JP5403640B2 - Inspection device and inspection method for capacitive touch screen panel using LC resonance frequency shift - Google Patents

Inspection device and inspection method for capacitive touch screen panel using LC resonance frequency shift Download PDF

Info

Publication number
JP5403640B2
JP5403640B2 JP2011527759A JP2011527759A JP5403640B2 JP 5403640 B2 JP5403640 B2 JP 5403640B2 JP 2011527759 A JP2011527759 A JP 2011527759A JP 2011527759 A JP2011527759 A JP 2011527759A JP 5403640 B2 JP5403640 B2 JP 5403640B2
Authority
JP
Japan
Prior art keywords
resonance frequency
resonance
frequency shift
ctsp
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011527759A
Other languages
Japanese (ja)
Other versions
JP2011527440A (en
Inventor
コー、ジェジュン
キム、ヨンギョン
Original Assignee
エフティーラブ・カンパニー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エフティーラブ・カンパニー・リミテッド filed Critical エフティーラブ・カンパニー・リミテッド
Publication of JP2011527440A publication Critical patent/JP2011527440A/en
Application granted granted Critical
Publication of JP5403640B2 publication Critical patent/JP5403640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/26Functional testing
    • G06F11/267Reconfiguring circuits for testing, e.g. LSSD, partitioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Position Input By Displaying (AREA)

Description

本発明は、静電容量方式のタッチスクリーンパネル(capacitive touch screen panel、以下「CTSP」という)の製造段階で不良か否かを判別する検査装置および検査方法に係り、より詳しくは、CTSPの良品とCTSPの不良品との間に存在するITOタッチセンサー電極間の静電容量の差をLC共振周波数シフト差測定技法で精密に計測することにより、CTSP専用コントローラチップなしでも、CTSPのITO電極パターンに関係なく正確な不良判別を行うことができる、検査装置および検査方法に関する。   The present invention relates to an inspection apparatus and an inspection method for determining whether or not a capacitance type touch screen panel (hereinafter referred to as “CTSP”) is defective, and more particularly to a CTSP non-defective product. By accurately measuring the difference in capacitance between the ITO touch sensor electrodes existing between the CTSP and the defective CTSP using the LC resonance frequency shift difference measurement technique, the CTSP ITO electrode pattern can be obtained without a dedicated CTSP controller chip. The present invention relates to an inspection apparatus and an inspection method that can accurately determine a defect regardless of whether or not.

一般に、携帯電話やキオスクなどのディスプレイ画面上に取り付けられ、ハンドタッチによって各種ボタンまたは情報入力用として用いられるタッチスクリーンパネルは、抵抗膜方式と静電容量方式に分けられる。これらの中でも、静電容量方式のタッチスクリーンパネル「CTSP」は、一般に、図1に示したような構造で出来ている。最下端の下部接地用フィルム110と、その上にタッチセンサーの役割を果たす透明なITO電極パターンが形成されているセンサー電極フィルム120と、その上にITO電極に接着剤で接着される誘電体フィルム130と、最上端の保護フィルム140とから構成されている。各製造会社別にタッチセンサー電極としてのITO電極150パターンの模様は、その性能と専用コントローラチップの駆動方式によって異なるが、全体的な基本構造は、上述のとおりであり、特にITOセンサー電極の間に静電容量が維持される方式は、各社共通事項である。すなわち、図2に示すように、全てのCTSPは、等価回路的にITO電極の間に存在するキャパシタ210、下部接地によって発生するキャパシタ220などの直並列結合形態になる。   Generally, a touch screen panel that is attached on a display screen such as a mobile phone or a kiosk and is used for inputting various buttons or information by hand touch is divided into a resistive film type and a capacitive type. Among these, the capacitive touch screen panel “CTSP” is generally constructed as shown in FIG. Lowermost lower grounding film 110, a sensor electrode film 120 on which a transparent ITO electrode pattern serving as a touch sensor is formed, and a dielectric film adhered on the ITO electrode with an adhesive 130 and the uppermost protective film 140. The pattern of the ITO electrode 150 pattern as a touch sensor electrode for each manufacturing company varies depending on its performance and the driving method of the dedicated controller chip, but the overall basic structure is as described above, especially between the ITO sensor electrodes. The method of maintaining the capacitance is common to all companies. That is, as shown in FIG. 2, all CTSPs have a series-parallel connection configuration such as a capacitor 210 existing between ITO electrodes in an equivalent circuit and a capacitor 220 generated by lower ground.

上述したような構造を有するCTSPに、図3に示した専用コントローラチップ310の内蔵されたFPC320が付着すると、タッチスクリーンモジュールの形態になり、CTSPに人の手がタッチされた位置測定のための動作が可能となる。   When the FPC 320 with the built-in dedicated controller chip 310 shown in FIG. 3 is attached to the CTSP having the structure as described above, it becomes a touch screen module and is used for position measurement where a human hand is touched on the CTSP. Operation is possible.

CTSPの動作原理は、次のとおりである。CTSPに人の手が接触すると、接触した部位のITO電極間の静電容量が最初の値とは異なる。この値の変化を専用コントローラチップ310においてITO電極に印加する電気的信号パルスの位相遅延変化から測定し、チップ310に内蔵されたアルゴリズムで解析することにより、CTSPに手が接触した位置情報を調べる方式である。よって、専用コントローラチップの役割は、タッチスクリーンモジュールの動作において機能的に非常に重要である。もしCTSPのITO電極パターンの設計が変わると、その変わった形態に応じて電極間の静電容量が変化するので、それに合わせて設計およびプログラムされた新しい専用コントローラチップを使用しなければならない。   The operation principle of CTSP is as follows. When a human hand comes into contact with CTSP, the capacitance between the ITO electrodes at the contacted portion is different from the initial value. The change of this value is measured from the phase delay change of the electrical signal pulse applied to the ITO electrode in the dedicated controller chip 310, and analyzed by the algorithm built in the chip 310, thereby checking the position information where the hand touches the CTSP. It is a method. Therefore, the role of the dedicated controller chip is functionally very important in the operation of the touch screen module. If the design of the CTSP ITO electrode pattern changes, the capacitance between the electrodes changes according to the changed form, and a new dedicated controller chip designed and programmed accordingly must be used.

各CTSP製造会社では、タッチスクリーンモジュールの状態に至るまで生産段階を持っていかなければならないが、既存の電気的特性品質検査はCTSPまたはタッチスクリーンモジュール状態で専用コントローラチップを用いて施行している。よって、CTSPの機種が変わってCTSPのITO電極パターンが変わると、その度に毎回他の専用コントローラチップが搭載された検査装置を使用しなければならないという不便さがある。また、CTSPの電気的特性を左右するITOセンサー電極間の静電容量は、既存の専用コントローラチップを用いた方式では確認することができない。また、専用チップが信号パルスの位相遅延時間測定技法で不良を判別するので、電磁気インターフェース(EMI)などの外部環境条件の変化に脆弱であり、測定精度が劣るという問題がある。   Each CTSP manufacturing company must have a production stage until it reaches the state of the touch screen module, but the existing electrical property quality inspection is performed using a dedicated controller chip in the CTSP or touch screen module state. . Therefore, every time the CTSP model changes and the CTSP ITO electrode pattern changes, there is an inconvenience that an inspection apparatus on which another dedicated controller chip is mounted must be used each time. In addition, the capacitance between the ITO sensor electrodes that affects the electrical characteristics of CTSP cannot be confirmed by a method using an existing dedicated controller chip. In addition, since a dedicated chip discriminates a failure by a signal pulse phase delay time measurement technique, it is vulnerable to changes in external environmental conditions such as an electromagnetic interface (EMI), and there is a problem that measurement accuracy is inferior.

本発明は、上述した問題点に鑑みて案出されたもので、その目的は、CTSP専用コントローラチップなしで、かつCTSPのITO電極パターンの形態に関係なく、CTSPの電気的特性を精密に検査して不良品を判別することができる、LC共振周波数シフトを用いた静電容量方式タッチスクリーンパネルの検査装置および検査方法を提供することにある。   The present invention has been devised in view of the above-mentioned problems, and its purpose is to accurately inspect the electrical characteristics of CTSP without using a CTSP dedicated controller chip and irrespective of the form of the ITO electrode pattern of CTSP. It is another object of the present invention to provide an inspection apparatus and an inspection method for a capacitive touch screen panel using LC resonance frequency shift, which can discriminate defective products.

上記目的を達成するために、本発明は、CTSPのITOセンサー電極間の静電容量と結合して電気的共振を起こすLC共振回路を含むLC共振部と、前記LC共振部に接続され前記LC共振部のLC共振回路を発振し、共振周波数の波形を矩形波に変換するOPアンプ駆動部と、前記LC共振部に接続され前記LC共振回路と前記CTSPのITOセンサー電極とを対として並列連結するリレー部と、前記OPアンプ駆動部に接続され前記リレー部を駆動し、前記OPアンプ駆動部から出力される前記矩形波をカウントして周波数を測定し、CTSPの不良有無を判断するマイコン部とを含んでなる、LC共振周波数シフトを用いた静電容量方式タッチスクリーンパネルの検査装置を提供する。   In order to achieve the above object, the present invention provides an LC resonance unit including an LC resonance circuit that causes electrical resonance by coupling with the capacitance between the ITO sensor electrodes of CTSP, and the LC resonance unit connected to the LC resonance unit. An OP amplifier driving unit that oscillates the LC resonance circuit of the resonance unit and converts the waveform of the resonance frequency into a rectangular wave, and the LC resonance circuit connected to the LC resonance unit and the ITO sensor electrode of the CTSP are connected in parallel as a pair. And a microcomputer unit that is connected to the OP amplifier drive unit and drives the relay unit, counts the rectangular wave output from the OP amplifier drive unit, measures the frequency, and determines whether CTSP is defective or not And a capacitive touch screen panel inspection device using LC resonance frequency shift.

ここで、前記マイコン部は、前記LC共振回路のC値にITO電極間の静電容量が加わった値だけ発生するLC共振周波数シフトを測定し、これを平均値で割って正規化した計算値が良品の共振周波数シフトの範囲内に含まれるか否かによってCTSPの不良有無を判断することが好ましい。   Here, the microcomputer unit measures the LC resonance frequency shift that is generated only by the value obtained by adding the capacitance between the ITO electrodes to the C value of the LC resonance circuit, and divides this by the average value to normalize the calculated value. It is preferable to determine whether or not CTSP is defective depending on whether or not is included in the range of the resonance frequency shift of non-defective products.

また、前記良品の共振周波数シフトの範囲は、LC共振周波数シフトを平均値で割って正規化し、ユーザーによって指定された良品の範囲に存在するか否かで判断することが好ましい。   Further, the range of the resonance frequency shift of the non-defective product is preferably determined by dividing the LC resonance frequency shift by the average value and normalizing it, and determining whether or not it exists within the range of the non-defective product designated by the user.

上記目的を達成するために、本発明は、LC共振周波数シフトを用いた静電容量方式タッチスクリーンパネル(CTSP)の検査方法において、CTSPのITOセンサー電極間の静電容量と結合して電気的共振を起こすLC共振回路、前記LC共振回路を発振すると同時にマイコン部が周波数カウントを行えるように矩形波に変換するOPアンプ駆動部、リレー部およびマイコン部を用い、純粋なLCのみの発振による基準共振周波数を得るために、CTSPとLC共振回路とを連結させていない状態でLC共振回路のみの基準共振周波数を前記マイコン部が周波数カウントによってLC共振周波数値を測定してその値を格納する第1段階と、前記マイコン部の信号によって動作するリレー部がCTSPのITOセンサー電極を、LC共振回路に連結するITOセンサー電極の対を順次変えることにより、LC共振回路と並列連結を行い、この際、ITO電極間の静電容量がLC共振回路のC値に加わって発生する共振周波数シフト値を前記マイコン部で測定し格納する第2段階と、前記第2段階を反復して前記マイコン部で測定したCTSPの複数の良品の共振周波数シフトの分布を求め、前記求めた分布に基づいて良品の範囲を設定して前記マイコン部のメモリに格納しておく第3段階と、前記ITOセンサー電極の対について格納した共振周波数シフト値を前記マイコン部が正規化によって計算し、前記マイコン部に格納された良品の共振周波数シフト値と比較して良品の共振周波数シフトの範囲内にあるか否かによって良好/不良を判定する第4段階とを含んでなる、LC共振周波数シフトを用いた静電容量方式タッチスクリーンパネルの検査方法を提供する。
In order to achieve the above object, the present invention relates to a capacitance type touch screen panel (CTSP) inspection method using LC resonance frequency shift, which is electrically coupled with capacitance between ITO sensor electrodes of CTSP. LC resonance circuit causing resonance, reference using oscillation of pure LC using OP amplifier drive unit, relay unit and microcomputer unit that oscillates the LC resonance circuit and converts to rectangular wave so that the microcomputer unit can count the frequency at the same time In order to obtain the resonance frequency, the microcomputer unit measures the reference resonance frequency of only the LC resonance circuit without connecting the CTSP and the LC resonance circuit, and the microcomputer unit measures the LC resonance frequency value by the frequency count and stores the value. and one step, the relay unit that operates by a signal of the microcomputer unit is an ITO sensor electrode CTSP, LC resonance By sequentially changing the pair of ITO sensor electrodes for connecting the road, performs a parallel connection with the LC resonant circuit, this time, the resonance frequency shift value capacitance between ITO electrodes is generated applied to the C value of the LC resonant circuit The second stage of measuring and storing the microcomputer part, and the distribution of resonance frequency shifts of a plurality of non-defective CTSPs measured by the microcomputer part by repeating the second stage, and the good part based on the obtained distribution The third step of setting the range and storing it in the memory of the microcomputer unit, and the microcomputer unit calculates the resonance frequency shift value stored for the ITO sensor electrode pair by normalization and stores it in the microcomputer unit And a fourth stage for determining whether the product is within the resonance frequency shift range of the non-defective product as compared with the resonance frequency shift value of the non-defective product. It provides a test method for capacitive touch screen panel with a resonant frequency shift.

ここで、前記第4段階は、前記LC共振回路のC値にITO電極間の静電容量が加わった値だけ発生するLC共振周波数シフトを測定し、これを平均値で割って正規化した計算値が良品の共振周波数シフトの範囲内に含まれるか否かによってCTSPの不良有無を判断することが好ましい。   Here, in the fourth step, the LC resonance frequency shift generated by the value obtained by adding the capacitance between the ITO electrodes to the C value of the LC resonance circuit is measured, and this is normalized by dividing this by the average value. It is preferable to determine whether or not CTSP is defective depending on whether or not the value falls within the range of the resonance frequency shift of a good product.

また、前記良品の共振周波数シフトの範囲は、LC共振周波数シフトを平均値で割って正規化し、ユーザーによって指定された良品の範囲に存在するか否かで判断することが良い。   In addition, the range of the resonance frequency shift of the non-defective product is preferably determined by dividing the LC resonance frequency shift by the average value and normalizing it, and whether or not it exists within the range of the non-defective product designated by the user.

本発明に係るLC共振周波数シフトを用いた静電容量方式タッチスクリーンパネルの検査装置および検査方法によれば、次の効果がある。   According to the inspection apparatus and the inspection method for the capacitive touch screen panel using the LC resonance frequency shift according to the present invention, the following effects can be obtained.

CTSPのITO電極間の静電容量値の異常有無をLC共振周波数で測定するので、ITOパターンの形態に関係なく、CTSPの種類を問わず、CTSP専用コントローラチップなしでもCTSPの不良有無を判別することができる。
また、電気的共振現象を利用した検査回路を用いるので、共振現象が有する固有の安定性により静電気ショックや外部EMIなどの電気的衝撃に強く、機械的振動や温湿度変化などの外部環境変化要因に非常に鈍感である。測定においても、電圧または電流ではなく、周波数をカウンタで数えながら測定することにより、1/1000以上の測定精度を保つことができる。
Since the presence or absence of an abnormality in the capacitance value between the CTSP's ITO electrodes is measured at the LC resonance frequency, the presence / absence of a CTSP defect is determined regardless of the type of the CTSP, regardless of the type of CTSP, even without a CTSP dedicated controller chip. be able to.
In addition, since an inspection circuit using the electrical resonance phenomenon is used, the inherent stability of the resonance phenomenon makes it resistant to electrical shocks such as electrostatic shock and external EMI, and causes external environmental change factors such as mechanical vibration and temperature / humidity changes. Very insensitive. Also in the measurement, the measurement accuracy of 1/1000 or more can be maintained by measuring not the voltage or the current but counting the frequency with a counter.

また、LC共振回路の定数と共振周波数の関係式によってCTSPのITO電極間の実際の静電容量値を得ることができるので、不良分析に容易に使うことができる。   Further, since the actual capacitance value between the ITO electrodes of CTSP can be obtained by the relational expression between the constant of the LC resonance circuit and the resonance frequency, it can be easily used for failure analysis.

本発明の前記および他の目的、特徴および利点は、添付図面を参照する次の説明からさらに明確に理解されるであろう。
図1は一般なCTSP各層の構造図である。 図2は一般なCTSPのITO電極の等価回路を示す図である。 図3は一般な完成されたタッチスクリーンモジュール構造を示す図である。 図4は本発明の一実施例に係るLC共振を用いたCTSP検査装置の回路図である。 図5は本発明の一実施例に係る良品CTSPの各チャネルの共振周波数シフトを示すグラフである。 図6は図5の結果の正規化および良品の範囲設定を示すグラフである。 図7は不良判定の例(1)を示すグラフである。 図8は不良判定の例(2)を示すグラフである。 図9はCTSPのITO端子間の実際の静電容量測定結果を示すグラフである。
The above and other objects, features and advantages of the present invention will be more clearly understood from the following description with reference to the accompanying drawings.
FIG. 1 is a structural diagram of each general CTSP layer. FIG. 2 is a diagram showing an equivalent circuit of a general CTSP ITO electrode. FIG. 3 is a view illustrating a general completed touch screen module structure. FIG. 4 is a circuit diagram of a CTSP inspection apparatus using LC resonance according to an embodiment of the present invention. FIG. 5 is a graph showing the resonance frequency shift of each channel of the non-defective CTSP according to one embodiment of the present invention. FIG. 6 is a graph showing normalization of the results of FIG. FIG. 7 is a graph showing an example (1) of defect determination. FIG. 8 is a graph showing an example (2) of defect determination. FIG. 9 is a graph showing actual capacitance measurement results between the ITO terminals of CTSP.

以下、添付図面を参照して本発明の実施例に係るLC共振周波数シフトを用いた静電容量方式タッチスクリーンパネルの検査装置および検査方法を詳細に説明する。   Hereinafter, an inspection apparatus and an inspection method for a capacitive touch screen panel using LC resonance frequency shift according to embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本明細書のために、図面における同一の参照番号は、別途指示しない限りは同一の構成部分を示す。   For the purposes of this specification, like reference numbers in the figures refer to like parts unless otherwise indicated.

次に、添付図面を参照して、本発明に係るCTSPの検査方法について詳細に説明する。   Next, a CTSP inspection method according to the present invention will be described in detail with reference to the accompanying drawings.

まず、本発明の検査方法を適用したLC共振を用いたCTSPの検査装置の回路を図4に示した。図4に示すように、検査回路は、基本的に、LC共振部410、OPアンプ駆動部420、リレー部430およびマイコン部440を含む。   First, FIG. 4 shows a circuit of a CTSP inspection apparatus using LC resonance to which the inspection method of the present invention is applied. As shown in FIG. 4, the inspection circuit basically includes an LC resonance unit 410, an OP amplifier driving unit 420, a relay unit 430, and a microcomputer unit 440.

LC共振部410は、一般に、CTSPのITO電極間の静電容量が数十pFの非常に少ない値であるから、その測定に適するように100pF未満の基準キャパシタと数百μHのインダクタンス値を有するコイルでLC共振回路を構成することにより、基準共振周波数が600kHz〜800kHz範囲の値となるようにする。   In general, the LC resonance unit 410 has a very small value of several tens of pF in capacitance between the ITO electrodes of CTSP. Therefore, the LC resonance unit 410 has a reference capacitor of less than 100 pF and an inductance value of several hundred μH so as to be suitable for the measurement. By configuring the LC resonance circuit with coils, the reference resonance frequency is set to a value in the range of 600 kHz to 800 kHz.

OPアンプ駆動部420は、LC共振回路を発振させる役割とともに、共振周波数の波形をサイン波から矩形波に変形させてマイコン部440の周波数カウントを容易にする機能を果たす。   The OP amplifier driver 420 oscillates the LC resonance circuit and functions to facilitate the frequency counting of the microcomputer unit 440 by transforming the waveform of the resonance frequency from a sine wave to a rectangular wave.

リレー部430は、LC共振回路とCTSPのITOセンサー電極をそれぞれ対として順次並列連結するための装置であって、マイコン部440の信号を受け取って動作する。   The relay unit 430 is a device for sequentially connecting the LC resonance circuit and the CTSP ITO sensor electrode as a pair in parallel. The relay unit 430 receives a signal from the microcomputer unit 440 and operates.

マイコン部440は、リレー部430を駆動し、OPアンプ駆動部420から出力される共振周波数パルス信号(矩形波)をカウントして周波数を測定し、静電容量の換算およびCTSPの不良有無を判断するための計算機能を行う。本発明に係る検査装置において、LC共振部410のLC共振回路で発生するアナログ信号をデジタルパルスカウンタで変換するOPアンプ駆動部420の回路上にはノイズが発生せず、これをマイコン部440で測定するとき、精度は0.1%の誤差範囲内であって非常に高い。次は、前述した図4の検査回路を用いてCTSPの電気的特性を支配するITOセンサー電極間の静電容量を共振周波数シフトで測定する過程について説明する。   The microcomputer unit 440 drives the relay unit 430, counts the resonance frequency pulse signal (rectangular wave) output from the OP amplifier drive unit 420, measures the frequency, and determines whether the capacitance is converted and CTSP is defective. Do the calculation function to do. In the inspection apparatus according to the present invention, no noise is generated on the circuit of the OP amplifier driving unit 420 that converts the analog signal generated in the LC resonance circuit of the LC resonance unit 410 by the digital pulse counter. When measuring, the accuracy is very high with an error range of 0.1%. Next, the process of measuring the capacitance between the ITO sensor electrodes that govern the electrical characteristics of CTSP using the above-described inspection circuit of FIG. 4 by the resonance frequency shift will be described.

まず、全てのリレー部430を切断させてCTSPのITOセンサー電極をLC共振回路に連結させていないとき、すなわち純粋に共振回路のLCのみの発振による基準共振周波数をマイコン部440で測定する。   First, when all the relay units 430 are disconnected and the CTSP ITO sensor electrode is not connected to the LC resonance circuit, that is, the reference resonance frequency due to pure LC oscillation of the resonance circuit is measured by the microcomputer unit 440.

その後、マイコン部440の動作信号によってリレー430を駆動してCTSPのITOセンサー電極をタッチ面上で互いに隣接した電極同士、電極端子では上下対称の対として、すなわち例えば10個のITO電極が存在する場合、最初には1番と10番、次には2番と9番のように順次LC共振回路に連結すると、ITO電極間の静電容量がLC共振回路のC値に加えられて共振周波数のシフトが発生するが、この共振周波数シフト値をマイコン部440を用いて測定すると、CTSPのITO各電極間の静電容量値を共振周波数シフトの程度差で一対一にて換算して測定することができる。このような測定法は、CTSPのITOセンサー電極のパターン形態に関係ないので、CTSPの種類を問わずに常に適用できる汎用的なものである。また、測定精度において電圧または電流値ではなく、周波数をカウントする方式で測定するので、常に測定に悪影響を与える電気的ノイズとは関係のない精密な測定が可能である。   After that, the relay 430 is driven by the operation signal of the microcomputer unit 440, and the CTSP ITO sensor electrodes are adjacent to each other on the touch surface, and the electrode terminals are vertically symmetrical pairs, that is, for example, 10 ITO electrodes exist. In this case, the capacitance between the ITO electrodes is added to the C value of the LC resonance circuit when the LC resonance circuit is connected to the LC resonance circuit in the order of No. 1 and No. 10, and then No. 2 and No. 9. However, when the resonance frequency shift value is measured using the microcomputer unit 440, the capacitance value between the ITO electrodes of the CTSP is converted into a one-to-one ratio according to the degree of the resonance frequency shift and measured. be able to. Since such a measurement method is not related to the pattern form of the CTSP ITO sensor electrode, it is a general-purpose method that can always be applied regardless of the type of CTSP. In addition, since measurement is performed using a frequency counting method instead of a voltage or current value in measurement accuracy, precise measurement that is not related to electrical noise that always adversely affects measurement is possible.

構造的にも、CTSPのITO電極とピッチが一致するPCBを用いて測定するので、ピンを使用するプローブとは異なり、面接触方式でCTSPの電極損傷がなく、直接測定によってセルを測定するので、低い測定インピーダンスおよび低いノイズ特性を持つ。また、CTSPの種類が変わっても、PCBのみを簡単に取り替えて適用することにより、全てのCTSPの種類を問わずに低コストで検査装置を汎用的に適用することができる。   Structurally, since the measurement is performed using a PCB whose pitch matches the CTSP ITO electrode, unlike the probe using pins, the CTSP electrode is not damaged by the surface contact method, and the cell is measured by direct measurement. With low measurement impedance and low noise characteristics. Even if the type of CTSP changes, the inspection apparatus can be applied universally at low cost regardless of the type of all CTSPs by simply replacing and applying only the PCB.

図5は本発明の一実施例に係る良品CTSPの各チャネルの共振周波数シフトを示すグラフ、図6は図5の結果の正規化および良品の範囲設定を示すグラフ、図7は不良判定の例(1)を示すグラフ、図8は不良判定の例(2)を示すグラフ、図9はCTSPのITO端子間の実際の静電容量の測定結果を示すグラフである。   FIG. 5 is a graph showing the resonance frequency shift of each channel of the non-defective CTSP according to an embodiment of the present invention, FIG. 6 is a graph showing normalization of the result of FIG. 5 and setting of the non-defective range, and FIG. FIG. 8 is a graph showing an example (2) of defect determination, and FIG. 9 is a graph showing actual measurement results of capacitance between the ITO terminals of CTSP.

図5〜図9を参照すると、CTSPの不良有無検査を行う実際の検査過程について例を挙げて説明する。まず、CTSP検査装置の基準共振周波数をマイコン部440で測定したが、680kHzであった。次いで、正常的なCTSPサンプルの共振周波数とその平均値を求める。図5にその実際結果を示した。   Referring to FIGS. 5 to 9, an actual inspection process for performing the CTSP defect inspection will be described with an example. First, the reference resonance frequency of the CTSP inspection apparatus was measured by the microcomputer unit 440 and found to be 680 kHz. Next, the resonance frequency and average value of normal CTSP samples are obtained. FIG. 5 shows the actual result.

図5は32つの端子を有する携帯電話用CTSP正常サンプル10枚を前述した方法で対称な対となる端子間の静電容量によってシフトされた共振周波数を実際測定して表示したものである。図5において、点線で表示されたチャネル3番の測定値510は、10枚のCTSPサンプルで3番端子と30番端子を前記検査装置に連結したときに得られた値である。残りのチャネルの意味も前述したとおりである。次は測定されたシフト周波数を平均値で割る正規化(normalize)を行う過程である。その結果を図6に示した。図6を参照すると、全ての結果データは点線610で表示された±1%内の誤差範囲内に存在するので、これを良品の共振周波数シフトの範囲として設定してマイコンのメモリに格納しておく。このように良品の周波数シフトの範囲を定めておき、追ってCTSP検査の際に特定チャネル間の共振周波数シフトをマイコンが測定して正規化によって計算し、既に格納された良品範囲の値と比較して、もしこの値が良品の範囲を外れると、不良として判定すればよい。次は不良判定の実例である。図7および図8は不良として判定されたCTSPサンプルの結果である。図7では点線710で表示された2つのデータが、図8では多数のデータ値が良品の範囲を大きく外れることを明確に分かることができる。図9はLC共振回路の関係式である数1を用いて図7の測定結果をCTSPの実際の静電容量で換算して表示したものである。

Figure 0005403640
FIG. 5 is a graph showing 10 resonant samples shifted by the capacitance between symmetrical pairs of terminals using 10 normal CTSP samples for mobile phones having 32 terminals. In FIG. 5, the measured value 510 of channel 3 indicated by a dotted line is a value obtained when the 3rd terminal and the 30th terminal are connected to the inspection apparatus with 10 CTSP samples. The meanings of the remaining channels are also as described above. Next, normalization is performed by dividing the measured shift frequency by the average value. The results are shown in FIG. Referring to FIG. 6, since all the result data is within an error range within ± 1% indicated by the dotted line 610, this is set as a non-defective resonance frequency shift range and stored in the memory of the microcomputer. deep. In this way, the range of the frequency shift of the non-defective product is determined, and the microcomputer measures the resonance frequency shift between the specific channels at the time of CTSP inspection and calculates it by normalization, and compares it with the value of the pre-stored good product range. If this value is out of the non-defective range, it may be determined as defective. The following is an example of defect determination. 7 and 8 show the results of the CTSP sample determined as defective. In FIG. 7, it can be clearly seen that the two data displayed by the dotted line 710 and that in FIG. 8 a large number of data values greatly deviate from the non-defective range. FIG. 9 shows the measurement result of FIG. 7 converted by the actual capacitance of CTSP using Equation 1 which is a relational expression of the LC resonance circuit.
Figure 0005403640

この際、検査回路に使用されたLCはそれぞれL=1mH、Cref=30pFであった。すなわち、共振周波数シフトを測定すると、実際の静電容量も分かることができる。 At this time, LC used for the inspection circuit was L = 1 mH and C ref = 30 pF, respectively. That is, when the resonance frequency shift is measured, the actual capacitance can also be determined.

これにより、全てのデータがチャネル別に測定および格納され、測定値が周波数、静電容量などの物理量から良好/不良を判断することにより、生産の標準管理が可能である。   As a result, all data is measured and stored for each channel, and it is possible to perform standard management of production by determining whether the measured value is good or bad from physical quantities such as frequency and capacitance.

前述したように本発明に係るLC共振周波数シフトを用いた静電容量方式タッチスクリーンパネルの検査装置および検査方法によれば、LC共振周波数シフトを用いてCTSPの種類およびITOパターンの形態を問わずにCTSP専用コントローラチップなしでもCTSPの不良有無を判別することができるという効果がある。   As described above, according to the inspection method and the inspection method for the capacitive touch screen panel using the LC resonance frequency shift according to the present invention, regardless of the type of the CTSP and the form of the ITO pattern using the LC resonance frequency shift. In addition, there is an effect that it is possible to determine the presence or absence of CTSP defects without a dedicated controller chip for CTSP.

また、電気的共振現象を利用した検査回路を用いるので、共振現象が有する固有な安定性により、静電気ショックや外部EMIなどの電気的衝撃に強く、機械的振動や温湿度変化などの外部環境変化要因に非常に鈍感であるという効果がある。測定においても、電圧または電流ではなく、周波数をカウンタで数えながら測定することにより、1/1000以上の測定精度を保つことができるという効果がある。   In addition, since an inspection circuit using the electrical resonance phenomenon is used, due to the inherent stability of the resonance phenomenon, it is resistant to electrical shocks such as electrostatic shock and external EMI, and external environmental changes such as mechanical vibrations and temperature and humidity changes There is an effect that the factor is very insensitive. Also in the measurement, there is an effect that measurement accuracy of 1/1000 or more can be maintained by measuring the frequency instead of the voltage or current while counting with a counter.

また、LC共振回路の定数と共振周波数の関係式によってCTSPのITO電極間の実際の静電容量値を得ることができるので、不良分析に容易に使うことができるという効果がある。   Further, since the actual capacitance value between the ITO electrodes of CTSP can be obtained by the relational expression between the constant of the LC resonance circuit and the resonance frequency, there is an effect that it can be easily used for failure analysis.

以上、本発明の好適な実施例について説明したが、本発明は、上述した特定の実施例に限定されない。すなわち、本発明の属する技術分野における通常の知識を有する者であれば、添付された特許請求の範囲の思想および範疇を逸脱することなく、本発明に対する多数の変更および修正が可能であり、それらの全ての適切な変更および修正の均等物も本発明の範囲に属するものと見なされるべきである。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to the specific embodiments described above. That is, a person having ordinary knowledge in the technical field to which the present invention belongs can make many changes and modifications to the present invention without departing from the spirit and scope of the appended claims. All appropriate changes and modifications equivalent thereto should be considered within the scope of the present invention.

Claims (6)

静電容量方式タッチスクリーンパネル(CTSP)のITOセンサー電極間の静電容量と結合して電気的共振を起こすLC共振回路を含むLC共振部と、
前記LC共振部に接続され前記LC共振部のLC共振回路を発振し、共振周波数の波形を矩形波に変換するOPアンプ駆動部と、
前記LC共振部に接続され前記LC共振回路と前記CTSPのITOセンサー電極とを対として並列連結するリレー部と、
前記OPアンプ駆動部に接続され前記リレー部を駆動し、前記OPアンプ駆動部から出力される前記矩形波をカウントして周波数を測定し、CTSPの不良の有無を判断するマイコン部とを含み、
前記マイコン部では、前記共振周波数の、ITOセンサー電極間の静電容量と結合しない基準共振周波数からのシフトに基き、CTSPの不良の有無を判断する、
LC共振周波数シフトを用いた静電容量方式タッチスクリーンパネルの検査装置。
An LC resonance unit including an LC resonance circuit that causes electrical resonance by coupling with capacitance between ITO sensor electrodes of a capacitive touch screen panel (CTSP);
An OP amplifier drive unit that is connected to the LC resonance unit, oscillates an LC resonance circuit of the LC resonance unit, and converts a waveform of a resonance frequency into a rectangular wave;
A relay unit connected in parallel to the LC resonant unit and the ITO sensor electrode of the CTSP as a pair;
A microcomputer unit that is connected to the OP amplifier driving unit, drives the relay unit, counts the rectangular wave output from the OP amplifier driving unit, measures the frequency, and determines whether there is a CTSP defect;
In the microcomputer unit, based on a shift from the reference resonance frequency that does not couple with the capacitance between the ITO sensor electrodes of the resonance frequency, the presence or absence of CTSP failure is determined.
Inspection device for capacitive touch screen panel using LC resonance frequency shift.
前記マイコン部は、前記LC共振回路のC値にITO電極間の静電容量が加わった値だけ発生するLC共振周波数シフトを測定し、これを平均値で割って正規化した計算値が良品の共振周波数シフトの範囲内に含まれるか否かによってCTSPの不良有無を判断することを特徴とする、請求項1に記載のLC共振周波数シフトを用いた静電容量方式タッチスクリーンパネル検査装置。   The microcomputer unit measures the LC resonance frequency shift generated by the value obtained by adding the capacitance between the ITO electrodes to the C value of the LC resonance circuit, and divides this by the average value to normalize the calculated value. 2. The capacitive touch screen panel inspection apparatus using LC resonance frequency shift according to claim 1, wherein the presence or absence of CTSP is determined based on whether the resonance frequency shift falls within a range of the resonance frequency shift. 前記良品の共振周波数シフトの範囲は、LC共振周波数シフトを平均値で割って正規化し、ユーザーによって指定された良品の範囲に存在するか否かで判断することを特徴とする、請求項2に記載のLC共振周波数シフトを用いた静電容量方式タッチスクリーンパネル検査装置。   The range of the resonance frequency shift of the non-defective product is determined by dividing the LC resonance frequency shift by the average value and normalizing it, and determining whether or not the non-defective product is within the range of the non-defective product designated by the user. Capacitance type touch screen panel inspection apparatus using the LC resonance frequency shift described. LC共振周波数シフトを用いた静電容量方式タッチスクリーンパネル(CTSP)の検査方法において、
CTSPのITOセンサー電極間の静電容量と結合して電気的共振を起こすLC共振回路、前記LC共振回路を発振すると同時にマイコン部が周波数カウントを行えるように矩形波に変換するOPアンプ駆動部、リレー部およびマイコン部を用い
純粋なLCのみの発振による基準共振周波数を得るために、CTSPとLC共振回路とを連結させていない状態でLC共振回路のみの基準共振周波数を前記マイコン部が周波数カウントによって測定してその値を格納する第1段階と、
前記マイコン部の信号によって動作するリレー部がCTSPのITOセンサー電極を、LC共振回路に連結するITOセンサー電極の対を順次変えることにより、LC共振回路と並列連結を行い、この際、ITO電極間の静電容量がLC共振回路のC値に加わって発生する共振周波数シフト値を前記マイコン部で測定し格納する第2段階と、
前記第2段階を反復して前記マイコン部で測定したCTSPの複数の良品の共振周波数シフトの分布を求め、前記求めた分布に基づいて良品の範囲を設定して該良品の範囲を前記マイコン部のメモリに格納しておく第3段階と、
前記ITOセンサー電極の対について格納した共振周波数シフト値を前記マイコン部が正規化によって計算し、前記マイコン部に格納された良品の範囲値と比較して、良品の範囲内にあるか良品の範囲を外れるかによって良好/不良を判定する第4段階とを含んでなることを特徴とする、LC共振周波数シフトを用いた静電容量方式タッチスクリーンパネルの検査方法。
In the inspection method of the capacitive touch screen panel (CTSP) using the LC resonance frequency shift,
An LC resonance circuit that causes electrical resonance by coupling with the capacitance between the ITO sensor electrodes of CTSP, an OP amplifier drive unit that oscillates the LC resonance circuit and converts it into a rectangular wave so that the microcomputer unit can perform frequency counting, using a relay unit and the microcomputer unit,
In order to obtain a reference resonance frequency based on pure LC oscillation, the microcomputer unit measures the reference resonance frequency of only the LC resonance circuit in a state where CTSP and the LC resonance circuit are not connected, and calculates the value. A first stage of storing;
The relay unit that operates according to the signal of the microcomputer unit performs parallel connection with the LC resonance circuit by sequentially changing the ITO sensor electrode of CTSP and the pair of ITO sensor electrodes that are connected to the LC resonance circuit. A second stage of measuring and storing a resonance frequency shift value generated by adding the capacitance of the LC resonance circuit to the C value of the LC resonance circuit in the microcomputer unit;
The distribution of resonance frequency shifts of a plurality of non-defective CTSPs measured by the microcomputer unit by repeating the second step is determined, and a non-defective range is set based on the obtained distribution, and the non- defective range is determined by the microcomputer unit. A third stage stored in the memory of
The resonance frequency shift value stored for the pair of ITO sensor electrodes is calculated by the microcomputer unit by normalization, and compared with the range value of the non-defective product stored in the microcomputer unit. A method for inspecting a capacitive touch screen panel using an LC resonance frequency shift, comprising: a fourth stage in which good / bad is determined depending on whether or not the value is off.
前記第4段階は、前記LC共振回路のC値にITO電極間の静電容量が加わった値だけ発生するLC共振周波数シフトを測定し、これを平均値で割って正規化した計算値が良品の共振周波数シフトの範囲内に含まれるか否かによってCTSPの不良有無を判断することを特徴とする、請求項4に記載のLC共振周波数シフトを用いた静電容量方式タッチスクリーンパネルの検査方法。   In the fourth step, the LC resonance frequency shift generated by the value obtained by adding the capacitance between the ITO electrodes to the C value of the LC resonance circuit is measured, and the calculated value is normalized by dividing this by the average value. 5. The method for inspecting a capacitive touch screen panel using an LC resonance frequency shift according to claim 4, wherein the presence or absence of CTSP is determined based on whether or not the resonance frequency shift is within a range of the resonance frequency shift. . 前記良品の共振周波数シフトの範囲は、LC共振周波数シフトを平均値で割って正規化し、ユーザーによって指定された良品の範囲に存在するか否かで判断することを特徴とする、請求項5に記載のLC共振周波数シフトを用いた静電容量方式タッチスクリーンパネルの検査方法。   The range of the resonance frequency shift of the non-defective product is determined by dividing the LC resonance frequency shift by the average value and normalizing it, and determining whether or not the non-defective product is within the range of the non-defective product designated by the user. A method for inspecting a capacitive touch screen panel using the LC resonance frequency shift described.
JP2011527759A 2009-08-17 2010-08-17 Inspection device and inspection method for capacitive touch screen panel using LC resonance frequency shift Active JP5403640B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020090075525A KR100971220B1 (en) 2009-08-17 2009-08-17 The inspection method of the capacitive touch screen panel using lc resonance frequency shift
KR10-2009-0075525 2009-08-17
PCT/KR2010/005409 WO2011021825A2 (en) 2009-08-17 2010-08-17 Apparatus and method for inspecting a capacitive touch screen panel using lc resonant frequency variation

Publications (2)

Publication Number Publication Date
JP2011527440A JP2011527440A (en) 2011-10-27
JP5403640B2 true JP5403640B2 (en) 2014-01-29

Family

ID=42645805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011527759A Active JP5403640B2 (en) 2009-08-17 2010-08-17 Inspection device and inspection method for capacitive touch screen panel using LC resonance frequency shift

Country Status (5)

Country Link
JP (1) JP5403640B2 (en)
KR (1) KR100971220B1 (en)
CN (1) CN102187319B (en)
TW (1) TWI431293B (en)
WO (1) WO2011021825A2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101192956B1 (en) 2010-11-05 2012-10-19 (주)디지엔티 A System & Method for Performance Test of Electrostatic Touch Screen Panel, A Performance Test device for Electrostatic Touch Screen Panel, A Producing Method for Electrostatic Touch Screen Panel and A Storage medium
KR101150624B1 (en) * 2010-12-06 2012-05-30 주식회사 에프티랩 The apparatus for inspection of electrical characteristics of the capacitive touch screen panel using resonance frequency shift
KR101267259B1 (en) 2011-11-08 2013-05-24 (주)펨트론 Apparatus and method for inspecting capacitive touch screen panel using Phase Locked Loop
KR101279737B1 (en) * 2012-03-29 2013-06-27 주식회사 에프티랩 The inspection apparatus for the capacitive touch screen panel using switching device and the inspection method using the same
KR101386118B1 (en) * 2012-04-09 2014-04-22 (주) 루켄테크놀러지스 Method and device for testing touch screen panel
CN102636718B (en) * 2012-05-10 2014-08-20 意力(广州)电子科技有限公司 Mutual capacitance touch screen detection method
US20130320994A1 (en) * 2012-05-30 2013-12-05 3M Innovative Properties Company Electrode testing apparatus
US9410907B2 (en) 2013-12-19 2016-08-09 Clarus Vision, Inc. Methods and apparatuses for testing capacitive touch screen films
US10379694B2 (en) 2014-08-27 2019-08-13 Samsung Electronics Co., Ltd. Touch panel and coordinate measuring system having the same
KR20160025440A (en) * 2014-08-27 2016-03-08 삼성전자주식회사 Touch penel and coordinate indicating system having the same
CN105467259B (en) * 2015-11-16 2018-06-29 上海天马微电子有限公司 Detection circuit for detecting capacitance sensing line, capacitive touch screen and detection method
CN106155447A (en) * 2016-07-14 2016-11-23 深圳市唯酷光电有限公司 Capacitance plate and liquid crystal handwriting device
US10671170B2 (en) * 2016-07-22 2020-06-02 Harman International Industries, Inc. Haptic driving guidance system
CN107037352B (en) * 2017-04-06 2020-01-17 芯海科技(深圳)股份有限公司 Capacitive touch key chip detection calibration system and method
CN107462273B (en) * 2017-07-17 2020-05-12 江苏邦融微电子有限公司 Mass production testing device and method for capacitive sensor module
US11474135B2 (en) * 2019-04-03 2022-10-18 Cirrus Logic, Inc. Auto-centering of sensor frequency of a resonant sensor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0055331B1 (en) * 1980-12-31 1985-05-15 International Business Machines Corporation Method of trimming thin metal resistors
JPH077038B2 (en) * 1986-05-19 1995-01-30 株式会社リードエレクトロニクス Printed circuit board inspection equipment
US5057969A (en) * 1990-09-07 1991-10-15 International Business Machines Corporation Thin film electronic device
KR19990025832A (en) * 1997-09-18 1999-04-06 윤종용 Inspection substrate with resonant circuit for measuring noise in specific frequency band
JP3846028B2 (en) * 1998-05-13 2006-11-15 セイコーエプソン株式会社 Semiconductor element inspection apparatus, semiconductor element inspection method, and liquid crystal panel manufacturing method
JP3632832B2 (en) * 2000-04-27 2005-03-23 シャープ株式会社 Sheet resistance measurement method
JP2002164398A (en) * 2000-11-27 2002-06-07 Tokyo Instruments Inc Capacity sensor and capacity measuring method
JP4045424B2 (en) * 2002-08-02 2008-02-13 トヨタ自動車株式会社 Laser welding quality inspection method and apparatus
KR100491987B1 (en) * 2002-09-25 2005-05-30 마이크로 인스펙션 주식회사 Apparatus for inspecting insulation layer of pdp panel
JP2005274225A (en) * 2004-03-23 2005-10-06 Kawaguchiko Seimitsu Co Ltd Touch panel inspection device
JP3989488B2 (en) * 2005-01-19 2007-10-10 オー・エイチ・ティー株式会社 Inspection device, inspection method, and sensor for inspection device
US7932898B2 (en) * 2005-09-20 2011-04-26 Atmel Corporation Touch sensitive screen
KR101209042B1 (en) * 2005-11-30 2012-12-06 삼성디스플레이 주식회사 Display device and testing method thereof
JP5045023B2 (en) * 2006-08-09 2012-10-10 パナソニック株式会社 Input device
JP2009101699A (en) * 2009-01-09 2009-05-14 Seiko Epson Corp Liquid droplet ejector and inkjet printer

Also Published As

Publication number Publication date
WO2011021825A3 (en) 2011-05-26
TW201128205A (en) 2011-08-16
CN102187319B (en) 2014-03-12
WO2011021825A2 (en) 2011-02-24
JP2011527440A (en) 2011-10-27
CN102187319A (en) 2011-09-14
KR100971220B1 (en) 2010-07-20
TWI431293B (en) 2014-03-21

Similar Documents

Publication Publication Date Title
JP5403640B2 (en) Inspection device and inspection method for capacitive touch screen panel using LC resonance frequency shift
US8519722B1 (en) Method and apparatus for testing projected capacitance matrices and determining the location and types of faults
CN102809707B (en) The touch panel measured using mutual capacitor is tested
US8253425B2 (en) Production testing of a capacitive touch sensing device
TWI539352B (en) In-situ detection of touchscreen panel shorts
US20120182252A1 (en) Differential Capacitive Touchscreen or Touch Panel
JP5160502B2 (en) Capacitive touch panel
CN102681743B (en) Micro impedance change detection device
KR101267259B1 (en) Apparatus and method for inspecting capacitive touch screen panel using Phase Locked Loop
CN107025016B (en) Capacitive pressure sensing device and method
CN102508105B (en) Method for detecting capacitive touch screen by using near field
JP5863992B2 (en) Touch screen panel capacity measuring device
CN102981686B (en) A kind of method of capacitive touch screen architecture defects detection
KR101147616B1 (en) Single Layer Touch Screen Device with High Precision and Decision Method of Sensing Position
US10073570B2 (en) Mutual capacitance touch sensing device and method for inspecting same
JP5321990B2 (en) Electric characteristic inspection device for capacitive touch screen panel using resonant frequency shift
CN107015688B (en) Device and method for integrating touch control and pressure sensing
KR101929323B1 (en) Apparatus for Detecting Touch in Capacitive Touchscreen- Equipped Devices
KR101279737B1 (en) The inspection apparatus for the capacitive touch screen panel using switching device and the inspection method using the same
KR20210095923A (en) Digital-to-analog controller-referenced touch sensing system, and related systems, methods, and devices
KR20170019740A (en) Apparatus for touch sensor test
KR101671835B1 (en) Apparatus and method for non-touch testing touch screen module
TWI452507B (en) Touch apparatus and touch sensing method thereof
TWI433021B (en) Method for setting driving signals for electrode of touch panel and driving method for touch panel
CN109460168A (en) A method of detection shunt capacitance between chip whether normal weld

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131023

R150 Certificate of patent or registration of utility model

Ref document number: 5403640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250