JP5403308B2 - BWR or ABWR for remote control of dynamic equipment or measuring devices - Google Patents

BWR or ABWR for remote control of dynamic equipment or measuring devices Download PDF

Info

Publication number
JP5403308B2
JP5403308B2 JP2007160243A JP2007160243A JP5403308B2 JP 5403308 B2 JP5403308 B2 JP 5403308B2 JP 2007160243 A JP2007160243 A JP 2007160243A JP 2007160243 A JP2007160243 A JP 2007160243A JP 5403308 B2 JP5403308 B2 JP 5403308B2
Authority
JP
Japan
Prior art keywords
abwr
bwr
reactor
suppression pool
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007160243A
Other languages
Japanese (ja)
Other versions
JP2008309748A (en
Inventor
白川利久
Original Assignee
白川 利久
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 白川 利久 filed Critical 白川 利久
Priority to JP2007160243A priority Critical patent/JP5403308B2/en
Publication of JP2008309748A publication Critical patent/JP2008309748A/en
Application granted granted Critical
Publication of JP5403308B2 publication Critical patent/JP5403308B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、軽水を冷却材とする沸騰水型原子炉(BWR)または改良型沸騰水型原子炉(ABWR)の改修に関する。   The present invention relates to a modification of a boiling water reactor (BWR) or an improved boiling water reactor (ABWR) using light water as a coolant.

図1は、ABWRの原子炉(1)近辺を詳細に示した図である。非特許文献1を主体にして、非特許文献2、非特許文献3で補足した。核燃料を内包する原子炉圧力容器(100)は、ステンレスで内張りされた鉄筋コンクリートの格納容器壁(2)と鉄筋コンクリート製の基礎(3)とで構成された格納容器空間(4)の中に納められている。   FIG. 1 is a detailed view of the vicinity of the ABWR reactor (1). Supplemented by Non-Patent Document 2 and Non-Patent Document 3, mainly Non-Patent Document 1. The reactor pressure vessel (100) containing nuclear fuel is housed in a containment space (4) consisting of a reinforced concrete containment wall (2) lined with stainless steel and a reinforced concrete foundation (3). ing.

原子炉圧力容器(100)の下部には制御棒(107)を精密に駆動させるためのFMCRD(6)とFMCRD(6)の動きを制御棒(107)に伝える軸を内包せる制御棒ハウジング(7)がある。制御棒(107)を緊急に駆動させるためには制御棒駆動水圧系(8)が使われ水が水圧配管(112)の中を矢印の方向に流れて制御棒(107)を水圧駆動させる。   A control rod housing (including a shaft for transmitting the motion of the FMCRD (6) and FMCRD (6) to the control rod (107) for precisely driving the control rod (107) at the bottom of the reactor pressure vessel (100) 7) There is. In order to drive the control rod (107) urgently, the control rod drive hydraulic system (8) is used, and water flows through the hydraulic pipe (112) in the direction of the arrow to drive the control rod (107) hydraulically.

原子炉圧力容器(100)の下部には核燃料で発生する熱を冷却するために水を循環させるためのインターナルポンプ(109)を駆動させるためのインターナルポンプモータ(9)が敷設されている。   An internal pump motor (9) for driving an internal pump (109) for circulating water to cool the heat generated by the nuclear fuel is laid under the reactor pressure vessel (100). .

格納容器空間(4)の中にはプール隔壁(20)で囲まれた大量の水を内蔵せるサプレッションプール(5)があって、冷却水不足に関わる事態が生じた時に平常運転時には閉じられている非常時開弁(10)が開かれて非常用炉心冷却ポンプ(11)が起動して水が非常用配管(12)を通って矢印の方向に流れて原子炉(1)の中に注入される。   In the containment space (4), there is a suppression pool (5) containing a large amount of water surrounded by a pool partition wall (20), which is closed during normal operation when a situation involving a lack of cooling water occurs. The emergency valve (10) is opened, the emergency core cooling pump (11) is activated, and water flows in the direction of the arrow through the emergency pipe (12) and is injected into the reactor (1). The

原子炉(1)の中の核燃料で発生する熱は蒸気となって主蒸気配管(13)を通って矢印の方向にあるタービンに出て行く。主蒸気配管(13)には運転時に開いている運転時開弁(14)が敷設されている。タービンで仕事を終えた蒸気は冷やされて液体の水になり給水配管(15)を通って矢印の方向にある原子炉(1)に戻ってくる。給水配管(15)には水が逆流するのを防ぐために逆止弁(16)が敷設されている。   The heat generated by the nuclear fuel in the nuclear reactor (1) becomes steam and goes out through the main steam pipe (13) to the turbine in the direction of the arrow. The main steam pipe (13) is laid with an open valve (14) that is open during operation. The steam that has finished work in the turbine is cooled to liquid water and returns to the reactor (1) in the direction of the arrow through the water supply pipe (15). A check valve (16) is laid in the water supply pipe (15) to prevent the water from flowing backward.

格納容器空間(4)の外の上部には壁(17)で仕切られた使用済燃料プール(18)と原子炉(1)を検査する際取り外した機器を置くための検査時機器置場(19)がある。使用済燃料プール(18)には使用済燃料から発生する熱を除熱するための水が内蔵されている。   In the upper part of the outside of the containment space (4), the spent fuel pool (18) partitioned by the wall (17) and the equipment for inspection (19) for placing equipment removed when inspecting the reactor (1) ) The spent fuel pool (18) contains water for removing heat generated from the spent fuel.

電動モータで動くインターナルポンプモータ(9)や継電器で作動する運転時開弁(14)や電動モータで開く非常時開弁(10)を動的機器と呼ぶことにすると、電源用電線(21)で外部か導いてきた外部電源の大半により電動モータを回転させたり継電器を作動させ、電源用電線(21)で外部か導いてきた外部電源の一部により動的機器の制御装置部を操作し速度調節や停止や起動を制御する。   An internal pump motor (9) that is driven by an electric motor, an open valve during operation (14) that is operated by a relay, and an emergency open valve (10) that is opened by an electric motor are called dynamic devices. ) Rotate the electric motor or operate the relay with most of the external power source led from outside, and operate the control unit of the dynamic equipment with a part of the external power source led outside from the power cable (21) Control speed adjustment, stop and start.

制御装置部の操作のタイミングは信号用電線(22) で外部から受信した信号による。   The timing of operation of the control unit depends on the signal received from the outside with the signal wire (22).

動的機器には、外部電源を格納容器空間(4)の外から導いてくるための電源用電線(21)と制御装置部の操作のタイミングのため外部信号を格納容器空間(4)の外から導いてくる信号用電線(22)とが接続されている。煩雑になるため図では電源用電線(21)を切断実線で現し信号用電線(22)を切断破線で現した。   For dynamic equipment, external power is sent to the outside of the containment space (4) for the operation timing of the power supply wire (21) and the control unit for leading the external power supply from the outside of the containment space (4). Is connected to a signal wire (22) led from. In the figure, the power supply wire (21) is represented by a solid cut line and the signal wire (22) is represented by a broken broken line.

この他、中性子束や圧力等を計測監視する計装装置にも電源用電線(21)と信号用電線(22)が使われている。
:原子力工業、1992年、通産省三代著「改良標準化と高度化の動き」。 :オーム社、1989年、「原子力ハンドブック」。 :東京電力、1993年、「改良型BWRの概要」。
In addition, power supply wires (21) and signal wires (22) are also used in instrumentation devices that measure and monitor neutron flux, pressure, and the like.
: Nuclear Industry, 1992, Ministry of International Trade and Industry, 3rd Generation, “Improvement of Standardization and Advancement”. : Ohm, 1989, “Nuclear Handbook”. : TEPCO, 1993, “Overview of improved BWR”.

原子炉を安全に維持管理するためには機器や配管や電源電線や制御電線の点検が欠かせない。一定の質の点検を実施し続けるには、一定の質を持った人員の数を確保し続ける必要がある。原子力発電の発展に伴い運転されている原子炉の基数が増えてきた現在、人員の確保が困難になりつつある。点検の簡素化が急務である。   In order to maintain and manage the reactor safely, inspection of equipment, piping, power cables and control cables is indispensable. In order to continue the inspection of a certain quality, it is necessary to keep the number of personnel with a certain quality. Now that the number of operating nuclear reactors has increased with the development of nuclear power generation, it is becoming difficult to secure personnel. There is an urgent need to simplify inspections.

豊富な運転経験がある現行BWRを大幅に変えることなく若干の改修で、点検に特段の手間隙のかかる長尺で多数の配管や電線を簡略化したい。特に、複雑で膨大な本数と長さの電線の点検を簡略化したい。   We would like to simplify many pipes and electric wires with a long and time-consuming special inspection, without any major changes to the existing BWR with extensive operational experience. In particular, we want to simplify the inspection of complicated and enormous numbers and lengths of wires.

許認可済ABWRに敷設せる動的機器(例えば、事故時に制御信号を受信して電動モータで動く非常用炉心冷却ポンプ(11)や継電器で作動する運転時開弁(14)や電動モータで開く非常用開弁(10))と計測装置(中性子束や圧力を計測し事故判定に資する)に接続せる電源用電線(21)と信号用電線(22)を除去する。その代わりに当該動的機器または当該計測装置から引出端線(400) を出し当該動的機器または当該計測装置近辺に電池(31)とアンテナ(33)付の電池内蔵無線器(32)を接続し無線中継器(34)を介して当該動的機器または当該計測装置を遠隔制御する。   Dynamic equipment to be installed in the approved ABWR (for example, emergency core cooling pump (11) that receives control signals in the event of an accident and operates with an electric motor, emergency valve opening (14) that operates with a relay, or an electric motor that opens with an electric motor) Open the power supply valve (10)) and the power supply wire (21) and signal wire (22) connected to the measuring device (measure the neutron flux and pressure and contribute to accident determination). Instead, pull out the lead end (400) from the dynamic device or measurement device and connect the battery (31) and the radio with built-in battery (32) with antenna (33) near the dynamic device or measurement device. The dynamic device or the measurement device is remotely controlled via the wireless repeater (34).

電池には蓄電池や放射性同位元素を使ったRI電池や燃料電池や未臨界炉発電器電池(300)やキャパシタがある。空間にマイクロ波やレーザを放射して受信素子で受信して電源とすることも広い意味での電池とする。マイクロ波利用の送電は、宇宙での太陽光発電をマイクロ波で地球に送ることも考えられている折から実現の可能性が高い。   The battery includes a storage battery, an RI battery using a radioisotope, a fuel battery, a subcritical reactor generator battery (300), and a capacitor. A battery in a broad sense also means that a microwave or laser is radiated into space and received by a receiving element to serve as a power source. Microwave-based power transmission is likely to be realized from the time when solar power generation in space is considered to be sent to the earth by microwaves.

未臨界炉発電器電池(300)は、核分裂性物質からなる燃料を臨界にならないように装荷した未臨界炉心(51)を未臨界炉制御棒(52)に敷設せる未臨界炉制御棒操作棒(53)操作で未臨界の程度を調整し核分裂由来でない中性子源(54)の補助の元に核分裂を継続させ熱を発生させ、その熱を受熱板(63)から受け放熱板(64)から放熱しp型熱電半導体(61)とn型熱電半導体(62)を組み合わせた熱電変換器(60)で電気に変換する一種の電池とする。   Subcritical reactor power generator battery (300) is a subcritical reactor control rod operating rod that lays a subcritical core (51) loaded with fissionable material fuel so as not to become critical to the subcritical reactor control rod (52). (53) Adjust the degree of subcriticality by operation, continue fission with the aid of a neutron source (54) not derived from fission, generate heat, receive the heat from the heat receiving plate (63), and from the heat sink (64) A type of battery that radiates heat and converts it into electricity by a thermoelectric converter (60) that combines a p-type thermoelectric semiconductor (61) and an n-type thermoelectric semiconductor (62).

無線による無線通信には、PHSや携帯電話や無線LANやPAN( Personal Area Network )やFWA( Fixed Wireless Access )やデジタル放送技術がある。端末毎に10桁を超す識別番号(電話番号)を持ち、電池を内蔵し、アンテナを内蔵し、電波の届く範囲が限定されるPHSは、安価で管理運営上の安全性が高い。PHSからの送信により自宅の家電製品の操作が行われ始めている折から実現の可能性が高い。   Wireless wireless communication includes PHS, mobile phone, wireless LAN, PAN (Personal Area Network), FWA (Fixed Wireless Access), and digital broadcasting technology. PHS, which has an identification number (telephone number) exceeding 10 digits for each terminal, has a built-in battery, a built-in antenna, and a limited range of radio waves, is inexpensive and highly safe for management and operation. The possibility of realization is high when the home appliances are started to be operated by transmission from PHS.

電池(31)とPHSによる遠隔制御化は、加圧水型原子炉(PWR)は元より高速増殖炉(FBR)やガス冷却炉にも応用できる。BWRまたはABWRは元より他の炉型の原子炉でも新規に建設する場合にも適用できる。   Remote control by batteries (31) and PHS can be applied not only to pressurized water reactors (PWR) but also to fast breeder reactors (FBR) and gas-cooled reactors. BWR or ABWR can also be applied to newly constructed reactors of other reactor types.

検査時機器置場(19)の上部に副サプレッションプール蓋(210)を付け壁(17)を補強して耐圧壁(223)とし水を張った機器仮置副サプレッションプール(219)に給水配管(15)に通じる非常時開弁(10)付の給水連通管(222)を敷設することにより事故時に原子炉(1)の中に注水できるようにし、非常用炉心冷却ポンプ(11)は削除して使用済燃料プール(18)の上部に副サプレッションプール蓋(210) を付け壁(17)を補強して耐圧壁(223)としヒータ(226)を敷設した使用済燃料副サプレッションプール(218)に非常用配管(12)に通じる非常時連通管(225)を敷設することにより事故時に原子炉(1)の中に注水できるように改修し、サプレッションプール(5)の中の水を抜き格納容器空間(4)との一体化に改修し、インターナルポンプモータ(9) を敷設せるABWRにおいてはインターナルポンプモータ(9) を撤去し原子炉圧力容器(100)の貫通部を封印しインターナルポンプ(109)を撤去し通常運転時に自然循環冷却に改修し、再循環ポンプモータとジェットポンプを敷設せるBWRにおいては再循環ポンプモータとジェットポンプを撤去し必要箇所を封印し通常運転時に自然循環冷却に改修する。運転中のABWRについては、インターナルポンプモータ(9) は撤去せずにインターナルポンプ(109)のみを撤去し通常運転時に自然循環冷却に改修すればよい。   A secondary suppression pool lid (210) is attached to the upper part of the equipment storage area (19) at the time of inspection, and the wall (17) is reinforced to form a pressure-resistant wall (223), and water is supplied to the equipment temporary storage sub-suppression pool (219) filled with water ( By laying a feed water communication pipe (222) with an emergency valve (10) that leads to 15), water can be injected into the reactor (1) in the event of an accident, and the emergency core cooling pump (11) has been deleted. Spent fuel sub-suppression pool (218) with a secondary suppression pool lid (210) on the upper part of the spent fuel pool (18) and a wall (17) reinforced to form a pressure-resistant wall (223) and a heater (226). By installing an emergency communication pipe (225) that leads to the emergency pipe (12), it has been modified so that water can be injected into the reactor (1) in the event of an accident, and the water in the suppression pool (5) is drained and stored In ABWR where the internal pump motor (9) is laid down and integrated with the container space (4), the internal pump motor (9 ), The penetration part of the reactor pressure vessel (100) is sealed, the internal pump (109) is removed, and it is improved to natural circulation cooling during normal operation, and it is re-used in the BWR where the recirculation pump motor and jet pump are installed. Remove the circulation pump motor and jet pump, seal the necessary parts, and refurbish to natural circulation cooling during normal operation. For the ABWR in operation, the internal pump motor (9) is not removed, but only the internal pump (109) is removed, and the natural circulation cooling is modified during normal operation.

BWRまたはABWRの制御棒駆動機構において制御棒ハウジング(7)の中にコイルA(501) 及び逆巻のコイルB(502)を交代に敷設し、炭化ホウ素(B4C)の焼結板またはホウ素化合物をチタン(Ti)に添加した板をTiで被覆した軽量制御棒(127)に接続せるチタン棒(128)の下端に接続せる永久磁石(503)をコイル電流の向きとノッチ(504)により軽量制御棒(127)を高さ方向に操作できるようにしたことを特徴とせる新CRD(46)を採用する。   In the control rod drive mechanism of BWR or ABWR, coil A (501) and reverse wound coil B (502) are alternately laid in the control rod housing (7), and boron carbide (B4C) sintered plate or boron compound A permanent magnet (503) connected to the lower end of a titanium rod (128) that is connected to a lightweight control rod (127) coated with Ti on a titanium-added plate with titanium (Ti) is lightweight due to the direction of the coil current and the notch (504) The new CRD (46) is used, which is characterized by the fact that the control rod (127) can be operated in the height direction.

機器そのものを変えたり、機器に新規部品を敷設し一体化したりすると許認可を得る必要が生じ、新規許認可を得るには多大の時間と費用がかかる。既設の原子炉を改修することは元より、既存設計の原子炉を新たに設置する上においても機器そのものを変えたり、機器に新規部品を敷設し一体化したりすると許認可を得る必要が生じ、新規許認可を得るには多大の時間と費用がかかる。本発明であれば、電池(31)とアンテナ(33)付の電池内蔵無線器(32)の部品接続に関する許認可で済む。   If the device itself is changed or if a new part is laid and integrated in the device, it is necessary to obtain a license, and it takes a lot of time and money to obtain a new license. In addition to refurbishing existing reactors, it is necessary to obtain permission if the equipment itself is changed or new parts are laid and integrated in the equipment to newly install existing designed reactors. It takes a lot of time and money to get permission. According to the present invention, it is only necessary to permit the connection of components of the battery (31) and the battery built-in radio (32) with the antenna (33).

電池内蔵無線器(32)は無線器に適した規格の電池を内蔵しているため電源用の電池(31)は当該動的機器または当該計測装置に適した規格を独立に選定することができる。   The battery built-in wireless device (32) has a built-in standard battery suitable for the wireless device, so the power supply battery (31) can be independently selected from the standard suitable for the dynamic device or the measuring device. .

電源や信号を必要とする動的機器または計測装置に接続せる電源用電線(21)と信号用電線(22)が削除できたため、動的機器または計測装置とこれ等の近辺に接続させた電池(31)とアンテナ(33)付の電池内蔵無線器(32)を一括して一箇所で点検を済ませることができるため点検が大幅に簡略できる。当該動的機器または当該計測装置に接続せる電池(31)とアンテナ(33)付の電池内蔵無線器(32)を一体のものとして予め調整してあるものに交換し取り付けてしまえば更に点検は簡略化でき検査にかかわる費用が削減される。   Since the power supply wires (21) and signal wires (22) that can be connected to dynamic devices or measuring devices that require power and signals have been deleted, batteries connected to dynamic devices or measuring devices and their vicinity The inspection can be greatly simplified since the inspection can be completed at one location for the (31) and the battery built-in radio (32) with the antenna (33). If the battery (31) to be connected to the dynamic device or the measurement device and the radio with built-in battery (32) with antenna (33) are replaced with a pre-adjusted one, further inspection is required. It can be simplified and the cost of inspection is reduced.

PHSなら電波の届く範囲が限定されるため原子炉施設外からの進入や外への情報漏洩が起こり難く管理しやすい。PHSなら端末毎に10桁以上の識別番号を持ち当該原子炉内の機器毎に別個に付けることができる。安価で管理運営上の安全性が高い。   With PHS, the reach of radio waves is limited, so entry from outside the reactor facility and leakage of information to the outside are unlikely to occur and management is easy. With PHS, each terminal has an identification number of 10 digits or more and can be assigned to each device in the reactor. Inexpensive and safe for management.

機器仮置副サプレッションプール(219)と使用済燃料副サプレッションプール(218)といった謂わば第2のサプレッションプール仮により、事故時に原子炉(1)の中に注水できるようにしたため点検の大きな増加なしに受動的安全性が高まる。
従来のサプレッションプール(5)から水を抜いたため格納容器空間(4)が拡大され事故時の当該空間の圧力上昇が抑制される。
There is no significant increase in inspection because the so-called second suppression pool tentative, such as the temporary storage sub-suppression pool (219) and the spent fuel sub-suppression pool (218), allows water to be injected into the reactor (1) in the event of an accident. Passive safety is increased.
Since water is drained from the conventional suppression pool (5), the containment space (4) is expanded and the pressure rise in the space at the time of the accident is suppressed.

上記改修されたABWRからインターナルポンプモータ(9)とインターナルポンプ(109)の撤去は、受動的安全性を備えさせたことになり安全性が更に増し、付随する機器の削減は元より電源用電線(21)や信号用電線(22)も削除されるため検査に関わる費用が削減される。   The removal of the internal pump motor (9) and internal pump (109) from the above-modified ABWR has increased the safety by providing passive safety, and the accompanying equipment has been reduced from the original power supply. Since the electric wire (21) and the signal wire (22) are also deleted, the cost for inspection is reduced.

新FMCRD(46)の採用は、電源用電線(21)や信号用電線(22)の削除だけでなく水圧制御に関わる水圧配管(112)が削除されるため点検の費用は著しく下がる。   The adoption of the new FMCRD (46) not only deletes the power supply wires (21) and signal wires (22), but also deletes the water pressure piping (112) related to water pressure control, which significantly reduces the cost of inspection.

BWRまたはABWRを改修して点検が容易で受動的安全性( Passive Safety )の高いBWRまたはABWRが提供できた。   The BWR or ABWR was improved and a BWR or ABWR with easy passive inspection and high passive safety could be provided.

図2は遠隔制御できるように改修したABWRの概略図である。例えば、事故が生じ緊急に原子炉(1)を停止し主蒸気配管(13)に接続せる運転時開弁(14)を閉じる必要が生じた場合、運転時開弁(14)からの引出端線(400) に隣接して接続させたるアンテナ(33)付き電源内蔵無線器(32)で事故信号を受信し、運転時開弁(14)からの引出端線(400) に隣接して接続させたる電池(31)を電源として運転時開弁(14)を閉じる。機器が格納容器空間(4)の中にある場合は無線中継器(34)を介して信号を受信する。   Fig. 2 is a schematic diagram of the ABWR modified for remote control. For example, if an accident occurs and the reactor (1) urgently needs to be shut down and the open valve (14) connected to the main steam pipe (13) needs to be closed, the withdrawal end from the open valve (14) during operation An accident signal is received by the radio with built-in power supply (32) with antenna (33) connected adjacent to line (400), and connected adjacent to lead-out line (400) from valve opening (14) during operation The valve (14) is closed during operation using the battery (31) to be discharged as a power source. When the device is in the containment space (4), a signal is received via the wireless repeater (34).

制御棒駆動機構に関しては、FMCRD(6)を改良して高速挿入が可能な新CRD(46) を電池(31)を電源として外部の制御指令信号を無線中継器(34)を介した信号をアンテナ(33)を介して電池内蔵無線器(32)で受信し操作する。制御棒(107)の代わりにチタン棒(128)で支持された軽量制御棒(127)にし、軽量化を図った。   As for the control rod drive mechanism, the new CRD (46), which can be inserted at high speed by improving the FMCRD (6), uses the battery (31) as a power source and sends an external control command signal via the radio repeater (34). It is received and operated by the battery built-in radio (32) via the antenna (33). Instead of the control rod (107), a lightweight control rod (127) supported by a titanium rod (128) was used to reduce the weight.

図3は新CRD(46)の概観図である。軽量制御棒(127)の上下操作は、水圧に頼らずに電気駆動のみとし、水圧配管(112)と制御棒駆動水圧系(8)を削除した。軽量制御棒(127)を上に動かす場合は、チタン棒(128)の下端に接続せる永久磁石(503)をコイルA(501)で吸い上げ、コイルA(501)と逆向きに巻いたコイルB(502)では永久磁石(503)を押し上げる。軽量制御棒(127)を下に動かす場合は、電流の向きを変える。コイルA(501) とコイルB(502)を交代に配置したことにより高さ方向に軽量制御棒(127)を操作しやすくした。   Figure 3 is an overview of the new CRD (46). The lightweight control rod (127) was operated only up and down without relying on water pressure, and the hydraulic pipe (112) and control rod drive hydraulic system (8) were deleted. When moving the lightweight control rod (127) upward, coil B is wound in the direction opposite to coil A (501) by sucking the permanent magnet (503) connected to the lower end of the titanium rod (128) with coil A (501) In (502), the permanent magnet (503) is pushed up. When moving the lightweight control rod (127) downward, change the direction of the current. The coil A (501) and the coil B (502) are alternately arranged to make it easy to operate the lightweight control rod (127) in the height direction.

軽量制御棒(127)を長期間同じ位置に停止させておく場合はノッチ(504)を留め状態にし永久磁石(503)の下に来るようにし、軽量制御棒(127)を動かす場合はノッチ(504)を外し状態にし永久磁石(503)から離す。本図の例では制御棒ハウジング(7)とノッチ(504)との接点を中心にしてノッチ(504)を回転させる。   When the lightweight control rod (127) is to be stopped at the same position for a long period of time, the notch (504) is held in place so that it comes under the permanent magnet (503), and when the lightweight control rod (127) is moved, the notch ( 504) is removed and separated from the permanent magnet (503). In the example of this figure, the notch (504) is rotated around the contact point between the control rod housing (7) and the notch (504).

軽量制御棒(127)は、炭化ホウ素(B4C)の焼結板またはホウ素化合物をチタン(Ti)に添加した板をTiで被覆すれば軽くなり上下操作が容易になる。   The lightweight control rod (127) is lightened and can be easily operated up and down by covering a sintered plate of boron carbide (B4C) or a plate obtained by adding a boron compound to titanium (Ti) with Ti.

近年の電池性能の向上は著しい。フォークリフト車動力用、電気自動車動力用、潜水艦動力用、非常電源装置エンジン始動用、通信用等の電池がある。宇宙用としてプルトニウム238(Pu238)の崩壊熱を熱電半導体で電気に変える熱電発電器も広い意味で電池と呼べる。固体電解質燃料電池や溶融炭酸塩燃料電池等の燃料電池の性能向上も著しい。   The improvement in battery performance in recent years is remarkable. There are batteries for forklift vehicle power, electric vehicle power, submarine power, emergency power unit engine start, communication and the like. A thermoelectric generator that converts the decay heat of plutonium 238 (Pu238) into electricity using a thermoelectric semiconductor can be called a battery in a broad sense. The performance improvement of fuel cells such as solid electrolyte fuel cells and molten carbonate fuel cells is also remarkable.

インターナルポンプモータ(9)を従来の外部電源に頼らずに長期間駆動させるには工夫が必要である。図4は、未臨界炉発電器電池(300)の概念図である。核分裂性物質からなる燃料を臨界にならないように装荷した未臨界炉心(51)を未臨界炉制御棒(52)に敷設せる未臨界炉制御棒操作棒(53)操作で未臨界の程度を調整し核分裂由来でない中性子源(54)(例えば自発中性子)の補助の元に核分裂を継続させ熱を発生させ、その熱を受熱板(63)から受け放熱板(64)から放熱しp型熱電半導体(61)とn型熱電半導体(62)を組み合わせた熱電変換器(60)で電気に変換しインターナルポンプモータ(9)を駆動させる。未臨界炉停止棒(55)は中性子吸収材からなり未臨界炉心(51)を極端に未臨界にさせ出力をほぼゼロにもたらす。反射体(56)は未臨界炉心(51)から中性子が漏洩するのを減らすためのものでジルコニウム合金や炭素やステンレス製のものである。   In order to drive the internal pump motor (9) for a long period of time without relying on a conventional external power source, it is necessary to devise. FIG. 4 is a conceptual diagram of a subcritical reactor power generator battery (300). Adjusting the degree of subcriticality by operating the subcritical reactor control rod operating rod (53) that lays the subcritical reactor core (51) loaded with fissionable material fuel so as not to become critical to the subcritical reactor control rod (52) P-type thermoelectric semiconductor that generates heat by continuing fission with the aid of a neutron source (54) (for example, spontaneous neutrons) that is not derived from fission, and that heat is received from the heat receiving plate (63) and radiated from the heat radiating plate (64) A thermoelectric converter (60) combining (61) and an n-type thermoelectric semiconductor (62) is converted into electricity to drive the internal pump motor (9). The subcritical reactor stop rod (55) is made of a neutron absorber and makes the subcritical core (51) extremely subcritical and brings the output to almost zero. The reflector (56) is for reducing neutron leakage from the subcritical core (51) and is made of zirconium alloy, carbon or stainless steel.

未臨界炉心(51)の燃料としてウラン235(U235)相当の核分裂性物質であると同時に自発中性子を放出し更にアルファ(α)線も放出するプルトニウム238(Pu238)は適している。自発中性子は中性子源(54)になる。未臨界炉制御棒(52)をベリリウム(Be)とすればBeの中性子減速作用により核分裂が活発になるため、未臨界炉心(51)にBeの未臨界炉制御棒(52)を挿入すれば臨界に近くなり出力を多く取り出すことができる。なお、Pu238からのα線はBeと反応して中性子を放出するため未臨界の程度に拘わらず出力は高くなる。   Plutonium 238 (Pu238), which is a fissile material equivalent to uranium 235 (U235) and emits spontaneous neutrons and also emits alpha (α) rays, is suitable as a fuel for the subcritical core (51). Spontaneous neutrons become neutron sources (54). If the subcritical reactor control rod (52) is beryllium (Be), fission is activated by the neutron moderation action of Be, so if the Be subcritical reactor control rod (52) is inserted into the subcritical core (51) It is close to the criticality, and many outputs can be taken out. The α ray from Pu238 reacts with Be and emits neutrons, so the output is high regardless of the degree of subcriticality.

Pu238はネプツニウム(Np)が中性子を吸収して生成される。未臨界炉心(51)にPu238とNpとを装荷しておけばNpからPu238が生成されるため寿命の長い電池とすることができる。自発中性子とα線を放出する核分裂性物質としてはアメリシウム(Am)やキューリウム(Cm)もある。   Pu238 is produced when neptunium (Np) absorbs neutrons. If Pu238 and Np are loaded in the subcritical core (51), Pu238 is produced from Np, so that a battery having a long life can be obtained. Examples of fissile materials that emit spontaneous neutrons and alpha rays include americium (Am) and curium (Cm).

図5は、許認可済現行ABWRを改修して受動的安全性を高めるように改修したABWRの概略図である。図2の遠隔制御できるように改修したABWRを更に改修した。   Figure 5 is a schematic diagram of an ABWR that has been modified to improve passive safety by modifying the current approved ABWR. The ABWR that has been modified so that it can be remotely controlled as shown in Fig. 2 was further modified.

マイクロ波をマイクロ波送信器(262)で送信しマイクロ波受電器(261)により電源線無しに外部電源を確保できるようにした。マイクロ波の他にレーザーでも電線無しに外部電源を確保できる。   Microwave was transmitted by the microwave transmitter (262), and the microwave power receiver (261) was able to secure an external power supply without a power line. In addition to microwaves, lasers can secure an external power supply without wires.

所定の期間を運転し続け運転末期を迎えて定期検査のために原子炉を停止しても、発熱がすぐにゼロになるわけではない。核分裂生成物から熱が数日間放出される。残留熱除去のための冷却ポンプを外部電源に頼らずに長期間駆動させるにはマイクロ波による電源確保は有効である。   Even if the reactor is operated for a predetermined period and the end of the operation is reached and the reactor is shut down for periodic inspection, the heat generation does not immediately become zero. Heat is released from the fission products for several days. In order to drive a cooling pump for removing residual heat for a long period of time without relying on an external power source, securing a power source using microwaves is effective.

次に、検査時機器置場(19)の上部に副サプレッションプール蓋(210) を付け、壁(17)を補強し耐圧壁(223)とし水を張って機器仮置副サプレッションプール(219)とする。謂わば、第2のサプレッションプールにする。この中に給水配管(15)に通じる給水連通管(222)を敷設する。事故時に、主蒸気管(13)に敷設せる運転時開弁(14)が閉鎖され給水配管(15)から原子炉(1)へ水が行かなくなっても機器仮置副サプレッションプール(219)中の水が、給水連通管(222) に敷設した非常時開弁(10)を開くことにより給水配管(15)に行きそこから原子炉(1)の中に注水される。   Next, a secondary suppression pool lid (210) is attached to the upper part of the equipment storage area (19) at the time of inspection, and the wall (17) is reinforced to form a pressure-resistant wall (223). To do. In other words, the second suppression pool. A water supply communication pipe (222) leading to the water supply pipe (15) is laid therein. In the event of an accident, even if the open valve (14) during operation that is laid on the main steam pipe (13) is closed and water does not flow from the water supply pipe (15) to the reactor (1), it remains in the temporary storage sub-suppression pool (219) The water is then passed through the water supply pipe (15) by opening the emergency opening valve (10) laid in the water supply communication pipe (222), and then injected into the reactor (1).

更に使用済燃料プール(18)の上部に副サプレッションプール蓋(210) を付け、壁(17)を補強し耐圧壁(223)とし使用済燃料副サプレッションプール(218)とする。この中に非常用配管(12)に通じる逆止弁(16)付の非常時連通管(225)を敷設する。使用済燃料副サプレッションプール(218)の中はヒータ(226)により原子炉(1)の中の圧力よりも低いが常時圧力がかけられている。事故により原子炉(1)の中の圧力が下がると中の水が非常時連通管(225)を通って原子炉(1)の中に注水される。非常用炉心冷却ポンプ(11)が無くとも原子炉(1)の中に注水することができる。外部注水管(224)は長期間注水する場合を考慮して外部から水が供給できるようにした。ヒータ(226)の代わりにマイクロ波送信器(262)からマイクロ波またはレーザーで耐圧壁(223)を外部から直接過熱してもよい。なお、使用済燃料副サプレッションプール(218)の中の圧力が高すぎる場合は外部注水管(224)からの冷水と交換すれば冷却されて圧力が下がる。更に、外部注水管(224)を別途追加し使用済燃料副サプレッションプール(218)の上部空間にスプレー水を散布すれば圧力は急激に下がる。   Further, a sub-suppression pool lid (210) is attached to the upper part of the spent fuel pool (18), and the wall (17) is reinforced to form a pressure-resistant wall (223) to form a spent fuel sub-suppression pool (218). An emergency communication pipe (225) with a check valve (16) leading to the emergency pipe (12) is laid therein. The spent fuel sub-suppression pool (218) is constantly pressurized by the heater (226), although lower than the pressure in the reactor (1). When the pressure in the reactor (1) decreases due to an accident, the water in the reactor (1) is poured into the reactor (1) through the emergency communication pipe (225). Water can be injected into the reactor (1) without the emergency core cooling pump (11). The external water injection pipe (224) can be supplied from the outside in consideration of long-term water injection. Instead of the heater (226), the pressure-resistant wall (223) may be directly heated from the outside by a microwave or laser from the microwave transmitter (262). If the pressure in the spent fuel sub-suppression pool (218) is too high, the pressure is lowered by cooling with the cold water from the external water injection pipe (224). Furthermore, if an external water injection pipe (224) is added separately and spray water is sprinkled in the upper space of the spent fuel sub-suppression pool (218), the pressure drops rapidly.

サプレッションプール(5)の中の水を抜き格納容器空間(4)と一体化に改修する。   Remove water from the suppression pool (5) and renovate it into the containment space (4).

許認可済のABWRの原子炉(1)の下部に敷設されていたインターナルポンプモータ(9)を撤去封印し、インターナルポンプ(109)も撤去し自然循環冷却とし受動的安全性を具備するように改修すれば定期検査は大幅に簡略される。   The internal pump motor (9) laid at the bottom of the approved ABWR reactor (1) is removed and sealed, and the internal pump (109) is also removed to provide natural circulation cooling to provide passive safety. If it is renovated, the periodic inspection will be greatly simplified.

再循環ポンプモータとジェットポンプを敷設せる許認可済のBWRにおいても再循環ポンプモータを撤去し原子炉圧力容器(100)を貫通せる箇所を封印しジェットポンプを撤去し通常運転時に自然循環冷却とし受動的安全性を具備するように改修すれば定期検査は大幅に簡略される。   Even in an approved BWR that lays a recirculation pump motor and a jet pump, the recirculation pump motor is removed, the portion that can penetrate the reactor pressure vessel (100) is sealed, the jet pump is removed, and natural circulation cooling is performed during normal operation. Periodic inspections are greatly simplified if they are modified so that they are safe.

電池と無線により原子炉が遠隔制御できれば、電線が大幅に削除され配線工事の減少はもとより配線の点検管理が容易になる。   If the nuclear reactor can be remotely controlled by batteries and radio, the wires will be greatly eliminated, and wiring inspection will be easier as well as reduced wiring work.

軽量制御棒(127)の燃料部への全挿入は自然落下で達成できるようにし、軽量制御棒(127) の燃料部からの全引抜は従来とは逆に燃料部の上になるようにすればフェイルセイフの高いものになる。コイルA(501)とコイルB(502)の電流の調節のみでも永久磁石(503)の上下動と停止が可能であるためノッチ(504)を付けずにすれば、電流の喪失は軽量制御棒(127)の自由落下となり燃料部への全挿入となり原子炉は停止に向かう。新CRD(46)を原子炉(1)の頂部に敷設すれば軽量制御棒(127)の自由落下は更に容易になる。   The light weight control rod (127) can be fully inserted into the fuel section by natural fall, and the light weight control rod (127) can be fully pulled out from the fuel section so that it is above the fuel section. If it is a fail safe, it will be high. Since the permanent magnet (503) can be moved up and down only by adjusting the current of the coil A (501) and coil B (502), if the notch (504) is not attached, the current loss will be reduced to a lightweight control rod. (127) falls freely and is fully inserted into the fuel section, and the reactor goes to shutdown. If the new CRD (46) is laid on the top of the reactor (1), the free fall of the lightweight control rod (127) will become easier.

図1は、ABWRの原子炉(1)近辺を詳細に示した図。Figure 1 shows the details of the ABWR reactor (1) and its vicinity. 図2は、遠隔制御できるように改修したABWRの概略図。Fig. 2 is a schematic diagram of the ABWR modified to allow remote control. 図3は、新CRD(46)の概観図。Figure 3 is an overview of the new CRD (46). 図4は、未臨界炉発電器電池(300)の概念図。FIG. 4 is a conceptual diagram of a subcritical reactor power generator battery (300). 図5は、受動的安全性を高めるように改修したABWRの概略図。Figure 5 is a schematic of the ABWR modified to improve passive safety.

符号の説明Explanation of symbols

1は原子炉。
2は格納容器壁。
3は基礎。
4は格納容器空間。
5はサプレッションプール。
6はFMCRD。
7は制御棒ハウジング。
8は制御棒駆動水圧系。
9はインターナルポンプモータ。
10は非常時開弁。
11は非常用炉心冷却ポンプ。
12は非常用配管。
13は主蒸気配管。
14は運転時開弁。
15は給水配管。
16は逆止弁。
17は壁。
18は使用済燃料プール。
19は検査時機器置場。
20はプール隔壁。
21は電源用電線。
22は信号用電線。
31は電池。
32は電池内蔵無線器。
33はアンテナ。
34は無線中継器。
46は新CRD。
51は未臨界炉心。
52は未臨界炉制御棒。
53は未臨界炉制御棒操作棒。
54は中性子源。
55は未臨界炉停止棒。
56は反射体。
60は熱電変換器。
61はp型熱電半導体。
62はn型熱電半導体。
63は受熱板。
64は放熱板。
100は原子炉圧力容器。
107は制御棒。
109はインターナルポンプ。
112は水圧配管。
127は軽量制御棒。
128はチタン棒。
210は副サプレッションプール蓋。
218は使用済燃料副サプレッションプール。
219は機器仮置副サプレッションプール。
222は給水連通管。
223は耐圧壁。
224は外部注水管。
225は非常時連通管。
226はヒータ。
261はマイクロ波受信器。
262はマイクロ波送信器。
300は未臨界炉発電器電池。
400は引出端線。
501はコイルA。
502はコイルB。
503は永久磁石。
504はノッチ。
1 is a nuclear reactor.
2 is the containment wall.
3 is the basis.
4 is the containment space.
5 is the suppression pool.
6 is FMCRD.
7 is a control rod housing.
8 is a control rod drive hydraulic system.
9 is an internal pump motor.
10 is an emergency valve open.
11 is an emergency core cooling pump.
12 is emergency piping.
13 is the main steam pipe.
14 is open during operation.
15 is a water supply pipe.
16 is a check valve.
17 is a wall.
18 is a spent fuel pool.
19 is the equipment storage area during inspection.
20 is a pool partition.
21 is a power cable.
22 is a signal wire.
31 is a battery.
32 is a battery built-in radio.
33 is an antenna.
34 is a wireless repeater.
46 is the new CRD.
51 is a subcritical core.
52 is a subcritical reactor control rod.
53 is a subcritical furnace control rod operation rod.
54 is a neutron source.
55 is a subcritical reactor stop rod.
56 is a reflector.
60 is a thermoelectric converter.
61 is a p-type thermoelectric semiconductor.
62 is an n-type thermoelectric semiconductor.
63 is a heat receiving plate.
64 is a heat sink.
100 is a reactor pressure vessel.
107 is a control rod.
109 is an internal pump.
112 is a hydraulic pipe.
127 is a lightweight control rod.
128 is a titanium rod.
210 is the secondary suppression pool lid.
218 is a spent fuel sub-suppression pool.
219 is a temporary storage sub-suppression pool.
222 is a water supply pipe.
223 is a pressure wall.
224 is an external water injection pipe.
225 is an emergency communication pipe.
226 is a heater.
261 is a microwave receiver.
262 is a microwave transmitter.
300 is a subcritical reactor generator battery.
400 is the lead line.
501 is coil A.
502 is coil B.
503 is a permanent magnet.
504 is a notch.

Claims (3)

格納容器空間の外部から電線で導いてきた外部電源や信号で動く動的機器及び計測装置で制御するBWRまたはABWRにおいて、
動的機器及び計測装置から引出端線(400)を出し動的機器毎及び計測装置毎に格納容器空間内近辺に電池(31)とPHSの両方を接続し、格納容器空間の中にある機器を無線中継器(34)を介して前記動的機器及び計測装置を遠隔制御できるようにしたことを特徴とするBWRまたはABWR。
In BWR or ABWR controlled by an external power supply or signal-driven dynamic equipment and measurement device that has been guided by electric wires from outside the containment space,
Active components and connect both the lead-out end line (400) in the containment around the space for each active component and for each measuring device issues a battery (31) and PHS from the measuring apparatus, is in the containment space equipment BWR or ABWR, characterized in that the wirelessly repeater the active components and measurement device via a (34) to be remotely controlled.
請求項1におけるBWRまたはABWRにおいて、
機器仮置副サプレッションプール(219)は、検査時機器置場(19)と、当該検査時機器置場(19)の上部に敷設したる副サプレッションプール蓋(210) と、壁(17)を補強した耐圧壁(223) とからなり、
当該機器仮置副サプレッションプール(219)から給水配管(15)に通じる給水連通管(222) を敷設し、
当該給水連通管(222)に非常時開弁(10)を敷設し、当該非常時開弁(10)から引出端線(400)を出し電池とPHSの両方を接続し、無線中継器(34)を介して当該弁を遠隔操作することにより事故時に原子炉(1)の中に注水できることを特徴とするBWRまたはABWR。
In BWR or ABWR in claim 1,
The equipment temporary storage sub-suppression pool (219) is reinforced the equipment storage place during inspection (19), the sub-suppression pool lid (210) laid on the inspection equipment storage place (19), and the wall (17). Pressure barrier (223) and
A water supply communication pipe (222) leading from the equipment temporary storage sub-suppression pool (219) to the water supply pipe (15) is laid,
Laid emergency opening (10) to the water supply communicating pipe (222), connect both the battery and the PHS out of the emergency valve opening (10) the lead-out end line (400), the radio repeater (34 BWR or ABWR characterized in that water can be injected into the reactor (1) in the event of an accident by remotely operating the valve via) .
請求項1または請求項2におけるBWRまたはABWRにおいて、
使用済燃料副サプレッションプール(218)は、使用済燃料プール(18)と、当該使用済燃料プール(18)の上部に敷設したる副サプレッションプール蓋(210) と、壁(17)を補強した耐圧壁(223)と、ヒータ(226)とからなり、
当該使用済燃料副サプレッションプール(218)に、非常用配管(12)に通じる非常時連通管(225)を敷設し、
当該ヒータ(226) から引出端線(400)を出しマイクロ波受信器(261)とPHSの両方を接続し、当該ヒータを遠隔操作して当該使用済燃料副サプレッションプール(218)内圧力を通常運転時の炉心圧力よりも低く保てるように遠隔操作し、
事故時に原子炉(1)の中に注水できることを特徴とするBWRまたはABWR。
In BWR or ABWR in claim 1 or claim 2,
The spent fuel sub-suppression pool (218) has reinforced the spent fuel pool (18), the sub-suppression pool lid (210) laid on the upper part of the spent fuel pool (18), and the wall (17). It consists of a pressure wall (223) and a heater (226),
An emergency communication pipe (225) that leads to the emergency pipe (12) is installed in the spent fuel sub-suppression pool (218),
Pull out the lead end line (400 ) from the heater (226), connect both the microwave receiver (261) and the PHS, and operate the heater remotely to adjust the pressure in the spent fuel sub-suppression pool (218) normally. Operate remotely to keep it below the core pressure during operation,
BWR or ABWR characterized in that water can be injected into the reactor (1) in the event of an accident.
JP2007160243A 2007-06-18 2007-06-18 BWR or ABWR for remote control of dynamic equipment or measuring devices Expired - Fee Related JP5403308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007160243A JP5403308B2 (en) 2007-06-18 2007-06-18 BWR or ABWR for remote control of dynamic equipment or measuring devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007160243A JP5403308B2 (en) 2007-06-18 2007-06-18 BWR or ABWR for remote control of dynamic equipment or measuring devices

Publications (2)

Publication Number Publication Date
JP2008309748A JP2008309748A (en) 2008-12-25
JP5403308B2 true JP5403308B2 (en) 2014-01-29

Family

ID=40237471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007160243A Expired - Fee Related JP5403308B2 (en) 2007-06-18 2007-06-18 BWR or ABWR for remote control of dynamic equipment or measuring devices

Country Status (1)

Country Link
JP (1) JP5403308B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8681920B2 (en) 2011-01-07 2014-03-25 Westinghouse Electric Company Llc Self-powered wireless in-core detector
KR101189957B1 (en) * 2011-02-11 2012-10-12 한국수력원자력 주식회사 Nuclear Measurement System using Underwater Wireless Communication
US20130272469A1 (en) * 2012-04-11 2013-10-17 Ge-Hitachi Nuclear Energy Americas Llc Device and method for reactor and containment monitoring
WO2018189865A1 (en) * 2017-04-13 2018-10-18 三菱電機株式会社 Process signal monitoring control system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS457766Y1 (en) * 1965-12-14 1970-04-14
JPS6333697A (en) * 1986-07-29 1988-02-13 株式会社東芝 Container-heat removing device
US5116567A (en) * 1990-07-10 1992-05-26 General Electric Company Nuclear reactor with bi-level core
JP2507694B2 (en) * 1990-09-17 1996-06-12 株式会社日立製作所 Nuclear reactor equipment
JPH09233211A (en) * 1996-02-27 1997-09-05 Kooa Kogyo Kk Operating device for remote control and remote control method
JP2000165968A (en) * 1998-11-27 2000-06-16 Mitsubishi Electric Corp Portable pointing input output device and remote control installation using it
JP2000180582A (en) * 1998-12-11 2000-06-30 Toshiba Corp Reactor power plant
JP2001255392A (en) * 2001-03-29 2001-09-21 Hitachi Ltd On-site pressure test method for reactor pressure vessel
JP4250876B2 (en) * 2001-06-25 2009-04-08 鹿島建設株式会社 Geological disposal waste monitoring system
JP2003344574A (en) * 2002-05-24 2003-12-03 Hitachi Ltd Natural circulation nuclear reactor system and operation method therefor
JP3764713B2 (en) * 2002-09-13 2006-04-12 三菱重工業株式会社 Maintenance inspection system and maintenance inspection method
JP2004154877A (en) * 2002-11-05 2004-06-03 Japan Science & Technology Agency Bending mechanism formed of multi-joint slider link
JP2005222139A (en) * 2004-02-03 2005-08-18 Mitsubishi Electric Corp Plant equipment remote monitor system
JP2006178578A (en) * 2004-12-21 2006-07-06 Gifu Prefecture Autonomous moving apparatus

Also Published As

Publication number Publication date
JP2008309748A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
Reyes Jr NuScale plant safety in response to extreme events
US20210151207A1 (en) Control rod drive mechanism ("crdm") assembly for a nuclear reactor
Yetisir et al. Development and integration of Canadian SCWR concept with counter-flow fuel assembly
JP5403308B2 (en) BWR or ABWR for remote control of dynamic equipment or measuring devices
Steed Nuclear power: in Canada and beyond
Joshi et al. Core safety of Indian nuclear power plants (NPPs) under extreme conditions
KR101694409B1 (en) Nuclear reactor core for thorium breeding and method of using thereof
Banerjee et al. Development of technologies and safety systems for pressurized heavy water reactors in India
JP4341876B2 (en) Solid cooled reactor
Thulu et al. Thermal-Hydraulic Safety Assessment in Advanced Boiling Water Reactors due to Fuel Failure and Loss of Offsite Power
US20230274846A1 (en) Nuclear power plant
Fischetti Inherently safe reactors: They'd work if we'd let them: Although they shut down automatically and cannot melt or explode, advanced designs are limited to demonstrations because of economics and institutional inertia
US20230290530A1 (en) Refuelling and/or storage neutron-absorbing rods
AU2022261348A1 (en) Refuelling a nuclear reactor
Khan et al. A review on specific features of small and medium sized nuclear power plants
Kakodkar et al. General description of advanced heavy water reactor
WO2020239531A1 (en) Containment for a pwr nuclear power plant
Choi et al. Progress in Fast Modular Reactor Conceptual Design
Gabaraev et al. Innovative Nuclear Power Facilities in Reports at the 5th International Scientific and Technical Conference on Innovative Designs and Technologies for Nuclear Power (ISTC NIKIET-2018).
GREENSPAN et al. THE JAMES A. BAKER III INSTITUTE FOR PUBLIC POLICY
Raina et al. Refurbishment, core conversion and safety analysis of Apsara reactor
Link et al. Argonne High-Flux Research Reactor-AHFR Conceptual Design Study
Seul et al. Design concepts and safety concerns of the small and medium size reactors (SMR)
HOSHI et al. STATUS OF DEVELOPMENT-AN INTEGRAL TYPE XA9846705 SMALL REACTOR MRX IN JAERI
Xueqing et al. Advanced passive PWR AC-600: Development orientation of nuclear power reactors in China for the next century

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130108

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130116

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131016

R150 Certificate of patent or registration of utility model

Ref document number: 5403308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees