JP5403776B1 - Detection device for connection failure etc. of indoor wiring, and determination method for connection failure etc. using the same - Google Patents

Detection device for connection failure etc. of indoor wiring, and determination method for connection failure etc. using the same Download PDF

Info

Publication number
JP5403776B1
JP5403776B1 JP2013169847A JP2013169847A JP5403776B1 JP 5403776 B1 JP5403776 B1 JP 5403776B1 JP 2013169847 A JP2013169847 A JP 2013169847A JP 2013169847 A JP2013169847 A JP 2013169847A JP 5403776 B1 JP5403776 B1 JP 5403776B1
Authority
JP
Japan
Prior art keywords
connection
voltage drop
connection failure
measurement
wall outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013169847A
Other languages
Japanese (ja)
Other versions
JP2015038446A (en
Inventor
秀夫 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013169847A priority Critical patent/JP5403776B1/en
Application granted granted Critical
Publication of JP5403776B1 publication Critical patent/JP5403776B1/en
Priority to PCT/JP2014/071606 priority patent/WO2015025828A1/en
Publication of JP2015038446A publication Critical patent/JP2015038446A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity

Abstract

【課題】特に、経年住宅の屋内配線電路に配置された、分電盤、分岐部、接続端子部、又は壁コンセントの接続部に発生する接続不良を簡易かつ容易に判断できるようにする。
【解決手段】
検査対象ケーブルの分電盤側に基準用プラグ接続。同ケーブルに繋がる壁コンセントに測定用プラグ接続。これら各プラグから検査対象ケーブルの各心線毎の電圧降下量を算出。各心線毎の電圧降下量から、それらの差分を算出。これら差量を良否判定可能に表示。更に、擬似負荷を接続し、負荷電流を流すことで、接続不良の検出感度向上。更に、検査対象のFケーブルが繋がる子ブレーカーとは別の子ブレーカーに繋がる壁コンセントに基準用プラグを接続することで、作業の手間削減。更に、小径の測定子2本を測定用プラグの刃と刃の間に進退自在に配置。測定子間への電圧印加で、コンセント表面のプラグ当接部分の絶縁抵抗を測定し、良否判定可能に表示。
【選択図】 図7
In particular, it is possible to easily and easily determine a connection failure occurring in a distribution board, a branch portion, a connection terminal portion, or a connection portion of a wall outlet disposed in an indoor wiring circuit of an aged house.
[Solution]
The reference plug is connected to the distribution board side of the cable to be inspected. Plug the measurement plug into the wall outlet connected to the cable. From these plugs, the voltage drop for each core of the cable to be inspected is calculated. The difference between them is calculated from the voltage drop for each core wire. These differences are displayed so that the quality can be judged. Furthermore, connection sensitivity is improved by connecting a pseudo load and flowing a load current. In addition, work can be reduced by connecting a reference plug to a wall outlet connected to a child breaker that is different from the child breaker to which the F cable to be inspected is connected. Furthermore, two small-diameter measuring elements are arranged between the blades of the measuring plug so as to freely advance and retract. By measuring the insulation resistance of the plug contact part on the outlet surface by applying a voltage between the measuring elements, it is displayed so that the quality can be judged.
[Selection] Figure 7

Description

本願発明は、屋内配線の接続不良等検出装置、及びこれを用いた接続不良等判定方法に関し、特に、普段の生活では気付きにくい場所での火災の原因となる配線接続不良、例えば、壁のコンセントボックス内の接続部分や天井裏での分岐部分等について、その配線接続不良を検出、判定する、或いは、壁コンセントのプラグ接触面の絶縁不良を検出、判定するのに用いて好適な屋内配線の接続不良等検出装置、及びこれを用いた接続不良等判定方法に関する。なお、文章や図面で使用される用語については、適宜略して使用することがある。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an indoor wiring connection failure detection device and a connection failure determination method using the same, and more particularly, a wiring connection failure that causes a fire in a place where it is difficult to notice in daily life, for example, a wall outlet Detecting and judging wiring connection failures in connection parts in boxes and branching parts in the ceiling, etc., or suitable indoor wiring used to detect and judge insulation failures on plug contact surfaces of wall outlets The present invention relates to a connection failure detection device and a connection failure determination method using the same. Note that terms used in sentences and drawings may be abbreviated as appropriate.

1.電気火災の発生状況
東京消防庁による平成23年度の統計によると、電気火災は全火災件数の約20%を占め、近年はその割合が増加傾向にある。家庭電気製品別での発生件数は電気ストーブが一番多く、次に壁コンセント、差込プラグ、クッキングヒーターの順になっている。このうち、電気ストーブやクッキングヒーターの火災発生原因には、スイッチの切り忘れや燃えやすい物への引火など、不適切な取り扱いが多い。
一方で、壁コンセントや差込プラグなど配線器具での火災原因では、器具内部の異常過熱や壁コンセント差込プラグ接続部のトラッキング現象があり、普段の生活では気付きにくい所から発生している点に特徴がある。
1. Status of electrical fires According to the statistics of the Tokyo Fire Department in FY2011, electrical fires accounted for about 20% of the total number of fires, and in recent years the ratio has been increasing. The number of electric appliances generated by household appliances is the largest, followed by wall outlets, plugs, and cooking heaters. Of these, the causes of fires in electric heaters and cooking heaters are often improper handling, such as forgetting to switch off or igniting flammable materials.
On the other hand, the cause of a fire in a wiring device such as a wall outlet or a plug is due to abnormal overheating inside the device or a tracking phenomenon of the wall outlet plug connection, which occurs from a place that is difficult to notice in everyday life. There is a feature.

2.配線器具からの発火
冷蔵庫や洗濯機などは、プラグを壁コンセントに差込後、10年以上そのまま使用する事が多い。壁コンセントに振動や温度変化が長期間加わると、プラグの刃やコンセント受口の変形、金属面の酸化、器具内部の接続電線ゆるみ等が起きて電気抵抗が増え、導通性能が低下して接続不良となる場合がある。電気抵抗が著しく増加した配線器具は、通常の製品使用電流で異常に発熱し、発火の原因となる。
2. Ignition from wiring equipment Refrigerators and washing machines are often used as they are for more than 10 years after plugs are inserted into wall outlets. When vibration or temperature changes are applied to a wall outlet for a long period of time, deformation of the plug blade or outlet receptacle, oxidation of the metal surface, loosening of the connection wires inside the appliance, etc. will occur, increasing the electrical resistance and reducing the conduction performance. It may become defective. A wiring device having a markedly increased electrical resistance generates abnormal heat with normal product use current, and causes ignition.

また、長期間の使用では、壁コンセントとプラグ差込の隙間に、塵埃や汚れが多量に付着する。そういう隙間に水分がたまると、器具表面の絶縁が低下し、トラッキング現象と呼ばれる電極間の沿面放電が発生する。放電が繰り返されると表面の絶縁体が炭化し始め、やがてショート状態(短絡状態)になり発火する。トラッキング現象は、在宅・不在宅、昼・夜の関係なく発生する。この為、発見が遅れ全焼する例が多い。   In addition, when used for a long time, a large amount of dust and dirt adhere to the gap between the wall outlet and the plug. When moisture accumulates in such a gap, the insulation of the instrument surface is lowered, and creeping discharge between the electrodes called a tracking phenomenon occurs. When the discharge is repeated, the insulator on the surface starts to carbonize and eventually becomes short-circuited (short-circuited) and ignites. The tracking phenomenon occurs regardless of whether the user is at home, away from home, day or night. For this reason, there are many cases where discovery is delayed and burnt down.

3.現状の火災予防方法
先ず、使用者が行う予防法として、電気製品は使用前に取扱説明書を良く読み、正しく使用する事がある。次に、壁コンセントやプラグなどの配線器具についての変色や発熱の点検、壁コンセントとプラグの隙間の清掃などがある。この他、電力会社が行う定期点検として一般家庭の漏電検査や絶縁測定がある。家庭の分電盤には漏電ブレーカーの設置が義務化されており、漏電が発生した場合は自動的に電気が遮断される。
3. Current fire prevention method First, as a precautionary measure performed by the user, read the instruction manual carefully before using the appliance, and use it correctly. Next, there are discoloration and heat generation inspection of wiring devices such as wall outlets and plugs, and cleaning of the gap between the wall outlet and the plug. In addition, regular inspections conducted by electric power companies include household electrical leakage inspection and insulation measurement. An electrical leakage breaker is obliged to be installed on the distribution board at home, and electricity is automatically cut off when an electrical leakage occurs.

4.特許文献に開示された火災予防方法
特許文献1には、電線の接続部の接続不良を初期段階において検出することができる「接続不良検出装置」が開示されている。
この装置は、電線路に存在する接続部の両端部に設けた電圧センサからなる電圧検出端子を、接続不良検出装置の端子にそれぞれ接続した構成であり、正常時、接続不良発生時、及びグロー放電時に発生する特有の電圧波形を、当該接続不良検出装置に記憶させて置き、これと検出した測定電圧波形とを比較して接続の良否を判別する。
4). Fire Prevention Method Disclosed in Patent Literature Patent Literature 1 discloses a “connection failure detection device” capable of detecting a connection failure in a connection portion of an electric wire in an initial stage.
This device has a configuration in which voltage detection terminals made up of voltage sensors provided at both ends of a connection portion existing in a wire line are connected to terminals of a connection failure detection device, respectively. A characteristic voltage waveform generated at the time of discharging is stored in the connection failure detection device, and this is compared with the detected measurement voltage waveform to determine whether the connection is good or bad.

また、特許文献2には「電線の接続不良検出回路及び回路遮断器」が、また、特許文献3には「電路接続部の接続不良検出回路」が開示されている。
これらの開示技術では、その各電路に電圧波形検出のためのセンサ回路を接続しておき、この各センサーから得られた波形、即ち接続不良時に発生する特有の電圧波形を情報源とし、これと予め想定して記憶させて置いた波形とを比較演算して、接続状態の良否を判定する。
Patent Document 2 discloses “a wire connection failure detection circuit and circuit breaker”, and Patent Document 3 discloses a “connection failure detection circuit of an electric circuit connection portion”.
In these disclosed technologies, a sensor circuit for detecting a voltage waveform is connected to each electric circuit, and a waveform obtained from each sensor, that is, a specific voltage waveform generated at the time of poor connection is used as an information source. The waveform that has been preliminarily stored and stored is compared and calculated to determine whether the connection state is good or bad.

特開2001−343416JP 2001-343416 A 特開2009−145083JP2009-145083 特開2008−305764JP 2008-305664 A

1.上記現状の火災予防方法の問題点
a.家電機器の増加や大型化で壁コンセント周囲が密集し、配線器具の点検や清掃はより困難になっている。
また、壁コンセントは常に通電されており、差込プラグのように外せないため点検や清掃が難しい。
b.点検で変色や過熱を発見しても、異常な発熱が起きた後の状態であり確実な火災予防とならない。
c.壁コンセント側に接続不良があっても電気製品の消費電流が小さければ発熱せず見つけられない。壁コンセント器具は何十年もそのまま使用する事が多く発火要因を持ったまま経過する恐れがある。
d.配線の接続不良や表面の絶縁不良は、器具と大地間の絶縁不良や大地への漏電とはならない。この為、従来の漏電検査では検出が困難で、過熱時も漏電ブレーカーは動作せず火災を確実に防止できない。
1. Problems with the current fire prevention methods a. The increase in the size of household appliances and the increase in the size of the wall outlets make the area around the wall outlet dense, making it difficult to inspect and clean wiring equipment.
In addition, wall outlets are always energized and cannot be removed like plugs, making inspection and cleaning difficult.
b. Even if discoloration or overheating is found in the inspection, it is a state after abnormal heat generation has occurred and does not provide reliable fire prevention.
c. Even if there is a connection failure on the wall outlet side, if the current consumption of the electrical product is small, it will not generate heat and will not be found. Wall outlet appliances are often used as they are for decades, and there is a risk of lapse with ignition factors.
d. A poor connection of wiring or a poor insulation on the surface does not result in a poor insulation between the equipment and the earth or a leakage to the earth. For this reason, it is difficult to detect by the conventional leakage inspection, and the leakage breaker does not operate even in the case of overheating, and it is impossible to prevent fire reliably.

2.上記特許文献に開示された火災予防方法の問題点
特許文献1の開示技術にあっては、主にブレーカー内部の接点機構の接触不良検出を目的としており、その時に発生するスパイク状の電圧波形に着目している。したがって、その実施にはブレーカー側周囲にセンサー及び検出装置を予め組み込んで置く必要があり、既存の一般家庭用の分電盤にはそのまま適用できず、新たな分電盤や改造した分電盤と交換しなければならないという問題がある。
加えて、小電流や無電流状態では、判定に必要な電圧波形を得ることができないこと、或いはスパイク状の波形出力とならない場合は判定が出来ないと言う問題もある。
2. Problems of the fire prevention method disclosed in the above patent document The technique disclosed in Patent Document 1 is mainly intended to detect a contact failure of the contact mechanism inside the breaker, and the spike-like voltage waveform generated at that time Pay attention. Therefore, it is necessary to put sensors and detection devices in the surroundings of the breaker side in advance, and this cannot be applied to existing distribution boards for general households. New distribution boards or modified distribution boards There is a problem that must be exchanged.
In addition, there is a problem that a voltage waveform necessary for the determination cannot be obtained in a small current or no-current state, or the determination cannot be made when the spike-like waveform output is not obtained.

特許文献2、及び特許文献3についても問題がある。すなわち、当該回路構成では、接続部の接続不良があっても、一定以上の電流が流れないとセンサー回路が作動せず、検出は不可能である。更に、接続不良を検知したい電路接続部ごとにセンサー回路を配置しなければならない。しかし、一般住宅の屋内配線では、天井裏や壁裏などの隠ぺい場所にも多数の電路接続部があり、それらへの設置は非常に複雑かつ煩雑になり、事実上不可能である。
さらに、壁コンセントに接続されたケーブルの接続部の不良を検出したい場合は、電圧検出線をケーブル側と壁コンセント側へ接続する必要があるが、この接続は実際不可能である。この為、この壁コンセント部における接続不良の検出は、特許文献2の開示発明では困難である。
There are also problems with Patent Document 2 and Patent Document 3. That is, in the circuit configuration, even if there is a connection failure in the connection part, the sensor circuit does not operate unless a current exceeding a certain level flows, and detection is impossible. Furthermore, a sensor circuit must be arranged for each electric circuit connection portion where it is desired to detect a connection failure. However, in the indoor wiring of a general house, there are many electric circuit connection parts in concealed places such as the back of the ceiling and the back of the wall, and the installation to them becomes very complicated and complicated, which is practically impossible.
Furthermore, when it is desired to detect a defect in the connection portion of the cable connected to the wall outlet, it is necessary to connect the voltage detection line to the cable side and the wall outlet side, but this connection is actually impossible. For this reason, it is difficult for the disclosed invention of Patent Document 2 to detect a connection failure in the wall outlet portion.

本願発明は上記の課題に着目してなされたものであり、特に、経年住宅の屋内配線電路に配置された、分電盤、分岐部、接続端子部、又は壁コンセントの接続部に発生する接続不良、或いは、壁コンセント表面に発生する絶縁不良を簡易かつ容易に判断できるようにすることを目的とする。   The present invention has been made paying attention to the above-mentioned problems, and in particular, a connection generated in a distribution board, a branch part, a connection terminal part, or a connection part of a wall outlet, which is arranged in an indoor wiring circuit of an aged house. It is an object of the present invention to make it possible to easily and easily determine a defect or an insulation defect occurring on the wall outlet surface.

上記目的を達成するため、本願発明にかかる屋内配線の接続不良等検出装置(以下、「本願装置」)は、2心線又は3心線で配線される屋内配線において、接続不良検査の対象配線長の両端側に各心線毎に接続する接続手段と、該各接続手段を介して前記対象配線長間における各心線毎の電圧降下量を測定する電圧測定手段と、該心線毎の電圧測定手段からの電圧降下量を比較してその差量を検出する差電圧検出手段と、該検出された差量から良否判定してその結果を表示する表示手段と、から構成したことを特徴としている。 In order to achieve the above object, an indoor wiring connection failure detection device (hereinafter referred to as “the present device”) according to the present invention is a target wiring for connection failure inspection in an indoor wiring wired with two or three core wires. Connecting means for connecting each core wire to both ends of the length; voltage measuring means for measuring a voltage drop amount for each core wire between the target wiring lengths through each connecting means; and for each core wire wherein the difference voltage detecting means for comparing the voltage drop amount detecting the Saryou from the voltage measuring means, and display means for displaying the results and quality determination from Saryou issued該検, that consisted It is said.

この様に構成した本願装置の作用は、次の通りである。
通常2心又は3心から成る屋内配線用のケーブル(VVFケーブル。通称、Fケーブル。)の各心線は、規格に則って製造され、略同一の導通抵抗値となっている。これを前提とし、接続不良検査の対象として特定した配線長の各心線毎の電路中に接続不良部分がある場合は、これを原因として抵抗値が上昇し、その分の電圧降下が生じる。
この電圧降下量を各心線毎に接続した電圧測定手段でそれぞれ測定して、その差量を差電圧検出手段で検出する。そして、この各心線毎の電圧降下量を比較してその差量を求め、これを基に良否を判定し、その結果を表示手段に表示することとしている。
The operation of the device of the present application configured as described above is as follows.
Each core wire of a cable for indoor wiring (VVF cable, commonly referred to as F cable) usually consisting of two or three cores is manufactured according to the standard and has substantially the same conduction resistance value. Based on this assumption, when there is a poor connection portion in the electrical circuit for each core wire of the wiring length specified as the target of the connection failure inspection, the resistance value increases due to this, and a voltage drop correspondingly occurs.
The voltage drop is measured by voltage measuring means connected to each core wire, and the difference is detected by the difference voltage detecting means. Then, the amount of voltage drop for each core wire is compared to determine the difference, and based on this, the quality is determined, and the result is displayed on the display means.

また、請求項2の構成は、請求項1の構成に加えて、さらに前記対象配線長の何れか一方端側に接続する前記接続手段に接続させる負荷手段を備えることを特徴としている。
対象配線の電路に負荷装置(例えば電気器具の接続)の接続が無い場合、電流は流れない。この無電流状態では、電圧降下は生じない。この負荷手段は、接続部を介して測定のための負荷電流を流すものであり、それにより測定のための電圧降下を発生させる。
According to a second aspect of the present invention, in addition to the configuration of the first aspect, load means connected to the connection means connected to any one end side of the target wiring length is further provided.
When there is no connection of a load device (for example, connection of an electric appliance) in the electric circuit of the target wiring, no current flows. In this no-current state, no voltage drop occurs. This load means allows a load current for measurement to flow through the connection, thereby generating a voltage drop for measurement.

また、請求項3の構成は、対象配線長の両端側に接続させる2個の接続手段のいずれか又は両方が、屋内露出配設のコンセントを用いて電圧降下を測定するものである。
対象配線長の電源側(分電盤側)に接続させる接続手段にコンセントを用いる方法により、測定精度に影響を与えない範囲で測定作業効率と安全性を著しく向上させることができる。
According to a third aspect of the present invention, either or both of the two connecting means connected to both ends of the target wiring length measure the voltage drop using an outlet provided indoors.
By using an outlet as a connection means connected to the power source side (distribution panel side) of the target wiring length, measurement work efficiency and safety can be remarkably improved within a range that does not affect measurement accuracy.

この電圧検出のとき、接続手段の心線には計測用の数十mA程度の電流しか流れない。よって、これによる電圧降下は測定対象の電圧降下に対し、1%以下の大きさであり無視できる。
従って、隣の部屋のコンセントなど、そのときの計測対象であるコンセント等の近くに存在し、それとは別の子ブレーカーに繋がれているコンセントに前記接続手段を接続しても、当該元側の電圧を正確に取得できる。こうすれば、装置本体と接続手段とを繋ぐ電線長を短くでき、作業性が高まる。
At the time of this voltage detection, only a current of about several tens mA for measurement flows through the core wire of the connecting means. Therefore, the voltage drop due to this is less than 1% of the voltage drop to be measured and can be ignored.
Therefore, even if the connection means is connected to an outlet connected to a different child breaker, such as the outlet of the next room, such as the outlet that is the object of measurement at that time, the original side The voltage can be acquired accurately. If it carries out like this, the length of the electric wire which connects an apparatus main body and a connection means can be shortened, and workability | operativity will improve.

また、請求項4の方法は、前記請求項1、2、又は3記載の屋内配線の接続不良検出装置を用いて、前記対象配線長の両端部に接続した接続手段によって各心線毎の電圧降下量を測定し、この測定した電圧降下量の差量を基に良否を判定してその結果を表示することで、接続不良の存在を判定することを特徴としている。その作用は、前記請求項1、2、又は3記載の屋内配線の接続不良検出装置についてと同様である。 The method of claim 4 uses the indoor wiring connection failure detection device according to claim 1, 2 or 3, and the voltage for each core wire is connected by connecting means connected to both ends of the target wiring length. It is characterized in that the presence of a connection failure is determined by measuring the amount of drop, determining the quality based on the measured difference in voltage drop, and displaying the result . The operation is the same as that of the indoor wiring connection failure detection device according to claim 1, 2 or 3.

また、請求項5の方法では、前記対象配線が無電流状態のときは、前記接続手段の何れかに接続した負荷手段により負荷電流を流し、各心線毎の電圧降下量を検出してその電圧降下差を測定したことを特徴としている。その作用は、前記請求項1、2、又は3記載の屋内配線の接続不良検出装置についてと同様である。
また、請求項6の方法では、検査する対象配線長を分電盤から分岐した別経路の配線が接続された各別のコンセント間に特定し、各コンセントにプラグ構成した接続手段を嵌合させて測定を行うことを特徴としている。その作用は、前記請求項1、2、又は3記載の屋内配線の接続不良検出装置についてと同様である。
According to the method of claim 5, when the target wiring is in a no-current state, a load current is caused to flow by a load means connected to any of the connection means, and a voltage drop amount for each core wire is detected and It is characterized by measuring the voltage drop difference. The operation is the same as that of the indoor wiring connection failure detection device according to claim 1, 2 or 3.
Further, in the method of claim 6, the length of the wiring to be inspected is specified between the different outlets to which the wires of different paths branched from the distribution board are connected, and the connecting means configured as plugs is fitted to each outlet. It is characterized by measuring. The operation is the same as that of the indoor wiring connection failure detection device according to claim 1, 2 or 3.

1.装置としての有効性
a.現在まで、通電中にある天井裏配線や壁コンセント裏の配線、隠ぺい接続部の接続不良を検出できる装置は無い。本願装置は、壁コンセント器具差込口からコンセント裏の接続部〜天井裏ケーブル〜分電盤子ブレーカー接続部までの全体において、異常発熱となる接続不良配線を検出できる。
また、本願装置はトラッキング現象となる壁コンセント器具表面の絶縁不良も検出できる。
b.本願装置を使わず、一般的原理で内部導通性能や表面絶縁を測定する場合、負荷機器、電流計、電圧計、絶縁計、断続用及び切替用の開閉器などと、これらを繋ぐ複雑な配線が必要となる。この為、作業効率が悪く実用性が低い。本願装置では、診断に必要な各測定検出機能と判定表示機能とが効率的に組み込まれており、実用性が高い。
c.本願装置は、例えば重さ8kgで、更に軽量化も可能であり、コンパクトである。装置の操作や取扱いは簡単で高度な技術を必要としない。壁コンセント配線における電気火災原因の検出作業を一人で実施できる。
d.絶縁測定用の接触子を測定プラグ中央に配置した事で、簡単に位置決め固定ができ、安全でもある。
e.本願装置は内部導通性能と表面絶縁性能測定とを共通の測定プラグSPで行っている。各性能を連続で測定した場合、5秒程度で済む。家屋の、例えば30〜60ヶ所の壁コンセント全てを診断しても短時間で済む。
f.本願装置は100V壁コンセントの他、200V壁コンセントなどの配線器具の測定にも応用できる。
1. Effectiveness as a device a. To date, there is no device that can detect a connection failure in a ceiling back wiring, a wall outlet back wiring, or a concealed connection portion that is energized. The device of the present application can detect defective connection wiring that causes abnormal heat generation from the wall outlet appliance insertion port to the connection part on the back of the outlet to the cable behind the ceiling to the distribution board breaker connection part.
In addition, the device of the present application can also detect an insulation failure on the surface of the wall outlet device that causes a tracking phenomenon.
b. When measuring the internal continuity performance and surface insulation on the general principle without using the device of this application, load devices, ammeters, voltmeters, insulation meters, intermittent and switching switches, etc., and complicated wiring that connects them Is required. For this reason, work efficiency is bad and practicability is low. In the device of the present application, each measurement detection function and determination display function necessary for diagnosis are efficiently incorporated, and the utility is high.
c. The device of the present application is, for example, 8 kg in weight, can be further reduced in weight, and is compact. The operation and handling of the equipment is simple and does not require advanced technology. One person can detect the cause of electric fire in wall outlet wiring.
d. Positioning and fixing the contact for insulation measurement in the center of the measurement plug makes positioning and fixing easy and safe.
e. The device of the present application performs internal conduction performance and surface insulation performance measurement with a common measurement plug SP. If each performance is measured continuously, it takes about 5 seconds. For example, all the wall outlets in a house, for example, 30 to 60, can be diagnosed in a short time.
f. The apparatus of the present application can be applied to measurement of wiring devices such as a 200V wall outlet in addition to a 100V wall outlet.

2.火災予防の観点から見た有効性
a.従来の予防は、変色や発熱の有無など、視覚や触覚に基づく確認が主である。本願装置は電気的な測定で壁コンセント器具の表面絶縁性能、内部導通性能を診断する。本願装置は過熱や発火になる前の早い段階で異常を検出できる。この為、壁コンセントや天井裏分岐部などからの電気火災を未然に防止できる。
b.分電盤の子ブレーカーから壁コンセントに至るケーブル配線を含めた接続不良を検出できる。ケーブル配線は天井裏で部屋毎に壁コンセント用として分岐接続される。従来は発見が困難な天井裏ケーブル接続不良の異常発熱部等も検出できるため、天井裏からの出火を予防できる。
c.地震や水害等で配線や壁コンセントに無理な力や汚れが加わると、火災予防上、多数の住居を対象に、壁コンセントや屋内配線の導通性能、表面の絶縁性能を早期に確認する必要がある。本願装置は短時間で測定作業ができる為、多数の住居を対象にした確認作業を短期間にできる。
d.本願装置は住宅以外についても診断可能である。例えば、オフィスビル、工場の他、寺院、神社、美術館など重要な建築物には壁コンセントが多数使用されている。本願装置により、壁コンセント配線の接続不良や表面絶縁不良を早期に検出できれば、これら建物、施設等についても電気火災を防止できる。
2. Effectiveness from the viewpoint of fire prevention a. Conventional prevention is mainly based on visual and tactile senses such as discoloration and fever. The device of the present application diagnoses the surface insulation performance and internal conduction performance of wall outlet appliances by electrical measurement. The present apparatus can detect an abnormality at an early stage before overheating or ignition. For this reason, it is possible to prevent an electrical fire from a wall outlet or a ceiling branch branch.
b. Connection failure including cable wiring from the breaker of the distribution board to the wall outlet can be detected. Cable wiring is branched and connected to the wall for each room behind the ceiling. Since it is possible to detect abnormal heat generation parts, etc., which are difficult to detect in the past, it is possible to prevent fires from occurring behind the ceiling.
c. If excessive force or dirt is applied to the wiring or wall outlet due to an earthquake or water damage, it is necessary to confirm the continuity of the wall outlet and indoor wiring and the insulation performance of the surface for a large number of residences to prevent fire. is there. Since the apparatus of the present application can perform measurement work in a short time, confirmation work for a large number of residences can be performed in a short time.
d. The device of the present application can also diagnose other than a house. For example, many wall outlets are used for important buildings such as office buildings, factories, temples, shrines, and museums. If it is possible to detect a wall outlet wiring connection failure or surface insulation failure at an early stage by the device of the present application, it is possible to prevent electrical fires in these buildings and facilities.

壁コンセントとプラグを示す正面図及び実施の形態の測定用プラグと測定子を示す斜視図である。It is a front view which shows a wall socket outlet and a plug, and a perspective view which shows the plug for measurement and measuring element of embodiment. 壁コンセントの絶縁抵抗を測定する際の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure at the time of measuring the insulation resistance of a wall socket. 電力量メーターから壁コンセントに至る迄の屋内配線の例を示す結線図である。It is a connection diagram which shows the example of the indoor wiring from an electric energy meter to a wall outlet. 2線VVFケーブルの外観を示す平面図及びその導体抵抗の例を示す表である。It is a table | surface which shows the example of the top view which shows the external appearance of a 2-wire VVF cable, and its conductor resistance. 分電盤から壁コンセントに至る迄の屋内配線に於ける接続箇所の例を示す結線図である。It is a connection diagram which shows the example of the connection location in the indoor wiring from a distribution board to a wall outlet. 負荷電流、例えば6Aを流したときの、Fケーブルの各心線の電圧降下を測定する際の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure at the time of measuring the voltage drop of each core wire of F cable when flowing load current, for example, 6A. 診断対象の壁コンセントに給電している分電盤ブレーカー(子ブレーカー)Aとは別の分電盤ブレーカーBから給電されている壁コンセントに基準プラグを接続し、その電圧を降下前の電圧と看做してFケーブルの各心線の電圧降下を測定する際の回路構成を示す結線図である。A reference plug is connected to a wall outlet that is supplied from a distribution board breaker B that is different from the distribution board breaker (child breaker) A that supplies power to the wall outlet to be diagnosed. It is a connection diagram which shows the circuit structure at the time of considering and measuring the voltage drop of each core wire of F cable. 接続不良の発生箇所の違い(1)(2)によって、各壁コンセント(い)〜(へ)への電圧降下の現れ方が異なって来ることを説明する為の結線図である。It is a connection diagram for demonstrating how the appearance of the voltage drop to each wall outlet (ii)-(f) changes with the difference (1) (2) of the occurrence location of a connection failure. 抵抗負荷を掛けた際の電圧降下を測定する為の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure for measuring the voltage drop at the time of applying a resistive load. 実施の形態例装置の基本制御シーケンスを示すブロック図である。It is a block diagram which shows the basic control sequence of the example embodiment apparatus. 実施の形態例装置のコンセント表面絶縁抵抗測定の手順を示すブロック図である。It is a block diagram which shows the procedure of the outlet surface insulation resistance measurement of the example embodiment apparatus. 実施の形態例装置の100V電源電圧降下測定の手順を示すブロック図である。It is a block diagram which shows the procedure of the 100V power supply voltage drop measurement of the example apparatus. 実施の形態例装置の器具内部導通性能測定の手順を示すブロック図である。It is a block diagram which shows the procedure of the instrument internal conduction performance measurement of the embodiment apparatus. 実施の形態例装置の外観を示す正面図である。It is a front view which shows the external appearance of the embodiment apparatus. 実施の形態例装置の外観を示す背面図である。It is a rear view which shows the external appearance of the embodiment apparatus. モデルとした一般住宅測定結果を示す表である。It is a table | surface which shows the general house measurement result made into the model. モデルとした一般住宅の各部屋の壁コンセントの配置等を示す平面図である。It is a top view which shows arrangement | positioning etc. of the wall outlet of each room of the model | house which used as a model. 100/200V単層3線式の配電例を示す結線図である。It is a connection diagram which shows the example of 100 / 200V single layer 3 wire type power distribution. 分電盤の配線と各保護装置の例を示す正面図である。It is a front view which shows the example of wiring of a distribution board, and each protection device. B種接地と感電時の電流(破線)の経路を示す結線図である。It is a connection diagram which shows the path | route of the electric current (broken line) at the time of B class grounding and an electric shock. 絶縁測定と漏洩電流(破線)測定の例を示す結線図である。It is a connection diagram which shows the example of an insulation measurement and a leakage current (broken line) measurement. コンセント表面の絶縁低下の例を示す結線図である。It is a connection diagram which shows the example of the insulation fall of the outlet surface. 接続不良に関する例を示し、(A)はロの接続箇所において接続不良があり発熱している例を示す接続図、(B)は天井裏のFケーブル配線と接続箇所の例を示す結線図である。An example of connection failure is shown. (A) is a connection diagram showing an example in which there is a connection failure at a connection point in B and heat is generated. (B) is a connection diagram showing an example of F cable wiring and connection points on the back of the ceiling. is there. 接続不良配線の発見方法の説明の為の接続不良に係る抵抗値等の例を示す結線図である。FIG. 6 is a connection diagram illustrating an example of a resistance value or the like related to a connection failure for explaining a method of finding a connection failure wiring. 黒線の接続部に接続不良による抵抗が存在し、これにより、所定の電流を流したとき、黒線側と白線側とで、電圧降下に差が生ずることを利用し、接続不良を発見することを説明する為の配置図である。There is resistance due to poor connection at the connection part of the black line, and when this causes a predetermined current to flow, a difference in voltage drop occurs between the black line side and the white line side to detect a connection failure. It is a layout for explaining this. 黒線測定時と白線測定時で、測定用電流が一定である場合と変化した場合の、各線の電圧降下波形を対比して示す波形図である。It is a wave form diagram which compares and compares the voltage drop waveform of each line when the current for measurement changes at the time of black line measurement and white line measurement. 同時引き算による差電圧検出を示し、(A)は黒線側に接続不良0.1Ωがある場合、(B)は黒線側に接続不良がない場合を示す波形図である。Difference voltage detection by simultaneous subtraction is shown, (A) is a waveform diagram showing a case where there is a connection failure 0.1Ω on the black line side, and (B) is a waveform diagram showing a case where there is no connection failure on the black line side. 特許文献1の発明の適用範囲の例(1)と本願発明の適用範囲の例(2)とを示す結線図である。It is a connection diagram which shows the example (1) of the application range of invention of patent document 1, and the example (2) of the application range of this invention. 特許文献2の発明のセンサー作動の限界例を示す回路図である。It is a circuit diagram which shows the example of a limit of the sensor action | operation of invention of patent document 2. FIG.

次に、本願発明の具体的実施形態ESについて説明する。なお、壁コンセントCWのように一つの図の中に複数個表示される部材については、図を見易くする為、その中の幾つかについて、その符号を付す。   Next, a specific embodiment ES of the present invention will be described. In addition, about the member displayed in one figure like wall outlet CW, in order to make a figure legible, the code | symbol is attached | subjected about some of them.

1.課題解決へのアプローチ
配線器具からの電気火災を確実に防止するには、使用者による器具の変色や発熱の点検、清掃だけでは十分でない。家屋にある全ての壁コンセントCWを対象に、電気的な方法で内部の導通性能や表面CSの絶縁性能を測定し、性能が著しく低下している異常な器具を早期に見つける事が必要である。
1. Approach to solving the problem To prevent an electrical fire from the wiring device, it is not enough for the user to discolor the device, check for heat, and clean it. For all wall outlets CW in the house, it is necessary to measure the internal continuity performance and the insulation performance of the surface CS by an electrical method, and to find an abnormal instrument whose performance has deteriorated at an early stage. .

現代家屋の屋内配線は、2線以上の電線が組まれたJIS規格の高品質ケーブルを使用し、分電盤DBから天井裏で分岐し壁コンセントCWへ配線している。壁コンセントCWの差込形状や寸法は規格化され共通になっている。これらの特徴を使い、通電状態のまま壁コンセント配線の導通性能や表面CSの絶縁性能を測定し、異常な器具を簡単に検出できる装置があれば壁コンセントCW側からの電気火災を防止できる。   The indoor wiring of a modern house uses a high-quality cable of JIS standard in which two or more wires are assembled, branches from the distribution board DB behind the ceiling, and is wired to the wall outlet CW. The shape and dimensions of the wall outlet CW are standardized and common. Using these features, if there is a device that can easily detect abnormal equipment by measuring the continuity performance of the wall outlet wiring and the insulation performance of the surface CS while being energized, an electrical fire from the wall outlet CW side can be prevented.

2.装置ESの基本構造
(1)装置ESの測定機能
a.壁コンセント差込口表面CSの絶縁抵抗測定
壁コンセント差込口表面CSの絶縁性能を測定し、導電性汚れDT(図22)やトラッキンング現象による絶縁低下があるか診断する。絶縁性能の測定結果表示と、判定基準値との比較による良否判定可能な表示をする。
b.壁コンセントCWの内部導通電圧降下差測定
壁コンセントCWの差込口から裏側接続部〜天井裏配線〜分電盤子ブレーカーBまで含めた導通性能を測定し、接続不良があるか診断する。測定結果表示と、基準値との比較による良否判定可能な表示をする。
c.壁コンセントの100V電源電圧降下測定
壁コンセントCWの差込口の無負荷時と負荷時の電源電圧を測定し、100V電源の電圧降下を良否判定可能に表示する。
これにより、内部導通電圧降下差の測定結果と合わせ、分電盤DBの電源側を含めた電圧供給性能の確認が出来る。
2. Basic structure of device ES (1) Measurement function of device ES a. Insulation resistance measurement of wall outlet surface CS The insulation performance of the wall outlet surface CS is measured, and it is diagnosed whether there is insulation deterioration due to conductive dirt DT (FIG. 22) or tracking phenomenon. Display of the measurement result display of the insulation performance and the determination of pass / fail by comparison with the determination reference value.
b. Internal conduction voltage drop difference measurement of wall outlet CW Measure the conduction performance from the outlet of wall outlet CW to the back side connection part-ceiling back wiring-distribution board breaker B and diagnose whether there is a connection failure. The measurement result display and the display capable of determining pass / fail by comparing with the reference value are displayed.
c. 100V power supply voltage drop measurement of wall outlet Measures the power supply voltage at the time of no load and load of the outlet of the wall outlet CW, and displays the voltage drop of the 100V power supply so that it can be judged as good or bad.
Thereby, the voltage supply performance including the power supply side of the distribution board DB can be confirmed together with the measurement result of the internal conduction voltage drop difference.

(2)器具絶縁抵抗の評価方法 図1参照
a.壁コンセントと差込プラグの隙間GP(図22)に塵埃や汚れDT(図22)が付着し、そこに水分がたまると絶縁が低下し、やがてトラッキング現象の放電が起きる。絶縁性能低下は壁コンセントとプラグが接触する面CFに発生する。絶縁性能の測定点TPを、プラグが接触する面CFの中心となる壁コンセント表面差込口中央とする。
b.この壁コンセント差込口の中央は100V充電部が近い。そこで絶縁測定用の測定子を安全に接触させるため、測定用プラグSPの中央に金属製測定子SEを2本、進出、後退可能に配置する。測定用プラグSPを壁コンセントCWに差し込むと、この測定子SEが同時に差込口の中央位置に接触固定され、安全に測定ができる。
(2) Evaluation method of instrument insulation resistance See Fig. 1 a. When dust or dirt DT (FIG. 22) adheres to the gap GP (FIG. 22) between the wall outlet and the plug, and moisture accumulates there, the insulation is lowered and eventually the tracking phenomenon discharge occurs. The insulation performance degradation occurs on the surface CF where the wall outlet contacts the plug. The measurement point TP of the insulation performance is set to the center of the wall outlet surface outlet that is the center of the surface CF that the plug contacts.
b. The center of this wall outlet is close to the 100V charging part. Therefore, in order to safely contact the measuring element for insulation measurement, two metal measuring elements SE are arranged in the center of the measuring plug SP so as to be able to advance and retract. When the measurement plug SP is inserted into the wall outlet CW, the measuring element SE is simultaneously contacted and fixed at the center position of the insertion port, and the measurement can be performed safely.

(3)コンセント差込口表面絶縁抵抗の測定方法 図2参照
a.測定用プラグの測定子SEを壁コンセントCWの測定位置に接触後、その測定子SE間に直流電圧を印加し、流れる電流で発生した装置側抵抗の電圧を基準電圧と比較し、良否判定可能に表示する。
b.例として、壁コンセントCW側の表面絶縁抵抗が1MΩで装置側抵抗が0.1MΩとする。
直流電圧が11Vの場合、電流は 11V ÷ 1.1MΩ = 10μAとなる。
装置側抵抗に発生する電圧は 0.1MΩ × 10μA = 1.0Vとなる。
(3) Method of measuring the surface insulation resistance of the outlet outlet See Fig. 2 a. After contacting the measuring plug SE with the measuring position of the wall outlet CW, a DC voltage is applied between the measuring plugs SE, and the voltage of the device-side resistance generated by the flowing current is compared with the reference voltage, allowing pass / fail judgment To display.
b. As an example, the surface insulation resistance on the wall outlet CW side is 1 MΩ, and the device side resistance is 0.1 MΩ.
When the DC voltage is 11 V, the current is 11 V ÷ 1.1 MΩ = 10 μA.
The voltage generated in the device-side resistor is 0.1 MΩ × 10 μA = 1.0V.

(4)内部導通電圧降下差の評価方法
a.家庭における分電盤DBから壁コンセントCWまでの配線は図3のようになっている。現代の家屋では、ブレーカーBから壁コンセントCWまでの配線は、図4のようなJIS規格ケーブルFCが使用されている。ケーブルの内部には2本(又は3本)の電線が組み込まれている。ケーブルFCは分電盤ブレーカーBから天井裏を経由して壁コンセントCWに接続されている。ケーブル配線の特徴として、壁コンセントCWまでの内部2線(黒・白)は電線の太さと電線の長さが同じであり、導通抵抗値はほぼ等しい。
b.接続不良による過熱は壁コンセント器具内部の接触不良の他、図5各矢印部分等の接続不良があると発生する。異常発熱は接続不良による導通抵抗の増加部分で発生し、10W近い熱量が集中すると高温になる。分電盤ブレーカーBから壁コンセントCWまでのケーブル配線長は10〜30m程度だが、導通抵抗値は非常に低く、通常は黒白2線ほぼ同じ値となる。しかし、接続不良がある場合は不良線側の導通抵抗値が大きく増える。過熱となる場合、抵抗増は0.1Ω程度以上あり抵抗値差による不良検出は可能である。( 50mケーブルの導通抵抗値0.28Ω、2線の導通抵抗値差0.01Ω以下 )
c.片側線接続不良の導通抵抗値差を精密抵抗計で測定するには停電が必要であり作業性が悪い。そこで、通常、ブレーカーBから壁コンセントCWまでの2線はほぼ同じ導通抵抗値のため、負荷電流を流した時、2線各々の電圧降下が同じ値になる事に着眼する。つまり、接続不良がある場合は接続不良側電線路の電圧降下値が大きくなる。通電状態の壁コンセントCWに一定の負荷電流を流して2線各々の電圧降下値を測定し、2線電圧降下値の差が異常に大きい場合は接続不良があると判断できる。
なお、確率として非常に低いが、2線とも同時に接続不良があり、増加した導通抵抗値が2線とも同じ値となった場合、2線の電圧降下値差が無い状態となり、不良を検出できない場合があり得る。
(4) Evaluation method of internal conduction voltage drop difference a. The wiring from the distribution board DB to the wall outlet CW at home is as shown in FIG. In a modern house, a JIS standard cable FC as shown in FIG. 4 is used for wiring from the breaker B to the wall outlet CW. Two (or three) electric wires are incorporated in the cable. The cable FC is connected from the distribution board breaker B to the wall outlet CW through the ceiling. As a characteristic of the cable wiring, the inner two wires (black and white) to the wall outlet CW have the same wire thickness and the same wire length, and the conduction resistance values are almost equal.
b. Overheating due to poor connection occurs when there is a poor connection inside the wall outlet appliance, as well as defective connections such as the arrows in FIG. Abnormal heat generation occurs at the portion where the conduction resistance increases due to poor connection, and the temperature rises when a heat amount close to 10 W is concentrated. The cable wiring length from the distribution board breaker B to the wall outlet CW is about 10 to 30 m, but the conduction resistance value is very low, and normally the black and white two lines are almost the same value. However, when there is a connection failure, the conduction resistance value on the defective line side greatly increases. In the case of overheating, the resistance increase is about 0.1Ω or more, and it is possible to detect a defect based on a resistance value difference. (50m cable conduction resistance value 0.28Ω, 2-wire conduction resistance difference 0.01Ω or less)
c. A power failure is required to measure the difference in conduction resistance due to poor connection on one side with a precision resistance meter, and workability is poor. Therefore, since the two wires from the breaker B to the wall outlet CW are generally the same conduction resistance value, it is noted that the voltage drop of each of the two wires becomes the same value when a load current is passed. That is, when there is a connection failure, the voltage drop value of the connection failure side electrical line becomes large. A constant load current is passed through the wall outlet CW in the energized state to measure the voltage drop value of each of the two wires. If the difference between the two wire voltage drop values is abnormally large, it can be determined that there is a connection failure.
Although the probability is very low, there is a connection failure in both lines, and when the increased conduction resistance value is the same value in both lines, there is no difference in voltage drop between the two lines, and the defect cannot be detected. There may be cases.

(5)内部導通電圧降下差の測定方法 図6参照
a.例として、ブレーカーBから装置ESまでの左側電路(1)−(2)−(3)−(4)、右側電路(5)−(6)−(7)−(8)で、導通抵抗を各々0.15Ω、接続不良が左側電路A点に発生し 0.10Ω抵抗増の場合とする。なお、上記(1)、(2)等は、図では丸付き数字で表されている。本明細書の他の部分の記述に於いても同様である。
b.壁コンセントCWに測定用プラグSPを差し込み、ブレーカーB側に電圧測定用基準プラグBP(ワニ口クリップCC)を接続する。装置ES側に内蔵してある抵抗負荷を使って、壁コンセントCWに 測定交流電流6Aを流す。6A時の右側電路(5)−(8)間交流電圧降下と左側電路(1)−(4)間交流電圧降下を測定する。
右側 0.15Ω × 6 A = 0.9V
左側 ( 0.15 + 0.10 )Ω × 6 A = 1.5V
右側 0.9Vと 左側 1.5V の電圧降下差を検出する。
1.5V−0.9V = 0.6V
c.差電圧0.6Vが基準電圧(0.4V)以上の場合を不良、未満の場合を良と判定する。
( 0.4V × 6A = 2.4W、接続不良部が6Aで2.4W以上発熱する時を不良とする場合 )
d.ブレーカーBの負荷側端子に基準プラグBPを接続する事で、壁コンセント器具のプラグ接続部、器具とケーブルの接続部、天井裏のケーブル配線接続部CPまで含めた接続不良を検出できる。
e.図7参照 電圧測定用の基準プラグBPの接続作業を容易にするため、ブレーカーAの負荷側端子でなく、ブレーカーBに接続の壁コンセントCWに基準プラグBPを接続して測定する。測定範囲はブレーカーA側まで含むことになるが、基準プラグBP接続の作業性が良く実用的である。基準プラグBPを流れる電圧測定用の電流は微小であり、ブレーカーB側のコンセント回路の電流が少なければ、このB側の回路の影響をほとんど受けずに、ブレーカーA側の負荷側端子を基準にしたのと変らない電圧降下を測定できる。
(5) Measuring method of internal conduction voltage drop difference See Fig. 6 a. As an example, in the left electric circuit (1)-(2)-(3)-(4) and the right electric circuit (5)-(6)-(7)-(8) from the breaker B to the device ES, the conduction resistance is Suppose that 0.15Ω each, poor connection occurs at left side A circuit point A, and resistance increases by 0.10Ω. Note that the above (1), (2), etc. are represented by circled numbers in the figure. The same applies to the description of other parts of the present specification.
b. The measurement plug SP is inserted into the wall outlet CW, and the voltage measurement reference plug BP (crocodile clip CC) is connected to the breaker B side. Using a resistive load built in the device ES side, a measuring AC current 6A is passed through the wall outlet CW. Measure the AC voltage drop between the right circuit (5)-(8) and the AC voltage drop between the left circuits (1)-(4) at 6A.
Right side 0.15Ω × 6 A = 0.9V
Left side (0.15 + 0.10) Ω × 6 A = 1.5V
Detect voltage drop difference of 0.9V on the right side and 1.5V on the left side.
1.5V-0.9V = 0.6V
c. The case where the difference voltage 0.6V is equal to or higher than the reference voltage (0.4V) is determined to be defective, and the case where the difference voltage is less than that is determined to be good.
(0.4V × 6A = 2.4W, when the defective connection part generates heat of 2.4W or more at 6A)
d. By connecting the reference plug BP to the load side terminal of the breaker B, it is possible to detect a connection failure including the plug connection portion of the wall outlet device, the connection portion of the device and the cable, and the cable wiring connection portion CP of the ceiling.
e. See FIG. 7 In order to facilitate the connection work of the reference plug BP for voltage measurement, the measurement is performed by connecting the reference plug BP to the wall outlet CW connected to the breaker B instead of the load side terminal of the breaker A. The measurement range includes up to the breaker A side, but the workability of connecting the reference plug BP is good and practical. The current for voltage measurement flowing through the reference plug BP is very small. If the current of the outlet circuit on the breaker B side is small, the load side terminal on the breaker A side is used as a reference without being affected by the circuit on the B side. It is possible to measure the voltage drop that does not change.

(6)100V電源電圧降下の評価方法 図8参照
a.壁コンセント差込口での異常な電源電圧降下は、壁コンセント側の配線に著しい接続不良がある場合の他、分電盤ブレーカーB内部や電源側配線に著しい接続不良がある場合でも発生する。例として、(1)点のみに著しい接続不良が有る場合、壁コンセント(に)のみ内部導通電圧降下差で不良判定される他、壁コンセント(に)のみ電源電圧降下が大きくなる。
しかし、(2)点のみに接続の不良がある場合、(い)〜(へ)全ての壁コンセントは、内部導通電圧降下差は不良判定とならないが電源電圧降下は全て大きくなる。著しい接続不良が分電盤DBの内部にある場合、各壁コンセントCWでの電源電圧降下を測定する事で、原因の判断や分電盤DB内部の不良ブレーカー特定が容易になる。
b.壁コンセントCWに 負荷電流6Aを流す前と後のコンセント差込口の100V電圧を測定し、前後の差から各壁コンセントCWにおける電源電圧降下値を求める。(い)〜(へ)の壁コンセント内部導通電圧降下差の結果と併せ、電源側の引込線や分電盤DB側に著しい接続不良がないか確認できる。
(6) Evaluation method of 100V power supply voltage drop See FIG. 8 a. An abnormal power supply voltage drop at the wall outlet is generated not only when there is a significant connection failure in the wiring on the wall outlet side, but also when there is a significant connection failure in the distribution board breaker B or in the power supply side wiring. As an example, when there is a significant connection failure only at (1) point, only the wall outlet (in) is judged to be defective by the internal conduction voltage drop difference, and the power supply voltage drop is increased only in the wall outlet (in).
However, if there is a connection failure only at point (2), (i) to (f) all wall outlets will not be judged as defective in internal conduction voltage drop, but all power supply voltage drops will be large. When there is a significant connection failure inside the distribution board DB, measuring the power supply voltage drop at each wall outlet CW makes it easy to determine the cause and identify a defective breaker inside the distribution board DB.
b. Measure the 100V voltage at the outlet before and after flowing the load current 6A to the wall outlet CW, and determine the power supply voltage drop value at each wall outlet CW from the difference between before and after. Together with the results of the wall outlet internal conduction voltage drop difference (ii) to (f), it can be confirmed whether there is a significant connection failure on the power supply side lead-in wire or distribution board DB side.

(7)100V電源電圧降下の測定方法 図9参照
a.装置ES側に6Aの抵抗負荷LDと電源電圧の測定回路BL1〜BL4を内蔵させておく。測定用プラグSPを差し込み、負荷電流を流す前の電源電圧を測定する。
例として(102V)
次に負荷電流6Aを流した時の電源電圧を測定する。
同 (97V)
電源電圧降下の測定結果、電源電圧降下は
102V−97V= 5Vとなる。
(7) 100V power supply voltage drop measurement method See FIG. 9 a. A 6 A resistive load LD and power supply voltage measurement circuits BL1 to BL4 are built in the device ES side. The measurement plug SP is inserted, and the power supply voltage before flowing the load current is measured.
As an example (102V)
Next, the power supply voltage when the load current 6A flows is measured.
(97V)
Measurement result of power supply voltage drop, power supply voltage drop
102V-97V = 5V.

3.装置ESの各動作のブロック構成
(1)基本制御シーケンス
このシーケンスは図10に示すが如くである。この内容は、この後の「5.検出装置ESの取扱説明」の、主として「(2)装置ESの操作方法」、「(3)判定基準」の記述から理解され得ると思考する。従って、ここでの説明は略す。
(2)コンセント差込口絶縁測定シーケンス
このシーケンスは図11に示すが如くである。この内容も上記と同じ部分の記述から理解され得ると思考する。ここでの説明は略す。
(3)100V電源電圧降下測定
このシーケンスは図12に示すが如くである。この内容も前記と同じ部分の記述から理解され得ると思考する。ここでの説明は略す。
(4)器具内部導通性能測定
このシーケンスは図13に示すが如くである。この内容も前記と同じ部分の記述から理解され得ると思考する。ここでの説明は略す。
3. Block Configuration of Each Operation of Apparatus ES (1) Basic Control Sequence This sequence is as shown in FIG. I think that this content can be understood mainly from the descriptions of “(2) Operation method of the device ES” and “(3) Judgment criteria” in “5. Therefore, explanation here is omitted.
(2) Outlet outlet insulation measurement sequence This sequence is as shown in FIG. I think that this content can also be understood from the description of the same part as above. The description here is omitted.
(3) 100V power supply voltage drop measurement This sequence is as shown in FIG. I think that this content can also be understood from the description of the same part as above. The description here is omitted.
(4) Instrument internal conduction performance measurement This sequence is as shown in FIG. I think that this content can also be understood from the description of the same part as above. The description here is omitted.

4.装置ESの外観
図14に装置ESの正面を、図15に装置ESの背面を示す。各部の機能については、この後の「5.検出装置ESの取扱説明」の、主として「(1)装置ES外観の説明」の記述から理解され得ると思考する。従って、ここでの説明は略す。なお、この実施の形態は、横幅40cm、高さ24cm、奥行26cm、重さ8kgである。
4). Appearance of Device ES FIG. 14 shows the front of the device ES, and FIG. 15 shows the back of the device ES. It is thought that the function of each part can be understood mainly from the description of “(1) Description of appearance of device ES” in “5. Therefore, explanation here is omitted. In this embodiment, the width is 40 cm, the height is 24 cm, the depth is 26 cm, and the weight is 8 kg.

5.検出装置ESの取扱説明
(1)装置ES外観の説明 図14,図15参照
a.測定用プラグSP・・・測定対象の壁コンセント、ここでは図7分電盤ブレーカーAに繋がれた壁コンセントに直接接続する。中央に絶縁測定用の接触子SEを持つ。
b.基準プラグBP・・・内部電圧降下差の測定用に、測定対象の壁コンセントに繋がる分電盤ブレーカーA(図7)とは別の分電盤ブレーカーB(図7)に繋がる壁コンセントに接続。
c.ワニ口クリップCC・・・子ブレーカーBが1個だけの場合、子ブレーカーBの負荷側に直接接続する。
d.電源スイッチSW・・・測定用プラグSPの接続をON.OFFする他、検出装置ESの制御電源をON.OFFする。
e.リセットスイッチRS・・・測定中の制御シーケンスを停止する。LED結果表示とOK.NG表示も解除する。
f.連続測定スイッチCE・・・表面絶縁 → 電源電圧降下 → コンセント内部電圧降下差の順で連続測定する。
g.極性切替スイッチPS・・・同相間の電圧降下測定をするため基準プラグBPと測定用プラグSPの極性を合わせる。
h.縦LED6個LE6・・・表面絶縁、電源電圧降下、コンセント内部電圧降下の測定結果を6段階で表示(上から、赤2個、黄2個、緑2個)。
i.横LED3個LE3・・・各測定項目で、測定中BUSY(小径の緑)、測定結果良OK(普通径の緑)、測定結果不良NG(赤)を表示する。
j.単独測定スイッチIS・・・連続測定スイッチを使わないで、各スイッチを押すと表示された当該項目を単独測定する。
k.内蔵ブザー(不図示)・・・基準プラグBPと測定用プラグSPの極性が合わない時、判定結果不良の時、鳴動する。
5. Description of handling of detection device ES (1) Description of appearance of device ES See FIGS. 14 and 15 a. Plug for measurement SP: A wall outlet to be measured, which is directly connected to a wall outlet connected to the distribution board breaker A in FIG. A contact SE for insulation measurement is provided in the center.
b. Reference plug BP ... For measuring internal voltage drop difference, connect to wall outlet connected to distribution board breaker B (Fig. 7) different from distribution board breaker A (Figure 7) connected to wall outlet to be measured .
c. Alligator clip CC: When there is only one child breaker B, it is directly connected to the load side of the child breaker B.
d. Power switch SW: Turns on the connection of the measurement plug SP. In addition to turning off, the control power supply of the detection device ES is turned on. Turn off.
e. Reset switch RS: Stops the control sequence being measured. LED result display and OK. The NG display is also canceled.
f. Continuous measurement switch CE ・ ・ ・ Surface insulation → Power supply voltage drop → Continuous measurement in the order of outlet voltage drop difference.
g. Polarity changeover switch PS: The polarities of the reference plug BP and the measurement plug SP are matched in order to measure the voltage drop between the same phases.
h. 6 vertical LEDs LE6 ... Displays the measurement results of surface insulation, power supply voltage drop, and outlet internal voltage drop in 6 levels (from the top, 2 red, 2 yellow, 2 green).
i. Three horizontal LEDs LE3... For each measurement item, BUSY (small diameter green), measurement result good OK (normal diameter green), and measurement result defect NG (red) are displayed.
j. Independent measurement switch IS: When each switch is pressed without using a continuous measurement switch, the displayed item is measured independently.
k. Built-in buzzer (not shown): Sounds when the polarity of the reference plug BP and the measurement plug SP does not match, or when the judgment result is poor.

(2)装置ESの操作方法
a.測定したい壁コンセントCWの近くに検出装置ESを置く。周辺コンセントCWにおいて100W以上で使用中のプラグPGは全て抜くか、その電源スイッチを切る。測定用プラグSPを診断する壁コンセントCWに奥まで差し込む。
b.電工ドラムか延長コードを使用し、測定対象の壁コンセントCWに供給しているブレーカーA(図7)とは異なる、別のブレーカーB(図7)から電力が供給されている壁コンセントCWに、基準用プラグBPを差し込む。
c.子ブレーカーBが1個だけの場合、基準用プラグBPにワニ口クリップCCを取着し、このワニ口クリップCCをその子ブレーカーBの負荷側端子に取り付ける。ここは100Vに充電されているので、測定中ワニ口CCがずれショートしないように取り付けには注意する。
d.電源スイッチSWを入れる。測定用プラグSPの極性と基準プラグBPの極性が合わないと不図示ブザーが鳴る。極性が合わずブザーが鳴った場合、極性切替スイッチPSを反対側に操作しブザーの鳴動を停止する。
電圧降下は、例えば、図6の(1)と(4)の端子間、及び(5)と(8)の端子間について測定される。このとき、各プラグSP、BPの差し方次第では、これら端子の関係が正しくないことが有り得る。そういう場合、図6の各電圧測定手段VSでは、正常な場合1V以下である筈の測定電圧が100V近くになる。
こういう場合、装置ES内蔵の不図示制御手段が、極性反対と判断し、内蔵のブザーを鳴動させる。
e.連続測定スイッチCEを押すと3項目の連続測定がスタートする。最初に表面絶縁を1秒程度で測定し、次に100V電源電圧降下を2秒程度で測定、次にコンセント内部電圧降下差を1秒程度で測定する。全体では5秒程度で測定が出来る。
f.測定中はBUSY表示となり、測定後はOKかNGが表示される。測定項目ごとに測定結果は6段階でLEDレベル表示される。内部に設定された判定基準と比較し、不良判定されるとブザーが鳴る。
g.何れかの単独スイッチISを押すと、表面絶縁・電源電圧降下・コンセント内部電圧降下差の各項目を個別に測定する。連続測定後に3項目の動作表示を残したまま何れかの単独スイッチISを押すとその項目のみ再測定する。
h.測定終了後にリセットスイッチRSを押すと測定結果の6段階表示やOK・NG表示は消灯する。測定中にリセットスイッチRSを押した場合は装置ES内部の測定動作が即時停止し、初期の測定前状態に戻る。
(2) Operation method of apparatus ES a. Place the detection device ES near the wall outlet CW to be measured. Unplug all plugs PG in use at peripheral outlet CW at 100 W or more, or turn off the power switch. Insert the measurement plug SP all the way into the wall outlet CW for diagnosing.
b. Using an electric drum or extension cord, the wall outlet CW supplied with power from another breaker B (FIG. 7), which is different from the breaker A (FIG. 7) supplying the wall outlet CW to be measured, Insert the reference plug BP.
c. When there is only one child breaker B, the alligator clip CC is attached to the reference plug BP, and this alligator clip CC is attached to the load side terminal of the child breaker B. Since this is charged to 100V, care should be taken when installing so that the alligator CC does not slip and short during measurement.
d. Turn on the power switch SW. If the polarity of the measurement plug SP does not match the polarity of the reference plug BP, a buzzer (not shown) sounds. If the polarity does not match and the buzzer sounds, the polarity switch PS is operated to the opposite side to stop the buzzer.
The voltage drop is measured, for example, between the terminals (1) and (4) in FIG. 6 and between the terminals (5) and (8). At this time, depending on how the plugs SP and BP are inserted, the relationship between these terminals may be incorrect. In such a case, in each voltage measuring means VS in FIG. 6, the normal measurement voltage that is 1 V or less is close to 100 V in the normal state.
In such a case, the control means (not shown) built in the device ES determines that the polarity is opposite, and sounds the built-in buzzer.
e. Pressing the continuous measurement switch CE starts 3 items of continuous measurement. First, the surface insulation is measured in about 1 second, then the 100 V power supply voltage drop is measured in about 2 seconds, and the outlet internal voltage drop is measured in about 1 second. The whole measurement can be done in about 5 seconds.
f. BUSY is displayed during measurement, and OK or NG is displayed after measurement. For each measurement item, the measurement results are displayed in LED levels in six stages. A buzzer sounds when a defect is judged by comparing with the judgment criteria set inside.
g. When any single switch IS is pressed, each item of surface insulation, power supply voltage drop, and outlet voltage drop is measured individually. If any single switch IS is pressed with the operation display of three items remaining after continuous measurement, only that item is measured again.
h. When the reset switch RS is pressed after the measurement is completed, the six-level display of the measurement result and the OK / NG display are turned off. When the reset switch RS is pressed during measurement, the measurement operation inside the apparatus ES is immediately stopped and the initial state before measurement is restored.

(3)判定基準(実施の形態例の場合)
a.壁コンセント差込中央部における表面の絶縁性能は、例えば2MΩ以下を絶縁不良とする。
b.壁コンセント差込口での6A負荷時100V電源電圧降下は、例えば8V以上を不良とする。この不良があるとき、壁コンセントCWでの電圧降下差に異常が無い場合は、分電盤DB内部や引込線に導通異常があると推定される。
c.内部導通性能低下による2線電圧降下差は、例えば6A負荷電流にて0.4V以上を不良とする。
(3) Criteria (in the case of the embodiment)
a. The insulation performance of the surface at the wall outlet plugging center is, for example, 2 MΩ or less as an insulation failure.
b. The 100V power supply voltage drop at the time of 6A load at the wall outlet outlet is, for example, 8V or more being defective. When there is this defect, if there is no abnormality in the voltage drop difference at the wall outlet CW, it is presumed that there is a conduction abnormality in the distribution board DB or the lead-in wire.
c. The difference in the two-wire voltage drop due to the deterioration of the internal conduction performance is, for example, 0.4 V or more at 6 A load current as defective.

(4)使用上の注意
a.測定精度を上げるには、100W以上で使用中の電気製品について、壁コンセントCWからプラグPGを外すか、停止すると良い。
b.実施の形態の装置ESでは、基準用プラグBPを分電盤ブレーカーA(図7)の負荷側か、別の分電盤ブレーカーB(図7)に繋がる壁コンセントCWに接続しないと各測定スイッチCE,ISを押しても動作しないようにしている。こういう場合、図6の電圧測定手段VSの入力がゼロになるので、これを元に、基準用プラグBPの接続状態を判定する。
c.単相3線式で基準用プラグBPを壁コンセントCWに差し込む場合、測定電圧が200Vにならないように同一相で100Vになる壁コンセントCWを選び、そこに基準プラグBPを接続する。そこが200Vである場合、極性を切替てもブザーが鳴る。
(4) Precautions for use a. In order to increase the measurement accuracy, it is preferable to remove or stop the plug PG from the wall outlet CW for an electric product in use at 100 W or more.
b. In the apparatus ES of the embodiment, each measurement switch must be connected unless the reference plug BP is connected to the load side of the distribution board breaker A (FIG. 7) or to the wall outlet CW connected to another distribution board breaker B (FIG. 7). Even if CE or IS is pressed, it does not operate. In such a case, since the input of the voltage measuring means VS of FIG. 6 becomes zero, the connection state of the reference plug BP is determined based on this.
c. When the reference plug BP is inserted into the wall outlet CW in a single-phase three-wire system, the wall outlet CW that is 100 V in the same phase is selected so that the measurement voltage does not become 200 V, and the reference plug BP is connected thereto. If it is 200V, the buzzer will sound even if the polarity is switched.

7.検出装置ESによる測定結果
a.一般住宅での測定結果例を図16資料Aとして示す。このときの各壁コンセント位置を図17資料Bとして示す。なお、図17の上から2列目以降の各図において、そのタイトル表示の末尾に付された「A」〜「D」は、その部屋の壁コンセントCWが、右上の図の夫々の子ブレーカー「A」〜「D」に接続されていることを表す。図16の測定結果には、各壁コンセント位置における検出装置ESの表示と、6A負荷電流の印加前後での100V電源電圧降下実測値、分電盤DBから壁コンセントCWまでの左線・右線内部導通電圧降下実測値が含まれている。
b.一般住宅での壁コンセント内部導通電圧降下測定結果はすべて0〜0.2V範囲の表示であった。左線・右線の内部導通電圧降下の実測値は最小0.30V、最大1.01Vとなっている。6Aで換算すると、2.0mmケーブル9m、30mの長さに相当する。良好な配線器具での左線・右線の差電圧は0.01〜0.03V程度であり、不良判定レベルの0.4V以上に対し、かなり小さな値となっている。
8.その他
a.基準プラグBPの接続であるが、測定対象の壁コンセントへの供給ブレーカーA(図7)の負荷側端子でなく、延長コード20mを使い、別の子ブレーカーB(図7)から供給されている部屋の壁コンセントCWに基準プラグBPを差込んで測定した。
b.実施の形態例の装置ESはダミーの絶縁不良(1MΩ)や接続不良(0.1Ω)を正常に不良判定した。
c.重複するが、図16の上方の注意書きをここにも記す。
1.「測定箇所(1)(2)(3)・・」は、資料Bに示す各部屋での測定対象の壁コンセントの差込位置(1)(2)(3)・・を表わす。
2.「基準位置」は、電圧測定用の基準プラグBPを接続(コンセント差込)した壁コンセント位置を示す。
3.「検出装置の表示」は、そのときの検出装置ES前面の各LEDのうち、どれが光輝されたかを表す。
4.「100V電源電圧降下」は、6A負荷電流が印加される前後での100Vの電圧降下実測値を表す。
5.「左線(右線)内部電圧降下」は6A負荷電流が印加された時の左線(右線)内部導通電圧降下実測値を表す。
6.最右側列の「左右線差電圧」は左線内部電圧降下と右線内部電圧降下の計算による差を示す。
7). Measurement results by the detection device ES a. An example of the measurement result in a general house is shown in FIG. Each wall outlet position at this time is shown as FIG. In addition, in each figure after the second column from the top of FIG. 17, “A” to “D” attached to the end of the title display are the wall outlets CW of the room, and the respective child breakers in the upper right figure. It represents that it is connected to “A” to “D”. The measurement results in FIG. 16 include the display of the detection device ES at each wall outlet position, the measured value of the 100 V power supply voltage drop before and after the 6 A load current is applied, and the left and right lines from the distribution board DB to the wall outlet CW. Includes measured values of internal conduction voltage drop.
b. The measurement results of the wall outlet internal conduction voltage drop in ordinary houses were all displayed in the range of 0 to 0.2V. The measured values of the internal conduction voltage drop on the left and right lines are a minimum of 0.30V and a maximum of 1.01V. In terms of 6A, this corresponds to a length of 2.0 mm cable 9 m and 30 m. The difference voltage between the left line and the right line in a good wiring device is about 0.01 to 0.03 V, which is a considerably small value with respect to the defect determination level of 0.4 V or more.
8). Other a. The connection of the reference plug BP, but not from the load side terminal of the supply breaker A (FIG. 7) to the wall outlet to be measured, is supplied from another child breaker B (FIG. 7) using the extension cord 20m. The measurement was performed by inserting the reference plug BP into the wall outlet CW of the room.
b. The apparatus ES according to the embodiment normally judged a dummy insulation failure (1 MΩ) or connection failure (0.1Ω) as a failure.
c. Although it overlaps, the note at the top of FIG. 16 is also written here.
1. “Measurement points (1), (2), (3),...” Represent plug-in positions (1), (2), (3),.
2. The “reference position” indicates the wall outlet position where the reference plug BP for voltage measurement is connected (plug insertion).
3. “Display of detection device” indicates which of the LEDs on the front surface of the detection device ES at that time is illuminated.
4). “100V power supply voltage drop” represents an actually measured voltage drop of 100V before and after the 6A load current is applied.
5. “Left line (right line) internal voltage drop” represents an actually measured value of the internal voltage drop on the left line (right line) when a 6 A load current is applied.
6). The “right and left line differential voltage” in the rightmost column indicates the difference between the left line internal voltage drop and the right line internal voltage drop.

9.なお、家庭の電気配線に関して以下に補足する。この補足の目的は、ここまでの説明に加え、電灯線の引込、分電盤保護開閉器、感電時電流、配線構成、電気火災、電圧降下差による検出法などについて説明をすることで、本願発明について、その理解を一層深めて貰うことにある。
補足は以下の項目について行なう。
(1)低圧用電灯線の供給方式 電力会社6600V変圧器側から家屋への100V/200V電灯供給例。
(2)分電盤DBの配線と保護装置 家庭分電盤DBでの引込・引出線と各種開閉器(ブレーカー)の保護機能。
(3)B種接地と感電時の電流 変圧器低圧側のB種接地工事によるアース配線と感電時の電流経路。
(4)絶縁測定と漏洩電流測定 電力会社定期点検による屋内配線の絶縁測定と漏洩電流測定方法。
(5)コンセント表面CSの絶縁不良 コンセント表面CSの絶縁不良と電力会社による定期点検での検出範囲。
(6)接続不良による配線発熱 壁コンセントCWまでの屋内配線と接続不良による導通抵抗での異常発熱。
(7)接続不良配線の発見方法 接続不良による導通抵抗の増加とケーブル配線での導通抵抗の特徴。
(8)電圧降下差による不良発見 2線の電圧降下値測定と電圧降下値の差電圧による導通不良の検出。
(9)同時引算による差電圧検出 2線電圧降下値波形の同時引算による差電圧検出方法と誤差対策。
9. In addition, it supplements below about the electrical wiring of a home. The purpose of this supplement is to explain the detection method based on the drawing of the power line, the switchboard protection switch, the current at the time of electric shock, the wiring configuration, the electric fire, the voltage drop difference, etc. in addition to the explanation so far. It is to deepen the understanding of the invention.
Supplements will be made on the following items.
(1) Supply system of low-voltage lamp line An example of supplying a 100V / 200V lamp from the power company 6600V transformer side to the house.
(2) Distribution board DB wiring and protection device Protection function of the lead-in / lead-out line and various switches (breakers) in the home distribution board DB.
(3) Class B grounding and current during electric shock Ground wiring and electric current path during electric shock due to Class B grounding work on the transformer low voltage side.
(4) Insulation measurement and leakage current measurement Insulation measurement and leakage current measurement method for indoor wiring by periodic inspection of electric power companies.
(5) Insulation failure of outlet surface CS Insulation failure of outlet surface CS and detection range in periodic inspection by electric power company.
(6) Heat generation of wiring due to poor connection Abnormal heat generation due to indoor wiring to the wall outlet CW and conduction resistance due to poor connection.
(7) How to find connection failure wiring Increase in conduction resistance due to connection failure and characteristics of conduction resistance in cable wiring.
(8) Failure detection by voltage drop difference Measurement of voltage drop value of two wires and detection of conduction failure by voltage difference between voltage drop values.
(9) Differential voltage detection by simultaneous subtraction Differential voltage detection method and error countermeasure by simultaneous subtraction of 2-wire voltage drop value waveform.

(1)家庭用電灯線の供給方式について
(1)電力会社からの低圧電灯線供給には100V単相2線式と100V/200V単相3線式がある。各供給方式による電力会社側変圧器結線と家屋までの電灯引込配線の接続例を図18に示す。
(2)古い家屋の低圧電灯線供給には100V単相2線式が多いが、契約容量の大きい家屋や200V家電機器を使用の家屋は100V/200V単相3線式となる。100V単相2線式の家屋にはR(T)、Nの2線で供給、100V/200V単相3線式の家屋にはR、N、Tの3線で供給する。
(1) Supplying system for household power lines (1) There are 100V single-phase two-wire systems and 100V / 200V single-phase three-wire systems for supplying low-voltage piezoelectric cables from electric power companies. FIG. 18 shows an example of connection between the power company transformer connection and the lighting lead-in wiring to the house according to each supply method.
(2) Although there are many 100V single-phase two-wire systems for supplying low-voltage piezoelectric wires in old houses, houses with large contracted capacity and houses using 200V home appliances are 100V / 200V single-phase three-wire systems. A 100V single-phase two-wire house is supplied with two wires R (T) and N, and a 100V / 200V single-phase three-wire house is supplied with three wires R, N, and T.

(2)分電盤DBの配線と保護装置
分電盤DBの配線と保護装置の例を図19に示す。図に於いて、
(1)は電力会社との契約容量を決める契約開閉器(ブレーカー)MBである。契約電流を超えた使い方をするとこの開閉器が過電流と自動判断し、開閉器が切れ停電になる。
(2)は漏電による感電や火災を防ぐ漏電ブレーカーLBである。動作定格が30mAの場合、大地に30mA以上の電流が流れるような漏電や感電が発生すると瞬時に開閉器が切れ停電して保護する。30mAの他、定格40Aと表示ある場合は過電流ブレーカーと兼用する。
(3)は過電流保護の子ブレーカーBで定格20Aが多い。家電機器の使いすぎや、配線の短絡ショート事故等により電流が配線器具の許容電流を超えると過熱で火災事故になるため、自動的に電流を遮断し、停電状態にして配線器具を保護する。屋内配線には2線内蔵のFケーブル線が多く使われるが、必ず子ブレーカーBを経由して使用場所へ配線されている。
(4)は100V電灯引込線で、電力会社側から電力量計器を経由して家屋の分電盤DBに接続されている。接続線には契約ブレーカーMBの電流定格に対し十分耐えられる太いケーブル線が使われている。
(5)は子ブレーカーBから屋内の配線に使われるケーブルで、素線直径2.0mm Fケーブル線が多い。家屋内で使用する各電気機器は必ず子ブレーカーBから配線供給され過電流時は保護される。子ブレーカー20Aに対し、直径2.0mmFケーブル線の許容電流は24Aであり電流余裕がある。
(6)配線器具の接続不良による配線の過熱やトラッキング現象の放電による器具の発火事故は、事故発生初期時において過電流とはならないため、過電流保護の子ブレーカーBでは保護できない。また、大地への漏電にならないため、漏電ブレーカーLBは遮断動作せず分電盤DBでは保護できない。過電流でなくても配線が発火する理由、大地への漏電とならない理由は次項以降で説明する。
(2) Distribution Panel DB Wiring and Protection Device FIG. 19 shows an example of distribution panel DB wiring and protection device. In the figure,
(1) is a contract switch (breaker) MB that determines the contract capacity with the electric power company. If the usage exceeds the contracted current, this switch automatically determines that it is overcurrent, and the switch breaks and causes a power failure.
(2) is a leakage breaker LB that prevents electric shock and fire due to leakage. When the operating rating is 30 mA, when a leakage or electric shock that causes a current of 30 mA or more to flow in the ground occurs, the switch is instantaneously cut off to protect it. In addition to 30 mA, when a rating of 40 A is displayed, it is also used as an overcurrent breaker.
(3) is a child breaker B for overcurrent protection and has a rating of 20A. If the current exceeds the allowable current of the wiring device due to excessive use of home appliances or a short circuit accident of the wiring, etc., it will cause a fire accident due to overheating. Therefore, the current is automatically cut off to protect the wiring device by making a power failure. F wiring with a built-in 2-wire is often used for indoor wiring, but it is always routed to the place of use via the child breaker B.
(4) is a 100V lamp lead-in line, which is connected from the power company side to the distribution board DB of the house via a power meter. The connection cable is a thick cable that can withstand the current rating of the contract breaker MB.
(5) is a cable used for indoor wiring from child breaker B, and there are many wire diameters of 2.0 mm F cable. Each electric device used in the house is always supplied with wiring from the child breaker B, and is protected in case of overcurrent. For the child breaker 20A, the allowable current of the 2.0 mm F cable wire is 24 A, and there is a current margin.
(6) An over-current protection child breaker B cannot protect a fire accident caused by overheating of the wiring due to a poor connection of the wiring equipment or an ignition of the equipment due to the discharge of the tracking phenomenon. In addition, since there is no electric leakage to the ground, the electric leakage breaker LB is not cut off and cannot be protected by the distribution board DB. The reason why the wiring will ignite even if it is not an overcurrent and the reason why it will not cause a ground leakage will be explained in the following sections.

(3)B種接地と感電時の電流
B種接地と感電時の電流について図20に示す。
(1)電気設備の技術基準により、高圧巻線と低圧巻線の混触事故時による低圧巻線側の電圧上昇危険防止策として、変圧器の2次側N端子は大地へアース接続され、B種接地工事とされている。よって通常は変圧器2次側のN端子はアースと同電位であり、N線側の対地電圧は0Vとなる。
(2)N線側でないR線(T線)側に素手で触れた場合は対地電圧100Vのため、100Vで感電する。感電時の電流(破線矢印)は、手 → 体内 → 大地 → B種接地線を経由 → 変圧器と循環する。接地されているN線側に触れた場合はN線の対地電圧が0Vのため、感電しない。
(3)ここでは、100W照明が2ヶ所で点灯され、そこで人間が右側照明のR線側に素手で触れ、50mAで感電した場合を想定した。図には、感電(漏電)電流50mA(0.05A)と照明電流1.0A(実線矢印)の流れを示した。
(4)大地へ電気が流れるような感電(漏電)が発生した時は、分電盤内にある漏電ブレーカーLBが差電流( R側2.05 A −N側 2.00A = 0.05A )を検出し、自動的に動作する。漏電ブレーカーLBは内部にR線・N線を囲む漏電検出コイルCLがあり、差電流を検出すると動作する。感電や漏電の電流検出後、瞬時に動作して停電する事で感電死亡事故や漏電火災事故を防ぐ。
(5)コンセントとプラグの接触面CFの絶縁低下によって発生するトラッキング現象は100V電極間の絶縁体沿面を流れる電流放電である。放電現象だけに注目すると絶縁体表面を漏洩する電流であるが、大地に漏洩電流が流れないため漏電とは表現されない。この場合、漏電ブレーカーLBは動作しない。
(6)感電に関連し、絶縁性のある長靴を使用した場合はR線に素手で触れても感電しない。しかし、右手でR線に素手で触れたまま、左手をN線に素手で触れた場合は当然のことながら感電する。この場合も、感電電流はR線から右手→人体を通り→左手→N線と流れるため、漏電ブレーカーLBは動作しない。
(3) Class B grounding and current during electric shock Class B grounding and current during electric shock are shown in FIG.
(1) According to the technical standards for electrical equipment, the secondary N terminal of the transformer is grounded to the ground as a measure to prevent the risk of voltage rise on the low-voltage winding side in the event of a mixed contact between the high-voltage winding and the low-voltage winding. It is considered to be seed grounding. Therefore, the N terminal on the secondary side of the transformer is usually at the same potential as the ground, and the ground voltage on the N line side is 0V.
(2) When the R line (T line) side that is not on the N line side is touched with bare hands, the voltage to ground is 100 V, so an electric shock is caused at 100 V. The electric current at the time of electric shock (broken arrow) circulates with hand → body → ground → B-type ground wire → transformer. If you touch the grounded N-line side, you will not get an electric shock because the ground voltage of the N-line is 0V.
(3) Here, it is assumed that 100W illumination is turned on at two locations, and a human touches the R line side of the right illumination with his bare hand and is electrocuted at 50 mA. The figure shows the flow of an electric shock (leakage) current of 50 mA (0.05 A) and an illumination current of 1.0 A (solid arrow).
(4) When an electric shock (leakage) that causes electricity to flow to the ground occurs, the earth leakage breaker LB in the distribution board is the difference current (R side 2.05 A-N side 2.00 A = 0.05 A) Detect and operate automatically. The earth leakage breaker LB has an earth leakage detection coil CL surrounding the R line and the N line, and operates when a difference current is detected. After detecting an electric shock or electric leakage current, it operates instantly and stops power to prevent electric shock deaths and electric leakage fire accidents.
(5) The tracking phenomenon that occurs due to the insulation decrease of the contact surface CF between the outlet and the plug is a current discharge that flows along the insulator creepage surface between the 100V electrodes. If attention is paid only to the discharge phenomenon, it is a current that leaks through the surface of the insulator, but it is not expressed as a leakage because no leakage current flows to the ground. In this case, the earth leakage breaker LB does not operate.
(6) In relation to electric shock, when boots with insulating properties are used, there is no electric shock even if the R wire is touched with bare hands. However, if the left hand touches the N line with a bare hand while touching the R line with the right hand, it is a matter of course that an electric shock will occur. Also in this case, since the electric current flows from the R line to the right hand → through the human body → the left hand → the N line, the leakage breaker LB does not operate.

(4)絶縁測定と漏洩電流測定
絶縁測定と漏洩電流測定について図21に示す。即ち、
(1)電力会社定期点検に絶縁測定がある。測定は分電盤の契約ブレーカーMBを開放し、子ブレーカーBの負荷側線に絶縁計の測定電極を当て、片方電極をアースに接続して直流100V程度の電圧を印加する。大地に流れる直流電流を抵抗値に換算表示し、0.1MΩ未満は不良扱いとなる。新築時の配線や良好な絶縁性能を維持した配線では10〜20MΩ程度の絶縁性能がある。
(2)又、電力会社定期点検に漏電検査がある。分電盤ブレーカーBを入れた状態で屋内の電気機器に100V通電したまま行う。分電盤電源側のケーブル(2線)をクランプメーター先端でクランプし、100Vの漏洩電流を測定する。クランプメーターはR線N線の差電流を0.01mA精度で測定できる。クランプメーターによる電流測定値が1mAを超えると不良になる。100V÷0.1MΩ=1mA
(3)1mAを少し超える漏電や0.1MΩに近い絶縁不良は漏電ブレーカーLB(30mA)が動作するほどでは無いが、時間の経過で、大きな漏電や感電事故に至る恐れがあるので改修が必要となる。
(4)通常、電力会社による定期点検ではテレビ、コタツなど壁コンセント差込中の使用家電機器を含めた状態で、屋内の配線全体と大地間の絶縁測定や大地間に流れる漏洩電流を測定する。よって、コンセント表面汚れで起きた100V電極間絶縁性能低下による異常は検出できない。また、屋内ケーブル配線接続不良やコンセント差込部の接続不良による異常も検出できない。
(5)住居使用の状態で分電盤DBから各電気機器に供給されているR線とN線間の絶縁測定は不可能である。R線とN線間にリモコン天井照明や差込中の機器が入り、R線とN線間の絶縁確保ができないからである。住居で使用されているコンセント接続機器・天井照明負荷設備などの機器全てを取り外せばR線とN線間の絶縁測定は可能となるが、現実には全ての取り外しが困難であり測定できない。
(4) Insulation measurement and leakage current measurement FIG. 21 shows insulation measurement and leakage current measurement. That is,
(1) There is insulation measurement in the regular inspection of electric power companies. For the measurement, the contract breaker MB of the distribution board is opened, the measurement electrode of the insulation meter is applied to the load side line of the child breaker B, one electrode is connected to the ground, and a voltage of about 100 V DC is applied. The direct current flowing in the ground is converted into a resistance value, and a value less than 0.1 MΩ is treated as a failure. Wiring at the time of new construction and wiring maintaining good insulation performance have insulation performance of about 10 to 20 MΩ.
(2) There is also a leakage check in the periodic inspection of electric power companies. While the distribution board breaker B is inserted, 100V is applied to the indoor electrical equipment. Clamp the cable (2-wire) on the distribution board power supply side with the tip of the clamp meter and measure the leakage current of 100V. The clamp meter can measure the differential current between the R line and the N line with an accuracy of 0.01 mA. If the current measured by the clamp meter exceeds 1 mA, it becomes defective. 100V ÷ 0.1MΩ = 1mA
(3) Leakage of just over 1mA and insulation failure close to 0.1MΩ are not enough for the earth leakage breaker LB (30mA) to operate, but over time, there is a risk of major leakage or electric shock accidents, so refurbishment is necessary. It becomes.
(4) In general, regular inspections by electric power companies measure the insulation between the whole indoor wiring and the ground and the leakage current flowing between the ground, including household electrical appliances that are plugged into the wall outlet, such as TVs and kotatsu. . Therefore, it is impossible to detect an abnormality caused by a decrease in insulation performance between the 100 V electrodes caused by contamination on the outlet surface. Also, abnormalities due to poor indoor cable wiring connections or poor connection at the outlet plug cannot be detected.
(5) It is impossible to measure the insulation between the R line and the N line supplied from the distribution board DB to each electric device in a house use state. This is because remote control ceiling lighting or a device being inserted enters between the R line and the N line, and insulation between the R line and the N line cannot be secured. If all devices such as outlet connection devices and ceiling lighting load equipment used in the house are removed, insulation measurement between the R line and the N line can be performed, but in reality, it is difficult to remove all of them and measurement is impossible.

(5)コンセント表面CSの絶縁低下
(1)電気火災原因にトラッキング現象がある。図22に示すように、壁コンセントCWやプラグPGの表面に汚れDTが付着したり、壁コンセントとプラグの隙間GPに塵埃DTが付着したりしている状態で、ここに水分がたまると電解質になり、絶縁性が著しく低下して器具絶縁体の表面が電極間で沿面放電する。やがて表面が炭化進行するとショート発火する。なお、「汚れ」、「塵埃」には同じ符号「DT」を使用している。
(2)日常、引込線から壁コンセントCWまでの配線器具においては、100V充電部が直接露出する事は無い。台所や風呂場などの壁コンセント表面CSは日常生活で食材飛沫や塩分を含む汚れが付着しやすくAのようにコンセント表面CSに汚れが付く事が多い。しかし、図22の(A)のようにプラグPGが差し込まれていない状態なら、そこに汚れDTが付着しても水分が少ない事と壁コンセント内の充電部電極まで距離がある事で、電極間の著しい絶縁低下とはならず、沿面放電はまだ起きにくい。
(3)一方で、図22(B)のようにプラグPGが差し込まれた壁コンセントでは、壁コンセントとプラグの隙間GPに塵埃や水分がたまりやすい。また、壁コンセントCWにプラグPGが差し込まれると、プラグの刃PPの充電部が表面に露出し汚れ面(DT)との距離が無くなる。壁コンセントCWやプラグPGの外装材質は本来絶縁体だが、汚れDTに水分が含まれると、それが導電性の電解質になり、絶縁性が著しく低下して、プラグの刃PPの充電部電極間で微弱な沿面放電が起きる。放電は絶縁体表面を炭化させ、大きな放電に進行して発火事故となる。
(4)トラッキング現象による放電や発火は100V電極間の絶縁性能の低下で起きる放電現象であり、大地に流れる漏電や大地間との絶縁性能の低下では無い。従って電力会社の定期点検による絶縁測定や漏電検査では検出できない。漏電ブレーカーLBは動作しないので発火を防げない。
(5)トラッキング現象による電気火災を防ぐ方法として接続部CPの清掃や目視確認がある。しかし、壁コンセント表面CSの塩分を含んだ汚れや過去の放電による表面絶縁低下は外観で判断する事が困難である。絶縁低下した壁コンセントCWにプラグPGを長期に差し込んだ場合、トラッキング現象が起きやすくなる。こういうとき、家屋にある壁コンセントCWの表面絶縁測定を行い、不良器具を検出できれば電気火災を予防できる。
(6)家屋にある壁コンセントCWは通常15〜30個程度あり、差込2口式の場合で30〜60測定点となる。接続不良やコンセント表面絶縁不良の有無を全て見るには短時間で検出、判断できる装置が望ましい。
(5) Decrease in insulation on the outlet surface CS (1) There is a tracking phenomenon as a cause of electric fire. As shown in FIG. 22, when dirt accumulates on the surface of the wall outlet CW or the plug PG, or when dust DT adheres to the gap GP between the wall outlet and the plug, As a result, the insulating property is remarkably lowered, and the surface of the instrument insulator is creepingly discharged between the electrodes. Eventually, when the surface is carbonized, a short ignition occurs. The same symbol “DT” is used for “dirt” and “dust”.
(2) In daily life, in the wiring apparatus from the lead-in wire to the wall outlet CW, the 100V charging part is not directly exposed. The wall outlet surface CS of a kitchen or a bathroom is likely to be contaminated with food splashes and salt-containing soils in daily life, and the outlet surface CS is often stained like A. However, if the plug PG is not inserted as shown in FIG. 22 (A), the electrode is due to the fact that there is little moisture even if dirt DT adheres to it and there is a distance to the charging part electrode in the wall outlet. There is no significant decrease in insulation, and creeping discharge is still difficult to occur.
(3) On the other hand, in the wall outlet into which the plug PG is inserted as shown in FIG. 22B, dust and moisture tend to accumulate in the gap GP between the wall outlet and the plug. Further, when the plug PG is inserted into the wall outlet CW, the charged portion of the plug blade PP is exposed on the surface and the distance from the dirty surface (DT) is lost. The exterior material of the wall outlet CW and the plug PG is originally an insulator, but if the dirt DT contains moisture, it becomes a conductive electrolyte, which significantly reduces the insulation, and between the charged parts of the plug blade PP. A weak creeping discharge occurs. The discharge carbonizes the insulator surface and proceeds to a large discharge, resulting in a fire accident.
(4) Discharge or ignition due to the tracking phenomenon is a discharge phenomenon that occurs due to a decrease in insulation performance between the 100 V electrodes, and is not a leakage current flowing to the ground or a decrease in insulation performance from the ground. Therefore, it cannot be detected by insulation measurement or electric leakage inspection by periodic inspection of electric power companies. Since the earth leakage breaker LB does not operate, ignition cannot be prevented.
(5) As a method of preventing an electric fire due to the tracking phenomenon, there is cleaning of the connecting portion CP and visual confirmation. However, it is difficult to judge the appearance of the surface-contaminated surface CS of the wall outlet including salty soils and surface insulation degradation due to past discharge. When the plug PG is inserted into the wall outlet CW with reduced insulation for a long period of time, a tracking phenomenon is likely to occur. In such a case, an electrical fire can be prevented if the surface insulation measurement of the wall outlet CW in the house is performed and a defective device can be detected.
(6) There are usually about 15 to 30 wall outlets CW in the house, and 30 to 60 measurement points in the case of the plug-in two-port type. An apparatus that can detect and judge in a short time is desirable to see all of the presence or absence of poor connection or poor surface insulation.

(6)接続不良による配線発熱
(1)素線直径が2.0mmのFケーブル20mの導通抵抗は0.10Ωである。20m線をA,B、2組用意し、ケーブルAとBを中間で接続して 6A の負荷電流を、図23(A)のように流した場合の発熱を試算する。( 注 イ、ロ、ハが良好な接続状態にある場合は接続による新たな導通抵抗の増加はない。)
ケーブルAの発熱 = 黒線側の発熱 + 白線側の発熱
ケーブルAの発熱 = 6A×6A×0.10Ω + 6A×6A×0.10Ω
ケーブルAの発熱 = 3.6W + 3.6W
= 7.2W となる。
ケーブルA黒線だけの発熱は3.6Wとなるが20m長さのため、単位長0.1mの発熱は0.02Wとなる。0.1mあたりの発熱量は小さく、放熱が容易のためケーブル内の黒線は高温にならない。
(2)接続不良があると接続不良箇所の導通抵抗が増し、発熱が不良箇所に集中して異常過熱となる。今、↓ ロ の黒線接続不良により0.10Ωの導通抵抗が増加した場合を想定し、発熱を試算する。
黒線接続不良部の発熱 = 6A×6A×0.10Ω = 3.6W となる。 黒線接続不良部の発熱長さを0.1mとすると単位長0.1mの発熱が3.6Wとなる。良好な接続ケーブルでの単位長の発熱0.02Wに対し180倍と大きく、放熱が困難となり黒線は高温になる。
(3)電線が高温になると、銅線の表面が急速に酸化し、更に導通抵抗が増えて発熱の悪循環となる。電線被覆が高温になると熱損傷し、やがて発火する。尚、接続不良の抵抗増が1Ωの場合は、3A程度の電流で10Wとなり高温になる。この異常過熱時に分電盤の各ブレーカーMB,LB,Bは保護動作しない。
(4)家屋における子ブレーカーBから壁コンセントCWまでのケーブル配線例を図23(B)に示す。接続不良は電線の接続点CPや壁コンセントとプラグPGの差込点で発生する。子ブレーカーBからの配線で接続不良の起きる可能性があるこれらの点を矢印→で示す。矢印→点は壁コンセント内の接続部・差込部、天井裏の接続部CP、分電盤内の接続部となる。隠ぺい部分のため、異常な過熱があっても発見は難しい。
(6) Heat generation of wiring due to poor connection (1) The conduction resistance of the F cable 20m having a strand diameter of 2.0 mm is 0.10Ω. Prepare two sets of 20m lines A and B, connect cables A and B in the middle, and calculate the heat generation when a 6A load current flows as shown in FIG. (Note 1) When B, B and C are in good connection, there is no new increase in conduction resistance due to connection.
Cable A heat generation = Black wire side heat generation + White wire side heat generation Cable A heat generation = 6A x 6A x 0.10Ω + 6A x 6A x 0.10Ω
Heat generation of cable A = 3.6W + 3.6W
= 7.2W.
The heat generated only by the cable A black wire is 3.6 W, but because it is 20 m long, the heat generated by a unit length of 0.1 m is 0.02 W. The amount of heat generated per 0.1 m is small, and heat dissipation is easy, so the black wire in the cable does not become hot.
(2) When there is a connection failure, the conduction resistance of the connection failure portion increases, and heat generation concentrates on the failure portion, resulting in abnormal overheating. Assuming that the conduction resistance of 0.10Ω has increased due to the black line connection failure in ↓, calculate heat generation.
Heat generation in the black line poor connection portion = 6A × 6A × 0.10Ω = 3.6W If the heat generation length of the black line connection failure portion is 0.1 m, the heat generation with a unit length of 0.1 m is 3.6 W. The unit heat generation with a good connection cable is 180 times larger than the unit length of 0.02 W, making it difficult to dissipate heat and the black wire becomes hot.
(3) When the electric wire reaches a high temperature, the surface of the copper wire is rapidly oxidized, and the conduction resistance is further increased, resulting in a vicious cycle of heat generation. If the wire coating gets hot, it will be damaged by heat and will eventually ignite. If the resistance increase due to poor connection is 1Ω, the current becomes about 10 W at a current of about 3 A, resulting in a high temperature. During this abnormal overheating, each breaker MB, LB, B of the distribution board does not perform a protective operation.
(4) FIG. 23B shows an example of cable wiring from the child breaker B to the wall outlet CW in the house. The poor connection occurs at the connection point CP of the electric wire or the insertion point of the wall outlet and the plug PG. These points at which connection failure may occur in the wiring from the child breaker B are indicated by arrows →. Arrows → dots are connection / insertion in the wall outlet, connection CP on the ceiling, and connection in the distribution board. Because it is a concealed part, it is difficult to detect even if there is abnormal overheating.

(7)接続不良配線の発見方法
(1)ここでは、図24のように、ケーブルAとケーブルBの黒線接続点で接続不良が発生、導通抵抗0.10Ω増加と想定する。
(2)電線の異常過熱は接続不良の導通抵抗増加による発熱で起きるため、外観による変色や触手による方法で接続不良を発見できるときがある。しかし、この方法は電線に大きな電流が流れて既に変色や高温部があり、電線を直接見て触れられる場合のみ適用できる。使用電流が2〜3Aの場合、接続不良0.10Ωの発熱は1W以下となり、外観や触手による方法では見つからない。
(3)接続不良の発見方法の一つとして、黒線の初期における導通抵抗0.20Ωの測定と現在の導通抵抗0.30Ωの比較をすることが考えられる。測定で0.10Ωの増加分を確認できれば、接続不良の存在を確認できる。しかし、0.10Ωの抵抗増加分を正確に把握するには0.01Ωの精度を持つ計測方法が必要である。しかも、銅線の抵抗は温度1度で約0.4%上昇、抵抗0.20Ωの電線は25度上昇で0.22Ωになる。即ち、外気温度やケーブル本体の発熱で抵抗値が変わる。この為、この方法によるときは、温度変化の考慮が必要となる。
(4)家屋に使われるケーブルは本数が多く、配線長さも異なる。それ故、後の接続不良発生を見つけるために、黒線や白線の初期の導通抵抗値を配線毎に事前測定して記録することは、困難であり現実的でない。
(5)そこで、解決方法としてケーブルの黒線CCBと白線CCWに着眼する。接続不良の検出は初期における導通抵抗値が必要であるが、黒(白)線の初期導通抵抗を同一ケーブルの白(黒)線で代用する事ができる。国内のケーブルは高品質で同一ケーブルの黒線CCBと白線CCWの銅線直径差は0.02mm以内にある。分電盤DBから壁コンセントCWまでのケーブル配線は黒線CCBと白線CCWの長さが同じであり、黒線CCBと白線CCWの同一ケーブルにおける導体抵抗値の差は通常0.01Ω以下となる。それ故、同じ導通抵抗値とみなせる。白(黒)線代用で初期の導体抵抗測定が不要となる。また、外気温度や使用中のケーブル本体発熱による導通抵抗の温度変化は黒線CCB、白線CCWが同じように変化するので温度変化の考慮が不要となる。
(6)即ち、例えば黒線CCB側の接続不良を見るには、初期導通抵抗として白線CCW側の導通抵抗値0.20Ωを測定し、それから黒線CCB側の導通抵抗値0.30Ωを測定する。そして、両測定値から導通抵抗の増加有無を確認すれば良い。尤も、白線CCWにも同じ接続不良があり、同じ導通抵抗値になると発見できない。しかし、こういう状態が発生する確率は非常に低い。
(7)また、実際に子ブレーカーBから壁コンセントCWまでの黒線CCB、白線CCWの導通抵抗値を精密抵抗計で測定するには、測定対象配線の停電が必要となる。更に、精密抵抗計の測定線をブレーカー端子Bと壁コンセントCWの電極へ毎回接続して抵抗値を測定する方法は測定作業に時間が多くかかり、作業効率が悪い。それに測定のためのこの測定線の接続自体が不十分であると、測定誤差が大きくなる。結局、この方法で壁コンセントCWに配線されている屋内ケーブル全てを測定する事は時間的に困難である。
(8)作業効率を上げるには、屋内の100V電源を停電せず、黒線・白線の導通抵抗測定に置き換わる測定方法と、短時間で測定結果が得られる検出方法の考案が必要となる。これについては次項以降で説明する。
(7) Method for Finding Connection Failure Wiring (1) Here, as shown in FIG. 24, it is assumed that connection failure occurs at the black line connection point of cable A and cable B, and the conduction resistance increases by 0.10Ω.
(2) Since the abnormal overheating of the wire is caused by heat generation due to an increase in the conduction resistance due to poor connection, there may be a case where the poor connection can be found by a discoloration by appearance or a method using a tentacle. However, this method can be applied only when a large current flows through the electric wire and there is already a discoloration or a high-temperature part and the electric wire can be directly seen and touched. When the operating current is 2 to 3 A, the heat generated by the poor connection 0.10Ω is 1 W or less, and cannot be found by the appearance or the method using the tentacles.
(3) As one of the methods for detecting a connection failure, it can be considered to measure the conduction resistance of 0.20Ω in the initial stage of the black line and compare the current conduction resistance of 0.30Ω. If an increase of 0.10Ω can be confirmed by measurement, the presence of a connection failure can be confirmed. However, in order to accurately grasp the resistance increase of 0.10Ω, a measuring method having an accuracy of 0.01Ω is required. Moreover, the resistance of the copper wire rises by about 0.4% at a temperature of 1 degree, and the electric wire with a resistance of 0.20Ω rises to 25 ° by 0.22Ω. That is, the resistance value changes depending on the outside air temperature or the heat generation of the cable body. For this reason, when this method is used, it is necessary to consider temperature changes.
(4) The number of cables used in the house is large and the wiring length is also different. Therefore, it is difficult and impractical to pre-measure and record the initial conduction resistance value of the black line and the white line for each wiring in order to find out the occurrence of a connection failure later.
(5) Therefore, as a solution, focus on the black line CCB and white line CCW of the cable. Detection of connection failure requires the initial conduction resistance value, but the initial conduction resistance of the black (white) line can be substituted with the white (black) line of the same cable. Domestic cables are of high quality, and the copper wire diameter difference between the black line CCB and the white line CCW of the same cable is within 0.02 mm. In the cable wiring from the distribution board DB to the wall outlet CW, the lengths of the black line CCB and the white line CCW are the same, and the difference in the conductor resistance value in the same cable of the black line CCB and the white line CCW is usually 0.01Ω or less. . Therefore, it can be regarded as the same conduction resistance value. Replacement of white (black) line eliminates the need for initial conductor resistance measurement. Moreover, since the black line CCB and the white line CCW change in the same manner as the temperature change of the conduction resistance due to the outside air temperature or heat generation of the cable body in use, it is not necessary to consider the temperature change.
(6) That is, for example, in order to see the connection failure on the black line CCB side, the conduction resistance value 0.20Ω on the white line CCW side is measured as the initial conduction resistance, and then the conduction resistance value 0.30Ω on the black line CCB side is measured. To do. And what is necessary is just to confirm the increase presence or absence of conduction resistance from both measured values. However, the white line CCW has the same connection failure, and cannot be found when the same conduction resistance value is obtained. However, the probability that such a situation will occur is very low.
(7) Moreover, in order to actually measure the conduction resistance values of the black line CCB and the white line CCW from the child breaker B to the wall outlet CW with a precision resistance meter, a power failure of the measurement target wiring is required. Furthermore, the method of measuring the resistance value by connecting the measurement line of the precision resistance meter to the electrode of the breaker terminal B and the wall outlet CW every time takes much time for the measurement work, and the work efficiency is poor. Moreover, if the connection of the measurement line for measurement itself is insufficient, the measurement error increases. After all, it is difficult in terms of time to measure all the indoor cables wired to the wall outlet CW by this method.
(8) In order to increase the work efficiency, it is necessary to devise a measurement method that replaces the conduction resistance measurement of the black line and the white line without interrupting the indoor 100V power supply and a detection method that can obtain the measurement result in a short time. This will be described in the following section.

(8)電圧降下の差による不良発見
(1)導通抵抗値は、電線に一定の電流を流した状態で、電線の電圧降下値を測定すれば求められる。そこで、例えば図25に示すように、交流100V電源を使って抵抗負荷に 6A を流し、黒線CCB、白線CCWに同一の電流 6A が流れるようにしておく。
この状態で、黒線側イ−ハ 間の電圧降下 A を測定し、次に白線側イ−ハ 間 BB の電圧降下を測定する。黒線CCBと白線CCWの電圧降下値の比は黒線CCBと白線CCWの導通抵抗値の比と同じになる。黒線CCBと白線CCWの電圧降下から差電圧を求めれば、接触不良による導通抵抗値の差抵抗を求めた事と同じになる。
黒線電圧降下 A =6A×0.3Ω=1.8 V
白線電圧降下 BB =6A×0.2Ω=1.2 V
黒線CCBと白線CCWの電圧降下値差 0.6 V から黒線CCB側に接続不良0.10Ωの存在を確認できる。
(2)但し、この測定は、図26「電流一定時」に示すように、負荷電流が一定(6A)である場合に成り立つ。負荷電流が一定であれば、黒線CCB測定時の波形A,Bと、白線CCW測定時の波形AA,BBに変化は無く、測定タイミングが異なっても、黒線CCB、白線CCWについて、夫々の電圧降下が正しく計測されるからである。
(3)一方で、測定中に電源側電圧や負荷が変動して、図26「電流変化時」に示すように電流変化がある場合は、正しい測定が出来ない。黒線CCB測定時の負荷電流が6Aだったのに、それが白線CCW測定時に7Aになったとすれば、夫々の測定時の波形AとAA、BとBBは同一にならず、黒線CCB、白線CCWについて、夫々の電圧降下が正しく計測されないからである。
具体的には、
黒線電圧降下 A = 6A ×0.3Ω=1.8 V
白線電圧降下 BB = 7A ×0.2Ω=1.4 V
黒線と白線の電圧降下の差 0.4 V
と小さくなってしまい、黒線CCB側の接続不良0.10Ωが確認できなくなる。
(4)電流変化による影響を防ぐには、黒線CCB側イ−ハ 間の電圧降下の波形と白線CCW側イ−ハ 間の電圧降下の波形を同時に測定すると良い。例えば同じ6Aが流れているときの波形AとBの電圧を同時に、或いは、同じ7Aが流れているときの波形AAとBBの電圧を同時に計測する。こうすれば、黒、白各線について、そのときの負荷電流に対する電圧降下をほぼ正確に把握できる。
(8) Failure detection due to voltage drop difference (1) The conduction resistance value can be obtained by measuring the voltage drop value of the electric wire in a state where a constant current is passed through the electric wire. Therefore, for example, as shown in FIG. 25, 6A is passed through the resistance load using an AC 100V power supply, and the same current 6A flows through the black line CCB and the white line CCW.
In this state, the voltage drop A between the black line side I-ha is measured, and then the voltage drop between the white line side I-ha BB is measured. The ratio of the voltage drop value between the black line CCB and the white line CCW is the same as the ratio of the conduction resistance value between the black line CCB and the white line CCW. Obtaining the difference voltage from the voltage drop between the black line CCB and the white line CCW is the same as obtaining the difference resistance of the conduction resistance value due to poor contact.
Black line voltage drop A = 6A x 0.3Ω = 1.8 V
White line voltage drop BB = 6A × 0.2Ω = 1.2 V
From the voltage drop value difference 0.6 V between the black line CCB and the white line CCW, it can be confirmed that there is a connection failure of 0.10Ω on the black line CCB side.
(2) However, this measurement is valid when the load current is constant (6 A) as shown in FIG. If the load current is constant, the waveforms A and B at the time of measuring the black line CCB and the waveforms AA and BB at the time of measuring the white line CCW are not changed, and the black line CCB and the white line CCW are different even when the measurement timing is different. This is because the voltage drop is measured correctly.
(3) On the other hand, if the power supply side voltage or load fluctuates during measurement and there is a current change as shown in FIG. If the load current at the time of black line CCB measurement was 6A, but it became 7A at the time of white line CCW measurement, waveforms A and AA, B and BB at the time of each measurement would not be the same, black line CCB This is because each voltage drop is not correctly measured for the white line CCW.
In particular,
Black line voltage drop A = 6A x 0.3Ω = 1.8 V
White line voltage drop BB = 7A x 0.2Ω = 1.4 V
Difference in voltage drop between black line and white line 0.4 V
The connection failure on the black line CCB side cannot be confirmed.
(4) To prevent the influence of current change, it is better to measure the waveform of the voltage drop between the black line CCB-side high and the voltage drop waveform between the white line CCW-side high and simultaneous. For example, the voltages of waveforms A and B when the same 6A is flowing are measured simultaneously, or the voltages of waveforms AA and BB when the same 7A is flowing are measured simultaneously. By doing so, the voltage drop with respect to the load current at that time can be grasped almost accurately for each of the black and white lines.

(9)同時引算による差電圧検出とその平均化
(1)より正確な差電圧値を得る為に、実施の形態例では、黒線CCB側の電圧降下波形と白線CCW側の電圧降下波形を測定中常に同時引き算し、その差分の、例えば1秒間の平均を取り、これを差電圧値出力とする(図27)。こうすれば、測定中の100V電源電圧の変動や負荷の変動で測定電流が変化しても、ほぼ正確な差電圧出力が得られる。図を見て貰えば理解可能と思われるので、説明は略す。
(9) Difference voltage detection by simultaneous subtraction and its averaging (1) In order to obtain a more accurate difference voltage value, in the embodiment, the voltage drop waveform on the black line CCB side and the voltage drop waveform on the white line CCW side Are always subtracted during measurement, and the difference, for example, is averaged for one second, and this is used as the differential voltage output (FIG. 27). In this way, even if the measurement current changes due to a change in the 100V power supply voltage or a load during measurement, an almost accurate differential voltage output can be obtained. The explanation will be omitted because it seems understandable if you look at the figure.

9.最後に、本願の特徴をより理解して貰うため、前記各特許文献の発明と本願発明との対比をしておく。
(1)特許文献1 特開2001−343416 接続不良検出装置 について
a.この発明は、ブレーカー内部接点機構に接触不具合による接続不良があった場合、又は、ブレーカーと電線接続部CPに接続不良があった場合に於いて、純抵抗体負荷(線形負荷)のように、その波形がなだらかな正弦波となる電流を、接続不良箇所を介して流した場合に、該接続不良箇所両端に発生する電圧波形又は電流波形が、元のような滑らかな正弦波にならず、スパイク状の特徴的な波形成分が現れるという性質を応用して成るものと推測される。
b.波形検出方法としては、電圧センサ、電流センサ或いはアンテナを、ブレーカーの電源側、負荷側に配置し、これらでスパイク状の特徴的な波形成分を検出するものであり、この検出がされた場合は、その検出範囲内で接続不良があると判断し、検出されない場合は接続不良が無いと判断している。この検出範囲は、電圧センサの配置位置から分かるように、分電盤の漏電遮断器(漏電ブレーカー)または漏電遮断器と接続される配線まで、の狭い範囲となっている。
c.この発明は従来の温度センサー検出式の発明と異なり、接続不良で起きる過熱の前に接続不良を自己診断できる点を特長としている。しかし、公報の図1,図3,図4等から分かるように、この発明の実施には、ブレーカー側周囲にセンサー及び検出装置を予め組み込む必要がある。一般の家庭分電盤にはこのような装置は組み込まれていない。この為、実施するとなれば、使用している分電盤を発明に係るものに交換するしかない。
d.本願発明との相違、欠点となる部分−1
図28に示すように、上記発明の接続不良の検出範囲は、破線(1)で囲んだ範囲となる。これに対し、本願発明の場合は破線(2)の範囲となる。上記公報発明の欠点は、検出範囲が(1)と狭い事、センサーとの信号配線から範囲を大きく取れない事がある。
又、検出原理からわかるように、使用電流が小さな家屋、又は負荷機器の接続が無く、使用電流が無い家屋の場合は、接続不良があっても、判定に必要な接続不良波形が得られず、不良を検出できない。
一方、本願発明では、上記公報発明の如き装置の組み込みが不要であるだけでなく、子ブレーカーBから壁コンセントCWまでの広い範囲で各壁コンセント毎に接続不良を検出できる。また、使用電流や負荷機器の有無にも関係なく接続不良を検出できる。
e.本願発明との相違、欠点となる部分−2
上記公報発明は、正弦波電流または正弦波電圧に含まれるスパイク状の波形分を不良判定の基準としている。この為、スパイク状の波形出力とならないような接触状態が続く接続不良の場合はこれを検出できないことになる。
本願発明の場合は、接続不良の形態に関係なく、また家屋の使用電流や負荷機器の有無にも関係なく、一定電流下において発熱となり得る抵抗増加成分さえあれば、家屋の壁コンセント毎に、その配線の接続不良を検出できる。
9. Finally, in order to better understand the features of the present application, the inventions of the above-mentioned patent documents are compared with the present invention.
(1) Patent Document 1 JP 2001-343416 A Connection Failure Detection Device a. In the present invention, when there is a connection failure due to a contact failure in the breaker internal contact mechanism, or when there is a connection failure between the breaker and the wire connection portion CP, a pure resistor load (linear load), When a current whose waveform is a gentle sine wave is passed through a connection failure location, the voltage waveform or current waveform generated at both ends of the connection failure location does not become the original smooth sine wave, It is presumed that it is formed by applying the characteristic that a spike-like characteristic waveform component appears.
b. As a waveform detection method, a voltage sensor, current sensor or antenna is arranged on the power supply side and load side of the breaker, and these detect spike-like characteristic waveform components. Then, it is determined that there is a connection failure within the detection range, and if it is not detected, it is determined that there is no connection failure. As can be seen from the position of the voltage sensor, this detection range is a narrow range from the earth leakage breaker (earth leakage breaker) of the distribution board to the wiring connected to the earth leakage breaker.
c. Unlike the conventional temperature sensor detection type invention, the present invention is characterized in that a connection failure can be self-diagnosed before overheating caused by a connection failure. However, as can be seen from FIG. 1, FIG. 3, FIG. 4, etc. of the publication, it is necessary to previously incorporate a sensor and a detection device around the breaker side in order to implement the present invention. Such a device is not incorporated in a general household distribution board. For this reason, if it implements, there is no choice but to replace the distribution board in use with the one according to the invention.
d. Differences from the present invention, disadvantageous part-1
As shown in FIG. 28, the connection failure detection range of the present invention is a range surrounded by a broken line (1). On the other hand, in the case of the present invention, the range is the range of the broken line (2). The disadvantages of the above publication are that the detection range is as narrow as (1) and that the range cannot be made large from the signal wiring with the sensor.
Also, as can be seen from the detection principle, in the case of a house with a small operating current, or a house with no load equipment and no operating current, even if there is a connection failure, the connection failure waveform required for judgment cannot be obtained. , Can not detect the defect.
On the other hand, in the present invention, not only the incorporation of the device as in the above-mentioned publication invention is unnecessary, but also a connection failure can be detected for each wall outlet in a wide range from the child breaker B to the wall outlet CW. In addition, connection failure can be detected regardless of the current used and the presence or absence of load equipment.
e. Differences from the present invention, disadvantageous part-2
In the above-mentioned publication invention, a spike-like waveform component included in a sine wave current or a sine wave voltage is used as a criterion for defect determination. For this reason, this cannot be detected in the case of a connection failure in which the contact state does not result in a spike-like waveform output.
In the case of the present invention, regardless of the form of poor connection, and regardless of the current used in the house and the presence or absence of load equipment, as long as there is a resistance increasing component that can generate heat under a constant current, for each wall outlet of the house, Connection failure of the wiring can be detected.

(2)特許文献2 特開2009−145083 電路接続部の接続不良検出回路について
a.この発明は、電路1aと電路1bの接続部で接続不良が発生した場合、流れる電流によって接続部の両端に発生する電圧降下を応用したもので、従来の接続不良部での発熱を温度センサーで検出する方式に対し、センサー入力用の電圧検出線を電路1aと電路1bに接続するのみで、接続不良を検出できる特長を持つ。電圧検出のセンサーとしてフォトカプラ(発光ダイオードと受光トランジスターを内蔵)を使用している。フォトカプラ内の発光ダイオードはわずかな電流で発光動作するが、発光ダイオードは一定閾値以上の電圧を印加しないと電流が流れ始めない特性がある。
b.本願発明との相違、欠点となる部分−1
この動作原理から、上記特許文献2の発明の動作には制約条件がある。説明用に、電路1a、電路1b、接続部を図29に示す。仮に閾値電圧が1.OVでR=0.10Ωの接続不良があった場合を例にすると、接続不良が有っても10A以下の電流で使用を続ける場合は、接続部両端の電圧がこの閾値1.OV以上とはならず、センサー回路が動作しない。つまり、接続部の接続不良があっても、一定値以上の電流が流れないと不良を検出できない。即ち、この特許文献2の発明に係る装置を取付けたとしても、それで直ちに接続不良を検出できる訳ではなく、一定以上の電流が流れた場合にのみ検出は可能となる。
本願発明の場合は、屋内配線の接続部CPにおいて、接続不良による抵抗増加値が所定の基準値を超えていれば、電路の通常使用電流の大小に関係する事なく、接続不良を直ちに検出できる。
c.本願発明との相違、欠点となる部分−2
上記特許文献2の発明の実施には、予め接続不良を検知したい電路接続部ごとにセンサー回路を配置する必要がある。統合検出回路は各センサー回路の出力信号を集約し、統合検出回路内で接続不良の有無を判定している。よって、センサー回路取付け位置は統合検出回路から配線可能な近接した範囲となる。既設の電路に対し、この発明を適用させる場合、配線の確認が容易な分電盤内や開口部のある端子盤などの接続部に限定される。
住宅の屋内配線は天井裏や壁裏などの隠ぺい場所に接続部が数多くある。既設住宅の屋内配線の接続部全てにこの発明のセンサー回路を設置する事は信号線の長さや取付け位置の面で無理である。
本願発明の場合は上記公報発明のセンサー回路の如きものの取付けは不要で、既設屋内配線のままで接続不良の有無を検出できる。
d.本願発明との相違、欠点となる部分−3
特許文献2の発明では、接続部の接続不良による電圧降下を接続部両端に接続した電圧検出線からセンサー回路に入力させ、フォトカプラを動作させている。よって、壁コンセントに接続されたケーブルの接続部における接続不良を検出したい場合には、電圧降下の電圧検出線をケーブル側と壁コンセント側へ接続する必要がある。
しかし、壁コンセントに電圧検出線は接続不可能であり、この特許文献2の発明では、壁コンセント側の接続不良は検出できない。
本願発明の場合、ケーブルと壁コンセント間の接続部不良、壁コンセント器具内部の接続不良の何れも検出可能である。
(3)特許文献3 特開2008−305764 電路接続部の接続不良検出回路について
特許文献3の発明の内容は、特許文献2の発明の内容と近似している。それ故、この特許文献3の発明と本願発明との相違は、前述した特許文献2の発明と本願発明の相違とほぼ同様である。それ故、特許文献3との対比に関しては説明を略す。
(2) Patent Document 2 JP 2009-145083 A connection failure detection circuit of electric circuit connection part a. The present invention applies a voltage drop that occurs at both ends of a connection portion due to a flowing current when a connection failure occurs in the connection portion between the electric circuit 1a and the electric circuit 1b. In contrast to the detection method, the connection detection can be detected only by connecting the voltage detection line for sensor input to the electric circuit 1a and the electric circuit 1b. A photocoupler (built-in light emitting diode and light receiving transistor) is used as a voltage detection sensor. The light emitting diode in the photocoupler emits light with a small current, but the light emitting diode has a characteristic that current does not start to flow unless a voltage exceeding a certain threshold is applied.
b. Differences from the present invention, disadvantageous part-1
From this operation principle, there are restrictions on the operation of the invention of Patent Document 2. For explanation, the electric circuit 1a, the electric circuit 1b, and the connection portion are shown in FIG. If the threshold voltage is 1. Taking a case where there is a connection failure of R = 0.10Ω at OV as an example, even if there is a connection failure, when the use is continued at a current of 10 A or less, the voltage at both ends of the connection portion becomes the threshold value 1. It does not exceed OV and the sensor circuit does not operate. That is, even if there is a connection failure in the connection portion, the failure cannot be detected unless a current of a certain value or more flows. That is, even if the device according to the invention of Patent Document 2 is attached, it is not always possible to detect a connection failure, and detection is possible only when a certain amount of current flows.
In the case of the present invention, in the connection part CP of the indoor wiring, if the resistance increase value due to the connection failure exceeds a predetermined reference value, it is possible to immediately detect the connection failure regardless of the normal use current of the electric circuit. .
c. Differences from the present invention, disadvantageous part-2
In carrying out the invention of the above-mentioned Patent Document 2, it is necessary to arrange a sensor circuit for each electric circuit connection portion where it is desired to detect a connection failure in advance. The integrated detection circuit aggregates the output signals of the sensor circuits and determines whether there is a connection failure in the integrated detection circuit. Therefore, the sensor circuit mounting position is a close range that can be wired from the integrated detection circuit. When the present invention is applied to an existing electric circuit, it is limited to a connection part such as a distribution board or a terminal board having an opening, in which wiring can be easily confirmed.
The indoor wiring of a house has many connections in concealed places such as behind the ceiling and behind the walls. It is impossible to install the sensor circuit of the present invention in all the connecting parts of the indoor wiring of an existing house in terms of the length of the signal line and the mounting position.
In the case of the present invention, it is not necessary to attach the sensor circuit of the above-mentioned publication invention, and it is possible to detect the presence or absence of a connection failure with the existing indoor wiring.
d. Difference from the present invention, disadvantageous part-3
In the invention of Patent Document 2, a voltage drop due to connection failure of a connection portion is input to a sensor circuit from a voltage detection line connected to both ends of the connection portion, and a photocoupler is operated. Therefore, when it is desired to detect a connection failure in the connection portion of the cable connected to the wall outlet, it is necessary to connect the voltage detection line of the voltage drop to the cable side and the wall outlet side.
However, the voltage detection line cannot be connected to the wall outlet, and in the invention of Patent Document 2, a connection failure on the wall outlet side cannot be detected.
In the case of the present invention, it is possible to detect both a connection failure between the cable and the wall outlet and a connection failure inside the wall outlet device.
(3) Patent Document 3 Japanese Patent Application Laid-Open No. 2008-305564 Regarding Connection Failure Detection Circuit of Circuit Connection Portion The content of the invention of Patent Literature 3 is similar to the content of the invention of Patent Literature 2. Therefore, the difference between the invention of Patent Document 3 and the present invention is substantially the same as the difference between the invention of Patent Document 2 and the present invention. Therefore, a description of the comparison with Patent Document 3 is omitted.

B …子ブレーカー
分電盤ブレーカーA…図7でのみ使用
分電盤ブレーカーB…図7でのみ使用
BL1…図9 電圧降下測定部
BL2…図9 電圧測定部
BL3…図9 無負荷時電圧保持部
BL4…図9 負荷時電圧保持部
BP…基準プラグ(図15)
CC…ワニ口クリップ
CCW…心線・白
CCB…心線・黒
CE…連続測定スイッチ
CF…壁コンセントとプラグの接触面(図1)
CL…漏電検出コイル
CP…接続箇所
CS…コンセント表面
CW…壁コンセント
い〜へ…図8の壁コンセント
DB…分電盤
DT…塵埃や汚れ(図22)
ES…実施の形態の検出装置
FC…VVFケーブル(Fケーブル)
GP…隙間(図22)
IS…単独測定スイッチ3個(図14下横並び)
LB…漏電ブレーカー
LD…負荷抵抗
LE3…横LED3個
LE6…縦LED6個
MB…契約ブレーカー
PG…プラグ(汎用の)
PP…プラグの刃
PS…極性切替スイッチ
RS…リセットスイッチ
SE…金属製測定子(図1)
SW…電源スイッチ
SP…測定用プラグ(図1,図15)
TP…コンセント表面絶縁測定点(図1)
VS…図6 電圧測定手段
B ... Child breaker Distribution board breaker A ... Used only in Fig. 7 Distribution board breaker B ... Used only in Fig. 7 BL1 ... Fig. 9 Voltage drop measurement unit BL2 ... Fig. 9 Voltage measurement unit BL3 ... Fig. 9 Voltage holding at no load Part BL4 ... FIG. 9 Voltage holding part during load BP ... Reference plug (FIG. 15)
CC ... Alligator clip CCW ... Core wire / white CCB ... Core wire / black CE ... Continuous measurement switch CF ... Contact surface of wall outlet and plug (Fig. 1)
CL ... Leakage detection coil CP ... Connection point CS ... Outlet surface CW ... Wall outlet I to ... Wall outlet in Fig. 8 DB ... Distribution board DT ... Dust and dirt (Fig. 22)
ES: Detection device of the embodiment FC: VVF cable (F cable)
GP ... Gap (Fig. 22)
IS: 3 individual measurement switches
LB ... Leakage breaker LD ... Load resistance LE3 ... 3 horizontal LEDs LE6 ... 6 vertical LEDs MB ... Contract breaker PG ... Plug (general-purpose)
PP ... Plug blade PS ... Polarity changeover switch RS ... Reset switch SE ... Metal probe (Fig. 1)
SW ... Power switch SP ... Measurement plug (Figs. 1 and 15)
TP ... Outlet surface insulation measurement point (Fig. 1)
VS ... Fig. 6 Voltage measurement means

Claims (6)

2心線又は3心線で配線される屋内配線において、接続不良検査の対象配線長の両端側に各心線毎に接続する接続手段と、
該各接続手段を介して前記対象配線長間における各心線毎の電圧降下量を測定する電圧測定手段と、
該心線毎の電圧測定手段からの電圧降下量を比較してその差量を検出する差電圧検出手段と、
該検出された差量から良否判定してその結果を表示する表示手段と、
から成ることを特徴とした屋内配線の接続不良検出装置。
In indoor wiring wired with two or three core wires, connection means for connecting each core wire to both ends of the target wiring length for connection failure inspection;
Voltage measuring means for measuring a voltage drop amount for each core wire between the target wiring lengths through the connection means;
Differential voltage detection means for comparing the voltage drop amount from the voltage measurement means for each core wire and detecting the difference amount ; and
Display means for judging the quality from the detected difference and displaying the result ;
An indoor wiring connection failure detection device characterized by comprising:
前記対象配線長の何れか一方端側に接続する前記接続手段に接続させる負荷手段を備えることを特徴とした請求項1記載の屋内配線の接続不良検出装置。   The indoor wiring connection failure detection device according to claim 1, further comprising load means connected to the connection means connected to one end side of the target wiring length. 前記2個の接続手段のいずれか又は両方が、屋内露出配設のコンセントと接続するプラグであることを特徴とした請求項1、又は2記載の屋内配線の接続不良検出装置。   3. The indoor wiring connection failure detection device according to claim 1, wherein either or both of the two connection means are plugs connected to an outlet provided indoors. 前記請求項1、2、又は3記載の屋内配線の接続不良検出装置を用いて、前記対象配線長の両端部に接続した接続手段によって各心線毎の電圧降下量を測定し、該測定した電圧降下量の差量が所定値以上である場合に電圧降下量の大きい方の心線の電路に接続不良の存在を判定することを特徴とした接続不良判定方法。 Using the indoor wiring connection failure detection device according to claim 1, 2, or 3, the voltage drop amount for each core wire is measured by the connecting means connected to both ends of the target wiring length, and the measurement is performed. A connection failure determination method characterized by determining the presence of a connection failure in an electrical circuit of a core wire having a larger voltage drop amount when the difference in voltage drop amount is equal to or greater than a predetermined value. 前記対象配線が無電流状態のときに、前記接続手段の何れかに接続した負荷手段により負荷電流を流し、各心線毎の電圧降下量を検出してその電圧降下差を測定することを特徴とした請求項4記載の接続不良判定方法。 Characterized in that the target wiring is at the currentless state, drawing a load current by a load means connected to one of said connection means, for measuring the voltage drop difference by detecting a voltage drop amount of each core connection failure determination method according to claim 4, wherein the said. 検査する対象配線長を分電盤から分岐した別経路の配線が接続された各別のコンセント間に特定し、各コンセントにプラグ構成した接続手段を嵌合させて行うことを特徴とした請求項4記載の接続不良判定方法。   The object wiring length to be inspected is specified between different outlets to which wirings of different paths branched from the distribution board are connected, and connecting means configured as plugs are fitted to the respective outlets. 4. The connection failure determination method according to 4.
JP2013169847A 2013-08-19 2013-08-19 Detection device for connection failure etc. of indoor wiring, and determination method for connection failure etc. using the same Expired - Fee Related JP5403776B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013169847A JP5403776B1 (en) 2013-08-19 2013-08-19 Detection device for connection failure etc. of indoor wiring, and determination method for connection failure etc. using the same
PCT/JP2014/071606 WO2015025828A1 (en) 2013-08-19 2014-08-19 Device for detecting indoor wiring connection defect, and connection defect determination method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013169847A JP5403776B1 (en) 2013-08-19 2013-08-19 Detection device for connection failure etc. of indoor wiring, and determination method for connection failure etc. using the same

Publications (2)

Publication Number Publication Date
JP5403776B1 true JP5403776B1 (en) 2014-01-29
JP2015038446A JP2015038446A (en) 2015-02-26

Family

ID=50112445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013169847A Expired - Fee Related JP5403776B1 (en) 2013-08-19 2013-08-19 Detection device for connection failure etc. of indoor wiring, and determination method for connection failure etc. using the same

Country Status (2)

Country Link
JP (1) JP5403776B1 (en)
WO (1) WO2015025828A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6517610B2 (en) * 2015-07-15 2019-05-22 河村電器産業株式会社 Voltage checker
CN105548842A (en) * 2016-01-21 2016-05-04 国网山西省电力公司晋城供电公司 Middle and low voltage cable insulating part aging testing method
CN105699812A (en) * 2016-03-02 2016-06-22 山西杰尔汇信息技术有限公司 Middle and low voltage cable insulation portion aging test method
CN109470941A (en) * 2018-03-09 2019-03-15 金华送变电工程有限公司 A kind of power distribution automation aviation plug formula primary equipment simulation terminal system and method
CN113453944A (en) * 2019-02-28 2021-09-28 Abb瑞士股份有限公司 Electric vehicle power supply equipment connector resistant to arcing and other faults

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322956A (en) * 1992-05-22 1993-12-07 Nec Field Service Ltd Continuity check between double-pole wall outlet with grounding terminal
JP2005127807A (en) * 2003-10-22 2005-05-19 Hidetaka Cho Wiring tester, wiring inspection device using it and wiring inspection method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322956A (en) * 1992-05-22 1993-12-07 Nec Field Service Ltd Continuity check between double-pole wall outlet with grounding terminal
JP2005127807A (en) * 2003-10-22 2005-05-19 Hidetaka Cho Wiring tester, wiring inspection device using it and wiring inspection method

Also Published As

Publication number Publication date
WO2015025828A1 (en) 2015-02-26
JP2015038446A (en) 2015-02-26

Similar Documents

Publication Publication Date Title
JP5403776B1 (en) Detection device for connection failure etc. of indoor wiring, and determination method for connection failure etc. using the same
JP5431946B2 (en) Apparatus and method for mapping a wiring network
US7605594B2 (en) Automated electrical wiring inspection system
US6948846B2 (en) Test apparatus for power circuits of an electrical distribution device
US8339270B2 (en) Electrical ground protection device, circuit tester and method of circuit condition detection
MXPA05003880A (en) Ac power phase indicator.
JP2010510500A (en) Power monitoring system
TWI621867B (en) Test device and alternating current power detection method of the same
US6975491B2 (en) Electrical ground protection device and method
JP2009245792A (en) Wiring apparatus
EP2778693B1 (en) Apparatus to verify an electrically safe work condition
EP2778694B1 (en) Apparatus and method for insulation testing of an electrical supply network
JP2009257930A (en) Measuring instrument
CN100526887C (en) Electric power monitor for single phase AC electric device inspection and repair
JP2008190949A (en) Test plug with charged state detecting/indicating function
JP2009081929A (en) Cable connection checker
AU2003200300B2 (en) Diagnostic wiring verification tester
JP2013219856A (en) Laying inspection device with automatic discriminating function
US9470730B2 (en) Self-monitoring power supply cord and operating equipment
JP6281903B2 (en) Plug-in connection unit
JP2010217019A (en) Insulation grounding monitoring device
TWI445987B (en) Creepage alarm device and socket
KR100376101B1 (en) Earth leakage detector testing device
JP2010205570A (en) Receptacle with grounding electrode
JP2009079959A (en) Checker for socket polarity connection

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

R150 Certificate of patent or registration of utility model

Ref document number: 5403776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees