JP5402865B2 - Mouth drawing apparatus and mouth drawing method for steel pipe end - Google Patents

Mouth drawing apparatus and mouth drawing method for steel pipe end Download PDF

Info

Publication number
JP5402865B2
JP5402865B2 JP2010164823A JP2010164823A JP5402865B2 JP 5402865 B2 JP5402865 B2 JP 5402865B2 JP 2010164823 A JP2010164823 A JP 2010164823A JP 2010164823 A JP2010164823 A JP 2010164823A JP 5402865 B2 JP5402865 B2 JP 5402865B2
Authority
JP
Japan
Prior art keywords
steel pipe
squeezing
heating
heating device
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010164823A
Other languages
Japanese (ja)
Other versions
JP2012024795A (en
Inventor
和人 久保田
繁俊 兵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010164823A priority Critical patent/JP5402865B2/en
Publication of JP2012024795A publication Critical patent/JP2012024795A/en
Application granted granted Critical
Publication of JP5402865B2 publication Critical patent/JP5402865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼管の端部に口絞り加工を施す口絞り加工装置および口絞り加工方法に関し、さらに詳しくは、設備コストを抑えることができるとともに、加熱された鋼管の端部に発生する温度ばらつきを低減し、良好な口絞り加工性能を得ることができる鋼管端部の口絞り加工装置および口絞り加工方法に関する。   The present invention relates to a drawing apparatus and a drawing method for performing drawing on an end of a steel pipe. More specifically, the equipment cost can be reduced, and temperature variations occurring at the end of a heated steel pipe The present invention relates to a mouth-drawing apparatus and a mouth-drawing method for a steel pipe end that can reduce the above-mentioned and obtain good mouth-drawing performance.

鋼管に冷間抽伸加工を施す場合、その前工程で端部を絞る口絞り加工を鋼管に施す。冷間抽伸加工では、ダイスに鋼管の口絞り部を通した状態でセットした後、口絞り部を引抜いて、ダイスやプラグといった工具により所定寸法の鋼管に仕上げる。このように用いられる口絞り部は、一般的に、管端に向かって外径が小さくなるテーパ部に外径が一定のストレート部を連設して形成される。また、口絞り部は、管端に向かって外径が小さくなるテーパ部のみを設けて形成される場合もある。   When a cold drawing process is performed on a steel pipe, a mouth drawing process is performed on the steel pipe to squeeze the end portion in the previous process. In the cold drawing process, the die is set in a state in which the mouth restricting portion of the steel pipe is passed through the die, and then the mouth restricting portion is pulled out and finished into a steel pipe having a predetermined size by a tool such as a die or a plug. The mouth restrictor used in this manner is generally formed by connecting a straight portion having a constant outer diameter to a tapered portion having a smaller outer diameter toward the tube end. In addition, the aperture stop portion may be formed by providing only a tapered portion whose outer diameter decreases toward the tube end.

このような口絞り部を形成する口絞り加工では、鋼管の寸法や、口絞り機の加圧力に応じ、鋼管の端部を加熱した後に口絞り加工を施す場合と、鋼管の端部を加熱することなく常温で口絞り加工を施す場合とがある。   In the squeezing process to form such a squeezed part, depending on the dimensions of the steel pipe and the pressure applied by the squeezing machine, the end part of the steel pipe is heated after the end part is heated, and the end part of the steel pipe is heated. In some cases, the squeezing process is performed at room temperature without performing the process.

図1は、鋼管の寸法と常温で口絞り加工を施す際に鋼管端部に付与する加圧力(kN)との関係を示す図であり、横軸の鋼管の寸法は外径比に口絞り加工前の鋼管の肉厚(mm)を乗じた値である。ここで、外径比とは、口絞り加工後における鋼管の口絞り部の最小外径(mm)を口絞り加工前の鋼管外径(mm)で除したものである。また、口絞り部の最小外径とは、口絞り部がテーパ部にストレート部を連設して形成される場合はストレート部の外径、口絞り部がテーパ部のみを設けて形成される場合は絞られた管端の外径である。同図に示す鋼管端部に付与する加圧力は、口絞り加工を施す際に口絞り機が備える圧力計により測定した。この際、鋼管の材質は、主にオーステナイト系ステンレス鋼とした。   FIG. 1 is a diagram showing the relationship between the dimensions of a steel pipe and the applied pressure (kN) applied to the end of the steel pipe at the time of mouth drawing at normal temperature. It is a value obtained by multiplying the thickness (mm) of the steel pipe before processing. Here, the outer diameter ratio is obtained by dividing the minimum outer diameter (mm) of the aperture portion of the steel pipe after the aperture drawing by the outer diameter (mm) of the steel tube before the aperture drawing. Further, the minimum outer diameter of the mouth restrictor is the outer diameter of the straight part when the mouth restrictor is formed by connecting the straight part to the taper part, and the mouth restrictor is formed by providing only the taper part. The case is the outer diameter of the narrowed tube end. The applied pressure applied to the steel pipe end shown in the figure was measured with a pressure gauge provided in the aperture drawing machine when the aperture drawing was performed. At this time, the material of the steel pipe was mainly austenitic stainless steel.

通常、口絞り機で付与することができる最大の加圧力は1000kN程度であり、最大加圧力を超える加圧力を付与する必要がある場合は常温で口絞り加工を施すことはできない。この場合、鋼管の端部を加熱することにより、口絞り加工に必要な加圧力が低下することから、鋼管の端部を加熱した後に口絞り加工を施す。最大加圧力が1000kNの口絞り機を用いる場合、図1に示すように、必要な加圧力が1000kNを超える鋼管の寸法条件では、鋼管の端部を加熱した後に口絞り加工を施し、必要な加圧力が1000kN以下で絞る鋼管の寸法条件では、鋼管の端部を加熱することなく常温で口絞り加工を施す。   Usually, the maximum pressing force that can be applied by a squeezer is about 1000 kN, and squeezing cannot be performed at room temperature when it is necessary to apply a pressing force that exceeds the maximum pressing force. In this case, heating the end portion of the steel pipe reduces the applied pressure required for the squeezing process. Therefore, the squeezing process is performed after the end part of the steel pipe is heated. When using a squeezing machine with a maximum pressure of 1000 kN, as shown in FIG. 1, under the dimensional condition of the steel pipe where the required pressure exceeds 1000 kN, the squeezing process is performed after heating the end of the steel pipe. Under the dimensional condition of the steel pipe that is squeezed at a pressure of 1000 kN or less, the squeezing process is performed at room temperature without heating the end of the steel pipe.

鋼管の端部を加熱した後に口絞り加工を施す場合、加熱した鋼管端部に、目標とする加熱温度より高温部分または低温部分が生じる場合がある。このような温度ばらつきが生じ、そのばらつきが大きいと、口絞り加工時に鋼管を所望の形状に加工できなかったり、鋼管の口絞り部に亀裂や内部ボイドを生じさせたりするおそれがある。このため、鋼管の端部を加熱する際は、発生する温度ばらつきを低減することが求められる。   When subjecting the end of the steel pipe to squeezing, an end portion of the heated steel pipe may have a higher or lower temperature portion than the target heating temperature. If such temperature variation occurs and the variation is large, the steel pipe may not be processed into a desired shape during the squeezing process, or cracks and internal voids may be generated in the squeezed part of the steel pipe. For this reason, when heating the end of a steel pipe, it is required to reduce the temperature variation that occurs.

鋼管の端部を加熱する方法に関し、従来から種々の提案がなされており、例えば特許文献1〜3がある。特許文献1〜3は、鋼管の端部を厚肉化してねじ切り代を確保するアブセット加工の前に鋼管の端部を加熱する方法に関するものである。特許文献1は、搬送しながら鋼管の端部を加熱する装置であって、鋼管の端部を急速加熱可能とする誘導加熱装置の出側に、鋼管の端部を均一加熱可能とするバーナー式加熱炉を設けた加熱装置が提案されている。   Various proposals have conventionally been made regarding methods for heating the ends of steel pipes, such as Patent Documents 1 to 3. Patent Documents 1 to 3 relate to a method of heating the end portion of the steel pipe before the abset processing in which the end portion of the steel pipe is thickened to secure a thread cutting allowance. Patent Document 1 is an apparatus that heats an end of a steel pipe while being conveyed, and is a burner type that can uniformly heat the end of a steel pipe on the exit side of an induction heating apparatus that enables rapid heating of the end of the steel pipe. A heating apparatus provided with a heating furnace has been proposed.

特許文献1では、急速加熱可能な誘導加熱装置と均一加熱可能なバーナー式加熱炉を併用することにより、短い時間で均一に加熱することができるとしている。しかし、特許文献1に提案される加熱装置では、誘導加熱装置とバーナー式加熱炉を設ける必要があり、設備コストが問題となる。   In patent document 1, it is supposed that it can heat uniformly in a short time by using together the induction heating apparatus which can be heated rapidly, and the burner type heating furnace which can be heated uniformly. However, in the heating apparatus proposed in Patent Document 1, it is necessary to provide an induction heating apparatus and a burner type heating furnace, and the equipment cost becomes a problem.

また、特許文献2には、鋼管の端部を加熱する際に、放射温度計を用いて鋼管端部の内面温度を長手方向に走査して測定し、この測定結果に応じて被加熱材の長手方向に沿って配置された複数個の加熱源の投入熱量を制御する鋼管端部の加熱制御方法が提案されている。   In Patent Document 2, when the end of a steel pipe is heated, the inner surface temperature of the end of the steel pipe is scanned in the longitudinal direction using a radiation thermometer, and the material to be heated is measured according to the measurement result. There has been proposed a method for controlling the heating of the end of a steel pipe that controls the amount of heat input from a plurality of heating sources arranged along the longitudinal direction.

特許文献2に提案される鋼管端部の加熱制御方法では、放射温度計を用いて鋼管端部の内面温度を長手方向に走査して測定する。これにより、特許文献2に提案される鋼管端部の加熱制御方法は、加熱後に鋼管の外面温度を測定する場合に比べ、スケールや表面冷却による影響を小さくして鋼管端部の温度を高精度で測定でき、その結果、加熱される鋼管端部の温度を高精度で制御できるとしている。しかし、特許文献2に提案される鋼管端部の加熱制御方法では、被加熱材の長手方向に沿って複数個の加熱源を設け、加熱源ごとに投入熱量を調整することから、制御が複雑になるとともに、複数の制御装置が必要となる。このため、加熱装置が煩雑となり、設備コストが問題となり易い。   In the steel pipe end heating control method proposed in Patent Document 2, the inner surface temperature of the steel pipe end is scanned in the longitudinal direction and measured using a radiation thermometer. Thereby, the heating control method of the steel pipe end part proposed in Patent Document 2 reduces the influence of the scale and the surface cooling and increases the temperature of the steel pipe end part with high accuracy compared to the case of measuring the outer surface temperature of the steel pipe after heating. As a result, the temperature of the heated steel pipe end can be controlled with high accuracy. However, in the heating control method for the steel pipe end portion proposed in Patent Document 2, a plurality of heating sources are provided along the longitudinal direction of the material to be heated, and the amount of input heat is adjusted for each heating source, so the control is complicated. In addition, a plurality of control devices are required. For this reason, a heating apparatus becomes complicated and equipment cost tends to be a problem.

特許文献3には、鋼管の端部を誘導加熱する際に、誘導加熱装置を前進または後退させ、加熱される鋼管端部から加熱されない部分へ移行する部分の温度勾配を緩やかにする鋼管端部の加熱方法が提案されている。特許文献3で提案される鋼管端部の加熱方法では、バーナー式加熱と誘導加熱を併用する場合に比べ、鋼管外面にスケールが形成されるのを防ぐことができるとともに、形成されるスケールによりアブセット加工時に疵が発生するのを防止できるとしている。   In Patent Document 3, when the end of a steel pipe is induction-heated, the steel pipe end that makes the induction heating device move forward or backward to moderate the temperature gradient of the part that moves from the heated steel pipe end to the non-heated part. A heating method has been proposed. In the heating method of the steel pipe end portion proposed in Patent Document 3, it is possible to prevent the scale from being formed on the outer surface of the steel pipe and to reduce the set by the formed scale, as compared with the case where the burner type heating and the induction heating are used together. It is said that wrinkles can be prevented during processing.

また、特許文献3では、加熱される鋼管の端部から加熱されない部分へ移行する部分の温度勾配を緩やかにすることにより、アブセット加工時に本体からテーパ部が立ち上がる部分の曲率を大きくすることができるとしている。しかし、特許文献3で提案される鋼管端部の加熱方法では、加熱された鋼管の端部に発生する温度ばらつきについては検討されていない。   Moreover, in patent document 3, the curvature of the part which a taper part rises from a main body at the time of an abset process can be enlarged by loosening the temperature gradient of the part which transfers to the part which is not heated from the edge part of the heated steel pipe. It is said. However, in the heating method of the steel pipe end part proposed in Patent Document 3, temperature variations occurring at the end part of the heated steel pipe are not studied.

特開昭58−107245号公報JP 58-107245 A 特開昭59−197324号公報JP 59-197324 A 特開平6−31369号公報JP-A-6-31369

前述の通り、鋼管の端部を加熱した後に口絞り加工を施す場合、加熱された鋼管の端部に発生する温度ばらつきを低減することが求められる。従来の鋼管端部の加熱方法により、鋼管の端部を加熱した後に口絞り加工を施すと、鋼管の端部を均一に加熱できるものもあるが、加熱装置が煩雑となり、設備コストが問題となる。   As described above, when mouth drawing is performed after the end of the steel pipe is heated, it is required to reduce the temperature variation generated at the end of the heated steel pipe. If the end of the steel pipe is heated after the end of the steel pipe is heated by the conventional method of heating the end of the steel pipe, the end of the steel pipe can be heated uniformly, but the heating device becomes complicated and the equipment cost is a problem. Become.

本発明は、このような状況に鑑みてなされたものであり、設備コストを抑えることができるとともに、加熱された鋼管の端部に発生する温度ばらつきを低減し、良好な口絞り加工性能を得ることができる鋼管端部の口絞り加工装置および口絞り加工方法を提供することを目的とする。   The present invention has been made in view of such a situation, and can reduce equipment costs, reduce temperature variations occurring at the end of a heated steel pipe, and obtain good squeezing performance. It is an object of the present invention to provide a mouth drawing device and a mouth drawing method for a steel pipe end.

本発明者らは、上記問題を解決するため、良好な口絞り加工性能を得ることができる鋼管端部の温度条件について検討した。その結果、加熱された鋼管端部の最低温度が800℃以上であり、かつ、鋼管端部内に生じる温度差が100℃以下であるという条件を満たすことにより、良好な口絞り加工性能が得られることを知見した。また、加熱する際、鋼管端部において溶融温度である1300℃を超える部分が生じると、鋼管に曲りが発生して製品不良となるので、鋼管端部の最高温度を1300℃以下にして加熱する必要がある。   In order to solve the above problems, the present inventors have studied the temperature condition of the steel pipe end portion that can obtain good squeezing performance. As a result, satisfactory squeezing performance is obtained by satisfying the condition that the minimum temperature of the heated steel pipe end is 800 ° C. or higher and the temperature difference generated in the steel pipe end is 100 ° C. or lower. I found out. Moreover, when a part exceeding the melting temperature of 1300 ° C. occurs at the end of the steel pipe during heating, the steel pipe bends, resulting in a product defect. Therefore, the maximum temperature at the end of the steel pipe is set to 1300 ° C. or lower. There is a need.

急速加熱可能な誘導加熱による加熱装置を用いて鋼管の端部を加熱する際に上記温度条件を満たすため、本発明者らは、誘導加熱された鋼管を、加熱装置から取り出し常温で放冷する基礎試験を行った。基礎試験では、1本の鋼管を、管端から300mmの位置まで誘導加熱し、その周波数は17Hz、投入電力は25kW、加熱時間は10分とした。また、JISに規定されるSUS304TPステンレス鋼からなる鋼管であって、外径63mm、肉厚8mmのものを用いた。   In order to satisfy the above temperature condition when the end portion of the steel pipe is heated using a heating apparatus by induction heating capable of rapid heating, the present inventors take out the induction heated steel pipe from the heating apparatus and allow to cool at room temperature. A basic test was conducted. In the basic test, one steel pipe was induction-heated to a position of 300 mm from the pipe end, the frequency was 17 Hz, the input power was 25 kW, and the heating time was 10 minutes. Further, a steel pipe made of SUS304TP stainless steel defined by JIS and having an outer diameter of 63 mm and a wall thickness of 8 mm was used.

基礎試験では、管端から5mmの位置および管端から200mmの位置で温度を測定した。これは、鋼管の端部を誘導加熱すると、鋼管の端部において管端から10mm程度までの範囲が高温となる傾向があるからである。   In the basic test, the temperature was measured at a position 5 mm from the tube end and a position 200 mm from the tube end. This is because when the end of the steel pipe is induction-heated, the range from the pipe end to about 10 mm tends to become high at the end of the steel pipe.

図2は、誘導加熱により1本の鋼管を加熱する基礎試験における加熱時間と鋼管端部の温度との関係を示す図である。同図に示すように、鋼管の端部から5mmの位置では、誘導加熱により温度が上昇し、加熱が完了した時に1200℃になったのに対し、鋼管の端部から200mmの位置では、誘導加熱により温度が上昇し、加熱が完了した時に1000℃になり、鋼管端部内の温度差は200℃であった。その後、常温での放冷により、鋼管の端部から5mmの位置および鋼管の端部から200mmの位置ともに温度が下降して、加熱完了から約45秒後に800℃となり、温度差が無くなった。   FIG. 2 is a diagram showing the relationship between the heating time and the temperature at the end of the steel pipe in a basic test in which one steel pipe is heated by induction heating. As shown in the figure, at a position 5 mm from the end of the steel pipe, the temperature increased by induction heating and reached 1200 ° C. when the heating was completed, whereas at a position 200 mm from the end of the steel pipe, induction was performed. The temperature rose due to heating and reached 1000 ° C. when the heating was completed, and the temperature difference in the end of the steel pipe was 200 ° C. Thereafter, by cooling at room temperature, the temperature decreased at both the position 5 mm from the end of the steel pipe and the position 200 mm from the end of the steel pipe, and reached about 800 ° C. after about 45 seconds from the completion of heating, eliminating the temperature difference.

本発明者らは、この試験結果を検討した結果、加熱が完了した時点で鋼管端部内の温度差を200℃以下にすれば、鋼管端部内の温度差を短い時間で100℃以下にできることを見出した。すなわち、口絞り加工装置において、加熱が完了した時の鋼管端部内の温度差を200℃以下にすれば、加熱装置から口絞り機まで搬送するのに要する時間を調整して放冷することにより、バーナー式加熱炉といった特別な均熱設備を用いることなく、鋼管端部内の温度差を100℃以下にして口絞り加工を行えることを見出した。   As a result of examining the test results, the present inventors have found that if the temperature difference in the steel pipe end is set to 200 ° C. or less when the heating is completed, the temperature difference in the steel pipe end can be reduced to 100 ° C. or less in a short time. I found it. That is, in the squeezing device, if the temperature difference in the steel pipe end when heating is completed is 200 ° C. or less, the time required for transporting from the heating device to the squeezer is adjusted and allowed to cool. It has been found that squeezing can be performed by setting the temperature difference in the end portion of the steel pipe to 100 ° C. or less without using a special soaking equipment such as a burner type heating furnace.

次に、本発明者らは、口絞り加工前の鋼管の外径や肉厚、口絞り加工後における鋼管の口絞り部の最小外径といった鋼管の寸法と誘導加熱による加熱装置に投入する電力との関係について検討した。10分間の誘導加熱が完了した鋼管の端部において、最高温度が1300℃以下かつ温度差が200℃以下となる加熱装置に投入する電力を、鋼管の寸法を変化させつつ調査した。
本調査に用いた鋼管の寸法は下記の通りとした。
鋼管1:口絞り加工前の外径60.5mm、肉厚8.7mm、口絞り部の最小外径45mm
鋼管2:口絞り加工前の外径76mm、肉厚10.2mm、口絞り部の最小外径50mm
鋼管3:口絞り加工前の外径70mm、肉厚14mm、口絞り部の最小外径50mm
鋼管4:口絞り加工前の外径70mm、肉厚16.7mm、口絞り部の最小外径50mm
Next, the present inventors have introduced the steel pipe dimensions such as the outer diameter and thickness of the steel pipe before the squeezing process, the minimum outer diameter of the squeezed part of the steel pipe after the squeezing process, and the power supplied to the heating device by induction heating. We examined the relationship. At the end of the steel pipe where induction heating for 10 minutes was completed, the electric power supplied to the heating device having a maximum temperature of 1300 ° C. or less and a temperature difference of 200 ° C. or less was investigated while changing the dimensions of the steel pipe.
The dimensions of the steel pipe used in this study were as follows.
Steel pipe 1: outer diameter 60.5mm before squeezing, wall thickness 8.7mm, minimum squeezed diameter 45mm
Steel pipe 2: 76 mm outer diameter before squeezing, 10.2 mm wall thickness, 50 mm minimum outer diameter of squeezed part
Steel pipe 3: outer diameter 70 mm before squeezing, wall thickness 14 mm, minimum squeezed diameter 50 mm
Steel pipe 4: Outer diameter 70 mm before squeezing, wall thickness 16.7 mm, minimum squeezed diameter 50 mm

図3は、鋼管の寸法と加熱装置に投入する電力との関係を示す図であり、横軸の鋼管の寸法は外径比に口絞り加工前の鋼管の肉厚(mm)を乗じた値である。本発明者らは、同図に示すように、外径比に肉厚(mm)を乗じた値Xと加熱装置に投入する電力Yとに下記(3)式の線形関係があることを知見した。すなわち、外径比に肉厚を乗じた値に応じて、加熱装置に投入する電力を調整することにより、加熱が完了した鋼管の端部において、最高温度が1300℃以下かつ温度差が200℃以下にできることを知見した。
Y=4.3×X+76 ・・・(3)
FIG. 3 is a diagram showing the relationship between the dimensions of the steel pipe and the electric power supplied to the heating device. The dimension of the steel pipe on the horizontal axis is a value obtained by multiplying the outer diameter ratio by the thickness (mm) of the steel pipe before squeezing. It is. As shown in the figure, the present inventors have found that the value X obtained by multiplying the outer diameter ratio by the thickness (mm) and the electric power Y input to the heating device have a linear relationship of the following expression (3). did. That is, by adjusting the electric power supplied to the heating device according to the value obtained by multiplying the outer diameter ratio by the wall thickness, the maximum temperature is 1300 ° C. or less and the temperature difference is 200 ° C. at the end of the heated steel pipe. We found out that we can:
Y = 4.3 × X + 76 (3)

さらに、本発明者らは、鋼管の寸法と加熱が完了してから温度差が100℃以下になるまでに要する放冷時間との関係について検討した。端部を10分間にわたり誘導加熱した鋼管を放冷し、最高温度が1300℃以下、最低温度が800℃以上および温度差が100℃以下の条件を、いずれも満足する放冷時間を、鋼管の寸法を変化させつつ調査した。本調査では、前記の鋼管1〜4を用い、前記(3)式により算出された値に加熱装置に投入する電力を調整した。   Furthermore, the present inventors examined the relationship between the dimensions of the steel pipe and the cooling time required for the temperature difference to become 100 ° C. or less after the heating was completed. The steel pipe whose end is induction-heated for 10 minutes is allowed to cool, and a cooling time that satisfies the conditions that the maximum temperature is 1300 ° C. or lower, the minimum temperature is 800 ° C. or higher, and the temperature difference is 100 ° C. or lower is determined. The investigation was conducted while changing the dimensions. In this investigation, the steel pipes 1 to 4 were used, and the electric power supplied to the heating device was adjusted to the value calculated by the above equation (3).

図4は、鋼管の寸法と加熱が完了してから放冷した時間の関係を示す図であり、横軸の鋼管の寸法は外径比に口絞り加工前の鋼管の肉厚(mm)を乗じた値である。本発明者らは、同図に示すように、外径比に肉厚(mm)を乗じた値Xと放冷時間Tとに下記(4)式の線形関係があることを知見した。すなわち、外径比に肉厚を乗じた値に応じて、放冷時間を調整することにより、放冷時間が経過した鋼管端部において、最高温度が1300℃以下、最低温度が800℃以上および温度差が100℃以下の条件を、いずれも満足させることができる。
T=6.6×X−16 ・・・(4)
FIG. 4 is a diagram showing the relationship between the dimension of the steel pipe and the time of cooling after the heating is completed. The dimension of the steel pipe on the horizontal axis is the thickness (mm) of the steel pipe before mouth drawing in the outer diameter ratio. It is the multiplied value. As shown in the figure, the present inventors have found that the value X obtained by multiplying the outer diameter ratio by the thickness (mm) and the cooling time T have a linear relationship of the following expression (4). That is, by adjusting the cooling time according to the value obtained by multiplying the outer diameter ratio by the wall thickness, the maximum temperature is 1300 ° C. or lower, the minimum temperature is 800 ° C. or higher, and the steel pipe end portion where the cooling time has elapsed. Any of the conditions where the temperature difference is 100 ° C. or less can be satisfied.
T = 6.6 × X−16 (4)

本発明は、上記の知見に基づいて完成したものであり、下記(1)および(2)の鋼管端部の口絞り加工装置、並びに下記(3)および(4)の鋼管端部の口絞り加工方法を要旨としている:   The present invention has been completed on the basis of the above knowledge, and the following (1) and (2) steel pipe end drawing apparatus, and the following (3) and (4) steel pipe end drawing. The processing method is summarized as follows:

(1)複数の被加熱材を同時に誘導加熱することができる加熱装置と、鋼管の端部を前記加熱装置に装入して加熱しつつ、搬送するコンベアと、搬送された鋼管の端部を絞って口絞り加工を施す口絞り機と、前記コンベアにより搬送された鋼管を前記口絞り機に搬送する口絞り搬送装置と、下記(1)式により算出される基本投入電力と、前記加熱装置に装入された鋼管の本数とを乗じた値に応じて前記加熱装置に投入する電力を調整する加熱制御手段と、端部が加熱された鋼管に前記口絞り機で口絞り加工を施す際、前記加熱装置による加熱が完了してから口絞り加工を開始するまでに要する放冷時間を、下記(2)式により算出される時間に応じて調整する放冷時間制御手段とを有することを特徴とする鋼管端部の口絞り加工装置。
W=4.3×(D2/D1)×t+76 ・・・(1)
T=6.6×(D2/D1)×t−16 ・・・(2)
ここで、Wは基本投入電力(kW)、Tは時間(s)、D1は口絞り加工前の鋼管の外径(mm)、tは口絞り加工前の鋼管の肉厚(mm)、D2は口絞り加工後における鋼管の口絞り部の最小外径(mm)である。
(1) A heating device capable of simultaneously inductively heating a plurality of materials to be heated, a conveyor that conveys an end of a steel pipe while heating the end of the steel pipe into the heating device, and an end of the conveyed steel pipe A squeezing machine for squeezing and squeezing, a squeezing and conveying device for conveying the steel pipe conveyed by the conveyor to the squeezing device, a basic input power calculated by the following equation (1), and the heating device A heating control means for adjusting the electric power supplied to the heating device in accordance with a value obtained by multiplying the number of steel pipes charged in the steel pipe, and when the mouth pipe is subjected to mouth drawing processing on the steel pipe whose end is heated And a cooling time control means for adjusting the cooling time required from the completion of heating by the heating device to the start of squeezing according to the time calculated by the following equation (2). Mouth drawing machine for steel pipe end.
W = 4.3 × (D2 / D1) × t + 76 (1)
T = 6.6 × (D2 / D1) × t−16 (2)
Here, W is the basic input power (kW), T is the time (s), D1 is the outer diameter (mm) of the steel pipe before squeezing, t is the wall thickness (mm) of the steel pipe before squeezing, D2 Is the minimum outer diameter (mm) of the aperture portion of the steel pipe after aperture drawing.

(2)前記コンベアが、口絞り加工を施す前に加熱が必要な鋼管の場合は、当該鋼管の端部を前記加熱装置に装入して加熱しつつ搬送し、口絞り加工を施す前に加熱が不要な鋼管の場合は、当該鋼管の端部を前記加熱装置に装入して加熱することなく搬送することを特徴とする上記(1)に記載の鋼管端部の口絞り加工装置。 (2) If the conveyor is a steel pipe that needs to be heated before it is subjected to squeezing, the end of the steel pipe is loaded into the heating device and conveyed while being heated, and before the squeezing process is performed. In the case of a steel pipe that does not require heating, the end portion of the steel pipe is inserted into the heating device and conveyed without heating, and the mouth-drawing device for the steel pipe end portion according to (1) above.

(3)口絞り加工前の鋼管の外径および肉厚、並びに口絞り加工後における鋼管の口絞り部の最小外径が同一である鋼管群を順次搬送し、搬送された鋼管の端部に口絞り機で口絞り加工を施す鋼管端部の口絞り加工方法であって、前記鋼管群を順次搬送する際に、複数の被加熱材を同時に誘導加熱することができる加熱装置に装入して鋼管の端部を加熱しつつ、搬送し、前記加熱装置に投入する電力を、下記(1)式により算出される基本投入電力と、前記加熱装置に装入された鋼管の本数とを乗じた値に応じて調整し、前記搬送された鋼管の端部に口絞り加工を施す際に、前記加熱装置による加熱が完了してから口絞り加工を開始するまでに要する放冷時間を、下記(2)式により算出される時間に応じて調整することを特徴とする鋼管端部の口絞り加工方法。
W=4.3×(D2/D1)×t+76 ・・・(1)
T=6.6×(D2/D1)×t−16 ・・・(2)
ここで、Wは基本投入電力(kW)、Tは時間(s)、D1は口絞り加工前の鋼管の外径(mm)、tは口絞り加工前の鋼管の肉厚(mm)、D2は口絞り加工後における鋼管の口絞り部の最小外径(mm)である。
(3) A steel pipe group in which the outer diameter and thickness of the steel pipe before the squeezing process and the minimum outer diameter of the squeezing part of the steel pipe after the squeezing process are the same is sequentially transported to the end of the transported steel pipe. A method of squeezing a steel pipe end that is squeezed by a squeezing machine, and when sequentially feeding the steel pipe group, a plurality of materials to be heated are charged into a heating device that can be induction heated at the same time. The power supplied to the heating device is multiplied by the basic input power calculated by the following formula (1) and the number of steel pipes charged in the heating device. The cooling time required from the completion of heating by the heating device to the start of the squeezing process when the squeezing process is performed on the end portion of the conveyed steel pipe is set as follows. (2) A steel pipe end that is adjusted according to the time calculated by the equation Mouth aperture processing method.
W = 4.3 × (D2 / D1) × t + 76 (1)
T = 6.6 × (D2 / D1) × t−16 (2)
Here, W is the basic input power (kW), T is the time (s), D1 is the outer diameter (mm) of the steel pipe before squeezing, t is the wall thickness (mm) of the steel pipe before squeezing, D2 Is the minimum outer diameter (mm) of the aperture portion of the steel pipe after aperture drawing.

(4)口絞り加工前の鋼管の外径および肉厚、並びに口絞り加工後における鋼管の口絞り部の最小外径が同一であって、口絞り加工を施す前に加熱が必要な鋼管群と、口絞り加工前の鋼管の外径および肉厚、並びに口絞り加工後における鋼管の口絞り部の最小外径が同一であって、口絞り加工を施す前に加熱が不要な鋼管群とを交互に搬送し、搬送された鋼管の端部に口絞り機で口絞り加工を施す鋼管端部の口絞り加工方法であって、前記加熱が必要な鋼管群に口絞り加工を施す際に、上記(3)に記載の鋼管端部の口絞り加工方法を用い、前記加熱が不要な鋼管群に口絞り加工を施す際に、鋼管を前記加熱装置に装入することなく、順次搬送し、搬送された鋼管の端部に口絞り加工を施すことを特徴とする鋼管端部の口絞り加工方法。 (4) Steel pipe group in which the outer diameter and thickness of the steel pipe before squeezing are the same, and the minimum outer diameter of the squeezed part of the steel pipe after squeezing is the same, and heating is required before squeezing. The outer diameter and thickness of the steel pipe before the squeezing process, and the minimum outer diameter of the squeezed part of the steel pipe after the squeezing process, and a steel pipe group that does not require heating before the squeezing process, Is a method of squeezing the end of the steel pipe that is subjected to squeezing with a squeezing machine, and when squeezing the steel pipe group that requires heating, When the steel pipe group that does not need to be heated is subjected to a drawing process using the method for drawing a steel pipe end as described in (3) above, the steel pipes are sequentially conveyed without being inserted into the heating device. A method of squeezing the end of a steel pipe, characterized in that squeezing is performed on the end of the conveyed steel pipe.

本発明の鋼管端部の口絞り加工装置および口絞り加工方法は、下記の顕著な効果を有する。
(1)加熱装置に投入する基本投入電力および加熱装置から口絞り機まで搬送するのに要する放冷時間を鋼管の寸法に応じて調整することにより、鋼管端部に発生する温度ばらつきを低減できる。
(2)温度ばらつきが低減された鋼管の端部を絞るので、良好な口絞り加工性能を得ることができる。
(3)バーナー式加熱炉といった特別な均熱設備や、放射温度計を用いたフィードバック制御装置を用いることなく、鋼管端部に発生する温度ばらつきを低減できるので、設備コストを抑えることができる。
The steel pipe end portion squeezing apparatus and the squeezing method of the present invention have the following remarkable effects.
(1) By adjusting the basic input power to be input to the heating device and the cooling time required for transporting from the heating device to the mouth drawing device according to the dimensions of the steel pipe, it is possible to reduce the temperature variation generated at the end of the steel pipe. .
(2) Since the end portion of the steel pipe with reduced temperature variation is squeezed, good mouth-drawing performance can be obtained.
(3) Since the temperature variation generated at the end of the steel pipe can be reduced without using a special soaking equipment such as a burner type heating furnace or a feedback control device using a radiation thermometer, the equipment cost can be suppressed.

鋼管の寸法と常温で口絞り加工を施す際に鋼管端部に付与する加圧力(kN)との関係を示す図であり、横軸の鋼管の寸法は外径比に口絞り加工前の鋼管の肉厚(mm)を乗じた値である。It is a figure showing the relationship between the size of the steel pipe and the applied pressure (kN) applied to the end of the steel pipe when the drawing process is performed at normal temperature. The dimension of the steel pipe on the horizontal axis is the steel pipe before the drawing process in the outer diameter ratio. It is a value multiplied by the wall thickness (mm). 誘導加熱により1本の鋼管を加熱する基礎試験における、加熱時間と鋼管端部の温度との関係を示す図である。It is a figure which shows the relationship between the heating time and the temperature of a steel pipe edge part in the basic test which heats one steel pipe by induction heating. 鋼管の寸法と加熱装置に投入する電力との関係を示す図であり、横軸の鋼管の寸法は外径比に口絞り加工前の鋼管の肉厚(mm)を乗じた値である。It is a figure which shows the relationship between the dimension of a steel pipe, and the electric power input into a heating apparatus, and the dimension of the steel pipe of a horizontal axis is the value which multiplied the wall thickness (mm) of the steel pipe before a squeezing process to an outer diameter ratio. 鋼管の寸法と加熱が完了してから放冷した時間の関係を示す図であり、横軸の鋼管の寸法は外径比に口絞り加工前の鋼管の肉厚(mm)を乗じた値である。It is a figure which shows the relationship between the dimension of a steel pipe and the time to cool after completion of heating. The dimension of the steel pipe on the horizontal axis is a value obtained by multiplying the outer diameter ratio by the thickness (mm) of the steel pipe before squeezing. is there. 本発明の鋼管端部の口絞り加工装置および口絞り加工方法による口絞り加工処理例を説明する模式図である。It is a schematic diagram explaining the example of a squeezing process by the squeezing apparatus and the squeezing process method of the steel pipe end part of this invention. 本発明の鋼管端部の口絞り加工装置および口絞り加工方法による口絞り加工処理フローの一例を説明する図であり、同図(a)は加熱が必要な鋼管を加熱装置に装入した状態、同図(b)は加熱が必要な2本の鋼管を加熱装置に装入した状態、同図(c)は加熱が必要な鋼管を口絞り機に搬送する状態、同図(d)は加熱が不要な鋼管をコンベアで搬送する状態、同図(e)は加熱が不要な鋼管端部を口絞り機に搬送する状態をそれぞれ示す。It is a figure explaining an example of the squeezing process flow by the squeezing apparatus and squeezing process method of the steel pipe end part of this invention, The figure (a) is the state which inserted the steel pipe which needs a heating in the heating apparatus. (B) is a state in which two steel pipes that need to be heated are inserted into a heating device, (c) is a state in which the steel pipe that needs to be heated is transported to a wringer, and (d) in FIG. The state in which the steel pipe that does not require heating is conveyed by the conveyor, and FIG. 9E shows the state in which the end of the steel pipe that does not require heating is conveyed to the aperture drawing machine.

以下に、鋼管端部の口絞り加工装置および口絞り加工方法について、図面に基づいて説明する。   Below, the aperture drawing apparatus and aperture drawing method of a steel pipe edge part are demonstrated based on drawing.

図5は、本発明の鋼管端部の口絞り加工装置および口絞り加工方法による口絞り加工処理例を説明する模式図である。同図には鋼管端部に口絞り加工を施す鋼管の寸法測定や表面性状の検査に用いる検査台2と、口絞り加工装置1と、端部が絞られた鋼管を保管するラック3とを示す。同図に示す口絞り加工装置1は、検査に合格した鋼管が投入され、鋼管の管端位置を揃える第1アライニング装置11と、複数の被加熱材を同時に誘導加熱することができる加熱装置12と、鋼管の端部を加熱装置12に装入して加熱しつつ搬送するコンベア13と、搬送された鋼管の端部を絞って口絞り加工を施す口絞り機14と、コンベアにより搬送された鋼管を口絞り機に搬送するとともに、口絞り機で端部が絞られた鋼管を搬出する口絞り搬送装置15と、端部が絞られた鋼管の管端位置を揃えラック3に搬出する第2アライニング装置16とを有する。   FIG. 5 is a schematic diagram for explaining an example of the squeezing process by the squeezing apparatus and the squeezing method for the end of the steel pipe according to the present invention. The figure shows an inspection table 2 used for dimensional measurement and surface quality inspection of a steel pipe that is subjected to squeezing at the end of the steel pipe, a squeezing device 1, and a rack 3 for storing the steel pipe whose end is squeezed. Show. The mouth drawing apparatus 1 shown in the figure includes a first aligning device 11 in which a steel pipe that has passed inspection is inserted and aligns the pipe end positions of the steel pipe, and a heating apparatus that can simultaneously inductively heat a plurality of materials to be heated. 12, a conveyor 13 that feeds and heats the end of the steel pipe into the heating device 12, a squeezing machine 14 that squeezes the end of the conveyed steel pipe to perform squeezing, and a conveyor. The steel pipe is transported to the mouth-drawing machine, and the mouth-squeezing transport device 15 for transporting the steel pipe whose end is squeezed by the mouth-squeezing machine, and the pipe end position of the steel pipe whose end is squeezed are aligned and transported to the rack 3. And a second aligning device 16.

同図に示す口絞り加工装置1では、口絞り機14は、管端に向かって外径が小さくなるテーパ部4bに外径が一定のストレート部4cを連設して口絞り部4aを形成する。   In the squeezing apparatus 1 shown in the figure, the squeezing machine 14 forms a squeezed portion 4a by connecting a straight portion 4c having a constant outer diameter to a tapered portion 4b whose outer diameter decreases toward the pipe end. To do.

さらに、同図に示す口絞り加工装置1は、加熱装置12に投入する電力を調整する加熱制御手段17と、加熱装置による加熱が完了してから口絞り加工を開始するまでに要する放冷時間を調整する放冷時間制御手段18とを有する。同図に示す口絞り加工装置1では、黒塗り矢印で示す方向に鋼管が搬送される。   Furthermore, the squeezing apparatus 1 shown in the figure includes a heating control means 17 for adjusting the electric power supplied to the heating device 12, and a cooling time required for starting the squeezing process after the heating by the heating apparatus is completed. And a cooling time control means 18 for adjusting the temperature. In the squeezing apparatus 1 shown in the figure, the steel pipe is conveyed in the direction indicated by the black arrow.

加熱制御手段17は、下記(1)式により算出される基本投入電力と、加熱装置12に装入されている鋼管の本数とに応じて加熱装置12に投入する電力を調整する。
W=4.3×(D2/D1)×t+76 ・・・(1)
ここで、Wは基本投入電力(kW)、D1は口絞り加工前の鋼管の外径(mm)、tは口絞り加工前の鋼管の肉厚(mm)、D2は口絞り加工後における鋼管の口絞り部の最小外径(mm)である。
The heating control means 17 adjusts the electric power supplied to the heating device 12 according to the basic input power calculated by the following equation (1) and the number of steel pipes charged in the heating device 12.
W = 4.3 × (D2 / D1) × t + 76 (1)
Here, W is the basic input power (kW), D1 is the outer diameter (mm) of the steel pipe before squeezing, t is the thickness (mm) of the steel pipe before squeezing, and D2 is the steel pipe after squeezing. This is the minimum outer diameter (mm) of the mouth restrictor.

前記(1)式は、前記(3)式において、外径比に肉厚を乗じた値Xを、口絞り加工前の鋼管の外径D1および肉厚t、並びに口絞り加工後における鋼管の口絞り部の最小外径D2を用いて表したものである。   In the above formula (1), the value X obtained by multiplying the outer diameter ratio by the wall thickness in the above formula (3), the outer diameter D1 and the thickness t of the steel pipe before the squeezing process, and the steel pipe after the squeezing process. This is expressed using the minimum outer diameter D2 of the aperture stop.

前記(1)式を用い、口絞り加工前の外径および肉厚、口絞り部の最小外径といった鋼管の寸法に応じて基本投入電力を算出することにより、鋼管端部に溶融温度1300℃を超える部分が生じさせることなく、鋼管端部内の温度差を200℃以下にして誘導加熱することができる。基本投入電力が前記(1)式で算出される値を超えると、加熱された鋼管端部で溶融温度1300℃を超える部分が生じ、鋼管に曲りが発生するおそれがある。一方、基本投入電力が前記(1)式で算出される値未満であると、加熱された鋼管の端部内で発生する温度差が200℃を超え、放冷により温度差を100以下にするのに時間を要し、口絞り加工装置の生産性を低下させるおそれがある。   Using the above equation (1), the basic input power is calculated according to the dimensions of the steel pipe, such as the outer diameter and thickness before squeezing, and the minimum outer diameter of the squeezed part. Without causing a portion exceeding the temperature, induction heating can be performed with the temperature difference in the end portion of the steel pipe set to 200 ° C. or less. When the basic input power exceeds the value calculated by the above equation (1), a portion exceeding the melting temperature of 1300 ° C. occurs at the end of the heated steel pipe, and the steel pipe may be bent. On the other hand, if the basic input power is less than the value calculated by the above equation (1), the temperature difference generated in the end portion of the heated steel pipe exceeds 200 ° C., and the temperature difference is set to 100 or less by cooling. It takes time to reduce the productivity of the squeezing apparatus.

また、加熱制御手段17は、基本投入電力と加熱装置12に装入されている鋼管の本数とに応じて加熱装置12に投入する電力を調整する。これにより、口絞り加工を開始する際に加熱装置に装入される鋼管の本数が増加する場合や、口絞り加工を終了する際に加熱装置に装入される鋼管の本数が減少する場合にも、鋼管端部に溶融温度1300℃を超える部分が生じさせることなく、鋼管端部内の温度差を200℃以下にして誘導加熱することができる。   Moreover, the heating control means 17 adjusts the electric power input into the heating device 12 according to the basic input electric power and the number of steel pipes charged in the heating device 12. As a result, when the number of steel pipes charged into the heating device increases when starting the squeezing process, or when the number of steel pipes charged into the heating device decreases when the squeezing process ends. However, induction heating can be performed by setting the temperature difference in the end of the steel pipe to 200 ° C. or less without causing a portion exceeding the melting temperature of 1300 ° C. at the end of the steel pipe.

基本投入電力と加熱装置12に装入されている鋼管の本数とに応じて加熱装置12に投入する電力を調整する際には、前記(1)式で算出される基本投入電力に加熱装置12に装入された鋼管の本数を乗じた値に加熱装置12に投入する電力を調整することができる。加熱装置に投入する電力は、基本投入電力に加熱装置12に装入された鋼管の本数を乗じた値と等しい場合に限らず、基本投入電力に加熱装置12に装入された鋼管の本数を乗じた値に対して±2%の範囲に調整しても、鋼管端部に溶融温度1300℃を超える部分が生じさせることなく、鋼管端部内の温度差を200℃以下にして誘導加熱することができる。   When adjusting the power input to the heating device 12 according to the basic input power and the number of steel pipes charged in the heating device 12, the heating device 12 is set to the basic input power calculated by the above equation (1). The electric power supplied to the heating device 12 can be adjusted to a value obtained by multiplying the number of steel pipes inserted into the heating device 12. The power input to the heating device is not limited to the value obtained by multiplying the basic input power by the number of steel pipes charged in the heating device 12, but the number of steel pipes charged in the heating device 12 to the basic input power. Even if it is adjusted to a range of ± 2% with respect to the multiplied value, the temperature difference in the end of the steel pipe is not more than 200 ° C. and induction heating is performed without causing the steel pipe end to exceed the melting temperature of 1300 ° C. Can do.

複数の被加熱材を同時に誘導加熱することができる加熱装置は、一般的に、装入する鋼管ごとに投入電力といった加熱条件を設定することができない。このため、口絞り加工前の外径や肉厚、口絞り加工後における口絞り部の最小外径が異なる鋼管を、1台の口絞り加工装置で処理する場合は、鋼管端部を均一に加熱するために加熱装置12に投入する電力の算出が困難となる。1本の鋼管の端部を加熱する誘導加熱装置を複数連設し、加熱装置ごとに投入する電力を調整する方式を採用することにより、寸法の異なる鋼管を同時に加熱することも考えられるが、複数の加熱装置が必要となることから、設備コストが上昇して問題となる。したがって、本発明の鋼管端部の口絞り加工装置および口絞り加工方法では、口絞り加工前の外径および肉厚、並びに口絞り部の最小外径が同一である鋼管群を処理対象とする。   In general, a heating apparatus capable of simultaneously heating a plurality of materials to be heated cannot set heating conditions such as input power for each steel pipe to be charged. For this reason, when processing steel pipes with different outer diameters and wall thicknesses before squeezing, and the minimum outer diameter of the squeezed part after squeezing, using a single squeezing machine, make the end of the steel pipe uniform. It becomes difficult to calculate the electric power supplied to the heating device 12 for heating. Although it is conceivable to simultaneously heat steel pipes having different dimensions by adopting a method in which a plurality of induction heating devices for heating the end portion of one steel pipe are provided and the electric power supplied to each heating device is adjusted. Since a plurality of heating devices are required, the equipment cost increases and becomes a problem. Therefore, in the squeezing apparatus and the squeezing method of the steel pipe end portion of the present invention, the steel pipe group having the same outer diameter and thickness before squeezing and the minimum outer diameter of the squeezing part is treated. .

放冷時間制御手段18は、端部が加熱された鋼管に口絞り機14で口絞り加工を施す際に、加熱装置12による加熱が完了してから口絞り加工を開始するまでに要する放冷時間を、下記(2)式により算出される時間に応じて調整する。
T=6.6×(D2/D1)×t−16 ・・・(2)
ここで、Tは時間(s)、D1は口絞り加工前の鋼管の外径(mm)、tは口絞り加工前の鋼管の肉厚(mm)、D2は口絞り加工後における鋼管の口絞り部の最小外径(mm)である。
The cooling time control means 18 is the cooling required for starting the squeezing after the heating by the heating device 12 is completed when the squeezing machine 14 performs the squeezing process on the steel pipe whose end is heated. The time is adjusted according to the time calculated by the following equation (2).
T = 6.6 × (D2 / D1) × t−16 (2)
Here, T is time (s), D1 is the outer diameter (mm) of the steel pipe before squeezing, t is the wall thickness (mm) of the steel pipe before squeezing, and D2 is the mouth of the steel pipe after squeezing. This is the minimum outer diameter (mm) of the throttle part.

上記(2)式は、前記(4)式において、外径比に肉厚を乗じた値Xを、口絞り加工前の鋼管の外径D1および肉厚t、並びに口絞り加工後における鋼管の口絞り部の最小外径D2を用いて表したものである。   The above equation (2) is the value obtained by multiplying the outer diameter ratio by the wall thickness in the above equation (4), the outer diameter D1 and the wall thickness t of the steel pipe before squeezing, and the steel pipe after the squeezing process. This is expressed using the minimum outer diameter D2 of the aperture stop.

放冷時間を、前記(2)式により算出される時間に応じて調整すると、誘導加熱された鋼管は、放冷により、鋼管の端部が800℃以上、かつ、鋼管端部内の温度差が100℃以下となる。放冷時間が、前記(2)式により算出される時間を超えると、鋼管端部に800℃未満となる部分が生じ、口絞り加工を施す際に必要な加圧力が増加することから、加圧力不足により加工不良となるおそれがある。一方、放冷時間が、前記(2)式により算出される時間未満であると、放冷された鋼管端部内の温度差が100℃を超え、口絞り加工が施された鋼管の口絞り部に亀裂や内部ボイドを生じさせるおそれがある。   When the cooling time is adjusted according to the time calculated by the above equation (2), the induction heated steel pipe has a temperature difference of 800 ° C. or more at the end of the steel pipe and a temperature difference in the end of the steel pipe due to cooling. It becomes 100 degrees C or less. If the cooling time exceeds the time calculated by the above equation (2), a portion that is less than 800 ° C. occurs at the end of the steel pipe, and the pressurizing force required for performing the drawing process increases. There is a risk of processing failure due to insufficient pressure. On the other hand, if the cooling time is less than the time calculated by the above equation (2), the temperature difference in the end of the cooled steel pipe exceeds 100 ° C., and the mouth drawing portion of the steel pipe subjected to mouth drawing processing. May cause cracks and internal voids.

放冷時間を、前記(2)式により算出される時間に応じて調整する際には、放冷時間を前記(2)式により算出される時間に調整することができる。放冷時間は、前記(2)式により算出される時間と等しい場合に限らず、放冷時間を、前記(2)式により算出される時間に対して±4%の範囲に調整しても、鋼管の端部を800℃以上、かつ、鋼管端部内の温度差を100℃以下にできる。   When adjusting the cooling time according to the time calculated by the equation (2), the cooling time can be adjusted to the time calculated by the equation (2). The cooling time is not limited to the time calculated by the equation (2), and the cooling time may be adjusted to a range of ± 4% with respect to the time calculated by the equation (2). The end of the steel pipe can be 800 ° C. or higher, and the temperature difference in the steel pipe end can be 100 ° C. or lower.

前記図5に示す口絞り加工装置では、放冷時間制御手段18が口絞り搬送装置15の搬送速度を増減させ、加熱装置12による加熱が完了してから口絞り加工を開始するまでに要する時間を、前記(2)式により算出される時間に応じて調整する。この他に、放冷時間を調整する方式として、口絞り搬送装置15がコンベアにより搬送された鋼管を受け取ってから搬送を開始するまで所定時間待機させ、この待機時間を放冷時間制御手段により増減させて放冷時間を調整する方式や、口絞り機14に鋼管が搬送されてから口絞り加工を開始するまで所定時間待機させ、この待機時間を放冷時間制御手段により増減させて放冷時間を調整する方式を採用できる。   In the squeezing apparatus shown in FIG. 5, the cooling time control means 18 increases / decreases the conveying speed of the squeezing / conveying device 15, and the time required for starting the squeezing after the heating by the heating device 12 is completed. Is adjusted according to the time calculated by the equation (2). In addition to this, as a method for adjusting the cooling time, the squeezing / conveying device 15 waits for a predetermined time from the time the steel pipe transferred by the conveyor is received until the transfer is started, and this waiting time is increased or decreased by the cooling time control means. The cooling time is adjusted, and a predetermined time is waited until the squeezing process is started after the steel pipe is transported to the squeezing machine 14, and the waiting time is increased or decreased by the cooling time control means. It is possible to adopt a method of adjusting

このように本発明の口絞り加工装置は、加熱制御手段17が前記(1)式により算出される基本投入電力に応じて加熱装置12に投入する電力を調整するとともに、放冷時間制御手段18が前記(2)式により算出される時間に応じて放冷時間を調整する。これにより、本発明の口絞り加工装置は、鋼管の端部を800℃以上、かつ、鋼管端部内の温度差を100℃以下にして誘導加熱することができる。   As described above, the squeezing apparatus of the present invention adjusts the electric power supplied to the heating device 12 by the heating control means 17 in accordance with the basic input power calculated by the equation (1), and the cooling time control means 18. Adjusts the cooling time according to the time calculated by the equation (2). Thereby, the aperture drawing processing apparatus of this invention can carry out induction heating by making the edge part of a steel pipe into 800 degreeC or more and the temperature difference in a steel pipe end part to 100 degrees C or less.

本発明の口絞り加工装置は、鋼管の端部に発生する温度ばらつきを低減して加熱することができることから、良好な口絞り加工性能を得ることができる。また、本発明の口絞り加工装置は、鋼管を加熱装置から口絞り機まで搬送するのに要する時間を調整して放冷するので、バーナー式加熱炉といった特別な均熱設備や放射温度計を用いたフィードバック制御装置を付加する必要がなく、設備コストを抑えることができる。   The squeezing apparatus of the present invention can reduce the temperature variation generated at the end of the steel pipe and heat it, so that good squeezing performance can be obtained. In addition, the squeezing apparatus of the present invention adjusts the time required for transporting the steel pipe from the heating device to the squeezing machine and cools it down, so a special soaking equipment such as a burner type heating furnace or a radiation thermometer is installed. It is not necessary to add the used feedback control device, and the equipment cost can be reduced.

ここで、口絞り加工装置では、例えば、口絞り加工を施す前に加熱が必要な鋼管群を処理した後、口絞り加工を施す前に加熱が不要な鋼管群を処理する場合がある。この場合、前記図5に示す口絞り加工装置を用いると、加熱が不要な鋼管を加熱装置12で加熱することなく口絞り機14に搬送するため、加熱が必要な複数の鋼管の後に鋼管4本分の間隔を設けた状態で加熱が不要な鋼管をコンベアで搬送する必要があり、口絞り加工装置の生産性が低下する。加熱が必要な鋼管の後に間隔を設けるのは、複数の被加熱材を同時に誘導加熱する加熱装置では、全ての装入された鋼管の端部が加熱されるので、加熱が必要な鋼管と加熱が不要な鋼管を同時に装入することができないからである。   Here, in the squeezing apparatus, for example, after processing the steel pipe group that needs to be heated before the squeezing process, the steel pipe group that does not need to be heated may be processed before the squeezing process. In this case, when the squeezing apparatus shown in FIG. 5 is used, the steel pipe that does not need to be heated is conveyed to the squeezing machine 14 without being heated by the heating device 12, so that the steel pipe 4 is placed after the plurality of steel pipes that need to be heated. It is necessary to convey the steel pipe which does not require heating with a conveyor in a state where the interval for this is provided, and the productivity of the squeezing apparatus is reduced. The reason why the space is provided after the steel pipe that needs to be heated is that the ends of all the inserted steel pipes are heated in the heating device that simultaneously heats a plurality of materials to be heated. This is because it is not possible to charge steel pipes that are not required at the same time.

このため、本発明の鋼管端部の口絞り加工装置1では、コンベア13は、口絞り加工を施す前に加熱が必要な鋼管の場合は、当該鋼管の端部を加熱装置12に装入して加熱しつつ搬送し、口絞り加工を施す前に加熱が不要な鋼管の場合は、当該鋼管の端部を加熱装置12に装入して加熱することなく搬送するものを用いるのが好ましい。これにより、後述する図6を用いて説明するように、加熱が必要な鋼管群と、加熱が不要な鋼管群とを交互に搬送し、搬送された鋼管の端部に口絞り機で口絞り加工を施す場合にコンベア13で間隔を設ける必要がなくなり、口絞り加工装置の生産性を維持することができる。   For this reason, in the steel pipe end squeezing apparatus 1 according to the present invention, the conveyor 13 inserts the end of the steel pipe into the heating device 12 in the case of a steel pipe that requires heating before the squeezing process. In the case of a steel pipe that is transported while being heated and does not need to be heated before being subjected to the squeezing process, it is preferable to use a steel pipe that is loaded with the end of the steel pipe into the heating device 12 and transported without heating. Thereby, as will be described with reference to FIG. 6 described later, the steel pipe group that needs to be heated and the steel pipe group that does not need to be heated are alternately conveyed, and the end of the conveyed steel pipe is squeezed by a squeezer. When processing, it is not necessary to provide an interval at the conveyor 13, and the productivity of the mouth drawing device can be maintained.

次に、本発明の鋼管端部の口絞り加工方法による口絞り加工処理フローの一例を説明する。本処理フローでは、口絞り加工前に加熱が必要な鋼管群を処理した後、口絞り加工前に加熱が不要な鋼管群を処理するフローを説明する。   Next, an example of the squeezing process flow by the squeezing method for the end of the steel pipe of the present invention will be described. In this processing flow, a flow of processing a steel pipe group that does not require heating before the mouth drawing process after processing the steel pipe group that requires heating before the mouth drawing process will be described.

図6は、本発明の鋼管端部の口絞り加工装置および口絞り加工方法による口絞り加工処理フローの一例を説明する図であり、同図(a)は加熱が必要な鋼管を加熱装置に装入した状態、同図(b)は加熱が必要な2本の鋼管を加熱装置に装入した状態、同図(c)は加熱が必要な鋼管を口絞り機に搬送する状態、同図(d)は加熱が不要な鋼管をコンベアで搬送する状態、同図(e)は加熱が不要な鋼管端部を口絞り機に搬送する状態をそれぞれ示す。同図では、鋼管端部に口絞り加工を施す鋼管の寸法測定や表面性状の検査に用いる検査台2と、端部が絞られた鋼管を保管するラック3とを省略した。また、同図では、加熱が不要な鋼管を外面にハッチングを施して示し、搬送される鋼管の流れを黒塗り矢印で示す。   FIG. 6 is a view for explaining an example of a drawing process flow by a drawing apparatus and a drawing method for an end of a steel pipe according to the present invention. FIG. 6 (a) shows a steel pipe that needs to be heated as a heating apparatus. Fig. 2 (b) shows a state where the steel pipes are charged. Fig. 2 (b) shows a state where two steel pipes that need to be heated are charged into the heating device. (D) shows the state which conveys the steel pipe which does not require heating with a conveyor, and the figure (e) shows the state which conveys the steel pipe end part which does not need heating to a wringer. In the figure, the inspection table 2 used for dimensional measurement and surface property inspection of the steel pipe that is subjected to squeezing at the end portion of the steel pipe, and the rack 3 for storing the steel pipe with the end portion being squeezed are omitted. Moreover, in the same figure, the steel pipe which does not require a heating is shown by giving hatching to the outer surface, and the flow of the steel pipe conveyed is shown by the black arrow.

図6に示す口絞り加工装置1では、コンベア13は、口絞り加工を施す前に加熱が必要な鋼管を、端部を加熱装置12に装入して加熱しつつ搬送し、口絞り加工を施す前に加熱が不要な鋼管の場合は、当該鋼管の端部を加熱装置12に装入して加熱することなく搬送する。また、加熱制御手段17は、前記(1)式により算出される基本投入電力に加熱装置12に装入された鋼管の本数を乗じた値に加熱装置12に投入する電力を調整する。放冷時間制御手段18は、口絞り搬送装置15の搬送速度を増減させることにより、放冷時間を前記(2)式により算出される時間に調整する。   In the squeezing apparatus 1 shown in FIG. 6, the conveyor 13 conveys the steel pipe that needs to be heated before the squeezing process, while the end is inserted into the heating apparatus 12 and heated. In the case of a steel pipe that does not require heating before application, the end of the steel pipe is inserted into the heating device 12 and conveyed without heating. Moreover, the heating control means 17 adjusts the electric power input into the heating device 12 to a value obtained by multiplying the basic input electric power calculated by the equation (1) by the number of steel pipes inserted into the heating device 12. The cool-down time control means 18 adjusts the cool-down time to the time calculated by the equation (2) by increasing or decreasing the transport speed of the aperture stop transport device 15.

内径や外径、肉厚といった寸法を測定され、表面性状を検査された鋼管は、第1アライニング装置11により管端位置を揃えた後、コンベア13により搬送される。同図(a)に示すように、コンベア13は、口絞り加工前に加熱が必要な鋼管の場合、鋼管の端部を加熱装置12に装入しつつ、搬送する。この際、加熱制御手段17は、加熱装置12に投入する電力を、前記(1)式により算出される基本投入電力に装入された鋼管の本数を乗じた値に調整する。同図(a)に示す状態では、加熱装置12に装入された鋼管の本数は1本であることから、加熱装置12に投入する電力は、基本投入電力の値となる。   Steel pipes whose dimensions such as inner diameter, outer diameter, and wall thickness are measured and whose surface properties are inspected are aligned by the first aligning device 11 and then conveyed by the conveyor 13. As shown to the figure (a), in the case of the steel pipe which needs a heating before a squeezing process, the conveyor 13 conveys, inserting the edge part of a steel pipe in the heating apparatus 12. FIG. At this time, the heating control means 17 adjusts the electric power supplied to the heating device 12 to a value obtained by multiplying the basic input electric power calculated by the equation (1) by the number of steel pipes charged. In the state shown in FIG. 5A, since the number of steel pipes charged in the heating device 12 is one, the power input to the heating device 12 is the value of the basic input power.

続いて鋼管が口絞り加工装置に供給され、同図(b)に示すように、加熱装置12に2本鋼管の鋼管が装入されると、加熱制御手段17は、加熱装置12に投入する電力を、前記(1)式により算出される基本投入電力に加熱装置に装入された鋼管の本数である2を乗じた値に調整する。このように、加熱制御手段17は、加熱装置12に装入された本数の増加に応じて、加熱装置12に投入される電力を調整して階段状に増加させる。   Subsequently, when the steel pipe is supplied to the mouth drawing apparatus and a steel pipe of two steel pipes is inserted into the heating device 12 as shown in FIG. 5B, the heating control means 17 is put into the heating device 12. The electric power is adjusted to a value obtained by multiplying the basic input power calculated by the equation (1) by 2, which is the number of steel pipes charged in the heating device. Thus, the heating control means 17 adjusts the electric power input into the heating apparatus 12 according to the increase in the number inserted in the heating apparatus 12, and makes it increase in steps.

同図(c)に示すように、加熱が完了した鋼管を搬送して口絞り機14で口絞り加工を施す際、放冷時間制御手段18により、口絞り搬送装置の搬送速度を増減させ、加熱が完了してから口絞り加工を開始するまでに要する放冷時間を、前記(2)式で算出される時間に調整する。端部が絞られた鋼管は、口絞り搬送装置15により口絞り機14から搬出された後、第2アライニング装置16により管端の位置を揃えられ、ラックに搬出されて保管される。また、同図(c)に示す場合は、加熱装置12に装入された鋼管の本数が増減しないことから、加熱装置12に投入される電力は基本投入電力に加熱装置に装入された鋼管の本数である5を乗じた値で維持される。   As shown in FIG. 6C, when the heated steel pipe is transported and subjected to squeezing by the squeezing machine 14, the cooling time control means 18 increases or decreases the transport speed of the squeezing transport device, The cooling time required from the completion of heating to the start of squeezing is adjusted to the time calculated by the above equation (2). The steel pipe whose end has been squeezed is unloaded from the squeezing machine 14 by the squeezing / conveying device 15, and then the position of the pipe end is aligned by the second aligning device 16, and is unloaded to the rack and stored. Further, in the case shown in FIG. 5C, since the number of steel pipes charged in the heating device 12 does not increase or decrease, the power supplied to the heating device 12 is the basic input power. It is maintained at a value multiplied by 5 which is the number of.

順次、加熱が不要な鋼管(外面にハッチングが施された鋼管)が口絞り加工装置に供給され、同図(d)に示すように、加熱装置12の装入位置までコンベアにより搬送されると、コンベア13は、加熱が不要な鋼管を加熱装置12に装入して加熱することなく搬送する。このように、同図に示す口絞り加工装置1では、コンベア13として、加熱が必要な鋼管を加熱しつつ搬送し、加熱が不要な鋼管を加熱することなく搬送するものを用いることにより、加熱が必要な鋼管群と加熱が不要な鋼管群とを交互に搬送し、搬送された鋼管の端部に口絞り機で口絞り加工を施す場合にコンベア13で間隔を設ける必要がなくなり、口絞り加工装置の生産性を維持することができる。   Sequentially, steel pipes that do not need to be heated (steel pipes that are hatched on the outer surface) are supplied to the mouth drawing machine, and as shown in FIG. The conveyor 13 loads a steel pipe that does not require heating into the heating device 12 and conveys it without heating. Thus, in the aperture drawing processing apparatus 1 shown in the figure, the conveyor 13 is heated by conveying a steel pipe that requires heating while conveying the steel pipe that does not require heating without being heated. When the steel pipe group that requires heating and the steel pipe group that does not require heating are alternately conveyed, and it is subjected to squeezing with the squeezing machine at the end of the transported steel pipe, there is no need to provide an interval at the conveyor 13, The productivity of the processing apparatus can be maintained.

また、加熱が不要な鋼管が加熱装置12の装入位置までコンベアにより搬送されると、加熱制御手段17は、加熱装置12に投入する電力を、前記(1)式により算出される基本投入電力に加熱装置に装入された鋼管の本数である4を乗じた値に調整する。このように、加熱制御手段17は、加熱装置12に装入された本数の減少に応じて、加熱装置12に投入される電力を調整して階段状に減少させる。   When a steel pipe that does not require heating is conveyed to the charging position of the heating device 12 by the conveyor, the heating control means 17 uses the basic input power calculated by the above equation (1) as the power input to the heating device 12. To 4 multiplied by the number of steel pipes charged in the heating device. Thus, the heating control means 17 adjusts the electric power input to the heating device 12 according to the decrease in the number inserted in the heating device 12, and decreases it stepwise.

同図(e)に示すように、加熱が不要な鋼管を搬送して口絞り機14で口絞り加工を施す際は、放冷時間を制御することなく、口絞り加工を行う。   As shown in FIG. 5E, when a steel pipe that does not require heating is conveyed and subjected to squeezing by the squeezing machine 14, the squeezing is performed without controlling the cooling time.

誘導加熱が完了した時の鋼管端部の温度を評価する試験と、加熱された鋼管端部を放冷した後の温度を評価する試験を行い、本発明の鋼管端部の口絞り加工装置および口絞り加工方法を検証した。   A test for evaluating the temperature at the end of the steel pipe when induction heating is completed, and a test for evaluating the temperature after the heated end of the steel pipe is allowed to cool. The mouth-drawing method was verified.

(1)加熱完了時の評価試験
[試験方法]
本試験では、前記図5に示す口絞り加工装置により、コンベア13を用いて鋼管の端部を加熱装置12に装入して加熱しつつ搬送した。その際、鋼管端部の外面温度を、管端から5mmの位置と、管端から200mmの位置でそれぞれ測定した。
本試験での試験条件は下記の通りとした。
鋼管:口絞り加工前の外径70mm、肉厚14mm、口絞り部の最小外径50mm
材質 JISに規定されるSUS304TPステンレス鋼
加熱条件:周波数5.6Hz、加熱時間10分
(1) Evaluation test upon completion of heating [Test method]
In this test, the end portion of the steel pipe was loaded into the heating device 12 using the conveyor 13 and conveyed while being heated by the aperture drawing apparatus shown in FIG. At that time, the outer surface temperature of the steel pipe end was measured at a position 5 mm from the pipe end and a position 200 mm from the pipe end.
The test conditions in this test were as follows.
Steel pipe: 70mm outer diameter before squeezing, 14mm wall thickness, 50mm minimum outer diameter of squeezed part
Material SUS304TP stainless steel heating conditions specified in JIS: Frequency 5.6 Hz, heating time 10 minutes

本試験に用いた鋼管の寸法から前記(1)式により算出される基本投入電力は119kWである。本発明例1では、加熱装置に投入する電力を、117kWに加熱装置に装入された鋼管の本数を乗じた値に調整することにより、前記(1)式により算出した基本投入電力と加熱装置に装入された鋼管の本数とに応じて調整した。また、加熱装置に投入する電力を、比較例1では、基本投入電力を超える125kWに、加熱装置に装入された鋼管の本数を乗じた値に調整し、比較例2では、基本投入電力未満である102kWに、加熱装置に装入された鋼管の本数を乗じた値に調整した。   The basic input power calculated by the equation (1) from the dimensions of the steel pipe used in this test is 119 kW. In Example 1 of the present invention, the basic input power calculated by the above equation (1) and the heating device are adjusted by adjusting the power supplied to the heating device to 117 kW multiplied by the number of steel pipes charged in the heating device. It adjusted according to the number of the steel pipes charged in. In addition, in Comparative Example 1, the power input to the heating device is adjusted to a value obtained by multiplying 125 kW, which exceeds the basic input power, by the number of steel pipes charged in the heating device, and in Comparative Example 2, less than the basic input power. Was adjusted to a value obtained by multiplying 102 kW by the number of steel pipes charged in the heating device.

表1に、加熱装置に投入される鋼管1本あたりの電力(kW)と、加熱が完了した時の管端から5mmの位置と管端から200mmの位置における温度差(℃)および最高温度(℃)と、加熱完了時の評価を示す。   Table 1 shows the electric power (kW) per steel pipe put into the heating device, the temperature difference (° C.) and the maximum temperature at the position 5 mm from the pipe end and the position 200 mm from the pipe end when the heating is completed ( ° C) and the evaluation at the completion of heating.

Figure 0005402865
Figure 0005402865

[評価基準]
表1の「加熱完了時の評価」欄の記号の意味は次の通りである:
○:加熱が完了した時、管端から5mmの位置と管端から200mmの位置において、温度差が200℃以下、かつ、最高温度が1300℃以下であることを示す。
×:加熱が完了した時、管端から5mmの位置と管端から200mmの位置において、温度差が200℃以下および最高温度が1300℃以下である条件のうち、いずれかの条件を満たさないことを示す。
[Evaluation criteria]
The meanings of the symbols in the “Evaluation at the completion of heating” column in Table 1 are as follows:
◯: When heating is completed, the temperature difference is 200 ° C. or less and the maximum temperature is 1300 ° C. or less at a position 5 mm from the tube end and a position 200 mm from the tube end.
X: When heating is completed, the temperature difference is 200 ° C. or less and the maximum temperature is 1300 ° C. or less at a position 5 mm from the tube end and a position 200 mm from the tube end. Indicates.

[試験結果]
表1に示す結果から、比較例1では、加熱装置に投入する電力を、基本投入電力を超える125kWに、加熱装置に装入された鋼管の本数を乗じた値に調整し、温度差は200℃以下となったが、最高温度が1300℃を超えて鋼管に曲りが発生した。また、比較例2では、加熱装置に投入する電力を、基本投入電力未満である102kWに、加熱装置に装入された鋼管の本数を乗じた値に調整し、最高温度は1300℃以下となったが、温度差が200℃を超えた。
[Test results]
From the results shown in Table 1, in Comparative Example 1, the power input to the heating device was adjusted to a value obtained by multiplying the 125 kW exceeding the basic input power by the number of steel pipes charged in the heating device, and the temperature difference was 200 However, the maximum temperature exceeded 1300 ° C and the steel pipe was bent. Further, in Comparative Example 2, the power input to the heating device is adjusted to a value obtained by multiplying 102 kW, which is less than the basic input power, by the number of steel pipes charged in the heating device, and the maximum temperature is 1300 ° C. or lower. However, the temperature difference exceeded 200 ° C.

一方、本発明例1では、加熱装置に投入する電力を、基本投入電力に応じた117kWに、加熱装置に装入された鋼管の本数を乗じた値に調整し、温度差が200℃以下になるとともに、最高温度も1300℃以下となった。したがって、加熱装置に投入する電力を、前記(1)式により算出される基本投入電力と加熱装置に装入された鋼管の本数とに応じて調整することにより、加熱が完了した時、鋼管の端部における温度差を200℃以下にできるとともに、最高温度を1300℃以下できることが明らかになった。   On the other hand, in Example 1 of the present invention, the electric power supplied to the heating device is adjusted to a value obtained by multiplying 117 kW corresponding to the basic input electric power by the number of steel pipes charged in the heating device, and the temperature difference becomes 200 ° C. or less. In addition, the maximum temperature was 1300 ° C. or lower. Therefore, when the heating is completed by adjusting the power input to the heating device according to the basic input power calculated by the equation (1) and the number of steel pipes charged to the heating device, It has been clarified that the temperature difference at the end can be made 200 ° C. or lower and the maximum temperature can be made 1300 ° C. or lower.

(2)放冷時間が経過した時の評価試験
[試験方法]
本試験では、前記図5に示す口絞り加工装置により、コンベア13により鋼管の端部を加熱装置12に装入して加熱しつつ搬送した後、放冷した。その際、鋼管端部の温度を、管端から5mmの位置と、管端から200mmの位置でそれぞれ測定した。また、本試験では、加熱装置に投入する電力を、117kWに加熱装置に装入された鋼管の本数を乗じた値に調整した。すなわち、前記(1)式により算出される基本投入電力が119kWであることから、前記(1)式により算出される基本投入電力と加熱装置に装入された鋼管の本数とに応じて調整した。
本試験での試験条件は下記の通りとした。
鋼管:口絞り加工前の外径70mm、肉厚14mm、口絞り部の最小外径50mm
材質 JISに規定されるSUS304TPステンレス鋼
加熱条件:周波数5.6Hz、加熱時間10分
(2) Evaluation test when the cooling time has elapsed [Test method]
In this test, the end portion of the steel pipe was loaded into the heating device 12 by the conveyor 13 by the mouth drawing device shown in FIG. At that time, the temperature of the steel pipe end was measured at a position 5 mm from the pipe end and a position 200 mm from the pipe end. Moreover, in this test, the electric power input to the heating apparatus was adjusted to a value obtained by multiplying 117 kW by the number of steel pipes charged in the heating apparatus. That is, since the basic input power calculated by the formula (1) is 119 kW, the basic input power calculated by the formula (1) and the number of steel pipes charged in the heating device were adjusted. .
The test conditions in this test were as follows.
Steel pipe: 70mm outer diameter before squeezing, 14mm wall thickness, 50mm minimum outer diameter of squeezed part
Material SUS304TP stainless steel heating conditions specified in JIS: Frequency 5.6 Hz, heating time 10 minutes

本試験に用いた鋼管の寸法から前記(2)式により算出される時間は50秒である。本発明例2では、加熱装置12による加熱が完了してから口絞り加工を開始するまでに要する放冷時間を、前記(2)式により算出した時間に応じて48秒に調整した。また、放冷時間を、比較例3では、前記(2)式により算出される時間を超えて72秒に調整し、比較例4では、前記(2)式により算出される時間未満である24秒に調整した。   The time calculated by the equation (2) from the dimensions of the steel pipe used in this test is 50 seconds. In Example 2 of the present invention, the cooling time required from the completion of heating by the heating device 12 to the start of squeezing was adjusted to 48 seconds according to the time calculated by the above equation (2). Further, the cooling time is adjusted to 72 seconds exceeding the time calculated by the equation (2) in the comparative example 3, and is less than the time calculated by the equation (2) in the comparative example 4 24. Adjusted to seconds.

表2に、放冷時間(kW)と、放冷時間が経過した時の管端から5mmの位置と管端から200mmの位置における温度差(℃)、最高温度(℃)および最低温度(℃)と、放冷時間が経過した時の評価を示す。   Table 2 shows the cooling time (kW), the temperature difference (° C.), the maximum temperature (° C.), and the minimum temperature (° C.) at a position 5 mm from the tube end and a position 200 mm from the tube end when the cooling time has elapsed. ) And evaluation when the cooling time has elapsed.

Figure 0005402865
Figure 0005402865

[評価基準]
表2の「放冷時間が経過した時の評価」欄の記号の意味は次の通りである:
○:放冷時間が経過した時、管端から5mmの位置と管端から200mmの位置において、温度差が100℃以下、最高温度が1300℃以下および最低温度が800℃以上の条件を、いずれも満たすことを示す。
×:放冷時間が経過した時、管端から5mmの位置と管端から200mmの位置において、温度差が100℃以下、最高温度が1300℃以下および最低温度が800℃以上の条件のうち、いずれかの条件を満たさないことを示す。
[Evaluation criteria]
The meanings of the symbols in the column “Evaluation when the cooling time has elapsed” in Table 2 are as follows:
○: When the cooling time has elapsed, the temperature difference is 100 ° C. or less, the maximum temperature is 1300 ° C. or less, and the minimum temperature is 800 ° C. or more at a position 5 mm from the tube end and a position 200 mm from the tube end. Also shows that
×: When the cooling time has elapsed, at a position 5 mm from the tube end and a position 200 mm from the tube end, the temperature difference is 100 ° C. or less, the maximum temperature is 1300 ° C. or less, and the minimum temperature is 800 ° C. or more. Indicates that either condition is not met.

[試験結果]
表2に示す結果から、比較例3では、放冷時間を前記(2)式により算出される時間を超えて72秒に調整し、温度差が100℃以下および最高温度が1300℃以下の条件を満たしたが、最低温度が800℃未満となった。また、比較例4では、放冷時間を前記(2)式により算出される時間未満である24秒に調整し、最高温度が1300℃以下および最低温度が800℃以上の条件を満たしたが、温度差が100℃を超えた。
[Test results]
From the results shown in Table 2, in Comparative Example 3, the cooling time was adjusted to 72 seconds exceeding the time calculated by the equation (2), the temperature difference was 100 ° C. or less, and the maximum temperature was 1300 ° C. or less. However, the minimum temperature was less than 800 ° C. In Comparative Example 4, the cooling time was adjusted to 24 seconds, which is less than the time calculated by the above equation (2), and the maximum temperature was 1300 ° C. or lower and the minimum temperature was 800 ° C. or higher. The temperature difference exceeded 100 ° C.

一方、本発明例2では、放冷時間を前記(2)式により算出される時間に応じて48秒に調整し、温度差が100℃以下、最高温度が1300℃以下および最低温度が800℃以上の条件を、いずれも満足した。したがって、加熱装置に投入する電力を、前記(1)式により算出される基本投入電力と加熱装置に装入された鋼管の本数とに応じて調整するとともに、放冷時間を前記(2)式により算出される時間に応じて調整することにより、放冷時間を経過した時、鋼管の端部において、温度差が100℃以下、最高温度が1300℃以下および最低温度が800℃以上の条件を、いずれも満足させることができる。   On the other hand, in Inventive Example 2, the cooling time is adjusted to 48 seconds according to the time calculated by the equation (2), the temperature difference is 100 ° C. or less, the maximum temperature is 1300 ° C. or less, and the minimum temperature is 800 ° C. All of the above conditions were satisfied. Therefore, the electric power input to the heating device is adjusted according to the basic input electric power calculated by the equation (1) and the number of steel pipes charged to the heating device, and the cooling time is set to the equation (2). By adjusting according to the time calculated by the following conditions, when the cooling time has elapsed, at the end of the steel pipe, the temperature difference is 100 ° C. or less, the maximum temperature is 1300 ° C. or less, and the minimum temperature is 800 ° C. or more. , Both can be satisfied.

これらから、本発明の鋼管端部の口絞り加工装置および口絞り加工方法は、加熱装置に投入する電力を前記(1)式で算出される基本投入電力と加熱装置に装入された鋼管の本数とに応じて調整するとともに、放冷時間を前記(2)式で算出される時間に応じて調整することから、鋼管の端部に口絞り加工を施す際、鋼管の端部において、温度差が100℃以下、最高温度が1300℃以下および最低温度が800℃以上の条件を、いずれも満足させることができる。このように、本発明の鋼管端部の口絞り加工装置および口絞り加工方法により、加熱された鋼管の端部に発生する温度ばらつきを低減できることから、良好な口絞り加工性能が得られることが明らかになった。   From these, the mouth drawing apparatus and the mouth drawing method of the steel pipe end portion of the present invention are based on the basic input power calculated by the above equation (1) and the steel pipe charged in the heating apparatus. Since the cooling time is adjusted according to the time calculated by the above equation (2), the temperature is adjusted at the end of the steel pipe at the end of the steel pipe. The conditions that the difference is 100 ° C. or less, the maximum temperature is 1300 ° C. or less, and the minimum temperature is 800 ° C. or more can be satisfied. As described above, the squeezing apparatus and the squeezing method for the steel pipe end of the present invention can reduce temperature variations occurring at the end of the heated steel pipe, so that good squeezing performance can be obtained. It was revealed.

本発明の鋼管端部の口絞り加工装置および口絞り加工方法は、下記の顕著な効果を有する。
(1)加熱装置に投入する基本投入電力および加熱装置から口絞り機まで搬送するのに要する放冷時間を鋼管の寸法に応じて調整することにより、鋼管端部に発生する温度ばらつきを低減できる。
(2)温度ばらつきが低減された鋼管の端部を絞るので、良好な口絞り加工性能を得ることができる。
(3)バーナー式加熱炉といった特別な均熱設備や、放射温度計を用いたフィードバック制御装置を用いることなく、鋼管端部に発生する温度ばらつきを低減できるので、設備コストを抑えることができる。
The steel pipe end portion squeezing apparatus and the squeezing method of the present invention have the following remarkable effects.
(1) By adjusting the basic input power to be input to the heating device and the cooling time required for transporting from the heating device to the mouth drawing device according to the dimensions of the steel pipe, it is possible to reduce the temperature variation generated at the end of the steel pipe. .
(2) Since the end portion of the steel pipe with reduced temperature variation is squeezed, good mouth-drawing performance can be obtained.
(3) Since the temperature variation generated at the end of the steel pipe can be reduced without using a special soaking equipment such as a burner type heating furnace or a feedback control device using a radiation thermometer, the equipment cost can be suppressed.

したがって、本発明の鋼管端部の口絞り加工装置および口絞り加工方法は、冷間抽伸加工を用いた鋼管の製造において有効に利用することができる。   Therefore, the steel pipe end portion squeezing apparatus and the squeezing method of the present invention can be used effectively in the manufacture of steel pipes using cold drawing.

1:口絞り加工装置、 11:第1アライニング装置、 12:高周波誘導加熱装置、
13:コンベア、 14:口絞り機、 15:口絞り搬送装置、
16:第2アライニング装置、 17:加熱制御手段、 18:放冷時間制御手段、
2:検査台、 3:ラック、 4:鋼管、 4a:口絞り部、 4b:テーパ部、
4c:ストレート部
1: mouth drawing device, 11: first aligning device, 12: high frequency induction heating device,
13: conveyor, 14: squeezing machine, 15: squeezing conveying device,
16: Second aligning device, 17: Heating control means, 18: Cooling time control means,
2: inspection table, 3: rack, 4: steel pipe, 4a: aperture part, 4b: taper part,
4c: Straight part

Claims (4)

複数の被加熱材を同時に誘導加熱することができる加熱装置と、
鋼管の端部を前記加熱装置に装入して加熱しつつ、搬送するコンベアと、
搬送された鋼管の端部を絞って口絞り加工を施す口絞り機と、
前記コンベアにより搬送された鋼管を前記口絞り機に搬送する口絞り搬送装置と、
下記(1)式により算出される基本投入電力と、前記加熱装置に装入された鋼管の本数とを乗じた値に応じて前記加熱装置に投入する電力を調整する加熱制御手段と、
端部が加熱された鋼管に前記口絞り機で口絞り加工を施す際、前記加熱装置による加熱が完了してから口絞り加工を開始するまでに要する放冷時間を、下記(2)式により算出される時間に応じて調整する放冷時間制御手段とを有することを特徴とする鋼管端部の口絞り加工装置。
W=4.3×(D2/D1)×t+76 ・・・(1)
T=6.6×(D2/D1)×t−16 ・・・(2)
ここで、Wは基本投入電力(kW)、Tは時間(s)、D1は口絞り加工前の鋼管の外径(mm)、tは口絞り加工前の鋼管の肉厚(mm)、D2は口絞り加工後における鋼管の口絞り部の最小外径(mm)である。
A heating device capable of simultaneously inductively heating a plurality of materials to be heated;
A conveyor that conveys the steel pipe while charging and heating the end of the steel pipe,
A mouth drawing machine that squeezes the end of the conveyed steel pipe and performs mouth drawing processing;
A mouthpiece transporting device for transporting the steel pipe transported by the conveyor to the mouthdrawer,
A heating control means for adjusting power to be input to the heating device according to a value obtained by multiplying the basic input power calculated by the following equation (1) and the number of steel pipes charged in the heating device;
When performing the squeezing process on the steel pipe whose end is heated by the squeezing machine, the cooling time required from the completion of the heating by the heating device to the start of the squeezing process is expressed by the following equation (2). A steel pipe end drawing apparatus characterized by having a cooling time control means for adjusting according to the calculated time.
W = 4.3 × (D2 / D1) × t + 76 (1)
T = 6.6 × (D2 / D1) × t−16 (2)
Here, W is the basic input power (kW), T is the time (s), D1 is the outer diameter (mm) of the steel pipe before squeezing, t is the wall thickness (mm) of the steel pipe before squeezing, D2 Is the minimum outer diameter (mm) of the aperture portion of the steel pipe after aperture drawing.
前記コンベアが、口絞り加工を施す前に加熱が必要な鋼管の場合は、当該鋼管の端部を前記加熱装置に装入して加熱しつつ搬送し、口絞り加工を施す前に加熱が不要な鋼管の場合は、当該鋼管の端部を前記加熱装置に装入して加熱することなく搬送することを特徴とする請求項1に記載の鋼管端部の口絞り加工装置。   When the conveyor is a steel pipe that needs to be heated before the squeezing process, the end of the steel pipe is inserted into the heating device and transported while heating, and heating is not required before the squeezing process is performed. In the case of a steel pipe, the end portion of the steel pipe is inserted into the heating device and transported without being heated. 口絞り加工前の鋼管の外径および肉厚、並びに口絞り加工後における鋼管の口絞り部の最小外径が同一である鋼管群を順次搬送し、搬送された鋼管の端部に口絞り機で口絞り加工を施す鋼管端部の口絞り加工方法であって、
前記鋼管群を順次搬送する際に、複数の被加熱材を同時に誘導加熱することができる加熱装置に装入して鋼管の端部を加熱しつつ、搬送し、
前記加熱装置に投入する電力を、下記(1)式により算出される基本投入電力と、前記加熱装置に装入された鋼管の本数とを乗じた値に応じて調整し、
前記搬送された鋼管の端部に口絞り加工を施す際に、前記加熱装置による加熱が完了してから口絞り加工を開始するまでに要する放冷時間を、下記(2)式により算出される時間に応じて調整することを特徴とする鋼管端部の口絞り加工方法。
W=4.3×(D2/D1)×t+76 ・・・(1)
T=6.6×(D2/D1)×t−16 ・・・(2)
ここで、Wは基本投入電力(kW)、Tは時間(s)、D1は口絞り加工前の鋼管の外径(mm)、tは口絞り加工前の鋼管の肉厚(mm)、D2は口絞り加工後における鋼管の口絞り部の最小外径(mm)である。
The steel pipe group with the same outer diameter and wall thickness before steel drawing and the minimum outer diameter of the steel pipe after drawing is transported sequentially, and the mouth drawing machine is attached to the end of the steel pipe. It is a method of squeezing the end of a steel pipe to be squeezed with
When sequentially transporting the steel pipe group, while heating the end of the steel pipe by charging into a heating device that can simultaneously induction heating a plurality of materials to be heated,
The power input to the heating device is adjusted according to a value obtained by multiplying the basic input power calculated by the following equation (1) and the number of steel pipes charged into the heating device,
When the end of the conveyed steel pipe is subjected to squeezing, the cooling time required from the completion of heating by the heating device to the start of squeezing is calculated by the following equation (2). A mouth-drawing method for a steel pipe end, characterized by adjusting according to time.
W = 4.3 × (D2 / D1) × t + 76 (1)
T = 6.6 × (D2 / D1) × t−16 (2)
Here, W is the basic input power (kW), T is the time (s), D1 is the outer diameter (mm) of the steel pipe before squeezing, t is the wall thickness (mm) of the steel pipe before squeezing, D2 Is the minimum outer diameter (mm) of the aperture portion of the steel pipe after aperture drawing.
口絞り加工前の鋼管の外径および肉厚、並びに口絞り加工後における鋼管の口絞り部の最小外径が同一であって、口絞り加工を施す前に加熱が必要な鋼管群と、口絞り加工前の鋼管の外径および肉厚、並びに口絞り加工後における鋼管の口絞り部の最小外径が同一であって、口絞り加工を施す前に加熱が不要な鋼管群とを交互に搬送し、搬送された鋼管の端部に口絞り機で口絞り加工を施す鋼管端部の口絞り加工方法であって、
前記加熱が必要な鋼管群に口絞り加工を施す際に、請求項3に記載の鋼管端部の口絞り加工方法を用い、
前記加熱が不要な鋼管群に口絞り加工を施す際に、鋼管を前記加熱装置に装入することなく、順次搬送し、搬送された鋼管の端部に口絞り加工を施すことを特徴とする鋼管端部の口絞り加工方法。
The outer diameter and thickness of the steel pipe before squeezing and the minimum outer diameter of the squeezed part of the steel pipe after squeezing are the same, and the steel pipe group that requires heating before squeezing, The outer diameter and thickness of the steel pipe before drawing, and the minimum outer diameter of the mouth drawing portion of the steel pipe after mouth drawing are the same, and the steel pipe group that does not need to be heated before mouth drawing is alternated. A steel pipe end squeezing method for carrying out squeezing with a squeezing machine on the end of the steel pipe that has been transported,
When performing the squeezing process on the steel pipe group that needs to be heated, the squeezing method of the steel pipe end part according to claim 3,
When carrying out a squeezing process on the steel pipe group that does not require heating, the steel pipes are sequentially transported without being inserted into the heating device, and the squeezing process is performed on the ends of the transported steel pipes. Mouth drawing method for steel pipe end.
JP2010164823A 2010-07-22 2010-07-22 Mouth drawing apparatus and mouth drawing method for steel pipe end Active JP5402865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010164823A JP5402865B2 (en) 2010-07-22 2010-07-22 Mouth drawing apparatus and mouth drawing method for steel pipe end

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010164823A JP5402865B2 (en) 2010-07-22 2010-07-22 Mouth drawing apparatus and mouth drawing method for steel pipe end

Publications (2)

Publication Number Publication Date
JP2012024795A JP2012024795A (en) 2012-02-09
JP5402865B2 true JP5402865B2 (en) 2014-01-29

Family

ID=45778390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010164823A Active JP5402865B2 (en) 2010-07-22 2010-07-22 Mouth drawing apparatus and mouth drawing method for steel pipe end

Country Status (1)

Country Link
JP (1) JP5402865B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107245A (en) * 1981-12-22 1983-06-25 Kawasaki Steel Corp Heating device for end of steel tube
JPS5947039A (en) * 1982-09-10 1984-03-16 Kawasaki Steel Corp Upset working method of steel pipe
JPS59197324A (en) * 1983-04-25 1984-11-08 Nippon Steel Corp Controlling method of heating end of metallic pipe
JP2806157B2 (en) * 1992-07-16 1998-09-30 日本鋼管株式会社 Induction heating method for upset processing section

Also Published As

Publication number Publication date
JP2012024795A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
RU2617085C2 (en) Device for quick heating of continuous oxyging line
EP2857119A1 (en) Expanded metal tube manufacturing method
US11185904B2 (en) Differential temperature push bending method and device for tube with small bending radius
JP5644577B2 (en) Steel pipe expansion method and equipment
KR20160100960A (en) Annealing furnace and method for annealing a steel strand
JP5402865B2 (en) Mouth drawing apparatus and mouth drawing method for steel pipe end
JP5544168B2 (en) Heat treatment method for extended steel products
CN105170692A (en) Stress control production process of high-strength aluminum alloy pipe
JP2012214866A (en) Continuous bright heat treatment method of stainless steel foil strip and horizontal continuous bright annealing furnace
JP2018514387A (en) Method for induction bending deformation of pressure-resistant pipe having thick wall thickness and large diameter, and induction type pipe bending apparatus
JP4916940B2 (en) Heat treatment method and heat treatment apparatus for welded steel pipe
JP2008238241A (en) Manufacturing method of aluminum metal sheet
JP5360046B2 (en) Manufacturing method of hot extruded tube
MX2014009443A (en) Metal pipe manufacturing method and manufacturing equipment.
WO2015182666A1 (en) Manufacturing method for bent member and hot-bending processing apparatus for steel material
CN106077131A (en) A kind of gas heating picks the method for manufacturing technology of stainless steel jointless elbow
JP2006281271A (en) Method for manufacturing steel sheet
KR101503054B1 (en) Formation method of elbow of double pipe type
CN102784815A (en) Classification processing method for incoming material length direction plate shape of steel plate cold straightening machine
JP2006274286A (en) Heat treatment method and method for controlling quality of article to be heat-treated
JP2020020038A (en) Heat treatment process for metal and heat treatment apparatus therefor
JP5763954B2 (en) Hot processing equipment for metal tubes
KR101377504B1 (en) Temperature control method of heating furnace
JP6900123B2 (en) How to modify continuous heat treatment equipment and continuous heat treatment equipment
JPH02174969A (en) Uniform heating equipment for steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R151 Written notification of patent or utility model registration

Ref document number: 5402865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350