C., and the generated gas is introduced into the calcium hydroxide solution. The resulting calcium carbonate is separated and dried and weighed. Thereby, since the amount of carbon dioxide generated from the water content of CMC-H can be determined, the carbon dioxide concentration in the water content can be calculated from the amount and the water content of the sample.

本発明に係るCMC−Hは、上述したように、陽イオンなどの不純物の含有量が顕著に低減されている高品質のものである。よって、本発明に係るCMC−Hを原料として、様々なCMCの塩を製造することが可能である。高品質なCMCの塩は、例えば電池の電極のバインダーや電解質液の粘度調整剤、塗料、接着剤、フィルム材料、接着剤、触媒などとして極めて有用である。   As described above, the CMC-H according to the present invention is of high quality in which the content of impurities such as cations is remarkably reduced. Therefore, various CMC salts can be produced using CMC-H according to the present invention as a raw material. High-quality CMC salts are extremely useful as, for example, battery electrode binders, electrolyte solution viscosity modifiers, paints, adhesives, film materials, adhesives, and catalysts.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

なお、以下の実験例において、得られたCMC−Hの分析条件は、以下のとおりである。   In the following experimental examples, the analysis conditions of the obtained CMC-H are as follows.

(1) 灰分含量の測定
約10gのCMC−Hをとって精秤した後に1100℃で3時間加熱することにより有機分を燃焼させ、残った灰を定量し、CMC−Hに対する灰分の割合を算出した。なお、ここで得られる灰分は、主に原料セルロースに含まれていたケイ素、アルミニウム、鉄などの不純物であると考えられる。
(1) Measurement of ash content After weighing about 10 g of CMC-H and precisely weighing it, the organic content is burned by heating at 1100 ° C for 3 hours, the remaining ash is quantified, and the ratio of ash to CMC-H Calculated. The ash obtained here is considered to be mainly impurities such as silicon, aluminum and iron contained in the raw material cellulose.

(2) ナトリウムイオン含量の測定
上記灰分(100mg)に濃塩酸(1mL)を加えて溶解し、当該溶液をICP発光分析装置(島津製作所社製,製品名「ICPS−7000」)で分析して、ナトリウムの発光強度を測定した。得られた結果を標準液の発光強度と比較することにより、CMC−Hに含まれるナトリウムイオンの割合を算出した。
(2) Measurement of sodium ion content To the above ash (100 mg), concentrated hydrochloric acid (1 mL) was added and dissolved, and the solution was analyzed with an ICP emission analyzer (product name “ICPS-7000”, manufactured by Shimadzu Corporation). The luminescence intensity of sodium was measured. By comparing the obtained results with the luminescence intensity of the standard solution, the ratio of sodium ions contained in CMC-H was calculated.

(3) 耐水性能試験
CMC−H(200g)、25%アンモニア水(10mL)および水(200g)をポリエチレン袋に入れて一晩静置することにより、粘稠液を得た。なお、使用したアンモニア水の量は、CMC−Hのカルボキシ基を約60%中和する量に相当する。厚さ1mmの杉板を1辺10cmの正方形に切り出した。かかる杉板を2枚用意し、一方の片面に得られた粘稠液を塗布してから貼り合わせ、風通しの良いところで3日間自然乾燥し、さらに約50℃で30分間加熱乾燥した。
(3) Water resistance performance test CMC-H (200 g), 25% aqueous ammonia (10 mL) and water (200 g) were placed in a polyethylene bag and allowed to stand overnight to obtain a viscous liquid. The amount of ammonia water used corresponds to an amount that neutralizes the carboxy group of CMC-H by about 60%. A cedar board having a thickness of 1 mm was cut into a square having a side of 10 cm. Two such cedar boards were prepared, and the viscous liquid obtained on one side was applied and pasted together, and then naturally dried for 3 days in a well-ventilated place, and further heated and dried at about 50 ° C. for 30 minutes.

上記で貼り合わせた杉板を、20℃の水道水に一週間浸漬した後、接着具合いを観察した。全く剥離が生じていない場合を◎、一部のみに剥離が生じた場合を○、完全に剥離したものを×と判定した。   The cedar boards bonded together were immersed in tap water at 20 ° C. for one week, and then the adhesion was observed. A case where no peeling occurred was judged as ◎, a case where peeling occurred only in a part, ○, and a case where peeling completely occurred was judged as ×.

実施例1
CMC−Na(和光純薬社製,100g)をポリエチレン袋に入れ、さらに水道水(900g)を加えた。当該袋を適度に揉み解してから静置することにより、CMC−Na水溶液を得た。当該水溶液へ1N硫酸(3kg)を混合した。当該袋を適度に揉み解してから一晩静置したところ、CMC−Hからなる白色の微細繊維状の沈殿が生じた。
Example 1
CMC-Na (Wako Pure Chemical Industries, 100 g) was put in a polyethylene bag, and tap water (900 g) was further added. CMC-Na aqueous solution was obtained by leaving the bag moderately and leaving it still. 1N sulfuric acid (3 kg) was mixed with the aqueous solution. When the bag was moderately thawed and allowed to stand overnight, a white fine fibrous precipitate consisting of CMC-H was produced.

上澄液をデカンテーションで除去することによりスラリーを得た。別途、水道水(10L)に炭酸ガスを約25L/分の流量で通気したところ、そのpHは3.8となった。当該水道水を速やかに上記スラリーへ添加した。さらに、当該スラリーへ炭酸ガスを約5L/分の流量で吹き込みつつ適時攪拌した後、袋を封じて10分間静置した。次いで、沈殿が舞い上がらないように上澄液を静かに除去した。以上の洗浄液添加、炭酸ガス通気と攪拌、静置、および洗浄液の除去という操作を3回繰り返した。次いで、得られたCMC−Hを減圧濾過により脱水し、炭酸ガス封入容器に保存した。   The supernatant was removed by decantation to obtain a slurry. Separately, when carbon dioxide gas was passed through tap water (10 L) at a flow rate of about 25 L / min, the pH was 3.8. The tap water was quickly added to the slurry. Further, carbon dioxide gas was blown into the slurry at a flow rate of about 5 L / min, and timely stirring was performed, and then the bag was sealed and allowed to stand for 10 minutes. The supernatant was then gently removed so that the precipitate did not rise. The above operations of adding the cleaning solution, bubbling carbon dioxide and stirring, standing, and removing the cleaning solution were repeated three times. Next, the obtained CMC-H was dehydrated by filtration under reduced pressure and stored in a carbon dioxide sealed container.

なお、1回目の洗浄後における使用済み洗浄液のpHは0.54であり、また、当該洗浄液を清浄なステンレス小さじにとってガスバーナーにかざすと、ナトリウムに起因する鮮やかな黄色の炎色反応が観察された。それに対して、最終の洗浄後における使用済み洗浄液のpHは4であり、その炎色反応は弱いものであった。また、各洗浄処理後において、洗浄液の除去は特に問題なく行うことができた。   The pH of the used cleaning liquid after the first cleaning is 0.54. When the cleaning liquid is held over a gas burner for a clean teaspoon, a bright yellow flame reaction caused by sodium is observed. It was. On the other hand, the pH of the used cleaning liquid after the final cleaning was 4, and its flame reaction was weak. Moreover, after each cleaning treatment, the cleaning liquid could be removed without any particular problem.

比較例1
洗浄液に炭酸ガスを吹き込まない以外は上記実施例1と同様にして、CMC−Hを製造した。
Comparative Example 1
CMC-H was produced in the same manner as in Example 1 except that carbon dioxide gas was not blown into the cleaning liquid.

その結果、各洗浄処理後においてCMC−Hは沈殿し難く、また、デカンテーションにより分離した上澄液は濁っていた。各上澄液の透視度を透視度計(オプテックス社製,製品名「TP−M100−5」)により測定したところ、透視度はいずれも10cm以下であり、疎水性の低下したCMCが上澄液中に分散していることが認められた。また、最終の洗浄後における使用済み洗浄液には、炎色反応が観察された。   As a result, CMC-H hardly precipitated after each washing treatment, and the supernatant separated by decantation was cloudy. When the transparency of each supernatant was measured with a fluorometer (manufactured by Optex, product name “TP-M100-5”), the transparency was 10 cm or less, and CMC with reduced hydrophobicity was obtained as a supernatant. It was observed that it was dispersed in the liquid. In addition, flame reaction was observed in the used cleaning liquid after the final cleaning.

実施例2
水道水をカートリッジ式純水器(オルガノ社製)で精製することにより、脱イオン水を得た。当該純水器はカチオン交換樹脂とアニオン交換樹脂を有する混床式のものであり、水道水中に存在する陽イオンと陰イオンの両方を除去することができる。得られた脱イオン水の導電率を携帯用導電率計(横河電機社製)により測定したところ、0.5μS/cmであり、当該脱イオン水はイオンがほとんど含まれていない純水であることが分かった。
Example 2
Deionized water was obtained by purifying the tap water with a cartridge type water purifier (manufactured by Organo). The water purifier is a mixed bed type having a cation exchange resin and an anion exchange resin, and can remove both cations and anions present in tap water. When the conductivity of the deionized water obtained was measured with a portable conductivity meter (manufactured by Yokogawa Electric Corporation), it was 0.5 μS / cm, and the deionized water was pure water containing almost no ions. I found out.

上記実施例1において、洗浄水として上記の純水を用いた以外は同様にして、CMC−Hを製造した。その結果、各洗浄処理後において、洗浄液の除去は特に問題なく行うことができた。   In Example 1, CMC-H was produced in the same manner except that the pure water was used as the washing water. As a result, the cleaning liquid could be removed without any problem after each cleaning process.

実施例3〜5
セルロース原料として、一般的に購入できる日常品から、上質のキッチンタオル、並質のキッチンタオル、または再生パルプを含むトイレットペーパーを用いた。これらセルロース原料がセルロースのみからなるものと仮定し、各セルロース原料を構成する各グルコースユニットが有する3個の水酸基のうち2個をカルボキシメチルエーテル化ための反応を行なった。具体的には、各セルロース原料(162g)をそれぞれ別のポリエチレン袋に入れ、各セルロース原料を全て浸漬するに十分な量の水(162g)を加え、1時間静置した。次いで、モノクロロ酢酸(63g)を添加して、セルロース原料をよく揉み解して一晩静置した。次に、添加したモノクロロ酢酸と同モル分の水酸化ナトリウムを添加した。発熱が始まったら反応混合液を冷水で冷却した。発熱が収まってからポリエチレン袋を40℃の湯煎に1時間漬け、反応を進行せしめた。さらに湯煎のヒーターを切り、湯煎に漬けたまま一晩熟成させ、CMC−Naの水溶液を得た。
Examples 3-5
As a cellulose raw material, a high-quality kitchen towel, a normal-quality kitchen towel, or toilet paper containing recycled pulp was used from commonly available daily items. Assuming that these cellulose raw materials consist only of cellulose, a reaction for carboxymethyl etherification of two of the three hydroxyl groups of each glucose unit constituting each cellulose raw material was performed. Specifically, each cellulose raw material (162 g) was put in a separate polyethylene bag, a sufficient amount of water (162 g) was added to immerse all the cellulose raw materials, and left for 1 hour. Next, monochloroacetic acid (63 g) was added to thoroughly dissolve the cellulose raw material, and allowed to stand overnight. Next, sodium hydroxide in the same mole as the added monochloroacetic acid was added. When the exotherm began, the reaction mixture was cooled with cold water. After the exotherm had subsided, the polyethylene bag was soaked in a 40 ° C. water bath for 1 hour to allow the reaction to proceed. Further, the hot water heater was turned off and aged overnight while immersed in the hot water bath to obtain an aqueous solution of CMC-Na.

得られたCMC−Na水溶液を用いた以外は実施例1と同様にして、CMC−Hを製造した。その結果、何れのセルロース原料を用いた場合でも、各洗浄処理後において、洗浄液の除去は非常に効率的に行うことができた。これは、バイオマス由来のセルロース原料から得られたCMC−Naは、市販のCMC−Naとは異なり微細化や短繊維化といった処理が行われていないので比較的嵩高く、水切れ性が良いことによると考えられる。   CMC-H was produced in the same manner as in Example 1 except that the obtained CMC-Na aqueous solution was used. As a result, regardless of which cellulose raw material was used, the cleaning liquid could be removed very efficiently after each cleaning treatment. This is because CMC-Na obtained from a biomass-derived cellulose raw material is relatively bulky and has good water drainage because treatments such as miniaturization and fiber shortening are not performed unlike commercially available CMC-Na. it is conceivable that.

比較例2
上記実施例3〜5と同様にして、上質のキッチンタオルからCMC−Na水溶液を得た。得られたCMC−Na水溶液を用い、且つ洗浄液に炭酸ガスを吹き込まない以外は上記実施例1と同様にして、CMC−Hを製造した。
Comparative Example 2
In the same manner as in Examples 3 to 5, a CMC-Na aqueous solution was obtained from a high-quality kitchen towel. CMC-H was produced in the same manner as in Example 1 except that the obtained CMC-Na aqueous solution was used and carbon dioxide gas was not blown into the cleaning liquid.

その結果、各洗浄処理後においてCMC−Hは沈殿し難く、使用済み洗浄液の除去には非常に時間がかかった。また、最終の洗浄後における使用済み洗浄液には、炎色反応が観察された。   As a result, CMC-H hardly precipitated after each cleaning treatment, and it took a very long time to remove the used cleaning liquid. In addition, flame reaction was observed in the used cleaning liquid after the final cleaning.

以上で製造したCMC−Hを分析した結果を、表1に示す。   The results of analyzing the CMC-H produced above are shown in Table 1.

Figure 0005405786
Figure 0005405786

上述したように、比較例1〜2では、各洗浄処理後においてCMC−Hは沈殿し難く、使用済み洗浄液の除去には非常に時間がかかった。また、使用済み洗浄液に含まれるナトリウムイオンも、3回の洗浄では消失しなかった。このことは、ナトリウムイオンがCMC−Hに付着しているというよりも、−CO2NaとしてCMC−Hへ化学的に結合してしまい、CMC−Hの親水性を高めていることによると考えられる。また、比較例1〜2で得られたCMC−Hのナトリウムイオン含量は10,000ppmを超えている。 As described above, in Comparative Examples 1 and 2, it was difficult for CMC-H to precipitate after each cleaning treatment, and it took a very long time to remove the used cleaning liquid. In addition, sodium ions contained in the used cleaning solution did not disappear after three washes. This is thought to be due to the fact that sodium ions are chemically bonded to CMC-H as -CO 2 Na rather than adhering to CMC-H, thereby increasing the hydrophilicity of CMC-H. It is done. Moreover, the sodium ion content of CMC-H obtained in Comparative Examples 1 and 2 exceeds 10,000 ppm.

それに対して、本発明方法で製造されたCMC−Hに含まれているナトリウムイオン含量は1,000ppm以下であり、非常に高品質である。また、おそらく−CO2H基が維持されていることによると考えられるが、本発明方法で製造されたCMC−Hでは疎水性が十分に維持されており、固液分離処理の効率は極めて高い。よって、本発明方法によれば極めて高品質のCMC−Hを効率的に製造できることが実証された。 On the other hand, the sodium ion content contained in CMC-H produced by the method of the present invention is 1,000 ppm or less, which is very high quality. Moreover, it is considered that the —CO 2 H group is maintained, but the hydrophobicity is sufficiently maintained in the CMC-H produced by the method of the present invention, and the efficiency of the solid-liquid separation treatment is extremely high. . Therefore, it was demonstrated that extremely high quality CMC-H can be efficiently produced by the method of the present invention.

Claims (3)

酸型カルボキシメチルセルロースを製造するための方法であって、
カルボキシメチルセルロースの塩の水溶液と酸とを反応させることにより沈殿を得る工程、および、得られた沈殿を洗浄水で洗浄する工程を含み;且つ
洗浄水へ二酸化炭素を添加することを特徴とする製造方法。
A method for producing acid-type carboxymethylcellulose, comprising:
A process comprising: obtaining a precipitate by reacting an aqueous solution of a salt of carboxymethyl cellulose with an acid; and washing the resulting precipitate with washing water; and adding carbon dioxide to the washing water. Method.
水溶媒中、バイオマス由来のセルロース原料、塩基およびモノハロゲン化酢酸を反応させることにより、カルボキシメチルセルロースの塩の水溶液を得る工程を含む請求項1に記載の製造方法。   The manufacturing method of Claim 1 including the process of obtaining the aqueous solution of the salt of carboxymethylcellulose by making the cellulose raw material derived from biomass, a base, and monohalogenated acetic acid react in an aqueous solvent. 請求項1または2に記載の方法で製造され、アルカリ金属含有量が1000ppm以下であり、水分含量が40質量%以上、80質量%以下であり、且つ含有水における二酸化炭素濃度が0.01g/kg以上であることを特徴とする酸型カルボキシメチルセルロース。 Produced by the method according to claim 1 or 2 state, and are the 1000ppm or less A alkali metal content, moisture content 40% by mass or more and 80 mass% or less, and carbon dioxide concentration in water containing 0. acid type carboxymethyl cellulose, characterized in der Rukoto or 01G / kg.
JP2008241458A 2008-09-19 2008-09-19 Method for producing acid-type carboxymethylcellulose Active JP5405786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008241458A JP5405786B2 (en) 2008-09-19 2008-09-19 Method for producing acid-type carboxymethylcellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008241458A JP5405786B2 (en) 2008-09-19 2008-09-19 Method for producing acid-type carboxymethylcellulose

Publications (2)

Publication Number Publication Date
JP2010070686A JP2010070686A (en) 2010-04-02
JP5405786B2 true JP5405786B2 (en) 2014-02-05

Family

ID=42202780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008241458A Active JP5405786B2 (en) 2008-09-19 2008-09-19 Method for producing acid-type carboxymethylcellulose

Country Status (1)

Country Link
JP (1) JP5405786B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014197242A1 (en) * 2013-06-04 2014-12-11 Dow Global Technologies Llc Process for manufacturing lithium carboxymethyl cellulose
US10355280B2 (en) 2014-08-28 2019-07-16 Dai-Ichi Kogyo Seiyaku Co., Ltd. Manufacturing method of carboxymethyl cellulose salt for electrode of nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
EP3375933A4 (en) * 2015-11-13 2019-07-17 Nippon Paper Industries Co., Ltd. Method for dehydrating dispersion of chemically modified pulp
JP7021878B2 (en) * 2017-08-09 2022-02-17 旭化成株式会社 Base material for wet beauty sheet

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681762B2 (en) * 1991-04-12 1994-10-19 日本製紙株式会社 Method for producing acid-type carboxymethyl cellulose
JP3565614B2 (en) * 1994-05-11 2004-09-15 旭化成ケミカルズ株式会社 Aromatic polyamide molding and production method
JP3227058B2 (en) * 1994-06-08 2001-11-12 高砂熱学工業株式会社 Corrosion protection method for piping system connected to heat storage tank
JPH08231601A (en) * 1995-02-24 1996-09-10 Asahi Chem Ind Co Ltd Productiodn of soluble cellulose
JPH11246601A (en) * 1998-03-03 1999-09-14 Nippon Paper Industries Co Ltd Production of acid type carboxymethyl cellulose
JP4468665B2 (en) * 2003-07-10 2010-05-26 株式会社リコム Production method of plant chitosan
JP4880234B2 (en) * 2005-02-28 2012-02-22 三洋化成工業株式会社 Method for producing cellulose derivative
WO2007018174A1 (en) * 2005-08-09 2007-02-15 Kuraray Co., Ltd. Method for producing polyvinyl acetal resin
JP2008001603A (en) * 2006-06-20 2008-01-10 Teijin Ltd Method for preparing 6,6'-(alkylenedioxy)di-2-naphthoic acid

Also Published As

Publication number Publication date
JP2010070686A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
WO2021036156A1 (en) Eutectic solvent and application thereof in extracting lignin
Basri et al. Preparation and characterization of irradiated carboxymethyl sago starch-acid hydrogel and its application as metal scavenger in aqueous solution
Mulinari et al. Adsorption of sulphate ions by modification of sugarcane bagasse cellulose
JP5405786B2 (en) Method for producing acid-type carboxymethylcellulose
CN107138135A (en) A kind of ion blotting nano-cellulose sorbing material and its preparation method and application
CN102500339B (en) Reductive spherical cellulose adsorbent containing sulfinyl and preparation method thereof
Matsushita et al. The relationship between surface tension and the industrial performance of water-soluble polymers prepared from acid hydrolysis lignin, a saccharification by-product from woody materials
CA2625383A1 (en) Decomposition method of cellulose and production method of glucose
Sun et al. Clean production of corn stover pulp using KOH+ NH4OH solution and its kinetic during delignification
CN114957702A (en) Preparation method of high-activity humic acid
Sun et al. Adsorption efficiency of ordered mesoporous carboxyl-functionalized tube bundles in functional wood toward heavy metal ions: Optimization, performance and chemiluminescence reuse after adsorption
CN104910341A (en) Method for preparing lignin phenolic resin adhesive by treating papermaking waste liquid with microwave-CuO
CN102417564B (en) Water-retaining agent and preparation method thereof by papermaking sludge
US20230257319A1 (en) Methods to produce products from anaerobic digestion of poultry litter
WO2014091512A1 (en) Plastic materials containing products isolated from residual biomass and fossils, and their sulphonated derivatives
CN102775525A (en) Preparation method and application of cross-linking type hemicellulose
CN103613689B (en) Hemicellulose carboxymethyl-modification method and application in waste liquid produced by a kind of viscose fiber
JP2012214432A (en) Method for producing high-purity lignin
JPWO2019026825A1 (en) Lignin production method
CN102181294B (en) Water-retaining agent material for greening deserts and preparation method thereof
JPS6162573A (en) Tannin adhesive composition
CN105536821B (en) The preparation method of the dual purpose catalyst of methanol high-selectivity oxidation dimethoxymethane
CN102219224B (en) Method for preparing high-dispersion white carbon black by using acetic acid-contained industrial waste water
LU500839B1 (en) Method of preparing composite flame retardant from phosphorus tailings
CN112661249B (en) Degradable flocculant and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

R150 Certificate of patent or registration of utility model

Ref document number: 5405786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250