JP5405377B2 - Photocurable resin composition for optical lens and optical lens using the same - Google Patents

Photocurable resin composition for optical lens and optical lens using the same Download PDF

Info

Publication number
JP5405377B2
JP5405377B2 JP2010084867A JP2010084867A JP5405377B2 JP 5405377 B2 JP5405377 B2 JP 5405377B2 JP 2010084867 A JP2010084867 A JP 2010084867A JP 2010084867 A JP2010084867 A JP 2010084867A JP 5405377 B2 JP5405377 B2 JP 5405377B2
Authority
JP
Japan
Prior art keywords
component
resin composition
photocurable resin
ethyl
optical lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010084867A
Other languages
Japanese (ja)
Other versions
JP2011132487A (en
Inventor
友紀子 肥後
弘司 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2010084867A priority Critical patent/JP5405377B2/en
Priority to EP10166145A priority patent/EP2264081B1/en
Priority to CN2010102085519A priority patent/CN101928381A/en
Priority to TW099119988A priority patent/TWI516517B/en
Priority to US12/818,727 priority patent/US9056941B2/en
Priority to KR1020100057985A priority patent/KR20100136434A/en
Publication of JP2011132487A publication Critical patent/JP2011132487A/en
Application granted granted Critical
Publication of JP5405377B2 publication Critical patent/JP5405377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光学的応用を目的とする透明樹脂において、光信号を低損失で伝送する高い透明性を有し、かつ優れた硬化性を有する光学レンズ用光硬化型樹脂組成物およびそれを用いた光学レンズに関するものであるThe present invention relates to a photocurable resin composition for an optical lens having high transparency that transmits an optical signal with low loss and excellent curability in a transparent resin for optical applications, and uses the same. it relates have optical lens.

近年、光学レンズや光記録メディア等の光学部品においては、高密度化、高耐熱化、安価生産等が要求され、これらの要求を満たすべく、例えば、成形用加工型を樹脂材料に押し当て、特定の微細パターンもしくは凹凸形状物を形成する光学的立体造形物(光学部品)の形成方法が検討されている(例えば、特許文献1参照)。   In recent years, in optical components such as optical lenses and optical recording media, high density, high heat resistance, low-cost production, etc. are required, and in order to satisfy these requirements, for example, a molding die is pressed against a resin material, A method of forming an optical three-dimensional modeled object (optical component) that forms a specific fine pattern or uneven shape has been studied (for example, see Patent Document 1).

このような光学的立体造形物の形成方法は、寸法安定性の観点から、2種類の方式がある。すなわち、(1)熱可塑性材料を加熱溶融させて加工型をプレス圧接し、冷却することにより特定形状の成形物を得る方式、(2)光で硬化する硬化型樹脂に成形加工型を押し当てた後、成形加工型もしくは基板を通して光照射することによって、特定形状の光学的立体造形物を得る方式である。   There are two types of methods for forming such an optical three-dimensional model from the viewpoint of dimensional stability. That is, (1) A method in which a thermoplastic material is heated and melted, press-contacting the working die, and a molded product having a specific shape is obtained by cooling. (2) The molding die is pressed against a curable resin that is cured by light. After that, it is a method of obtaining an optical three-dimensional object having a specific shape by irradiating light through a molding die or a substrate.

一般に、上記2種類の方式は、要求される耐熱温度により選択され、例えば、耐熱性が要求されない分野においては、ポリメチルメタクリレート(PMMA)やポリカーボネート等の透明性の熱可塑性樹脂を用いる、上記(1)の方式が広く用いられる。一方、ハンダリフローやオートクレーブ等の耐熱性が要求される分野においては、エポキシ樹脂を主成分とする光硬化型樹脂の適応が検討され、上記(2)の方式が実用化されつつある。   In general, the above-mentioned two types of methods are selected according to the required heat-resistant temperature. For example, in a field where heat resistance is not required, a transparent thermoplastic resin such as polymethyl methacrylate (PMMA) or polycarbonate is used. The method 1) is widely used. On the other hand, in the field where heat resistance such as solder reflow and autoclave is required, application of a photocurable resin mainly composed of an epoxy resin has been studied, and the method (2) is being put into practical use.

そして、上記(2)の方式による場合、光学的立体造形物の作製において、短時間硬化性を有する材料が用いられ、得られた光学的立体造形物には、高い透明性とともに、優れた機械物性が求められる。   In the case of the method (2), a material having a short-time curability is used in the production of the optical three-dimensional object, and the obtained optical three-dimensional object has a high transparency and an excellent machine. Physical properties are required.

また、上記(2)の方式に用いられる光硬化型樹脂組成物には、従来、硬化性、透明性、機械強度、耐熱分解性の点に優れる、アンチモン化合物系の光重合開始剤が多く用いられているが、アンチモン化合物は毒性が高く、環境負荷物質として懸念視されているため、近年では、より環境に優しい非アンチモン系の光重合開始剤を用いた材料が注目されている(例えば、特許文献2参照)。   The photocurable resin composition used in the above method (2) has conventionally used many antimony compound-based photopolymerization initiators that are excellent in curability, transparency, mechanical strength, and heat decomposability. However, since antimony compounds are highly toxic and are considered as environmentally hazardous substances, in recent years, materials using non-antimony photopolymerization initiators that are more environmentally friendly have attracted attention (for example, Patent Document 2).

特許第3926380号公報Japanese Patent No. 3926380 WO2005/116038公報WO2005 / 116038

しかしながら、一般に、非アンチモン系の光重合開始剤を用いた場合、得られる硬化物の機械物性や熱分解温度は、アンチモン系の光重合開始剤を用いて得られる硬化物に比べ低下するため、満足のいくものが得られないといった問題がある。また、上記特許文献2に開示の光重合開始剤は、このような問題を解決しうる非アンチモン系光重合開始剤として近年開発されたものであるが、透明性(あるいは耐熱変色性)と光硬化性とを両立させることが困難なため、未だ研究の余地がある。   However, generally, when a non-antimony photopolymerization initiator is used, the mechanical properties and thermal decomposition temperature of the resulting cured product are lower than those obtained using an antimony photopolymerization initiator. There is a problem that satisfactory products cannot be obtained. The photopolymerization initiator disclosed in Patent Document 2 has been recently developed as a non-antimony-based photopolymerization initiator that can solve such problems. However, it has transparency (or heat discoloration) and light. There is still room for research because it is difficult to achieve both curability.

本発明は、このような事情に鑑みなされたもので、環境負荷が少なく、短時間硬化性を有し、その硬化物が、耐熱変色性に優れ、光学レンズ用の成形材料として有用な、光学レンズ用光硬化型樹脂組成物およびそれを用いた光学レンズの提供をその目的とする。 The present invention has been made in view of such circumstances, less environmental load, has a short curing, the cured product is excellent in heat discoloration resistance, and a molded materials for optical lenses It is an object of the present invention to provide a useful photocurable resin composition for optical lenses and an optical lens using the same.

上記の目的を達成するため、本発明は、下記の(A)および(B)成分のエポキシ樹脂とともに、下記の(C)および(D)成分を含有する光硬化型樹脂組成物であって、(A)〜(C)成分の総重量に対し、(A)成分の割合が10〜75重量%,(B)成分の割合が20〜85重量%,(C)成分の割合が3〜30重量%の範囲であり、(D)成分の割合が、(A)〜(C)成分の総重量100重量部に対して0.01〜7重量部の範囲である光学レンズ用光硬化型樹脂組成物を第1の要旨とする。
(A)下記の一般式(1)で表される直鎖型エポキシ樹脂

Figure 0005405377
(B)1分子中に2個以上のエポキシ基を有する脂環式エポキシ樹脂。
(C)1分子中に1個以上のオキセタニル基を有するオキセタン化合物。
(D)フッ化リン系光重合開始剤。 In order to achieve the above object, the present invention is a photocurable resin composition containing the following components (C) and (D) together with the following epoxy resins (A) and (B) : The proportion of the component (A) is 10 to 75% by weight, the proportion of the component (B) is 20 to 85% by weight, and the proportion of the component (C) is 3 to 30 based on the total weight of the components ( A) to (C). Ri range der weight%, (D) the ratio of component, (a) ~ (C) total weight 100 parts by weight with respect to the light curing range der Ru optical lens 0.01 to 7 parts by weight of component The mold resin composition is the first gist.
(A) Linear epoxy resin represented by the following general formula (1)
Figure 0005405377
(B) An alicyclic epoxy resin having two or more epoxy groups in one molecule.
(C) An oxetane compound having one or more oxetanyl groups in one molecule.
(D) Phosphorus fluoride photopolymerization initiator.

また、本発明は、上記光学レンズ用光硬化型樹脂組成物を用いてなる光学レンズを第2の要旨とする。 Moreover, this invention makes the 2nd summary the optical lens which uses the said photocurable resin composition for optical lenses .

すなわち、本発明者らは、前記課題を解決するため鋭意研究を重ねた結果、上記一般式(1)で表される直鎖型エポキシ樹脂(A成分)と、1分子中に2個以上のエポキシ基を有する脂環式エポキシ樹脂(B成分)とを特定の割合で併用することにより、硬化性の向上を図ることができることを見いだし、さらに、これらのエポキシ樹脂とともに、1分子中に1個以上のオキセタニル基を有するオキセタン化合物(C成分)を特定量と、フッ化リン系光重合開始剤(D成分)とを用いると、短時間硬化性と低着色性を併せ持つことができ、しかも機械物性の向上をも図ることができることを突き止めた。そして、光重合開始剤として非アンチモン系のものを使用しているため、毒性が低く、かつ上記各成分からなる樹脂組成物の光硬化物は、良好な硬化性と優れた耐熱変色性とを有し、所期の目的が達成できることを見いだし、本発明に到達した。 That is, as a result of intensive studies to solve the above problems, the present inventors have found that the linear epoxy resin (component A) represented by the general formula (1) and two or more in one molecule It has been found that by using an alicyclic epoxy resin having an epoxy group (component B) in combination at a specific ratio, it is possible to improve the curability, and together with these epoxy resins, one per molecule. When a specific amount of the oxetane compound (C component) having the above oxetanyl group and a phosphorus fluoride photopolymerization initiator (D component) are used, both short-time curability and low colorability can be obtained. It has been found that physical properties can be improved. And since a non-antimony type photoinitiator is used as a photopolymerization initiator, the photocured product of the resin composition consisting of the above components has low curability and excellent heat discoloration. It has been found that the intended purpose can be achieved, and the present invention has been achieved.

このように、本発明の光学レンズ用光硬化型樹脂組成物は、上記一般式(1)で表される直鎖型エポキシ樹脂(A成分)と、1分子中に2個以上のエポキシ基を有する脂環式エポキシ樹脂(B成分)とを特定の割合で併用することにより、硬化性の向上を図ることができる。そして、非アンチモン系光重合開始剤を使用のため毒性が低く、かつオキセタン化合物(C成分)を特定量含むことにより、速硬化性の効果と、ガラス転移温度や耐熱温度の上昇などの機械物性の向上効果が得られる。また、オキセタン化合物(C成分)を特定量用いることによって硬化性が促進されるので、変色性に影響を与えるフッ化リン系光重合開始剤(D成分)の量を低減させることができるため、加熱処理後も高い透明性を実現することができる。そのため、環境負荷の低減にもつながり、また、ハンダリフロー時の熱による変色の問題をも解消することができ、信頼性向上につながる。さらに、上記樹脂組成物は、ガラス等の透明基板上で硬化させることができ、上記基板と一体化させることにより、高品質なハイブリッドレンズとして製造することも可能である。したがって、本発明の光学レンズ用光硬化型樹脂組成物は、信頼性の高い光学レンズを得ることができるため有用である。 Thus, the photocurable resin composition for an optical lens of the present invention has a linear epoxy resin (component A) represented by the general formula (1) and two or more epoxy groups in one molecule. By using the alicyclic epoxy resin (component B) in combination at a specific ratio , the curability can be improved. And because it uses a non-antimony photopolymerization initiator, it has low toxicity and contains a specific amount of oxetane compound (component C), so it has a fast curing effect and mechanical properties such as an increase in glass transition temperature and heat resistance temperature. The improvement effect is obtained. Moreover, since sclerosis | hardenability is accelerated | stimulated by using a specific amount of oxetane compounds (C component), since the quantity of the phosphorus fluoride photoinitiator (D component) which affects discoloration can be reduced, High transparency can be achieved even after heat treatment. As a result, environmental load can be reduced, and the problem of discoloration due to heat during solder reflow can be solved, leading to improved reliability. Furthermore, the resin composition can be cured on a transparent substrate such as glass, and can be manufactured as a high-quality hybrid lens by being integrated with the substrate. Therefore, the photocurable resin composition for optical lenses of the present invention is useful because a highly reliable optical lens can be obtained.

そして、上記光学レンズ用光硬化型樹脂組成物を用いてなる本発明の光学レンズは、ハンダリフロー時の熱によっても変色が少ないので、ハンダリフローにより一括搭載する際に有利に用いることができる。 The optical lens of the present invention obtained by using the above-mentioned optical lens photocurable resin composition, since less discoloration by heat during solder reflow, can be advantageously used in bulk mounted by solder reflow.

つぎに、本発明を実施するための形態について説明する。   Next, an embodiment for carrying out the present invention will be described.

本発明の光学レンズ光硬化型樹脂組成物(以下、「光硬化型樹脂組成物」と略す。)は、上記特定の直鎖型エポキシ樹脂(A成分)と、1分子中に2個以上のエポキシ基を有する脂環式エポキシ樹脂(B成分)と、1分子中に1個以上のオキセタニル基を有するオキセタン化合物(C成分)と、フッ化リン系光重合開始剤(D成分)とを用いて得ることができ、通常、液状の樹脂組成物として用いられる。 The photo-curing resin composition for optical lenses of the present invention (hereinafter abbreviated as “photo-curing resin composition”) includes two or more specific linear epoxy resins (component A) and one molecule. An alicyclic epoxy resin having an epoxy group (component B), an oxetane compound having one or more oxetanyl groups in one molecule (component C), and a phosphorous fluoride-based photopolymerization initiator (component D). Usually, it is used as a liquid resin composition.

上記特定の直鎖型エポキシ樹脂(A成分)としては、下記の一般式(1)で表される直鎖型エポキシ樹脂が用いられ、これを使用することにより、硬化時のアウトガスの発生量を低減することができる。   As the specific linear epoxy resin (component A), a linear epoxy resin represented by the following general formula (1) is used. By using this, the amount of outgas generated during curing can be reduced. Can be reduced.

Figure 0005405377
Figure 0005405377

上記一般式(1)において、mは2〜10の整数を示すが、硬化性および流動性の観点から、mは2〜6の整数が好ましい。   In the said General formula (1), m shows the integer of 2-10, However, m is an integer of 2-6 from a viewpoint of sclerosis | hardenability and fluidity | liquidity.

上記特定の直鎖型エポキシ樹脂(A成分)の含有量(重量割合)は、光硬化型樹脂組成物に含まれる全樹脂成分(A〜C成分の総重量)中の10〜75重量%(以下「%」と略す)の範囲であり、好ましくは15〜70%の範囲であり、最も好ましくは20〜65%の範囲である。すなわち、上記特定の直鎖型エポキシ樹脂(A成分)の含有量が上記範囲未満であると、接着力は向上するが、硬化時のアウトガスの発生量が増加する傾向がみられ、逆に上記範囲を超えると、硬化性が悪くなり、作業性が低下する傾向がみられるからである。 The content (weight ratio) of the specific linear epoxy resin (component A) is 10 to 75% by weight (total weight of components A to C) included in the photocurable resin composition ( (Hereinafter abbreviated as “%”) , preferably 15 to 70%, and most preferably 20 to 65%. That is, when the content of the specific linear epoxy resin (component A) is less than the above range, the adhesive force is improved, but the generation amount of outgas at the time of curing tends to increase. This is because, if the range is exceeded, curability deteriorates and workability tends to be reduced.

上記特定の直鎖型エポキシ樹脂(A成分)は、例えば、両末端にビニル基を有する化合物を酸化することによって得ることができる。上記酸化反応は、例えば、過安息香酸等の有機過酸化物による直接酸化や、ヘテロポリ酸を触媒とした過酸化水素や気体酸素による酸化等により行うこともできる。   The specific linear epoxy resin (component A) can be obtained, for example, by oxidizing a compound having vinyl groups at both ends. The oxidation reaction can also be performed by, for example, direct oxidation with an organic peroxide such as perbenzoic acid, oxidation with hydrogen peroxide or gaseous oxygen using a heteropolyacid as a catalyst, and the like.

本発明においては、上記特定の直鎖型エポキシ樹脂(A成分)とともに、1分子中に2個以上のエポキシ基を有する脂環式エポキシ樹脂(B成分)が用いられ、両者を併用することにより、硬化性の向上を図ることができる。上記脂環式エポキシ樹脂(B成分)としては、反応性が高く、透明なものを用いることが好ましく、特に六員環を有する脂環式エポキシ樹脂が構造的に安定で好ましい。上記脂環式エポキシ樹脂(B成分)は、透明性、高粘性、反応性の観点から、具体的には、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、3,4−エポキシシクロヘキシルエチル−3,4−エポキシシクロヘキサンカルボキシレート等が好ましい。これらは単独でもしくは二種以上併せて用いられる。   In the present invention, an alicyclic epoxy resin (B component) having two or more epoxy groups in one molecule is used together with the specific linear epoxy resin (A component). Thus, the curability can be improved. As said alicyclic epoxy resin (B component), it is preferable to use a highly reactive and transparent thing, and especially the alicyclic epoxy resin which has a 6-membered ring is structurally stable and preferable. From the viewpoint of transparency, high viscosity, and reactivity, the alicyclic epoxy resin (component B) is specifically 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4- Epoxycyclohexylethyl-3,4-epoxycyclohexanecarboxylate and the like are preferable. These may be used alone or in combination of two or more.

上記脂環式エポキシ樹脂(B成分)の含有量(重量割合)は、光硬化型樹脂組成物に含まれる全樹脂成分(A〜C成分の総重量)中の20〜85%の範囲であり、好ましくは25〜75%の範囲である。すなわち、上記脂環式エポキシ樹脂(B成分)の含有量が、上記範囲から外れると、硬化性の低下や、硬化物の耐着色性が悪化するおそれがあるからである。 The content (weight ratio) of the alicyclic epoxy resin (component B) is in the range of 20 to 85% in the total resin components (total weight of components A to C) contained in the photocurable resin composition . , preferably from 25 to 75%. That is, if the content of the alicyclic epoxy resin (component B) is out of the above range, the curability may deteriorate and the coloration resistance of the cured product may deteriorate.

上記(A)および(B)成分のエポキシ樹脂とともに用いられるオキセタン化合物(C成分)には、先に述べたように、1分子中に1個以上のオキセタニル基を有する化合物が用いられる。このようなオキセタン化合物としては、例えば、3−エチル−3{[(3−エチルオキセタン−3−イル)メトキシ]メチル}オキセタン、1,4−ビス[(3−エチル−3−オキセタニルメトキシ)メチル]ベンゼン、ジ[2−(3−オキセタニル)ブチル]エーテル、3−エチル−3−フェノキシメチルオキセタン、3−エチル−3−ヒドロキシメチルオキセタン、3−エチル−3(4−ヒドロキシブチル)オキシメチルオキセタン、1,4−ビス[(3−エチルオキセタン−3−イル)メトキシ]ベンゼン、1,3−ビス[(3−エチルオキセタン−3−イル)メトキシ]ベンゼン、1,2−ビス[(3−エチルオキセタン−3−イル)メトキシ]ベンゼン、4,4’−ビス[(3−エチルオキセタン−3−イル)メトキシ]ビフェニル、2,2’−ビス[(3−エチル−3−オキセタニル)メトキシ]ビフェニル、3,3’,5,5’−テトラメチル[4,4’−ビス(3−エチルオキセタン−3−イル)メトキシ]ビフェニル、2,7−ビス[(3−エチルオキセタン−3−イル)メトキシ]ナフタレン、1,6−ビス[(3−エチルオキセタン−3−イル)メトキシ]−2,2,3,3,4,4,5,5−オクタフルオロヘキサン、3(4),8(9)−ビス[(1−エチル−3−オキセタニル)メトキシメチル]−トリシクロ[5.2.1.2.6]デカン、1,2−ビス{[2−(1−エチル−3−オキセタニル)メトキシ]エチルチオ}エタン、4,4’−ビス[(1−エチル−3−オキセタニル)メチル]チオジベンゼンチオエーテル、2,3−ビス[(3−エチルオキセタン−3−イル)メトキシメチル]ノルボルナン、2−エチル−2−[(3−エチルオキセタン−3−イル)メトキシメチル]−1,3−O−ビス[(1−エチル−3−オキセタニル)メチル]−プロパン−1,3−ジオール、2,2−ジメチル−1,3−O−ビス[(3−エチルオキセタン−3−イル)メチル]−プロパン−1,3−ジオール、2−ブチル−2−エチル−1,3−O−ビス[(3−エチルオキセタン−3−イル)メチル]−プロパン−1,3−ジオール、1,4−O−ビス[(3−エチルオキセタン−3−イル)メチル]−ブタン−1,4−ジオール、2,4,6−O−トリス[(3−エチルオキセタン−3−イル)メチル]シアヌル酸等があげられる。これらは単独でもしくは二種以上併せて用いられる。なかでも、硬化促進性や耐着色性等の観点から、3−エチル−3(4−ヒドロキシブチル)オキシメチルオキセタン、3−エチル−3−ヒドロキシメチルオキセタン、3−エチル−3{[(3−エチルオキセタン−3−イル)メトキシ]メチル}オキセタン、1,4−ビス[(3−エチル−3−オキセタニルメトキシ)メチル]ベンゼンが好ましく用いられる。   As described above, a compound having one or more oxetanyl groups in one molecule is used for the oxetane compound (component C) used together with the epoxy resins of the components (A) and (B). Examples of such oxetane compounds include 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane and 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl. Benzene, di [2- (3-oxetanyl) butyl] ether, 3-ethyl-3-phenoxymethyloxetane, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3 (4-hydroxybutyl) oxymethyloxetane 1,4-bis [(3-ethyloxetane-3-yl) methoxy] benzene, 1,3-bis [(3-ethyloxetane-3-yl) methoxy] benzene, 1,2-bis [(3- Ethyloxetane-3-yl) methoxy] benzene, 4,4′-bis [(3-ethyloxetane-3-yl) methoxy] biphenyl 2,2′-bis [(3-ethyl-3-oxetanyl) methoxy] biphenyl, 3,3 ′, 5,5′-tetramethyl [4,4′-bis (3-ethyloxetane-3-yl) Methoxy] biphenyl, 2,7-bis [(3-ethyloxetane-3-yl) methoxy] naphthalene, 1,6-bis [(3-ethyloxetane-3-yl) methoxy] -2,2,3,3 , 4,4,5,5-octafluorohexane, 3 (4), 8 (9) -bis [(1-ethyl-3-oxetanyl) methoxymethyl] -tricyclo [5.2.2.1.2.6]. Decane, 1,2-bis {[2- (1-ethyl-3-oxetanyl) methoxy] ethylthio} ethane, 4,4′-bis [(1-ethyl-3-oxetanyl) methyl] thiodibenzene thioether, 2 , 3-bis [(3- Tyloxetane-3-yl) methoxymethyl] norbornane, 2-ethyl-2-[(3-ethyloxetane-3-yl) methoxymethyl] -1,3-O-bis [(1-ethyl-3-oxetanyl) Methyl] -propane-1,3-diol, 2,2-dimethyl-1,3-O-bis [(3-ethyloxetane-3-yl) methyl] -propane-1,3-diol, 2-butyl- 2-ethyl-1,3-O-bis [(3-ethyloxetane-3-yl) methyl] -propane-1,3-diol, 1,4-O-bis [(3-ethyloxetane-3-yl ) Methyl] -butane-1,4-diol, 2,4,6-O-tris [(3-ethyloxetane-3-yl) methyl] cyanuric acid and the like. These may be used alone or in combination of two or more. Among these, from the viewpoints of curing acceleration and color resistance, 3-ethyl-3 (4-hydroxybutyl) oxymethyloxetane, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3 {[((3- Ethyloxetane-3-yl) methoxy] methyl} oxetane and 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene are preferably used.

上記(C)成分のオキセタン化合物の含有量(重量割合)は、硬化性、接着性の観点から、全樹脂成分(A〜C成分の総重量)中の3〜30%の範囲であり、好ましくは3〜20%の範囲である。 The content of the oxetane compound of the component (C) (weight ratio), the curable, from the viewpoint of adhesiveness, Ri 3% to 30% range der in all the resin components (total weight of A~C component), Preferably it is 3 to 20% of range.

つぎに、上記(A)〜(C)成分とともに用いられるフッ化リン系光重合開始剤(D成分)としては、好ましくは、下記の一般式(2)で表されるアニオン成分と、カチオン成分とからなるオニウム塩が用いられる。なお、一般式(2)において、nは、下記に示すように、1〜6の整数であるが、光硬化性の観点から、好ましくはn=1〜5の整数であり、より好ましくは、n=1〜4の整数である。そして、このようなオニウム塩には、具体的には、芳香族スルホニウム塩、芳香族ヨードニウム塩、芳香族スルホキソニウム塩等が用いられる。これらは単独でもしくは二種以上併せて用いられる。なかでも、光硬化性の観点から、芳香族スルホニウム塩が好ましい。さらに、耐熱分解性や安定した機械物性を向上させるためには、一般式(2)においてn≠6であるフッ化リン系光重合開始剤を用いることが好ましい。   Next, as a phosphorus fluoride type photoinitiator (D component) used with said (A)-(C) component, Preferably, the anion component represented by following General formula (2), and a cation component An onium salt consisting of In the general formula (2), n is an integer of 1 to 6 as shown below, but from the viewpoint of photocurability, n is preferably an integer of 1 to 5, and more preferably, n is an integer of 1 to 4. As such an onium salt, specifically, an aromatic sulfonium salt, an aromatic iodonium salt, an aromatic sulfoxonium salt, or the like is used. These may be used alone or in combination of two or more. Of these, aromatic sulfonium salts are preferred from the viewpoint of photocurability. Furthermore, in order to improve the thermal decomposition resistance and stable mechanical properties, it is preferable to use a phosphorus fluoride photopolymerization initiator in which n ≠ 6 in the general formula (2).

Figure 0005405377
Figure 0005405377

上記特定の光重合開始剤(D成分)の配合割合は、上記(A)〜(C)成分の総重量(光硬化型樹脂組成物に含まれる全樹脂成分)100重量部(以下、「部」と略す)に対して、0.01〜7部の範囲であり、好ましくは0.1〜5部の範囲である。すなわち、上記特定の光重合開始剤(D成分)の配合割合が上記範囲未満であると、硬化性が悪化する傾向がみられ、逆に上記範囲を超えると、硬化性は向上するが、硬化物の耐着色性が損なわれる可能性があるからである。なお、上記光重合開始剤は、プロピレンカーボネート等の有機溶剤に希釈し、配合してもよい。 The mixing ratio of the specific photopolymerization initiator (component D) is 100 parts by weight (hereinafter referred to as “parts”) of the total weight of the components (A) to (C) (total resin components contained in the photocurable resin composition). "Is abbreviated as") in the range of 0.01 to 7 parts , preferably in the range of 0.1 to 5 parts. That is, when the mixing ratio of the specific photopolymerization initiator (D component) is less than the above range, curability tends to be deteriorated. This is because the coloring resistance of the product may be impaired. The photopolymerization initiator may be diluted and mixed in an organic solvent such as propylene carbonate.

なお、本発明の光硬化型樹脂組成物には、上記(A)〜(D)成分以外に、必要に応じ、アントラセン,フェナントレン,カルバゾール,ナフタレン等の光増感剤、さらに、シラン系あるいはチタン系の接着付与剤、合成ゴムやシリコーン化合物等の可撓性付与剤、酸化防止剤、消泡剤、無機充填剤等を適宜に配合することができる。   In addition to the above components (A) to (D), the photocurable resin composition of the present invention includes photosensitizers such as anthracene, phenanthrene, carbazole, and naphthalene, as well as silane or titanium as necessary. System-based adhesion imparting agents, flexibility imparting agents such as synthetic rubbers and silicone compounds, antioxidants, antifoaming agents, inorganic fillers, and the like can be appropriately blended.

本発明の光硬化型樹脂組成物は、例えば、上記特定の直鎖型エポキシ樹脂(A成分)と、1分子中に2個以上のエポキシ基を有する脂環式エポキシ樹脂(B成分)と、1分子中に1個以上のオキセタニル基を有するオキセタン化合物(C成分)と、フッ化リン系光重合開始剤(D成分)と、さらに必要に応じてその他の添加剤を所定の割合で配合し、混合することにより作製することができる。   The photocurable resin composition of the present invention includes, for example, the specific linear epoxy resin (component A), an alicyclic epoxy resin (component B) having two or more epoxy groups in one molecule, An oxetane compound having one or more oxetanyl groups in one molecule (component C), a phosphorous fluoride-based photopolymerization initiator (component D), and other additives as required are blended at a predetermined ratio. , And can be prepared by mixing.

このようにして得られる本発明の光硬化型樹脂組成物の透過率は、25℃雰囲気下で、通常可視光領域(400〜800nm)および赤外領域で95%以上が好ましく、特に好ましくは98%以上である。なお、上記透過率は、分光光度計により測定することができる。   The transmittance of the thus obtained photocurable resin composition of the present invention is preferably 95% or more, particularly preferably 98% in the visible light region (400 to 800 nm) and the infrared region in an atmosphere at 25 ° C. % Or more. The transmittance can be measured with a spectrophotometer.

本発明の光硬化型樹脂組成物は、例えば、つぎのようにして硬化させることができる。すなわち、ガラス等の透明基板上にポッティングし、その上から所望の成型加工型を押し当てることで成型加工型へ光硬化型樹脂組成物を充填させ、そこへ光照射を行うことにより硬化させることができる。さらに必要に応じて、所定の温度で加熱処理を行ってもよく、加熱処理の条件としては、80〜170℃で1時間程度が好ましい。上記光照射には、例えば、装置としてUVランプ等を用いることができ、照射量としては2000〜200000mJ/cm2 が好ましい。すなわち、照射量が2000mJ/cm2 未満では、硬化不充分のために、基板上に所望の硬化物形状が得られない可能性があり、逆に200000mJ/cm2 を超えると、過度の照射による光劣化が生じ、その後の加熱処理等により着色するおそれがあるからである。 The photocurable resin composition of the present invention can be cured, for example, as follows. That is, it is potted on a transparent substrate such as glass, and a desired molding die is pressed from above to fill the molding die with the photocurable resin composition, and then cured by light irradiation there. Can do. Further, if necessary, the heat treatment may be performed at a predetermined temperature, and the heat treatment condition is preferably 80 to 170 ° C. for about 1 hour. For the light irradiation, for example, a UV lamp or the like can be used as an apparatus, and the irradiation amount is preferably 2000 to 200000 mJ / cm 2 . That is, if the irradiation amount is less than 2000 mJ / cm 2, there is a possibility that a desired cured product shape cannot be obtained on the substrate due to insufficient curing. Conversely, if it exceeds 200,000 mJ / cm 2 , it is caused by excessive irradiation. This is because light deterioration may occur and coloring may occur due to subsequent heat treatment or the like.

なお、本発明の光硬化型樹脂組成物は、上記のような成型加工型によらず、シート状に成形することもできる。そして、これに、上記のようにUVランプ等を用いて光照射し、硬化させる。なお、上記光照射は、例えば、光源として、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ等を用いて、行うことができる。   In addition, the photocurable resin composition of this invention can also be shape | molded in a sheet form irrespective of the above shaping | molding molds. Then, it is irradiated with light using a UV lamp or the like as described above and cured. The light irradiation can be performed using, for example, a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, or the like as a light source.

本発明の光硬化型樹脂組成物は、光学レンズ用の成形材料に用いられるものであるが、光学部品固定用光硬化型接着剤等に用いることできる。 Photocurable resin composition of this invention are those used for the molding material for optical lenses, it can also be used for optical parts fixing photocurable adhesive.

そして、本発明の光学レンズ(樹脂硬化体)のガラス転移温度は、温度サイクル性および耐熱性の観点より、好ましくは100℃以上、より好ましくは120℃以上である。すなわち、ガラス転移温度が上記温度未満の場合、場合によっては、温度サイクルによる熱収縮量が増大し、例えば、反射防止コート材との熱膨張係数のミスマッチにより反射防止コート材の剥離やクラックが発生する等のおそれがあるからである。 The glass transition temperature of the optical lens (cured resin body) of the present invention is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, from the viewpoints of temperature cycleability and heat resistance. That is, when the glass transition temperature is lower than the above temperature, the amount of thermal shrinkage due to the temperature cycle increases in some cases, and for example, peeling or cracking of the antireflection coating material occurs due to mismatch of the thermal expansion coefficient with the antireflection coating material. This is because there is a risk of doing so.

そして、本発明の光硬化型樹脂組成物およびそれを用いた光学レンズは、ハンダリフロー時の熱によっても変色が少ないので、ハンダリフローにより一括搭載する際に有利に用いることができる。 And since the photocurable resin composition of this invention and an optical lens using the same have little discoloration by the heat | fever at the time of solder | pewter reflow, it can be used advantageously when carrying out package mounting by solder | pewter reflow.

つぎに、実施例について、比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。   Next, examples will be described together with comparative examples. However, the present invention is not limited to these examples.

まず、実施例および比較例に先立ち、下記に示す各材料を準備した。   First, prior to Examples and Comparative Examples, the following materials were prepared.

〔エポキシ樹脂(a)(A成分)〕
前記一般式(1)中、R1 およびR2 がフッ素原子で、m=4で表される直鎖型エポキシ樹脂
[Epoxy resin (a) (component A)]
In the general formula (1), R 1 and R 2 are fluorine atoms, and m = 4.

〔エポキシ樹脂(b)(B成分)〕
下記の化学式(3)で表される脂環式エポキシ樹脂
[Epoxy resin (b) (component B)]
Alicyclic epoxy resin represented by the following chemical formula (3)

Figure 0005405377
Figure 0005405377

〔オキセタン化合物(a)(C成分)〕
3−エチル−3{[(3−エチルオキセタン−3−イル)メトキシ]メチル}オキセタン
[Oxetane compound (a) (component C)]
3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane

〔オキセタン化合物(b)(C成分)〕
3−エチル−3−ヒドロキシメチルオキセタン
[Oxetane compound (b) (component C)]
3-ethyl-3-hydroxymethyloxetane

〔オキセタン化合物(c)(C成分)〕
1,4−ビス[(3−エチル−3−オキセタニルメトキシ)メチル]ベンゼン
[Oxetane compound (c) (component C)]
1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene

〔オキセタン化合物(d)(C成分)〕
3−エチル−3(4−ヒドロキシブチル)オキシメチルオキセタン
[Oxetane compound (d) (component C)]
3-ethyl-3 (4-hydroxybutyl) oxymethyloxetane

〔光重合開始剤(a)(D成分)〕
下記の構造式(4)で表される、リン系アニオン成分〔前記一般式(2)中、n=4、X=−CF2 CF3 〕と、カチオン成分とからなるトリアリールスルホニウム塩系光重合開始剤
[Photopolymerization initiator (a) (component D)]
A triarylsulfonium salt-based light comprising a phosphorus-based anion component represented by the following structural formula (4) [in the general formula (2), n = 4, X = -CF 2 CF 3 ] and a cation component Polymerization initiator

Figure 0005405377
Figure 0005405377

〔光重合開始剤(b)(D成分)〕
下記の構造式(5)で表される、リン系アニオン成分〔前記一般式(2)中、n=6〕と、カチオン成分とからなるビトリアリールスルホニウム塩系光重合開始剤
[Photopolymerization initiator (b) (component D)]
A bitriarylsulfonium salt-based photopolymerization initiator composed of a phosphorus-based anion component [n = 6 in the general formula (2)] and a cation component represented by the following structural formula (5)

Figure 0005405377
Figure 0005405377

〔光重合開始剤(c)(D成分)〕
下記の構造式(6)で表される、リン系アニオン成分〔前記一般式(2)中、n=6〕と、カチオン成分とからなるビススルホニウム塩系光重合開始剤
[Photopolymerization initiator (c) (component D)]
A bissulfonium salt-based photopolymerization initiator represented by the following structural formula (6), comprising a phosphorus-based anion component [n = 6 in the general formula (2)] and a cation component

Figure 0005405377
Figure 0005405377

〔酸化防止剤〕
9,10−ジヒドロ−9−オキサ−10−フォスファフェナントレン−10−オキサイド
〔Antioxidant〕
9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide

〔カップリング剤〕
γ−グリシドキシプロピルトリメトキシシラン
[Coupling agent]
γ- glycidoxypropyltrimethoxysilane

〔実施例1〜10、比較例1〜3〕
上記エポキシ樹脂、オキセタン化合物、酸化防止剤およびカップリング剤を、後記の表1および表2に示す割合で配合した後、必要に応じて加熱溶融し溶融混合した。次いで、上記光重合開始剤を、同じく後記の表1および表2に示す割合で配合し、混合することにより、光硬化型樹脂組成物を調製した。
[Examples 1 to 10, Comparative Examples 1 to 3]
The above-mentioned epoxy resin, oxetane compound, antioxidant and coupling agent were blended in the proportions shown in Tables 1 and 2 below, and then heated and melted and melt-mixed as necessary. Subsequently, the said photoinitiator was similarly mix | blended and mixed in the ratio shown in Table 1 and Table 2 of the postscript, and the photocurable resin composition was prepared.

このようにして得られた光硬化型樹脂組成物を用いて、下記の基準に従って、各特性の評価を行った。その結果を、後記の表1および表2に併せて示した。   Using the photocurable resin composition thus obtained, each characteristic was evaluated according to the following criteria. The results are shown in Tables 1 and 2 below.

〔硬化性(ゲルタイム)〕
光源に水銀ランプ(浜松ホトニクス社製、LC−8、365nmでの照度が30mW/cm2 になるよう設定)を用いたUVレオメーター(Rheologica社製、10mmφのアルミ製パラレルプレート使用)によるゲルタイムを測定し、硬化性の評価を行った。上記UVレオメーターによるゲルタイムは、上記各光硬化型樹脂組成物の粘弾性を25℃で測定した際の弾性項(G′)の105 Pa到達時間とした。硬化性の評価は、ゲルタイムが800秒以下ものを○、さらに300秒以下であれば◎とした。そして、ゲルタイムが800秒より長いものを×と評価した。
[Curing property (gel time)]
Gel time by a UV rheometer (Rheologicala, 10mmφ aluminum parallel plate) using a mercury lamp (Hamamatsu Photonics, LC-8, setting the illuminance at 365nm to be 30mW / cm 2 ) as the light source Measured and evaluated for curability. The gel time measured by the UV rheometer was the time required to reach 10 5 Pa of the elastic term (G ′) when the viscoelasticity of each of the photocurable resin compositions was measured at 25 ° C. The evaluation of curability was evaluated as “good” when the gel time was 800 seconds or less, and “good” when 300 times or less. And the thing whose gel time is longer than 800 seconds was evaluated as x.

〔耐熱変色性(透明性)〕
上記各光硬化型樹脂組成物を、シリコーン離型処理を施したPETフィルム(三菱化学ポリエステルフィルム社製、ダイアホイルMRF−50)上に、厚み600μmとなるよう製膜し、これに光照射(光量8000mJ/cm2 )を行い一次硬化させた。その後、150℃で1時間加熱処理し、硬化体を得た。つぎに、この硬化体を3cm角の試験片に切り出し、260℃×10秒間リフロー炉を通した後、この硬化体に対し、カラーコンピューター(スガ試験機社製、SM−T)を用いて、透過モードでイエローインデックス値(Y.I.値)を測定し、透明性の評価を行った。すなわち、Y.I.値が低いものほど変色性が低く、透明性が高いことを示しており、透明性の評価において、Y.I.値が13未満のものを○、さらに10以下であれば◎とした。そして、Y.I.値が13以上のものを×とした。
[Heat-resistant discoloration (transparency)]
Each of the above photocurable resin compositions was formed into a film having a thickness of 600 μm on a PET film (Mitsubishi Chemical Polyester Film Co., Ltd., Diafoil MRF-50) subjected to silicone release treatment, and this was irradiated with light ( The amount of light was 8000 mJ / cm 2 ) to perform primary curing. Then, it heat-processed at 150 degreeC for 1 hour, and obtained the hardening body. Next, this cured body was cut into a 3 cm square test piece, passed through a reflow furnace at 260 ° C. for 10 seconds, and then the cured body was used with a color computer (SM-T, manufactured by Suga Test Instruments Co., Ltd.) The yellow index value (YI value) was measured in the transmission mode, and the transparency was evaluated. That is, Y. I. The lower the value, the lower the color change and the higher the transparency. I. A value of less than 13 was evaluated as ○, and a value of 10 or less was evaluated as ◎. Y. I. A value of 13 or more was evaluated as x.

〔耐クラック性〕
変色性評価用サンプルを260℃×10秒間リフロー炉を通す際に、熱処理後の試験片にクラックが発生している場合はΔ、発生しない場合は○とした。また試験片が割れてしまう場合には×とした。
[Crack resistance]
When the sample for color change evaluation was passed through a reflow furnace at 260 ° C. for 10 seconds, Δ was given when a crack occurred in the test piece after heat treatment, and ○ was given when no crack was generated. Moreover, it was set as x when a test piece broke.

〔熱分解温度〕
ガラス転移温度測定用サンブル作成法と同様に硬化体を作製し、作製したサンプルが10mgになるよう切りだしたのち加熱重量変化を確認した。装置には差動型示差熱天秤(リガク社製、TG8120)を使用し、RT(25℃)〜400℃の温度範囲でサンプルの重量減少を測定し、5%重量減少温度を熱分解温度とした。この試験の評価において、熱分解温度が130℃以上をΔ、270℃以上のものを○、さらに300℃以上のものを◎とした。そして、5%重量減少温度が130℃未満のものを×とした。
[Pyrolysis temperature]
A cured product was prepared in the same manner as in the method for preparing a sample for measuring the glass transition temperature, and the change in heating weight was confirmed after cutting out the prepared sample to 10 mg. A differential type differential thermal balance (TG8120, manufactured by Rigaku Corporation) was used as the apparatus, and the weight loss of the sample was measured in the temperature range of RT (25 ° C.) to 400 ° C., and the 5% weight reduction temperature was regarded as the pyrolysis temperature. did. In the evaluation of this test, a thermal decomposition temperature of 130 ° C. or higher was evaluated as Δ, a temperature of 270 ° C. or higher as ◯, and a temperature of 300 ° C. or higher as ◎. And the thing whose 5% weight loss temperature is less than 130 degreeC was made into x.

〔ガラス転移温度〕
各樹脂組成物を、シリコーン離型処理を施したPETフィルム(三菱化学ポリエステルフィルム社製、ダイアホイルMRA−50)上に、600μmとなるよう製膜し、これに紫外線を照射し(紫外線量8000mJ/cm2 )、1次硬化させた。その後、150℃で1時間加熱キュアし、成形物を得た。そして、この成形物を、幅5mm、長さ25mmの試験片に切り出し、動的粘弾性装置(レオメトリック杜製、RSA−III )を用いて周波数1Hz、RT(25℃)〜260℃の温度範囲で貯蔵弾性率、損失弾性率を測定し、そこから導かれるtanδ曲線を得た。このようにして得られたtanδ曲線のピーク値をガラス転移温度(Tg)とした。そして、この試験の評価において、Tgが70℃以上100℃未満のものを△、100℃以上のものを○、さらに120℃以上のものを◎とした。そして、Tgが70℃未満のものを×とした。
〔Glass-transition temperature〕
Each resin composition was formed on a PET film (Mitsubishi Chemical Polyester Film Co., Ltd., Diafoil MRA-50) that had been subjected to silicone mold release treatment to a thickness of 600 μm, and this was irradiated with ultraviolet rays (ultraviolet amount 8000 mJ). / Cm 2 ) and primary curing. Then, it heat-cured at 150 degreeC for 1 hour, and obtained the molding. Then, this molded product was cut into a test piece having a width of 5 mm and a length of 25 mm, and a frequency of 1 Hz and a temperature of RT (25 ° C.) to 260 ° C. using a dynamic viscoelastic device (RSA-III, manufactured by Rheometric). Storage elastic modulus and loss elastic modulus were measured in the range, and a tan δ curve derived therefrom was obtained. The peak value of the tan δ curve thus obtained was defined as the glass transition temperature (Tg). In this test evaluation, a Tg of 70 ° C. or higher and lower than 100 ° C. was evaluated as Δ, a 100 ° C. or higher as ◯, and a 120 ° C. or higher as ◎. And the thing whose Tg is less than 70 degreeC was set as x.

Figure 0005405377
Figure 0005405377

Figure 0005405377
Figure 0005405377

上記表1および表2の結果より、実施例の樹脂組成物は、いずれも、1分子中に1個以上のオキセタニル基を有するオキセタン化合物を含まない比較例品に比べ、ゲルタイムが短く速硬化性であり、また、加熱処理後の変色も少ないことから、ハンダリフロー時の熱による変色を抑えることができ、加熱処理後も高い透明性を有することがわかる。特に、実施例1〜7および実施例10の樹脂組成物は、比較例3品に比べ、ガラス転移温度や熱分解温度が高く、しかも耐クラック性に優れることから、安定した機械物性を有することがわかる。そのため、本発明の光硬化型樹脂組成物を、光学レンズ用の成型材料として用いると、硬化性が高いことから成形工程に要する時間の短縮が図れ、耐クラック性、透明性、耐熱性に優れた、信頼性の高い光学製品を得ることができる。 From the results of Table 1 and Table 2, the resin compositions of the examples all have a short gel time and are fast-curing compared to a comparative product that does not contain an oxetane compound having one or more oxetanyl groups in one molecule. In addition, since there is little discoloration after heat treatment, it can be seen that discoloration due to heat during solder reflow can be suppressed, and that the material has high transparency after heat treatment. In particular, the resin compositions of Examples 1 to 7 and Example 10 have stable mechanical properties because they have a higher glass transition temperature and higher thermal decomposition temperature than those of Comparative Example 3 and are excellent in crack resistance. I understand. Therefore, the photocurable resin composition of the present invention, when used as a molding materials for optical lenses, Hakare shorten the time required for the molding process because of its high curability, crack resistance, transparency, A highly reliable optical product having excellent heat resistance can be obtained.

これに対し、比較例1品および比較例2品は、実施例の樹脂組成物と比較して、硬化性および耐熱変色性(透明性)に劣る。比較例3品は、耐熱変色性には優れるものの、硬化性が充分でなく、さらに、ガラス転移温度や熱分解温度が低く、機械物性にも劣る。   On the other hand, the products of Comparative Example 1 and Comparative Example 2 are inferior in curability and heat discoloration (transparency) as compared with the resin compositions of Examples. The product of Comparative Example 3 is excellent in heat discoloration, but has insufficient curability, and has a low glass transition temperature and thermal decomposition temperature, and is inferior in mechanical properties.

本発明の光硬化型樹脂組成物は、硬化性を損なうことなく、硬化後においても高い透明性を有する立体造形物(硬化物)となり得るため、光学レンズ用の成形材料に用いられるが、光学部品固定用光硬化型接着剤等の光学用途として有用である Photocurable resin composition of the present invention is to provide a curable, because that can be a three-dimensional object having a high transparency even after curing (cured product), but used in a molding material for optical lenses, It is also useful for optical applications such as a photo-curing adhesive for fixing optical components .

Claims (6)

下記の(A)および(B)成分のエポキシ樹脂とともに、下記の(C)および(D)成分を含有する光硬化型樹脂組成物であって、(A)〜(C)成分の総重量に対し、(A)成分の割合が10〜75重量%,(B)成分の割合が20〜85重量%,(C)成分の割合が3〜30重量%の範囲であり、(D)成分の割合が、(A)〜(C)成分の総重量100重量部に対して0.01〜7重量部の範囲であることを特徴とする光学レンズ用光硬化型樹脂組成物。
(A)下記の一般式(1)で表される直鎖型エポキシ樹脂。
Figure 0005405377
(B)1分子中に2個以上のエポキシ基を有する脂環式エポキシ樹脂。
(C)1分子中に1個以上のオキセタニル基を有するオキセタン化合物。
(D)フッ化リン系光重合開始剤。
A photo-curable resin composition containing the following components (C) and (D) together with the epoxy resins of the following components (A) and (B), the total weight of components ( A) to (C) against, (a) the ratio of the components 10 to 75 wt%, (B) the proportion of component 20 to 85 wt%, Ri range der proportion of 3 to 30 wt% of (C), (D) component ratio, (a) ~ (C) an optical lens for light-curable resin composition characterized scope der Rukoto of 0.01 to 7 parts by weight based on the total weight 100 parts by weight of components.
(A) A linear epoxy resin represented by the following general formula (1).
Figure 0005405377
(B) An alicyclic epoxy resin having two or more epoxy groups in one molecule.
(C) An oxetane compound having one or more oxetanyl groups in one molecule.
(D) Phosphorus fluoride photopolymerization initiator.
上記(D)成分の光重合開始剤が、下記の一般式(2)で表されるアニオン成分と、カチオン成分とからなるオニウム塩である、請求項1記載の光学レンズ用光硬化型樹脂組成物。
Figure 0005405377
The photocurable resin composition for an optical lens according to claim 1, wherein the photopolymerization initiator of the component (D) is an onium salt composed of an anion component represented by the following general formula (2) and a cation component. object.
Figure 0005405377
上記一般式(2)で表されるアニオン成分において、nが1〜5の整数である、請求項2記載の光学レンズ用光硬化型樹脂組成物。   The photocurable resin composition for optical lenses of Claim 2 whose n is an integer of 1-5 in the anion component represented by the said General formula (2). 上記(D)成分の光重合開始剤が、下記の構造式(4)で表されるトリアリールスルホニウム塩系光重合開始剤である、請求項1記載の光学レンズ用光硬化型樹脂組成物。
Figure 0005405377
The photocurable resin composition for optical lenses according to claim 1, wherein the photopolymerization initiator of the component (D) is a triarylsulfonium salt photopolymerization initiator represented by the following structural formula (4).
Figure 0005405377
上記(C)成分のオキセタン化合物が、3−エチル−3(4−ヒドロキシブチル)オキシメチルオキセタン、3−エチル−3−ヒドロキシメチルオキセタン、3−エチル−3{[(3−エチルオキセタン−3−イル)メトキシ]メチル}オキセタンおよび1,4−ビス[(3−エチル−3−オキセタニルメトキシ)メチル]ベンゼンからなる群から選ばれた少なくとも一つである、請求項1〜4のいずれか一項に記載の光学レンズ用光硬化型樹脂組成物。   The oxetane compound of component (C) is 3-ethyl-3 (4-hydroxybutyl) oxymethyloxetane, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3 {[((3-ethyloxetane-3- Yl) methoxy] methyl} oxetane and 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, at least one selected from the group consisting of The photocurable resin composition for optical lenses described in 1. 請求項1〜のいずれか一項に記載の光学レンズ用光硬化型樹脂組成物を用いてなる光学レンズ。 The optical lens formed using the photocurable resin composition for optical lenses as described in any one of Claims 1-5 .
JP2010084867A 2009-06-18 2010-04-01 Photocurable resin composition for optical lens and optical lens using the same Active JP5405377B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010084867A JP5405377B2 (en) 2009-11-25 2010-04-01 Photocurable resin composition for optical lens and optical lens using the same
EP10166145A EP2264081B1 (en) 2009-06-18 2010-06-16 Photocurable resin composition and optical component using the same
CN2010102085519A CN101928381A (en) 2009-06-18 2010-06-18 Light-cured type resin combination and use the optics of this resin combination
TW099119988A TWI516517B (en) 2009-06-18 2010-06-18 Photocurable resin composition and optical component using the same
US12/818,727 US9056941B2 (en) 2009-06-18 2010-06-18 Photocurable resin composition and optical component using the same
KR1020100057985A KR20100136434A (en) 2009-06-18 2010-06-18 Photocurable resin composition and optical component using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009267702 2009-11-25
JP2009267702 2009-11-25
JP2010084867A JP5405377B2 (en) 2009-11-25 2010-04-01 Photocurable resin composition for optical lens and optical lens using the same

Publications (2)

Publication Number Publication Date
JP2011132487A JP2011132487A (en) 2011-07-07
JP5405377B2 true JP5405377B2 (en) 2014-02-05

Family

ID=44345566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010084867A Active JP5405377B2 (en) 2009-06-18 2010-04-01 Photocurable resin composition for optical lens and optical lens using the same

Country Status (1)

Country Link
JP (1) JP5405377B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6284721B2 (en) * 2013-08-26 2018-02-28 株式会社Adeka Energy ray sensitive composition
CN106687499B (en) * 2014-09-17 2019-07-19 株式会社大赛璐 Solidification compound and the optical element for using it
KR102225902B1 (en) * 2018-05-21 2021-03-10 주식회사 엘지화학 Polarizing plate, image display apparatus comprising same and adhesive composition for plarizing plate
WO2020158300A1 (en) * 2019-01-31 2020-08-06 ソニー株式会社 Hologram recording composition, hologram recording medium, hologram optical element, and optical device, optical component and method for forming hologram diffraction grating using same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149476A (en) * 2001-11-13 2003-05-21 Nippon Kayaku Co Ltd Resin composition for optical waveguide and its hardened product
JP4268014B2 (en) * 2003-10-31 2009-05-27 日東電工株式会社 UV curable epoxy resin composition
JP4853813B2 (en) * 2004-03-31 2012-01-11 大日本印刷株式会社 Anti-reflection laminate
JP4331644B2 (en) * 2004-05-10 2009-09-16 日東電工株式会社 UV curable resin composition
JP4421938B2 (en) * 2004-05-10 2010-02-24 日東電工株式会社 UV curable resin composition
CN1989145B (en) * 2004-05-28 2010-06-23 三亚普罗株式会社 Novel fluorinated alkylfluorophosphoric acid salt of onium and transition metal complex
JP4969137B2 (en) * 2006-04-17 2012-07-04 シーメット株式会社 Optical three-dimensional resin composition

Also Published As

Publication number Publication date
JP2011132487A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP2014224205A (en) Photocurable resin composition for optical component, optical component using the same and method for producing optical component
EP2128183B1 (en) Resin composition for optical components, optical component using the same and production method of optical lens
JP6948943B2 (en) Photocurable composition, cured product and optical component using it
TWI445758B (en) Resin composition for optical components and optical component using the same
EP2264081B1 (en) Photocurable resin composition and optical component using the same
TW202035501A (en) Specially-shaped epoxy resin molded article, and optical device provided with same
JP5405377B2 (en) Photocurable resin composition for optical lens and optical lens using the same
KR20120006460A (en) Photocurable resin composition and optical component using the same
JP4421938B2 (en) UV curable resin composition
JP6418672B2 (en) Resin composition for optical parts and optical part using the same
JP5723213B2 (en) Cationic polymerizable resin composition and cured product thereof
JP5350324B2 (en) Photo-curable resin composition and optical component using the same
JP5301409B2 (en) Cationic curable resin composition and cured product thereof
JP2016050230A (en) Photosensitive resin composition for optical use and optical material using the same
JP5343067B2 (en) Photocurable resin composition and optical material
JP2010195932A (en) Optical resin composition for molding and optical member
JP5306315B2 (en) Photocurable resin composition and optical material
JP5415370B2 (en) Photo-curable resin composition and optical component using the same
JP7387327B2 (en) Curable resin composition for three-dimensional modeling
TWI516517B (en) Photocurable resin composition and optical component using the same
JP7207972B2 (en) Curable resin composition
JP2008285643A (en) Epoxy resin composition and transparent composite sheet
JP2023118689A (en) Curable composition and cured product thereof
US20200079896A1 (en) Curable resin composition for three-dimensional molding
JP6418673B2 (en) Resin composition for optical parts and optical part using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131030

R150 Certificate of patent or registration of utility model

Ref document number: 5405377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250