JP2010217019A - Insulation grounding monitoring device - Google Patents

Insulation grounding monitoring device Download PDF

Info

Publication number
JP2010217019A
JP2010217019A JP2009064687A JP2009064687A JP2010217019A JP 2010217019 A JP2010217019 A JP 2010217019A JP 2009064687 A JP2009064687 A JP 2009064687A JP 2009064687 A JP2009064687 A JP 2009064687A JP 2010217019 A JP2010217019 A JP 2010217019A
Authority
JP
Japan
Prior art keywords
ground fault
insulation
fault monitoring
monitoring unit
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009064687A
Other languages
Japanese (ja)
Inventor
Kozo Kataoka
片岡耕造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIFE TECHNOS KK
Original Assignee
LIFE TECHNOS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIFE TECHNOS KK filed Critical LIFE TECHNOS KK
Priority to JP2009064687A priority Critical patent/JP2010217019A/en
Publication of JP2010217019A publication Critical patent/JP2010217019A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems wherein construction is difficult since installation locations overlap when constructing an insulated state monitoring device and an earth leakage grounding protection device to electrical energy transformation facilities, where the insulated state monitoring device of a low-voltage electric path and the earth leakage grounding protection device are manufactured as separated products each, and determination of a system to be adopted is difficult in many cases since the insulated state monitoring device includes a plurality of different detection systems of which each system differs in each insulated state detection performance, and load facilities are not fixed especially when designing newly installed electric equipment. <P>SOLUTION: Insulated state monitoring elements having different detection systems are integrated with earth leakage grounding protection elements to compose an insulation grounding monitoring unit for each system, and the insulation grounding monitoring units having different detection systems of insulated states and earth leakage grounding monitoring units are set to be in mutually freely replaceable device configurations, thus creating the insulation grounding monitoring device for mixedly using the respective systems. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電気保安を確保するための絶縁状態監視装置並びに漏電地絡保護装置に関するものである。 The present invention relates to an insulation state monitoring device and a ground fault protection device for ensuring electrical safety.

電路の地絡事故への対応としては、「地絡に対する保護対策」を目的とした漏電地絡保護装置として、地絡継電器、漏電遮断器及び漏電継電器、漏電火災警報器、等の規格で製作されたものが主として使用されている。
又、電路の対地絶縁劣化事故防止への対応としては、昭和59年に資源エネルギー庁が「電気設備の保安レベルを維持し、保安業務の効率化の道を開くことを目的に」行った運用通達(40公局第593号)の改正(59資庁第7400号)において規定された「低圧電路の絶縁状態の的確な監視が可能な装置」があり、同通達の「一部改正に係る取り扱い要領について」(資公部技術課長通知)においてIo方式及びIgr方式の絶縁状態監視装置に対する技術要件が定義され、普及が進みつつある。
これについては近年制定された民間基準「自家用電気工作物保安管理規程(JEAC−8021−2006)」の230−1,230−4,などにも「低圧絶縁監視装置」として記載されている。
As a response to earth faults on electric circuits, as a ground fault protection device aiming at `` protection measures against ground faults '', it is manufactured with standards such as earth fault relay, earth leakage breaker and earth leakage relay, earth leakage fire alarm The ones used are mainly used.
In addition, in response to the prevention of accidents involving the deterioration of the insulation of the circuit ground, the Agency for Natural Resources and Energy "intended to maintain the safety level of electrical equipment and open the way to improve the efficiency of safety operations" in 1984. There is an “apparatus capable of accurately monitoring the insulation state of low-voltage paths” as defined in the amendment of the Circular (40 Public Office No. 593) (59 Capital Agency No. 7400). Regarding the “Guidelines for Handling” (Technical Department Technical Section Manager Notification), technical requirements for Io-type and Igr-type insulation state monitoring devices have been defined and are becoming popular.
This is also described as “low voltage insulation monitoring device” in 230-1, 230-4, etc. of the private standard “Private Electricity Work Safety Management Regulations (JEAC-8021-2006)” recently established.

電気設備の新設時の設計におけるこれら装置の使用方法について説明すると、まず漏電地絡保護装置として、地絡継電器はじめ漏電継電器や漏電遮断器などと消防法に基づき設置する漏電火災警報器、労働法・労働安全衛生規則により設置する感電防止用漏電遮断器、などの中から地絡波及事故防止、火災防止、感電防止などの観点からいずれかを取捨選択して採用する。
次に、電気需要家の事情により電気設備を停電して絶縁抵抗測定を行うことが困難な場合や、電気使用中に発生する偶発的な絶縁劣化を早期に発見して対処し地絡事故を未然に防止するなどの必要のある場合、或いは、人が行う巡視、点検、検査を代替する目的のある場合などに絶縁状態監視装置を、Io方式やIor方式、Igr方式等のなかから負荷設備の電気的特性に適合する方式を取捨選択して採用することが行われている。
The following explains how to use these devices in the design of new electrical equipment. First, as a ground fault protection device, a ground fault relay, ground fault relay, ground fault circuit breaker, etc.・ Electric leakage prevention circuit breakers installed in accordance with occupational safety and health regulations are selected and adopted from the viewpoints of ground fault, accident prevention, fire prevention, and electric shock prevention.
Next, if it is difficult to measure the insulation resistance by powering off the electrical equipment due to the circumstances of the electricity customer, or if an accidental insulation deterioration that occurs during the use of electricity is discovered and dealt with early, a ground fault can be dealt with. When there is a need to prevent it, or when there is a purpose to replace patrols, inspections, and inspections performed by humans, an insulation state monitoring device can be installed from the Io method, Ior method, Igr method, etc. A method that fits the electrical characteristics of the system is selected and adopted.

特許第3920163号Japanese Patent No. 3920163

特願昭 48−53149(特開昭 50−2142)Japanese Patent Application No. 48-53149 (Japanese Patent Laid-Open No. 50-2142)

「生産と電気」日本電気協会発行 平成4年4月号30頁「Igr方式絶縁監視装置の概要と特長」片岡耕造"Production and Electricity" April 30, 1992, published by the NEC Association "Overview and Features of Igr Insulation Monitoring System" Kozo Kataoka

「自家用電気工作物保守管理規程(JEAC8021−2006)」日本電気協会発行 平成19年4月April 2007, “National Electric Work Maintenance Regulations (JEAC8021-2006)” published by the NEC Association

「地絡に対する保護対策」として設置する「漏電地絡保護装置」と、「低圧の電路の絶縁性能」を常時監視する目的で設置する「絶縁状態監視装置」は、依拠する法的根拠が異なるため、それぞれ別目的の別名称の装置として製品化されているため、配電設備設計に於いて、「漏電地絡保護装置」と「絶縁状態監視装置」の双方を設備する場合は、それぞれ別個に選択採用し同一箇所に両製品を設置せざるを得ないという問題がある。 Legal grounds on which “Earth leakage ground fault protection device” installed as “Protection against ground fault” and “Insulation state monitoring device” installed for the purpose of constantly monitoring “insulation performance of low-voltage circuit” differ Therefore, since each product has been commercialized as a device with a different name for each purpose, when installing both the “earth leakage ground fault protection device” and the “insulation state monitoring device” in the distribution facility design, each is separately There is a problem that both products must be installed at the same location.

同一箇所に両製品を設置するに際し、両者は類似機能の装置であるため、電流センサーとしてのZCTや装置本体の設置場所などが重複することとなり狭い変電施設内に設備工事することが非常に困難となる。
又、ZCTを設置出来る電路区間が短い場合、両製品のZCTが接近し設備工事の困難は元より、両製品個々の試験作業においても単独のZCTに試験線を通すことが困難となるなどの支障を来す。
When both products are installed in the same location, both are devices with similar functions, so the installation of ZCT as a current sensor and the installation location of the device itself will overlap, making it very difficult to construct equipment in a narrow substation facility. It becomes.
In addition, if the circuit section where ZCT can be installed is short, ZCT of both products will approach and it will be difficult to pass the test line through the single ZCT not only in the facility work, but also in the individual test work of both products. Cause trouble.

「絶縁状態監視装置」の方式としては、運用通達に依拠するIo方式絶縁状態監視装置及びIgr方式絶縁状態監視装置があり、又民間基準においては特許文献2と動作の類似するIor方式絶縁状態監視装置などがある。
Igr絶縁検出方式は、「非特許文献2」の230−4[解説]1.(4)によれば、これらの方式の中でもっとも優れているとされているが、すべての被監視電路にこの方式を採用して施工すると費用が高価となる。
一方、コストが低廉なIo方式やIorの方式には、被監視電路の中性線(接地相)の対地絶縁が検出出来ないという重大な問題があるほか、変圧器の中性点接地配電方式の場合、負荷が水没するなど均等な絶縁劣化が生ずるとこれが検出出来ないか或いは大きな誤差になる他、負荷設備の対地静電容量値や常時漏れ電流値の大小及び対地静電容量の不平衡により絶縁状態の検出値が増減するという原理上の問題がある。
これらの事情から電気設備の新設設計時点では負荷設備の対地電気特性が明確に把握出来ない為、方式の選択に苦慮するという問題がある。
As the method of the “insulation state monitoring device”, there are an Io method insulation state monitoring device and an Igr method insulation state monitoring device that rely on operation notification, and the Ior method insulation state monitoring operation similar to that of Patent Document 2 in private standards. There are devices.
The Igr insulation detection method is described in “Non-Patent Document 2” 230-4 [Description]. According to (4), although it is said that it is the best among these methods, if this method is employed for all monitored electric circuits, the cost becomes high.
On the other hand, the low cost Io method and Ior method have a serious problem that the insulation of the neutral line (ground phase) of the monitored circuit cannot be detected, and the neutral point grounding distribution system of the transformer In this case, if the insulation is degraded evenly, such as when the load is submerged, this cannot be detected or a large error occurs. In addition, the ground capacitance value of the load equipment, the magnitude of the constant leakage current, and the unbalanced ground capacitance Therefore, there is a problem in principle that the detected value of the insulation state increases or decreases.
Because of these circumstances, there is a problem that it is difficult to select the method because the ground electrical characteristics of the load facility cannot be clearly grasped at the time of the new design of the electrical facility.

特許文献1にはIo方式とIgr方式の絶縁状態監視装置が容易に差し換え互換出来る方式が記載されているが、この場合も漏電地絡保護装置を別途に設置せざるを得ないという問題がある。 Patent Document 1 describes a method in which the Io and Igr type insulation state monitoring devices can be easily replaced and interchanged. However, in this case as well, there is a problem that a ground fault protection device must be separately installed. .

絶縁状態監視装置は、小規模受変電設備を対象として開発されたものが主流であり、大規模一般需要家の受配電設備に用途を広げた装置としては「非特許文献1」に「選択絶縁・地絡監視の出来る」装置として地絡過電流要素を組み入れたIgr方式絶縁監視装置が紹介されている。 しかしこの場合も地絡過電流要素の組み入れはIgr方式の欠点である完全地絡時には絶縁監視電圧も消滅することにより絶縁劣化の検出が不能となることを補完する目的の後備保護機能として設けたため製品呼称にも地絡保護機能を有することが直接認識出来る表現がされていない。
従って、電気設備設計に於いて「絶縁状態監視装置」と「漏電地絡保護装置」の両者を設置する場合、絶縁状態監視装置とは別に漏電地絡保護装置を併用する設備設計とする例が多い。
Insulation state monitoring devices are mainly developed for small-scale power receiving / transforming facilities, and “Selective insulation” is described in “Non-patent document 1” as a device that has been extended to power distribution facilities for large-scale general consumers. An Igr type insulation monitoring device incorporating a ground fault overcurrent element has been introduced as a device capable of ground fault monitoring. However, in this case as well, the incorporation of the ground fault overcurrent element is a drawback of the Igr method. In the case of a complete ground fault, the product is provided as a back-up protection function for the purpose of complementing the fact that the insulation deterioration voltage cannot be detected by eliminating the insulation monitoring voltage. The name does not have an expression that can be directly recognized as having a ground fault protection function.
Therefore, when installing both the “insulation state monitoring device” and the “earth leakage ground fault protection device” in the electrical equipment design, there is an example of an equipment design that uses a ground fault protection device together with the insulation state monitoring device. Many.

漏電地絡保護装置や絶縁状態監視装置はその状態監視機能の健全性を適切に管理する必要があるが、電気設備の定期点検の手法として慣習的に停電をして絶縁抵抗を測定する方法が定着していることに起因して、停電しないと作業出来ない感電危険場所にZCTが設置されている例も多く、模擬絶縁抵抗による動作確認試験を行ったり模擬漏電電流を流してこれの検出機能の確認試験を行うなど、活線で実動方式による状態監視機能試験を行うことは困難な課題の一つとなっている。
The ground fault protection device and insulation state monitoring device need to properly manage the soundness of the state monitoring function, but as a method of regular inspection of electrical equipment, there is a method of measuring insulation resistance by customary power failure. There are many cases where ZCT is installed in places where there is a risk of electric shock that can not be done without a power failure due to the fact that it has been established. It is one of the difficult issues to perform a state monitoring function test by the live system, such as conducting a confirmation test.

本願発明では、漏電地絡監視要素により漏電地絡監視ユニットを構成する、Io方式の絶縁監視要素と漏電地絡監視要素を合体してIo絶縁地絡監視ユニットを構成する、又、Igr方式の絶縁監視要素と漏電地絡監視要素を合体してIgr絶縁地絡監視ユニットを構成する。
これら漏電地絡監視ユニットとIo絶縁地絡監視ユニット及びIgr絶縁地絡監視ユニットは同一形状のプラグインユニット形とし、そのプラットホームとなる収納箱は電気的な接続部や端子部及び機構的な寸法を、漏電地絡監視ユニットとIo絶縁地絡監視ユニット及びIgr絶縁地絡監視ユニットに、共通に使用出来る構造とし、漏電地絡監視ユニットとIo絶縁地絡監視ユニット及びIgr絶縁地絡監視ユニットとを相互に差しかえ自由とし、方式の異なる各ユニットの混合使用も可能な絶縁地絡監視装置を構成する。
In the present invention, a ground fault monitoring unit is configured by a ground fault monitoring element, an Io insulation monitoring element and a ground fault monitoring element are combined to form an Io ground fault monitoring unit, The insulation monitoring element and the ground fault monitoring element are combined to constitute an Igr insulation ground fault monitoring unit.
These earth leakage ground fault monitoring unit, Io insulated ground fault monitoring unit and Igr insulated ground fault monitoring unit are of the same shape plug-in unit type, and the storage box as the platform has electrical connection portions, terminal portions and mechanical dimensions. The ground fault monitoring unit, the Io insulated ground fault monitoring unit, and the Igr insulated ground fault monitoring unit can be used in common, and the ground fault monitoring unit, the Io insulated ground fault monitoring unit, and the Igr insulated ground fault monitoring unit, Thus, an insulated ground fault monitoring device is configured in which the units can be interchanged and the units of different methods can be mixedly used.

絶縁地絡監視装置を構成する施工において、被監視電路の変圧器中性点又は一端から接地極への接地配線途上に、被監視電路を停電することなく絶縁監視電圧出力を接続できる活線割込用中継端子装置を設ける。 In construction that constitutes an insulation ground fault monitoring device, a hot wire division that can connect an insulation monitoring voltage output without interrupting the monitored circuit in the ground wiring from the transformer neutral point or one end to the grounding electrode of the monitored circuit A relay terminal device is provided.

絶縁地絡監視装置にはZCTの試験捲き線に接続して実動的試験操作のできる試験端子を設ける。 The insulation ground fault monitoring device is provided with a test terminal that can be connected to a ZCT test feeder and can perform an actual dynamic test operation.

本願発明では、絶縁状態監視要素と漏電地絡監視要素を合体し、「低圧電路の絶縁性能」及び「地絡に対する保護対策」の双方の状態監視ができる機能を絶縁地絡監視装置として一元化して構成した。 これによりZCT取付スペース並びに機器取付スペースが従前に比べほぼ半減し、配電設備への組み付けが容易となった。 In the present invention, the insulation state monitoring element and the earth leakage ground fault monitoring element are combined, and the function capable of monitoring the states of both "insulation performance of the low piezoelectric path" and "protection measures against ground fault" is unified as an insulation ground fault monitoring device. Configured. As a result, the ZCT mounting space and the device mounting space are almost halved compared to the prior art, and the assembly to the power distribution facility is facilitated.

又、Io絶縁地絡監視ユニットは、Igr絶縁地絡監視ユニットに差し替え可能なIo,Igr互換型の絶縁地絡監視方式とした。 これにより万一負荷設備に静電容量の多い電力設備が増設された場合も当該被監視電路のIo絶縁地絡監視ユニットを負荷設備の影響を受けにくいIgr絶縁地絡監視ユニットに容易に差し換えができるから効率的な機器構成が選択出来るようになった。 The Io insulation ground fault monitoring unit is an Io and Igr compatible type insulation ground fault monitoring system that can be replaced with the Igr insulation ground fault monitoring unit. As a result, even if power equipment with a large capacitance is added to the load equipment, the Io insulated ground fault monitoring unit of the monitored circuit can be easily replaced with an Igr insulated ground fault monitoring unit that is not easily affected by the load equipment. Since it is possible, an efficient device configuration can be selected.

更に、新設設備設計における絶縁監視及び漏電地絡保護方式の選択作業に於いて、絶縁監視を必要としない電路の地絡保護対策として漏電地絡監視ユニットが、通常の電路負荷設備で構成される電路の低廉な絶縁及び地絡保護にはIo絶縁地絡監視ユニットが、対地静電容量の多い電路負荷設備に対してはIgr絶縁地絡監視ユニットがそれぞれ適合し、しかも電路負荷の特性に合わせてこれらを停電を要さずに容易に差し換えることが出来るから電路負荷特性に適合する絶縁並びに地絡保護機器の選択が容易になった。 In addition, in selecting work for insulation monitoring and ground fault protection methods in the design of new equipment, the ground fault monitoring unit is configured with normal circuit load equipment as a ground fault protection measure for electrical circuits that do not require insulation monitoring. The Io insulated ground fault monitoring unit is suitable for low cost insulation and ground fault protection of the circuit, and the Igr insulated ground fault monitoring unit is suitable for the circuit load equipment with a large capacitance to the ground. Therefore, it is possible to easily replace these without requiring a power outage, and it becomes easy to select an insulation and ground fault protection device suitable for the circuit load characteristics.

静電容量の多い電路負荷設備は電力需要家の業種にもよるが一般的には全負荷設備の約10%未満と推定され、すべての回路にIgr方式の絶縁状態監視要素を使用した従前の方式に比べ大幅なコスト削減ができた。 Although the circuit load equipment with a large capacitance is estimated to be less than about 10% of the total load equipment, although it depends on the type of industry of the electric power consumer, the conventional equipment using the Igr type insulation state monitoring element is used for all circuits. Significant cost reduction compared to the method.

被監視電路の接地配線途上に活線割込用中継端子装置50を設けたので、随時に絶縁監視電圧の重畳印加が可能となった。
これにより、Io絶縁地絡監視ユニットのみ使用した廉価な絶縁地絡監視装置の構成とした場合も、必要に応じて活線割込用中継端子装置50に絶縁監視電圧の出力を接続して重畳を行うことで、接地相地絡の検出はじめ携帯用のIgr検出装置を併用することが可能になり、Io絶縁地絡監視ユニットの絶縁情報出力が増加した場合などにはIgr方式により絶縁劣化の計測確認をするなど絶縁劣化個所を活線で探査特定するという保全作業が可能になった。
Since the hot wire interrupting relay terminal device 50 is provided in the middle of the ground wiring of the monitored circuit, it is possible to superimpose the insulation monitoring voltage at any time.
As a result, even when the construction of an inexpensive insulated ground fault monitoring device using only the Io insulated ground fault monitoring unit is used, the output of the insulation monitoring voltage is connected to the live wire interrupting relay terminal device 50 and superimposed as necessary. This makes it possible to use a portable Igr detection device in addition to ground phase ground fault detection. When the insulation information output of the Io insulated ground fault monitoring unit increases, insulation degradation is caused by the Igr method. Maintenance work has been made possible, such as by checking the measurement and confirming the location of insulation degradation with live lines.

Io及びIgr各絶縁検出方式の相互互換及び両者の混合使用が可能となったことで装置名称をその目的を表す「絶縁地絡監視装置」や「絶縁地絡継電器」あるいは「絶縁漏電監視装置」や「絶縁漏電継電器」などとすることが出来るので、用途が直感的にわかり「低圧電路の絶縁性能」及び「地絡に対する保護対策」の双方の機能を持つ状態監視装置或いは継電器として認知され安心して機器の選択が出来るようになった。 “Isolation ground fault monitoring device”, “Insulated ground fault relay device” or “Insulation fault monitoring device” that expresses the purpose of the device name by enabling mutual interchange of Io and Igr insulation detection methods and the combined use of both. It can be used as a state monitoring device or relay that has both functions of “insulation performance of low piezoelectric circuit” and “protection measures against ground fault”. I was able to select the equipment with my heart.

絶縁地絡監視装置の各方式の絶縁地絡監視ユニットにはZCTに直接試験電流を流すことの出来る試験端子を設けたので電気設備を停電することなく随時状態監視装置の動作確認を実動的な方法で行うことができるようになった。
The insulation ground fault monitoring unit of each system of the insulation ground fault monitoring device is provided with a test terminal that can pass the test current directly to the ZCT, so the operation check of the state monitoring device can be performed at any time without power failure of the electrical equipment. Can now be done in different ways.

図1は、現在は停電可能で絶縁状態監視が不要であるが将来的に必要となる可能性のある場合に備え漏電地絡監視ユニットを使用した絶縁地絡監視装置の実施例である。(実施例1)FIG. 1 shows an embodiment of an insulation ground fault monitoring device using a ground fault monitoring unit in preparation for a case where a power failure is possible and insulation state monitoring is unnecessary but may be required in the future. (Example 1) 図2は、すべての回路にIo絶縁地絡監視ユニットを使用して最も低廉な絶縁地絡監視装置を構成した実施例である。(実施例2)FIG. 2 shows an embodiment in which the cheapest insulated ground fault monitoring device is configured using Io insulated ground fault monitoring units in all circuits. (Example 2) 図3は、実施例2に絶縁監視電圧の重畳を行う回路を付加し接地相地絡検出や携帯用Igr検出器の使用を可能にした実施例である。(実施例3)FIG. 3 shows an embodiment in which a circuit for superimposing an insulation monitoring voltage is added to the embodiment 2 so that a ground phase ground fault detection and a portable Igr detector can be used. (Example 3) 図4は、絶縁の停電点検が可能で絶縁監視が不要な負荷設備に漏電地絡監視ユニットを、通常の電路負荷設備にIo絶縁地絡監視ユニットを、対地静電容量の多い電路負荷設備にIgr絶縁地絡監視ユニットをそれぞれ適宜採択してハイブリッド構成とした絶縁地絡監視装置の代表的な実施例である。(実施例4)Fig. 4 shows a ground fault monitoring unit for a load facility that can be inspected for insulation failure and does not require insulation monitoring, an Io ground fault monitoring unit for a normal circuit load facility, and a circuit load facility with a large ground capacitance. It is a typical example of an insulated ground fault monitoring apparatus adopting an Igr insulated ground fault monitoring unit as appropriate and adopting a hybrid configuration. Example 4 図5は、従来技術による施工の1例で地絡保護継電器とIgr方式絶縁状態監視装置を施工した例である。(従来技術)FIG. 5 is an example in which a ground fault protective relay and an Igr system insulation state monitoring device are constructed as an example of construction according to the prior art. (Conventional technology) 図6は、実施例1の漏電地絡監視ユニットを系統図に示した説明図である。(漏電地絡監視ユニットの説明図)FIG. 6 is an explanatory diagram illustrating a ground fault monitoring unit according to the first embodiment in a system diagram. (Explanation of earth leakage monitoring unit) 図7は、実施例2のIo絶縁地絡監視ユニットを系統図に示した説明図である。(Io絶縁地絡監視ユニットの説明図)FIG. 7 is an explanatory diagram showing the Io insulation ground fault monitoring unit of the second embodiment in a system diagram. (Io insulation ground fault monitoring unit illustration) 図8は、実施例3の接地相地絡の検出に関する説明図である。(接地相地絡時に流れる電流の説明図)FIG. 8 is an explanatory diagram regarding detection of a ground phase ground fault according to the third embodiment. (Explanation of the current that flows during ground phase ground fault) 図9は、実施例4を構成するIgr絶縁地絡監視ユニットを系統図に示した説明図である。(Igr絶縁地絡監視ユニットの説明図)FIG. 9 is an explanatory diagram showing an Igr insulation ground fault monitoring unit constituting the fourth embodiment in a system diagram. (Explanation of Igr insulation ground fault monitoring unit)

「低圧電路の絶縁性能」の監視用として使用されるIo方式及びIgr方式の絶縁監視要素と「地絡に対する保護対策」として使用される漏電地絡監視要素をZCTを共有して合体しIo絶縁地絡監視ユニット20及びIgr絶縁地絡監視ユニット30として構成し、更に漏電地絡監視要素のみで漏電地絡監視ユニット40を構成し、ユニットの受け側となるケース、端子、配線、ZCT等が各方式の絶縁地絡監視ユニットに共通に使用出来る構成とした。
又、絶縁地絡監視装置を構成する施工において、被監視電路の変圧器中性点又は一端から接地極への配線途上に、活線割込用中継端子装置50を設けて随時絶縁監視電圧などが接続可能な構成とした。
各絶縁地絡監視ユニットにはZCTの試験端子に直接試験電流が流せる試験端子を設け、絶縁地絡監視ユニットの電気的特性に左右されず、直接ZCTの試験捲き線に試験操作を加え状態監視装置の実動的な動作確認の出来る構成とした。
The Io and Igr type insulation monitoring elements used for monitoring the “low piezoelectric path insulation performance” and the earth leakage ground fault monitoring element used as “protection measures against ground faults” are combined into a ZCT to provide Io insulation. The ground fault monitoring unit 20 and the Igr insulated ground fault monitoring unit 30 are configured. Further, the ground fault monitoring unit 40 is configured only by the ground fault monitoring element, and the case, terminal, wiring, ZCT, etc. on the receiving side of the unit are provided. The system can be used in common for each type of ground fault monitoring unit.
Also, in the construction of the insulation ground fault monitoring device, a live wire interruption relay terminal device 50 is provided on the way from the transformer neutral point or one end to the grounding electrode of the monitored electric circuit, and the insulation monitoring voltage, etc. Can be connected.
Each insulation ground fault monitoring unit is equipped with a test terminal that allows a test current to flow directly to the ZCT test terminal, and the state monitoring is performed by directly applying a test operation to the test line of the ZCT regardless of the electrical characteristics of the insulation ground fault monitoring unit. The configuration is such that the actual operation of the device can be confirmed.

又、新設設備設計時点では停電による設備の絶縁点検が可能であり絶縁状態監視機能を必要としない電気設備に対しては漏電地絡監視ユニットで監視装置を施工しておき、負荷に停電絶縁試験が困難な設備が増設されたときは、いずれかの絶縁地絡監視ユニットに差し替えるという合理的な設備構成も可能になった。
本願発明の絶縁地絡監視機能を持つ構成は、状態監視情報の出力や警報接点出力を備えた監視装置、或いは低廉な簡易方式として警報接点のみを備えた継電器とした構成を取ることも出来る。
Also, at the time of designing a new facility, it is possible to inspect the insulation of the facility due to a power failure, and for electrical facilities that do not require an insulation state monitoring function, install a monitoring device with a ground fault monitoring unit and perform a power failure insulation test on the load. When equipment that is difficult to install is added, a rational equipment configuration is possible in which one of the insulation ground fault monitoring units is replaced.
The configuration having an insulation ground fault monitoring function of the present invention can be configured as a monitoring device having an output of status monitoring information and an alarm contact output, or a relay having only an alarm contact as an inexpensive and simple method.

実施例1(図1)は新設設備設計時点では停電による電気設備の絶縁点検が可能であり絶縁状態監視は不要であるが、将来の負荷増設に於いて絶縁状態監視機能を必要とする可能性がある場合に備えた施工の1例である。
図6は、漏電地絡監視ユニット40とその接続関係を系統図として説明したもので図中符号40により囲まれた部分が漏電地絡監視ユニットである。
試験端子42、43、は漏電地絡監視ユニットのパネル操作面に配置し、ユニット40の接続端子群11aからソケット収納箱の接続端子群11bを経て多芯ケーブルなどでZCT12の試験端子に接続される。
この試験端子42、43、に地絡事故などにより実際に流れる電流と同等の試験電流を流すことで漏電地絡監視ユニットの実動的機能の試験を活線の状態で容易に行うことが出来る。
In Example 1 (Fig. 1), it is possible to inspect insulation of electrical equipment due to a power outage at the time of designing the new equipment, and it is not necessary to monitor insulation status, but there is a possibility that an insulation status monitoring function will be required for future load expansion. It is an example of construction in case there is.
FIG. 6 illustrates the ground fault monitoring unit 40 and its connection relationship as a system diagram, and the portion surrounded by reference numeral 40 in the figure is the ground fault monitoring unit.
The test terminals 42 and 43 are arranged on the panel operation surface of the ground fault monitoring unit and connected to the test terminal of the ZCT 12 by a multi-core cable or the like from the connection terminal group 11a of the unit 40 through the connection terminal group 11b of the socket storage box. The
By supplying a test current equivalent to the current that actually flows due to a ground fault or the like to the test terminals 42 and 43, the actual dynamic function test of the ground fault monitoring unit can be easily performed in a live state. .

実施例2(図2)は通常の電路負荷設備6に対して、本願発明になるコストが低廉なIo絶縁地絡監視ユニット20により絶縁地絡監視装置を構成した施工の1例である。
図5の従前の施工方法では被監視電路1回路に対しZCT,AZ及びZCT,BZと地絡保護継電器A及びIgr方式絶縁状態監視装置Bが使用されているが、図2の実施例2による絶縁地絡監視装置ではZCT12とIo絶縁地絡監視ユニット20が各1個で足りるので機器点数としては半減し、施工場所・施工コスト等もこれに伴って改善され、併せて保守管理業務なども一元化され効率が向上した。
Example 2 (FIG. 2) is an example of construction in which an insulated ground fault monitoring device is configured by an Io insulated ground fault monitoring unit 20 with low cost according to the present invention for a normal circuit load facility 6.
In the conventional construction method of FIG. 5, ZCT, AZ and ZCT, BZ, the ground fault protection relay A, and the Igr system insulation state monitoring device B are used for one circuit to be monitored, but according to Example 2 of FIG. In the insulated ground fault monitoring device, ZCT 12 and Io insulated ground fault monitoring unit 20 are sufficient for each one, so the number of equipment is reduced by half, and the construction location and construction cost have been improved accordingly. Centralized and improved efficiency.

図7は、Io絶縁地絡監視ユニット20とその接続関係を系統図として説明したもので図中符号20により囲まれた部分がIo絶縁地絡監視ユニットである。
Io絶縁地絡監視ユニット20は、Io絶縁監視要素21と漏電地絡監視要素22及び試験部と電源部等により構成される。
Io絶縁地絡監視ユニット20を受けるソケット収納箱10の構造は図7では1台のユニットを収納する構造を示しているが、任意数のユニットを収納可能とすることもできる。
このソケット収納箱10は、各絶縁地絡監視ユニット及び漏電地絡監視ユニットにも共通に使用する。
FIG. 7 illustrates the Io insulation ground fault monitoring unit 20 and its connection relationship as a system diagram, and the portion surrounded by reference numeral 20 in the figure is the Io insulation ground fault monitoring unit.
The Io insulation ground fault monitoring unit 20 includes an Io insulation monitoring element 21, a ground fault ground monitoring element 22, a test unit, a power supply unit, and the like.
Although the structure of the socket storage box 10 that receives the Io insulation ground fault monitoring unit 20 is shown in FIG. 7 as a structure that stores one unit, any number of units can be stored.
This socket storage box 10 is also used in common for each insulation ground fault monitoring unit and earth leakage ground fault monitoring unit.

試験端子23、24、は絶縁地絡監視ユニットのパネル操作面に配置し、ユニット20の接続端子群11aからソケット収納箱の接続端子群11bを経て多芯ケーブルなどでZCT12の試験端子に接続される。
この試験端子23、24、に絶縁劣化故障或いは地絡事故などにより実際に流れる電流と同等の試験電流を流すことでIo絶縁地絡監視ユニットの実動的機能の試験を活線の状態で容易に行うことが出来る。
The test terminals 23 and 24 are arranged on the panel operation surface of the insulation ground fault monitoring unit, and are connected to the test terminal of the ZCT 12 by a multi-core cable or the like from the connection terminal group 11a of the unit 20 through the connection terminal group 11b of the socket storage box. The
By making a test current equivalent to the current that actually flows due to an insulation deterioration fault or a ground fault to the test terminals 23 and 24, it is easy to test the actual dynamic function of the Io insulated ground fault monitoring unit in a live state. Can be done.

活線割込用中継端子装置50は活線で被監視電路の接地線回路に絶縁監視電圧の出力を接続するために使用される。 通常は、変圧器側短絡具取付端子51tと接地側短絡具取付端子51eに接続された短絡片52により短絡されている。
The live line interrupting relay terminal device 50 is used to connect the output of the insulation monitoring voltage to the ground line circuit of the monitored electric circuit with a live line. Usually, it is short-circuited by a short-circuit piece 52 connected to the transformer-side short-circuiting tool mounting terminal 51t and the ground-side short-circuiting tool mounting terminal 51e.

実施例3(図3)は実施例2(図2)に絶縁監視電圧重畳装置60を増設接続した1実施例である。 絶縁監視電圧を重畳することでIo絶縁地絡監視ユニット20は被監視電路の接地相地絡の検出が可能になる。 The third embodiment (FIG. 3) is one embodiment in which an insulation monitoring voltage superimposing device 60 is additionally connected to the second embodiment (FIG. 2). By superposing the insulation monitoring voltage, the Io insulation ground fault monitoring unit 20 can detect the ground phase ground fault of the monitored circuit.

図8は変圧器二次電路5の接地相Sの地絡検出の説明図である。
絶縁監視電圧発生器61の出力が重畳用変圧器62の二次出力Esとして活線割込用中継端子装置50を介して変圧器1を経て被監視電路R,S,Tと大地4(Ed)間に加わる。 被監視電路の接地相Sと大地4間の絶縁抵抗Rgが低下すると絶縁監視電圧Esにより地絡電流ies=Es/(Rbd+Rg)なる電流が流れるのでIo絶縁地絡監視ユニットであっても接地相Sの地絡が検出可能となる。
接地相地絡の検出機能はRbdが零となる統合接地配電方式など等電位接地を行う受変電設備で特に重要である。
FIG. 8 is an explanatory view of the ground fault detection of the ground phase S of the transformer secondary electric circuit 5.
The output of the insulation monitoring voltage generator 61 becomes the secondary output Es of the superposition transformer 62 via the hot wire interrupting relay terminal device 50, the transformer 1, and the monitored electric circuits R, S, T and the ground 4 (Ed ) Join in between. When the insulation resistance Rg between the ground phase S of the monitored circuit and the ground 4 decreases, a ground fault current ies = Es / (Rbd + Rg) flows due to the insulation monitoring voltage Es. Therefore, even in the Io insulated ground fault monitoring unit, the ground phase The ground fault of S can be detected.
The function of detecting a ground phase ground fault is particularly important in a substation equipment that performs equipotential grounding such as an integrated ground distribution system in which Rbd is zero.

又、絶縁監視電圧を重畳することによって携帯型のIgr絶縁検出器を使用してIgr方式により抵抗性電流成分による絶縁状態の良否を確認し又絶縁劣化個所を探査追跡するという効率的な保全作業が可能になるという利点もある。 Efficient maintenance work that checks the quality of insulation by resistive current component by Igr method by using portable Igr insulation detector by superimposing insulation monitoring voltage, and searches and traces insulation degradation point There is also an advantage that becomes possible.

活線で実施例2の構成から実施例3の構成に移行する為の増設工事は、絶縁監視電圧の重畳装置60の出力回路63を活線割込用中継端子装置50の入力端子53t,53eに接続し、その後に短絡具52を短絡具取付端子51t,51eから外すことで容易に作業が完了する。
In the extension work for shifting from the configuration of the second embodiment to the configuration of the third embodiment with the hot wires, the output circuit 63 of the insulation monitoring voltage superimposing device 60 is connected to the input terminals 53t and 53e of the hot wire interrupting relay terminal device 50. Then, the work is easily completed by removing the shorting tool 52 from the shorting tool attachment terminals 51t and 51e.

実施例4(図4)は、絶縁の停電点検が可能で絶縁監視が不要な負荷設備8に漏電地絡監視ユニット40を、通常の電路負荷設備6にIo絶縁地絡監視ユニット20を、対地静電容量の多い電路負荷設備7及びこれの作用が及ぶ変圧器の接地線2に対してIgr絶縁地絡監視ユニット30をそれぞれ適宜採択してハイブリッド構成とした絶縁地絡監視装置で本願発明の最も代表的な実施例である。
被監視電路に対地静電容量の多い負荷設備が生じた場合の対処は、実施例3から当該回路のIo絶縁地絡監視ユニット20を抜き取り、替わりにIgr絶縁地絡監視ユニット30を挿入することで足りる。
この作業は、絶縁地絡監視ユニットが活線での脱着に対し不具合な挙動をしない設計品質に管理されて製作されており、活線の状態で随時行うことができる。
In the fourth embodiment (FIG. 4), the ground fault monitoring unit 40 is installed in the load facility 8 that can be inspected for insulation power outage and does not require insulation monitoring, the Io insulated ground fault monitoring unit 20 is installed in the normal circuit load facility 6, and the ground. The insulated ground fault monitoring device of the present invention is a hybrid configuration by appropriately adopting the Igr insulated ground fault monitoring unit 30 for the circuit load equipment 7 having a large capacitance and the ground wire 2 of the transformer to which this action is applied. This is the most representative example.
When a load facility having a large ground capacitance is generated in the monitored circuit, the Io insulation ground fault monitoring unit 20 of the circuit is removed from the third embodiment, and the Igr insulation ground fault monitoring unit 30 is inserted instead. Is enough.
This work is produced by managing the design ground quality so that the insulation ground fault monitoring unit does not behave abnormally with respect to the removal and attachment on the live line, and can be performed at any time in the live line state.

図9は、Igr絶縁地絡監視ユニット30とその接続関係を系統図として説明したもので図中符号30により囲まれた部分がIgr絶縁地絡監視ユニットである。
Igr絶縁地絡監視ユニット30はIgr絶縁監視要素31と漏電地絡監視要素32及び試験部と電源部等により構成される。
FIG. 9 illustrates the Igr insulated ground fault monitoring unit 30 and its connection relationship as a system diagram. In FIG. 9, the portion surrounded by the reference numeral 30 is the Igr insulated ground fault monitoring unit.
The Igr insulation ground fault monitoring unit 30 includes an Igr insulation monitoring element 31, a ground fault ground monitoring element 32, a test unit, a power supply unit, and the like.

試験端子33、34、35は絶縁地絡監視ユニットのパネル操作面に配置し、ユニット30の接続端子群11aからソケット収納箱の接続端子群11bを経て多芯ケーブルなどでZCT12の試験端子及び絶縁監視電圧の入力回路13、接地極4などに接続される。
Igr絶縁監視要素の実動試験については、この試験端子33、35、に、想定する絶縁劣化故障に相当する試験用模擬絶縁抵抗器を接続することで、被監視電路に実際の絶縁劣化故障が生じた場合のIgr絶縁監視要素の実際の動作を確認することが、活線のままで容易に行うことが出来る。
即ち、試験端子35は接地極4に、試験端子33はZCT12の第2試験捲き線の変圧器側lt2に接続され、これの他端kt2は変圧器1の接地線2に接続されているから、接続した試験用模擬絶縁抵抗器は等価的に変圧器1の接地線2を通して変圧器二次電路5と大地4の間に接続されたと等価の効果があり、故に絶縁状態検出の実動的試験が出来る。
勿論試験端子33の接続は変圧器1の接地線2又は変圧器1の二次電路に直接接続することも出来るが、抵抗器の費消電力や試験回路構成部分の安全性を十分考慮する必要がある。
The test terminals 33, 34, and 35 are arranged on the panel operation surface of the insulation ground fault monitoring unit, and the test terminals and insulation of the ZCT 12 are connected by a multi-core cable or the like from the connection terminal group 11a of the unit 30 to the connection terminal group 11b of the socket storage box. It is connected to the monitoring voltage input circuit 13, the ground electrode 4, and the like.
For the actual test of the Igr insulation monitoring element, a test insulation insulation resistor corresponding to the assumed insulation deterioration failure is connected to the test terminals 33 and 35 so that the actual insulation deterioration failure occurs in the monitored circuit. Confirmation of the actual operation of the Igr insulation monitoring element when it occurs can be easily performed while still live.
That is, the test terminal 35 is connected to the ground electrode 4, the test terminal 33 is connected to the transformer side lt 2 of the second test winding of the ZCT 12, and the other end kt 2 thereof is connected to the ground line 2 of the transformer 1. The connected simulated insulation resistor for testing is equivalently equivalent to being connected between the transformer secondary circuit 5 and the ground 4 through the grounding wire 2 of the transformer 1, so that the actual detection of the insulation state is effective. You can test.
Of course, the test terminal 33 can be connected directly to the ground line 2 of the transformer 1 or the secondary circuit of the transformer 1, but it is necessary to sufficiently consider the power consumption of the resistor and the safety of the test circuit components. is there.

漏電地絡監視要素32の試験については、この試験端子33、34、に地絡事故などにより実際に流れる電流と同等の試験電流を流すことで実動的機能の試験を活線の状態で容易に行うことが出来る。
図9において試験端子33、34は第2試験捲き線(kt2,lt2)に接続しているが、第1試験捲き線(kt,lt)を利用することも出来る。
As for the test of the earth leakage ground fault monitoring element 32, the test of the actual dynamic function can be easily performed in a live line state by supplying a test current equivalent to the current actually flowing due to a ground fault or the like to the test terminals 33 and 34. Can be done.
In FIG. 9, the test terminals 33 and 34 are connected to the second test line (kt2, lt2), but the first test line (kt, lt) can also be used.

1 被監視電路の変圧器
2 変圧器又は電路の接地線
3 変圧器の接地極(Eb)
4 建物などの接地構造物や設備の接地極(Ed)
5 変圧器の二次回路
6 通常の電路負荷設備
7 対地静電容量の多い電路負荷設備
8 停電が容易で絶縁状態監視が不要の電路負荷設備
10 絶縁地絡監視装置のソケット収納箱
11 プラグインコネクタ端子
11a ユニット側のコネクタ端子群
11b ソケット収納箱側のコネクタ端子群
12 絶縁地絡監視装置のZCT
13 絶縁監視電圧の入力回路
20 絶縁地絡監視装置のIo絶縁地絡監視ユニット
21 Io絶縁地絡監視ユニットのIo絶縁監視要素
22 Io絶縁地絡監視ユニットの漏電地絡監視要素
23 Io絶縁地絡監視ユニットの試験端子L側
24 Io絶縁地絡監視ユニットの試験端子K側
25 Io絶縁地絡監視ユニットの漏電地絡監視要素の試験スイッチ
26 Io絶縁地絡監視ユニットのIo絶縁監視要素の試験スイッチ
30 絶縁地絡監視装置のIgr絶縁地絡監視ユニット
31 Igr絶縁地絡監視ユニットのIgr絶縁監視要素
32 Igr絶縁地絡監視ユニットの漏電地絡監視要素
33 Igr絶縁地絡監視ユニットの試験端子L側
34 Igr絶縁地絡監視ユニットの試験端子K側
35 Igr絶縁地絡監視ユニットの試験端子Ed側
36 Igr絶縁地絡監視ユニットの漏電地絡監視要素の試験スイッチ
37 Igr絶縁地絡監視ユニットのIgr絶縁監視要素の試験スイッチ
40 絶縁地絡監視装置の漏電地絡監視ユニット
41 漏電地絡監視ユニットの漏電地絡監視要素
42 漏電地絡監視ユニットの試験端子L側
43 漏電地絡監視ユニットの試験端子K側
44 漏電地絡監視ユニットの漏電地絡監視要素の試験スイッチ
50 被監視電路の接地線の活線割込用中継端子装置
51e 活線割込用中継端子装置の接地側短絡具取付端子
51t 活線割込用中継端子装置の変圧器側短絡具取付端子
52 活線割込用中継端子装置の短絡具
53e 活線割込用中継端子装置の接地側入力端子
53t 活線割込用中継端子装置の変圧器側入力端子
60 絶縁監視電圧の重畳装置
61 絶縁監視電圧の発生器
62 絶縁監視電圧の重畳用変圧器
63 重畳用変圧器の電路接地線用捲き線
A 地絡保護継電器
AZ 地絡保護継電器のZCT
B Igr方式絶縁状態監視装置
BZ Igr方式絶縁状態監視装置のZCT
Es 被監視電路と大地間に加わる絶縁監視電圧
ies 絶縁監視電圧によりRgに流れる電流
kt ZCT12の第1試験捲き線のK側端子
lt ZCT12の第1試験捲き線のL側端子
kt2 ZCT12の第2試験捲き線のK側端子
lt2 ZCT12の第2試験捲き線のL側端子
Rbd 変圧器の接地極3と設備の接地極4間の大地抵抗
Rg 電路5の接地相Sと設備の接地極4間の絶縁抵抗
S 電路5の接地相
1 Transformer of monitored circuit 2 Transformer or grounding line of circuit 3 Transformer grounding pole (Eb)
4 Grounding structures (Ed) of buildings and other grounding structures
5 Secondary circuit of transformer 6 Normal circuit load equipment 7 Circuit load equipment with a lot of ground capacitance 8 Electric load equipment that is easy for power failure and does not require insulation monitoring 10 Socket housing box 11 for insulation ground fault monitoring device Plug-in Connector terminal group 11a Connector terminal group 11b on the unit side Connector terminal group 12 on the socket storage box side ZCT of insulation ground fault monitoring device
13 Input circuit for insulation monitoring voltage 20 Io insulation ground fault monitoring unit 21 of insulation ground fault monitoring device Io insulation monitoring element 22 of Io insulation ground fault monitoring unit Earth leakage monitoring element 23 of Io insulation ground fault monitoring unit Io insulation ground fault Test terminal L side 24 of the monitoring unit Test terminal K side of the Io insulation ground fault monitoring unit 25 Test switch of the earth fault monitoring element of the Io insulation ground fault monitoring unit 26 Test switch of the Io insulation monitoring element of the Io insulation ground fault monitoring unit 30 Igr Insulated Ground Fault Monitoring Unit 31 Igr Insulated Ground Fault Monitoring Unit Igr Insulation Monitoring Element 32 Igr Insulated Ground Fault Monitoring Unit Ground Fault Monitoring Element 33 Igr Insulated Ground Fault Monitoring Unit Test Terminal L Side 34 Igr Insulated Ground Fault Monitoring Unit Test Terminal K Side 35 Igr Insulated Ground Fault Monitoring Unit Test Terminal Ed Side 36 Ig Test switch 37 for ground fault monitoring element of insulation ground fault monitoring unit Test switch 40 for Igr insulation monitoring element of insulation ground fault monitoring unit 40 Ground fault monitoring unit 41 of ground fault monitoring device Ground fault of ground fault monitoring unit Fault monitoring element 42 Earth fault monitoring unit test terminal L side 43 Earth fault monitoring unit test terminal K side 44 Earth fault monitoring element test switch 50 of earth fault monitoring unit Hot line of monitored circuit ground line Interrupting relay terminal device 51e Grounding side short-circuiting tool mounting terminal 51t of live-wire interrupting relay terminal device Transformer-side shorting device mounting terminal 52 of the live-wire interrupting relay terminal device Short-circuiting relay terminal device for hot-wire interruption Tool 53e Ground-side input terminal 53t of live-wire interrupt relay terminal device Transformer-side input terminal 60 of live-wire interrupt relay terminal device Insulation monitoring voltage superimposing device 61 Insulation monitoring voltage generator 6 2 Insulation monitoring voltage superimposing transformer 63 Superimposed transformer circuit grounding line A Ground fault protection relay AZ Ground fault protection relay ZCT
B Igr system insulation state monitoring device BZ Igr system insulation state monitoring device ZCT
Es Insulation monitoring voltage applied between the monitored circuit and the ground ies Current Kt ZCT12 flowing through Rg by the insulation monitoring voltage K-side terminal lt of the first test winding of ZCT12 L-side terminal kt2 of the first test winding of ZCT12 Test side K-side terminal lt2 ZCT12 second test side L-side terminal Rbd Earth resistance Rg between transformer grounding electrode 3 and equipment grounding electrode 4 Between grounding phase S of circuit 5 and equipment grounding electrode 4 Insulation resistance S Ground phase of circuit 5

Claims (5)

絶縁検出方式の異なる複数方式の絶縁状態監視要素と漏電地絡監視要素を合体して複数方式の絶縁地絡監視ユニットを構成し、各絶縁地絡監視ユニットは同一形状のプラグインユニット形としてそのプラットホームとなるソケット収納箱は電気的な接続部や端子部及び機構的な寸法を複数方式の絶縁地絡監視ユニットに共通に使用出来る構造としてそれぞれのユニットが相互に差しかえ自由としたことを特徴とする絶縁地絡監視装置。
Plural insulation status monitoring elements and ground fault monitoring elements with different insulation detection methods are combined to form a multiple insulation ground fault monitoring unit, and each insulation ground fault monitoring unit is a plug-in unit type with the same shape. The socket storage box that serves as a platform is a structure that can be used in common with multiple types of insulation ground fault monitoring units for electrical connection, terminal, and mechanical dimensions, and each unit can be interchanged freely. Insulated ground fault monitoring device.
Io方式の絶縁監視要素と漏電地絡監視要素からなるIo絶縁地絡監視ユニットと、Igr方式の絶縁監視要素と漏電地絡監視要素からなるIgr絶縁地絡監視ユニットとを同一形状のプラグインユニット形とし、そのプラットホームとなるソケット収納箱は電気的な接続部や端子部及び機構的な寸法をIo絶縁地絡監視ユニット及びIgr絶縁地絡監視ユニットに共通に使用出来る構造としてIo絶縁地絡監視ユニットとIgr絶縁地絡監視ユニットとを相互に差しかえ自由としたことを特徴とする絶縁地絡監視装置。 Plug-in unit having the same shape for an Io insulation ground fault monitoring unit comprising an Io insulation monitoring element and a ground fault monitoring element, and an Igr insulation ground fault monitoring unit comprising an Igr insulation monitoring element and a ground fault monitoring element Io insulation ground fault monitoring as a structure that can be used in common for both the Io insulated ground fault monitoring unit and the Igr insulated ground fault monitoring unit. An insulated ground fault monitoring apparatus characterized in that the unit and the Igr insulated ground fault monitoring unit can be interchanged freely. 被監視電路の変圧器中性点又は一端から接地極への配線途上に絶縁検出信号を活線で接続可能な割込用中継端子を設け随時に絶縁監視電圧出力の重畳接続を可能としたIo絶縁地絡監視ユニットにより構成する絶縁地絡監視装置及び配電設備。 An Io relay terminal that can connect the insulation detection signal with a live line in the middle of the transformer neutral point or one end of the monitored circuit from the ground to the grounding pole, allowing the insulation monitoring voltage output to be superimposed at any time Insulated ground fault monitoring device and power distribution equipment constituted by an insulated ground fault monitoring unit. Io方式の絶縁監視要素と漏電地絡監視要素からなるIo絶縁地絡監視ユニットと、Igr方式の絶縁監視要素と漏電地絡監視要素からなるIgr絶縁地絡監視ユニットとを同一形状のプラグインユニット形とし、そのプラットホームとなる収納箱は電気的な接続部や端子部及び機構的な寸法をIo絶縁地絡監視ユニット及びIgr絶縁地絡監視ユニットに共通に使用出来る構造としてIo絶縁地絡監視ユニットとIgr絶縁地絡監視ユニットとを相互に差しかえ自由とし、且つ、ZCTの試験端子に直接試験電流の流せる試験用接続端子を備えた絶縁地絡監視装置及び配電設備。 Plug-in unit having the same shape for an Io insulation ground fault monitoring unit comprising an Io insulation monitoring element and a ground fault monitoring element, and an Igr insulation ground fault monitoring unit comprising an Igr insulation monitoring element and a ground fault monitoring element The storage box used as a platform of the Io insulation ground fault monitoring unit has a structure in which electrical connection portions, terminal portions, and mechanical dimensions can be used in common for the Io insulated ground fault monitoring unit and the Igr insulated ground fault monitoring unit. And an Igr insulated ground fault monitoring unit, and an insulation ground fault monitoring apparatus and a power distribution facility provided with a test connection terminal that allows a test current to flow directly to the ZCT test terminal. 漏電地絡監視要素からなる漏電地絡監視ユニットと、Io方式の絶縁監視要素と漏電地絡監視要素からなるIo絶縁地絡監視ユニットと、Igr方式の絶縁監視要素と漏電地絡監視要素からなるIgr絶縁地絡監視ユニットと、を同一形状のプラグインユニット形とし、そのプラットホームとなるソケット収納箱は電気的な接続部や端子部及び機構的な寸法を各ユニットに共通に使用出来る構造として各ユニットが相互に差しかえ自由とし、被監視電路の変圧器から接地極に接続する接地線に絶縁検出信号を活線で接続できる割込用中継端子を設け随時に絶縁監視電圧の重畳接続を可能とし、ZCTの試験端子に直接試験電流が流せる試験用接続端子を備えた絶縁地絡監視装置。 A ground fault monitoring unit comprising a ground fault monitoring element, an Io insulation ground monitoring unit comprising an Io insulation monitoring element and a ground fault monitoring element, an Igr insulation monitoring element and a ground fault monitoring element The Igr insulation ground fault monitoring unit has the same shape as the plug-in unit type, and the socket storage box as the platform has a structure in which electrical connection portions, terminal portions, and mechanical dimensions can be commonly used for each unit. Units can be interchanged with each other, and an interrupt relay terminal that can connect an insulation detection signal with a live wire is provided on the ground wire connected from the transformer of the monitored circuit to the ground electrode. And an insulation ground fault monitoring device provided with a test connection terminal that allows a test current to flow directly to the test terminal of the ZCT.
JP2009064687A 2009-03-17 2009-03-17 Insulation grounding monitoring device Pending JP2010217019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009064687A JP2010217019A (en) 2009-03-17 2009-03-17 Insulation grounding monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009064687A JP2010217019A (en) 2009-03-17 2009-03-17 Insulation grounding monitoring device

Publications (1)

Publication Number Publication Date
JP2010217019A true JP2010217019A (en) 2010-09-30

Family

ID=42976022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009064687A Pending JP2010217019A (en) 2009-03-17 2009-03-17 Insulation grounding monitoring device

Country Status (1)

Country Link
JP (1) JP2010217019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267923A (en) * 2013-05-10 2013-08-28 陈肖粟 Safety grounding all-purpose online detector
CN105044558A (en) * 2015-08-04 2015-11-11 国网上海市电力公司 Electrical equipment temporary grounding wire system based on multi-agent technology
CN113406446A (en) * 2021-05-18 2021-09-17 广东韶钢工程技术有限公司 Insulation on-line monitoring system of transformer and distribution room

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267923A (en) * 2013-05-10 2013-08-28 陈肖粟 Safety grounding all-purpose online detector
CN105044558A (en) * 2015-08-04 2015-11-11 国网上海市电力公司 Electrical equipment temporary grounding wire system based on multi-agent technology
CN113406446A (en) * 2021-05-18 2021-09-17 广东韶钢工程技术有限公司 Insulation on-line monitoring system of transformer and distribution room

Similar Documents

Publication Publication Date Title
CA2711020C (en) Method and circuit arrangement for connecting at least one string of a photovoltaic system to an inverter
US20170279265A1 (en) Disconnection of a string carrying direct current power
KR102061929B1 (en) Method for detecting an open-phase condition of a transformer
CN112262511A (en) Universal power distribution system for detecting and repairing electrical faults and construction method thereof
AU2020247540B2 (en) Open pen detection and shut down system
MX2014010385A (en) Leveraging inherent redundancy in a multifunction ied.
JP2015523847A (en) Prevention of reverse current failure in solar panels
JP7266701B2 (en) Apparatus and method for remote monitoring of disconnecting devices based on leakage current
JP2010154631A (en) Device for preventing opening of secondary circuit in current transformer for measuring instrument
JP2010217019A (en) Insulation grounding monitoring device
JP2006200898A (en) Interrupt insulation measuring device
Selkirk et al. The dangers of grounding resistor failure
JP2004239863A (en) Grounding method for transformer
US20150077122A1 (en) Safety device and method for an electric installation
Selkirk et al. Why neutral-grounding resistors need continuous monitoring
KR101225449B1 (en) Integrated high resistance ground device
JP6411830B2 (en) Electric power system, small output power generation unit, and power storage unit
KR20220056060A (en) Automatic control panel for preventing electric leakage, fire, and power failure caused by short circuit, ground fault, and surge
CN201903622U (en) Voltage resistance tester
KR101104839B1 (en) System and method for testing winding conditions of pad-mounted transformers
KR101527510B1 (en) Serial arc tedting device
KR101227990B1 (en) Mccb with current monitoring apparatus
JP2010151488A (en) Device and system for detecting ground fault
CN202748434U (en) System for detecting power supply equipment grounding and inter-phase short circuit
JP7375398B2 (en) Method for measuring voltage and current phase of secondary circuit of instrument transformer