JP5402531B2 - Pneumatic tire - Google Patents
Pneumatic tire Download PDFInfo
- Publication number
- JP5402531B2 JP5402531B2 JP2009247998A JP2009247998A JP5402531B2 JP 5402531 B2 JP5402531 B2 JP 5402531B2 JP 2009247998 A JP2009247998 A JP 2009247998A JP 2009247998 A JP2009247998 A JP 2009247998A JP 5402531 B2 JP5402531 B2 JP 5402531B2
- Authority
- JP
- Japan
- Prior art keywords
- land portion
- groove
- inclined groove
- tire
- respect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Tires In General (AREA)
Description
本発明は、車両装着時におけるタイヤ表裏の装着向きが指定され、タイヤ赤道の両側で非対称となるトレッドパターンを有する空気入りタイヤに関し、更に詳しくは、ドライ路面での操縦安定性と排水性能と耐偏摩耗性を両立することを可能にした空気入りタイヤに関する。 The present invention relates to a pneumatic tire having a tread pattern that is asymmetrical on both sides of the tire equator, with the orientation of the tire front and back being specified when the vehicle is mounted, and more specifically, steering stability, drainage performance, and resistance to resistance on dry road surfaces. The present invention relates to a pneumatic tire that can achieve both uneven wear properties.
空気入りタイヤは、通常、トレッド部にタイヤ周方向に延びる複数本の主溝を備えている。これら主溝は断面積が比較的大きく排水性能を担持するものである。また、トレッド部にタイヤ幅方向に延びる複数本のラグ溝を設け、これらラグ溝を主溝に連通させることにより、排水性能を更に高めることが可能である。 A pneumatic tire usually includes a plurality of main grooves extending in the tire circumferential direction in a tread portion. These main grooves have a relatively large cross-sectional area and support drainage performance. Moreover, it is possible to further improve drainage performance by providing a plurality of lug grooves extending in the tire width direction in the tread portion and communicating these lug grooves with the main groove.
しかしながら、主溝により区画された陸部をラグ溝により多数のブロックに細分化した場合、ドライ路面での操縦安定性が低下するばかりでなく、それらブロックに偏摩耗を生じ易いという欠点がある。これに対して、センター陸部とショルダー陸部との間に位置する中間陸部に複数本の傾斜溝を設け、各傾斜溝の一端をタイヤ幅方向外側の主溝に開口しつつ他端を中間陸部内で終端させることが提案されている(例えば、特許文献1〜4参照)。 However, when the land portion partitioned by the main groove is subdivided into a large number of blocks by the lug grooves, there is a disadvantage that not only the steering stability on the dry road surface is lowered, but also that the blocks are likely to be unevenly worn. In contrast, a plurality of inclined grooves are provided in the intermediate land portion located between the center land portion and the shoulder land portion, and one end of each inclined groove is opened to the main groove on the outer side in the tire width direction while the other end is opened. It is proposed to terminate in the middle land portion (see, for example, Patent Documents 1 to 4).
このような一端閉塞型の傾斜溝をセンター陸部とショルダー陸部との間に位置する中間陸部に設けた場合、偏摩耗の発生を抑えることが可能であるものの、排水性能の改善効果は必ずしも十分ではないのが現状である。また、中間陸部に傾斜溝を設けることはドライ路面での操縦安定性を低下させる要因にもなっている。 When such a one-end closed type inclined groove is provided in the intermediate land portion located between the center land portion and the shoulder land portion, it is possible to suppress the occurrence of uneven wear, but the effect of improving drainage performance is The current situation is not always sufficient. In addition, providing an inclined groove in the intermediate land portion is also a factor of reducing the steering stability on the dry road surface.
本発明の目的は、耐偏摩耗性を良好に維持しつつドライ路面での操縦安定性及び排水性能を向上することを可能にした空気入りタイヤを提供することにある。 An object of the present invention is to provide a pneumatic tire that can improve steering stability and drainage performance on a dry road surface while maintaining good uneven wear resistance.
上記目的を達成するための本発明の空気入りタイヤは、車両装着時におけるタイヤ表裏の装着向きが指定され、タイヤ赤道の両側で非対称となるトレッドパターンを有する空気入りタイヤにおいて、トレッド部にタイヤ周方向に延びる少なくとも4本の主溝を設け、これら主溝により複数列の陸部を区画すると共に、前記タイヤ赤道上に位置するセンター陸部にタイヤ周方向に対して傾斜する複数本の第1傾斜溝を設け、該センター陸部の車両内側に位置する内側中間陸部に前記第1傾斜溝と同方向に傾斜する複数本の第2傾斜溝を設け、各第1傾斜溝の一端をセンター陸部と内側中間陸部との間に位置する主溝に開口しつつ他端をセンター陸部内で終端させ、各第2傾斜溝の一端をセンター陸部と内側中間陸部との間に位置する主溝に開口しつつ他端を内側中間陸部内で終端させ、これら第1傾斜溝及び第2傾斜溝のうち少なくとも一方の傾斜溝の終端側の領域に底上げ部を形成し、該底上げ部の開始点を各傾斜溝の開口端から各傾斜溝の長さの10%〜30%の位置に設定し、該底上げ部での各傾斜溝の深さをセンター陸部と内側中間陸部との間に位置する主溝の深さの20%〜40%としたことを特徴とするものである。 In order to achieve the above object, a pneumatic tire according to the present invention is a pneumatic tire having a tread pattern that is asymmetric on both sides of the tire equator, with the tire front and back mounting orientations specified when the vehicle is mounted. And at least four main grooves extending in the direction. The main grooves define a plurality of rows of land portions, and a plurality of first grooves that are inclined with respect to the tire circumferential direction in the center land portion located on the tire equator. An inclined groove is provided, and a plurality of second inclined grooves that are inclined in the same direction as the first inclined groove are provided in an inner intermediate land portion located on the vehicle inner side of the center land portion, and one end of each first inclined groove is centered The other end is terminated in the center land portion while opening in the main groove located between the land portion and the inner intermediate land portion, and one end of each second inclined groove is positioned between the center land portion and the inner intermediate land portion. Opening in the main groove The other end is terminated in the inner intermediate land portion, and a bottom-up portion is formed in a region on the terminal end side of at least one of the first inclined groove and the second inclined groove, and the starting point of the bottom-up portion is inclined. It is set at a position of 10% to 30% of the length of each inclined groove from the opening end of the groove, and the depth of each inclined groove at the bottom raised portion is located between the center land portion and the inner intermediate land portion. It is characterized by being 20% to 40% of the depth of the groove.
本発明は、車両装着時におけるタイヤ表裏の装着向きが指定され、タイヤ赤道の両側で非対称となるトレッドパターンを有する空気入りタイヤに着目し、このような空気入りタイヤの装着向きと傾斜溝の配置及び構造とを巧みに組み合わせることにより、ドライ路面での操縦安定性と耐偏摩耗性と排水性能との両立を図るものである。 The present invention pays attention to a pneumatic tire having a tread pattern that is asymmetric on both sides of the tire equator, with the tire front and back mounting orientations specified when the vehicle is mounted. In addition, by skillfully combining the structure and the structure, it is possible to achieve a balance between steering stability on a dry road surface, uneven wear resistance, and drainage performance.
即ち、本発明では、センター陸部に一端閉塞型の第1傾斜溝を設ける一方で、内側中間陸部に第1傾斜溝と同方向に傾斜する一端閉塞型の第2傾斜溝を設け、これら第1傾斜溝及び第2傾斜溝の一端をセンター陸部と内側中間陸部との間に位置する共通の主溝に開口させることにより、耐偏摩耗性を良好に維持しながら、排水性能を効果的に高めることが可能になる。しかも、これら第1傾斜溝及び第2傾斜溝のうち少なくとも一方の傾斜溝の終端側の領域に所定の寸法で底上げ部を形成しているので、第1傾斜溝又は第2傾斜溝を備えた陸部の剛性を確保し、ドライ路面での操縦安定性を向上することができる。 That is, in the present invention, the center land portion is provided with a first-end-closed first inclined groove, while the inner intermediate land portion is provided with a one-end-closed-type second inclined groove inclined in the same direction as the first inclined groove. By opening one end of the first inclined groove and the second inclined groove into a common main groove located between the center land portion and the inner intermediate land portion, the drainage performance can be improved while maintaining good uneven wear resistance. It becomes possible to raise effectively. In addition, since the bottom raised portion is formed with a predetermined size in the region on the terminal side of at least one of the first inclined groove and the second inclined groove, the first inclined groove or the second inclined groove is provided. The rigidity of the land part can be secured and the driving stability on the dry road surface can be improved.
本発明において、車両内側及び車両外側に位置するショルダー陸部にはそれぞれタイヤ幅方向に延びる複数本のラグ溝を設け、これらラグ溝を各ショルダー陸部に隣接する主溝に対して非連通とすることが好ましい。特に、ラグ溝のタイヤ赤道側の開始点をショルダー陸部のタイヤ赤道側のエッジから該ショルダー陸部の幅の5%〜20%の位置に設定すると良い。ショルダー陸部のラグ溝を主溝に連通させないことにより、ショルダー陸部の剛性を確保し、ドライ路面での操縦安定性を向上すると共に、ヒールアンドトウ摩耗を抑制し、耐偏摩耗性を向上することができる。 In the present invention, a plurality of lug grooves extending in the tire width direction are provided in the shoulder land portions located on the vehicle inner side and the vehicle outer side, respectively, and these lug grooves are not communicated with the main groove adjacent to each shoulder land portion. It is preferable to do. In particular, the starting point on the tire equator side of the lug groove is preferably set to a position 5% to 20% of the width of the shoulder land portion from the tire equator side edge of the shoulder land portion. By preventing the lug groove on the shoulder land from communicating with the main groove, the shoulder land is secured, improving steering stability on dry roads, and suppressing heel and toe wear, improving uneven wear resistance. can do.
車両内側のショルダー陸部に配置されたラグ溝のタイヤ幅方向に対する平均傾斜角度a及び車両外側のショルダー陸部に配置されたラグ溝のタイヤ幅方向に対する平均傾斜角度bはそれぞれ0°〜25°とすることが好ましい。これにより、タイヤ側方への排水能力を高めることができ、更にはタイヤ転動時のノイズを低減する効果が得られる。 The average inclination angle a with respect to the tire width direction of the lug groove arranged in the shoulder land portion inside the vehicle and the average inclination angle b with respect to the tire width direction of the lug groove arranged in the shoulder land portion outside the vehicle are 0 ° to 25 °, respectively. It is preferable that Thereby, the drainage capacity to the tire side can be enhanced, and further, the effect of reducing noise during tire rolling can be obtained.
車両外側のショルダー陸部におけるサイプ数は車両内側のショルダー陸部におけるサイプ数よりも少なくすることが好ましい。車両外側のショルダー陸部におけるサイプ数を相対的に少なくすることにより、ドライ路面での操縦安定性を向上することができる。 It is preferable that the number of sipes in the shoulder land portion outside the vehicle is smaller than the number of sipes in the shoulder land portion inside the vehicle. By relatively reducing the number of sipes in the shoulder land portion outside the vehicle, it is possible to improve the handling stability on the dry road surface.
第1傾斜溝のセンター陸部のエッジに対して鋭角をなす輪郭線のタイヤ周方向に対する平均傾斜角度αは25°〜50°とし、第2傾斜溝の内側中間陸部のエッジに対して鋭角をなす輪郭線のタイヤ周方向に対する平均傾斜角度βは20°〜40°とすることが好ましい。第1傾斜溝及び第2傾斜溝の平均傾斜角度α,βを各上限値よりも小さくすることで排水性能を向上し、各下限値よりも大きくすることで耐偏摩耗性を向上することができる。 The average inclination angle α with respect to the tire circumferential direction of the contour line forming an acute angle with respect to the edge of the center land portion of the first inclined groove is 25 ° to 50 °, and is acute with respect to the edge of the inner intermediate land portion of the second inclined groove. It is preferable that the average inclination angle β of the contour line forming the tire circumferential direction is 20 ° to 40 °. The drainage performance is improved by making the average inclination angles α, β of the first inclined groove and the second inclined groove smaller than the respective upper limit values, and the uneven wear resistance is improved by making them larger than the respective lower limit values. it can.
第1傾斜溝のセンター陸部のエッジに対して鋭角をなす輪郭線のタイヤ周方向に対する平均傾斜角度αと第2傾斜溝の内側中間陸部のエッジに対して鋭角をなす輪郭線のタイヤ周方向に対する平均傾斜角度βとの関係はα>βとすることが好ましい。これにより、センター陸部の剛性を確保しつつ排水性能を向上することができる。 The average tire inclination angle α with respect to the tire circumferential direction of the contour line forming an acute angle with respect to the edge of the center land portion of the first inclined groove and the tire periphery of the contour line forming an acute angle with respect to the edge of the inner intermediate land portion of the second inclined groove. The relationship with the average inclination angle β with respect to the direction is preferably α> β. Thereby, drainage performance can be improved, ensuring the rigidity of a center land part.
第1傾斜溝のセンター陸部のエッジに対して鋭角をなす輪郭線のタイヤ周方向に対する傾斜角度は該第1傾斜溝の開口端から少なくとも溝長さ方向中央位置まで漸減させ、第2傾斜溝の内側中間陸部のエッジに対して鋭角をなす輪郭線のタイヤ周方向に対する傾斜角度は該第2傾斜溝の開口端から少なくとも溝長さ方向中央位置まで漸減させることが好ましい。これにより、優れた排水性能を発揮することができる。 The inclination angle of the contour line forming an acute angle with respect to the edge of the center land portion of the first inclined groove with respect to the tire circumferential direction is gradually decreased from the opening end of the first inclined groove to at least a central position in the groove length direction, and the second inclined groove It is preferable that the inclination angle with respect to the tire circumferential direction of the contour line forming an acute angle with respect to the edge of the inner middle land portion of the inner slope is gradually reduced from the opening end of the second inclined groove to at least the center position in the groove length direction. Thereby, the outstanding drainage performance can be exhibited.
センター陸部の第1傾斜溝が開口する側のエッジとは反対側のエッジから第1傾斜溝までの最小距離γ1は該センター陸部の幅の10%〜40%とし、内側中間陸部の第2傾斜溝が開口する側のエッジとは反対側のエッジから第2傾斜溝までの最小距離γ2は該内側中間陸部の幅の10%〜40%とすることが好ましい。第1傾斜溝及び第2傾斜溝の最小距離γ1,γ2を各上限値よりも小さくすることで排水性能を向上し、各下限値よりも大きくすることで耐偏摩耗性を向上することができる。 The minimum distance γ1 from the edge on the side opposite to the edge where the first inclined groove of the center land portion is open to the first inclined groove is 10% to 40% of the width of the center land portion, The minimum distance γ2 from the edge on the side opposite to the edge on which the second inclined groove opens to the second inclined groove is preferably 10% to 40% of the width of the inner intermediate land portion. The drainage performance can be improved by making the minimum distances γ1, γ2 of the first inclined groove and the second inclined groove smaller than the respective upper limit values, and the uneven wear resistance can be improved by making the minimum distances larger than the respective lower limit values. .
センター陸部の車両外側のエッジには複数の面取り部を設けることが好ましい。これにより、耐偏摩耗性を向上することができる。ここで、耐偏摩耗性の改善効果を十分に得るために、面取り部の最大幅はセンター陸部の幅の10%〜30%とし、面取り部の最大深さは主溝のウエアインジケーターから踏面までの有効深さの10%以上とし、面取り部の最大幅位置はタイヤ周方向に隣り合う一対の傾斜溝の終端と開口端との間に配置することが好ましい。 It is preferable to provide a plurality of chamfered portions on the edge of the center land portion outside the vehicle. Thereby, uneven wear resistance can be improved. Here, in order to obtain the effect of improving uneven wear resistance, the maximum width of the chamfered portion is 10% to 30% of the width of the center land portion, and the maximum depth of the chamfered portion is determined from the wear indicator of the main groove. It is preferable that the maximum width position of the chamfered portion is arranged between the end of the pair of inclined grooves adjacent to the tire circumferential direction and the open end.
センター陸部の車両外側に位置する外側中間陸部はタイヤ周方向に連続するリブ構造とすることが好ましい。これにより、排水性能を向上するために設けた第1傾斜溝及び第2傾斜溝に起因する剛性低下を補ってコーナリング性を改善することができる。 It is preferable that the outer intermediate land portion located on the vehicle outer side of the center land portion has a rib structure continuous in the tire circumferential direction. Thereby, the cornering property can be improved by making up for a decrease in rigidity caused by the first inclined groove and the second inclined groove provided to improve drainage performance.
更に、本発明においては、トレッド部の接地領域全体の溝面積比率が25%〜40%であり、該トレッド部のタイヤ赤道から車両外側の接地端までの外側接地領域での溝面積比率に対する該トレッド部のタイヤ赤道から車両内側の接地端までの内側接地領域での溝面積比率の比が1.03〜1.20であることが好ましい。これにより、ドライ路面での操縦安定性と排水性能との高次元での両立が可能となる。 Furthermore, in the present invention, the groove area ratio of the entire ground contact area of the tread portion is 25% to 40%, and the groove area ratio in the outer ground contact area from the tire equator of the tread portion to the ground contact end outside the vehicle is It is preferable that the ratio of the groove area ratio in the inner ground contact region from the tire equator of the tread portion to the ground contact edge inside the vehicle is 1.03 to 1.20. As a result, it is possible to achieve both a high level of handling stability and drainage performance on a dry road surface.
以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1は本発明の実施形態からなる空気入りタイヤのトレッドパターンを示し、図2は図1におけるセンター陸部及び内側中間陸部を示し、図3は第1傾斜溝又は第2傾斜溝をその溝幅中心線に沿って切り欠いた状態を示し、図2における第1傾斜溝をその中心位置で切り欠いた状態を示し、図3及び図4はそれぞれセンター陸部の要部を示すものである。本実施形態の空気入りタイヤは、車両装着時におけるタイヤ表裏の装着向きが指定されたものであり、車両外側をOUTにて示し、車両内側をINにて示す。 Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings. 1 shows a tread pattern of a pneumatic tire according to an embodiment of the present invention, FIG. 2 shows a center land portion and an inner intermediate land portion in FIG. 1, and FIG. 3 shows a first inclined groove or a second inclined groove. 2 shows a state cut along the center line of the groove width, shows a state where the first inclined groove in FIG. 2 is cut out at the center position, and FIGS. 3 and 4 show the main part of the center land portion, respectively. is there. The pneumatic tire of the present embodiment is designated with the tire front and back mounting orientation when the vehicle is mounted, and the vehicle outer side is indicated by OUT and the vehicle inner side is indicated by IN.
図1に示すように、トレッド部Tにはタイヤ周方向に延びる4本の主溝1a,1b,1c,1dが車両内側から車両外側へ順次形成され、これら主溝1a〜1dにより5列の陸部10,20,30,40,50が区画されている。つまり、内側ショルダー陸部10は車両内側のショルダー領域に位置し、内側中間陸部20は主溝1a,1b間に位置し、センター陸部30は主溝1b,1c間にてタイヤ赤道CL上に位置し、外側中間陸部40は主溝1c,1d間に位置し、外側ショルダー陸部50は車両外側のショルダー領域に位置している。なお、主溝1a〜1dは溝幅が5.0mm〜15.0mmであり、溝深さが7.0mm〜9.0mmである。
As shown in FIG. 1, four
センター陸部30には、タイヤ周方向に対して傾斜する複数本の傾斜溝31(第1傾斜溝)がタイヤ周方向に間隔をおいて形成されている。各傾斜溝31は、一端がセンター陸部30と内側中間陸部20との間に位置する主溝1bに開口し、他端がセンター陸部30内で終端している。これら傾斜溝31は溝幅が一定であっても良いが、図示のように終端側ほど溝幅が狭くなっていることが望ましい。各傾斜溝31の終端側の領域には底上げ部31aが形成されている。底上げ部31の開始部分は、図2に示すように、クラックの発生を防止するために円弧状に窪んだ形状になっている。また、センター陸部30には主溝1bだけに連通する複数本のサイプ32が形成され、傾斜溝31とサイプ32とがタイヤ周方向に沿って交互に配置されている。更に、センター陸部30の車両外側のエッジには複数の面取り部33が形成されている。各面取り部33は三角形をなす一対の傾斜面を有している。これら面取り部33はタイヤ周方向に隣り合う一対の傾斜溝31,31の間に位置するように配置されている。
A plurality of inclined grooves 31 (first inclined grooves) that are inclined with respect to the tire circumferential direction are formed in the
内側中間陸部20には、傾斜溝31と同方向に傾斜する複数本の傾斜溝21(第2傾斜溝)がタイヤ周方向に間隔をおいて形成されている。各傾斜溝21は、一端がセンター陸部30と内側中間陸部20との間に位置する主溝1bに開口し、他端が内側中間陸部20内で終端している。これら傾斜溝21は溝幅が一定であっても良いが、図示のように終端側ほど溝幅が狭くなっていることが望ましい。各傾斜溝21の終端側の領域には底上げ部21aが形成されている。底上げ部21の開始部分は、図2に示すように、クラックの発生を防止するために円弧状に窪んだ形状になっている。また、内側中間陸部20には主溝1bだけに連通する複数本のサイプ22が形成され、傾斜溝21とサイプ22とがタイヤ周方向に沿って交互に配置されている。
A plurality of inclined grooves 21 (second inclined grooves) that are inclined in the same direction as the
外側中間陸部40には、タイヤ周方向に延びる細溝41が形成されている。細溝41は溝幅が0.5mm〜3.0mmであり、溝深さが0.5mm〜2.5mmであって、主溝1a〜1dよりも浅く狭いものである。この外側中間陸部40はタイヤ幅方向に延びる溝によって分断されておらず、タイヤ周方向に連続するリブ構造を有している。
A
内側ショルダー陸部10には、タイヤ幅方向に延びる複数本のラグ溝11と、タイヤ幅方向に延びる複数本のサイプ12とが形成されている。これらラグ溝11及びサイプ12はタイヤ周方向に間隔をおいて交互に配置されている。ラグ溝11及びサイプ12はいずれも内側ショルダー陸部10に隣接する主溝1aに対して非連通となっている。
The inner
外側ショルダー陸部50には、タイヤ幅方向に延びる複数本のラグ溝51がタイヤ周方向に間隔をおいて形成されている。これらラグ溝51は外側ショルダー陸部50に隣接する主溝1dに対して非連通になっている。
A plurality of
上述のトレッドパターンを有する空気入りタイヤでは、センター陸部30に一端閉塞型の傾斜溝31を設ける一方で、内側中間陸部20に傾斜溝31と同方向に傾斜する一端閉塞型の傾斜溝21を設け、これら傾斜溝21,31の一端をセンター陸部30と内側中間陸部20との間に位置する共通の主溝1dに開口させることにより、排水性能を効果的に高めることが可能になる。特に、傾斜溝21の開口端と傾斜溝31の開口端とが向かい合うように傾斜溝21と傾斜溝31とを実質的に点対称の配置とすることにより、主溝1dに基づく排水能力を高めることができる。また、傾斜溝21,31は陸部20,30を分断するものではないため耐偏摩耗性も優れている。しかも、傾斜溝21,31の終端側の領域に底上げ部21a,31aを形成しているので、傾斜溝21,31を備えた陸部20,30の剛性を確保し、ドライ路面での操縦安定性を向上することができる。従って、耐偏摩耗性を良好に維持しながら、ドライ路面での操縦安定性及び排水性能を効果的に高めることが可能になる。
In the pneumatic tire having the above-described tread pattern, the
上記空気入りタイヤにおいて、傾斜溝21,31の底上げ部21a,31aの開始点は傾斜溝21,31の開口端から傾斜溝21,31の長さの10%〜30%の位置に設定されている。つまり、図3に示すように、傾斜溝21,31の開口端から底上げ部21a,31aの開始点までの長さL0は傾斜溝21,31の長さL1の10%〜30%になっている。長さL0が長さL1の10%未満であると排水性能が低下し、逆に長さL1の30%を超えるとドライ路面での操縦安定性が低下する。但し、傾斜溝21,31の開口端から底上げ部21a,31aの開始点までの長さL0及び傾斜溝21,31の長さL1は、傾斜溝21,31の溝幅中心線に沿って測定される寸法である。
In the pneumatic tire described above, the starting points of the raised
また、底上げ部21a,31aでの各傾斜溝21,31の深さD0はセンター陸部30と内側中間陸部20との間に位置する主溝1bの深さD1の20%〜40%になっている。深さD0が深さD1の20%未満であると排水性能が低下し、逆に深さD1の40%を超えるとドライ路面での操縦安定性が低下する。この深さD0は底上げ部21a,31aの全域において適用されるものである。
Further, the depth D0 of the
なお、上述のように傾斜溝21,31の両方に底上げ部21a,31aを設けることが望ましいが、これら傾斜溝21,31のいずれか一方だけに底上げ部を設けるようにしても良い。
As described above, it is desirable to provide the bottom raised
上記空気入りタイヤにおいて、車両内側及び車両外側に位置するショルダー陸部10,50にそれぞれタイヤ幅方向に延びる複数本のラグ溝11,51を設け、これらラグ溝11,51を各ショルダー陸部10,50に隣接する主溝1a,1dに対して非連通とすることにより、ショルダー陸部10,50の剛性を確保し、ドライ路面での操縦安定性を向上すると共に、ヒールアンドトウ摩耗を抑制し、耐偏摩耗性を向上することができる。
In the pneumatic tire, a plurality of
ここで、ラグ溝11,51のタイヤ赤道CL側の開始点をショルダー陸部10,50のタイヤ赤道CL側のエッジから該ショルダー陸部10,50の幅の5%〜20%の位置に設定すると良い。つまり、図1に示すように、ショルダー陸部10のタイヤ赤道CL側のエッジからラグ溝11のタイヤ赤道CL側の開始点までの距離W11はショルダー陸部10の幅W10の5%〜20%にすると良い。また、ショルダー陸部50のタイヤ赤道CL側のエッジからラグ溝51のタイヤ赤道CL側の開始点までの距離W51はショルダー陸部50の幅W50の5%〜20%にすると良い。距離W11,W51が各下限値を下回るとショルダー陸部10,50の剛性低下によりドライ路面での操縦安定性が低下し、逆に各上限値を上回ると排水性能が低下する。なお、ショルダー陸部10,50の幅W10,W50はショルダー陸部10,50のタイヤ赤道CL側のエッジからトレッドデザインエンドまでのタイヤ幅方向の寸法である。
Here, the starting point of the
車両内側のショルダー陸部10に配置されたラグ溝11のタイヤ幅方向に対する平均傾斜角度a及び車両外側のショルダー陸部50に配置されたラグ溝51のタイヤ幅方向に対する平均傾斜角度bはそれぞれ0°〜25°とすると良い (図1参照)。これにより、タイヤ側方への排水能力を高めることができ、更にはタイヤ転動時のノイズを低減する効果が得られる。これら平均傾斜角度a,bが25°を超えると排水能力が低下し、また、タイヤ転動時のノイズが増加する。なお、ラグ溝11,51の平均傾斜角度a,bはラグ溝11,51のタイヤ赤道CL側の開始点からラグ溝11,51の長さ方向の中央位置までの平均傾斜角度とする。これは、上記部位がラグ溝11,51の機能に大きく影響するからである。
The average inclination angle a with respect to the tire width direction of the
車両外側のショルダー陸部50におけるサイプ数は車両内側のショルダー陸部10におけるサイプ数よりも少なくすると良い。より具体的には、車両外側のショルダー陸部50及び車両内側のショルダー陸部10の双方にサイプを設ける場合、そのサイプ数を車両外側のショルダー陸部50において相対的に少なくする。或いは、車両内側のショルダー陸部10にサイプ12を設ける一方で、車両外側のショルダー陸部50にはサイプを設けないようにする。このように車両外側のショルダー陸部50におけるサイプ数を相対的に少なくすることにより、ドライ路面での操縦安定性を向上することができる。
The number of sipes in the
上記空気入りタイヤにおいて、図2に示すように、傾斜溝31のセンター陸部30のエッジに対して鋭角をなす輪郭線のタイヤ周方向に対する傾斜角度は傾斜溝31の開口端位置P0から少なくとも溝長さ方向中央位置P1まで漸減し、傾斜溝21の内側中間陸部20のエッジに対して鋭角をなす輪郭線のタイヤ周方向に対する傾斜角度は傾斜溝21の開口端位置P0から少なくとも溝長さ方向中央位置P1まで漸減している。これにより、良好な水流が形成されて優れた排水性能を発揮することが可能になる。
In the pneumatic tire, as shown in FIG. 2, the inclination angle of the contour line forming an acute angle with respect to the edge of the
傾斜溝31のセンター陸部30のエッジに対して鋭角をなす輪郭線のタイヤ周方向に対する平均傾斜角度αは25°〜50°の範囲に設定され、傾斜溝21の内側中間陸部20のエッジに対して鋭角をなす輪郭線のタイヤ周方向に対する平均傾斜角度βは20°〜40°の範囲に設定されている。ここで、平均傾斜角度α,βは各傾斜溝の開口端位置P0から溝長さ方向中央位置P1までの平均傾斜角度である。平均傾斜角度α,βが各上限値よりも大きくなると溝内を流れる水の抵抗が大きくなるため排水性能が低下する。一方、平均傾斜角度α,βが各下限値よりも小さくなると開口端付近においてチッピングによる偏摩耗を生じ易くなる。また、傾斜溝31の平均傾斜角度αと傾斜溝21の平均傾斜角度βとはα>βの関係を満たしている。α>βとすることで、センター陸部31の剛性を確保しつつ排水性能を改善することができる。
The average inclination angle α with respect to the tire circumferential direction of the contour line forming an acute angle with respect to the edge of the
図2において、センター陸部30の傾斜溝31が開口する側のエッジとは反対側のエッジから傾斜溝31までの最小距離γ1はセンター陸部30の幅W30の10%〜40%の範囲に設定し、内側中間陸部20の傾斜溝21が開口する側のエッジとは反対側のエッジから傾斜溝21までの最小距離γ2は内側中間陸部20の幅W20の10%〜40%の範囲に設定すると良い。これにより、排水性能と耐偏摩耗性を両立することができる。ここで、最小距離γ1,γ2が各下限値よりも小さいとサーキット走行のように大きな横Gが生じる場合にチッピングを生じ易く、逆に各上限値よりも大きいと排水性能を確保することが難しくなる。
In FIG. 2, the minimum distance γ1 from the edge on the side opposite to the edge where the
図2に示すように、センター陸部30の車両外側のエッジには複数の面取り部33が間欠的に設けられているが、このような面取り部33を設けることにより、耐偏摩耗性を改善することができる。サーキット走行のように大きな横Gが生じる場合、センター陸部30における傾斜溝31の終端付近の部分が変形し、その部分だけが接地しないため摩耗せずに残ってしまう傾向がある。そこで、センター陸部30における傾斜溝31の終端付近以外の部分に面取り部33を選択的に設けることにより、傾斜溝31に起因する偏摩耗を抑制することができる。
As shown in FIG. 2, a plurality of
面取り部33の最大幅Wmax は、センター陸部30の幅W30の10%〜30%の範囲に設定すると良い。面取り部33の最大幅Wmax がセンター陸部30の幅W30の10%未満であると面取り部33による偏摩耗の抑制効果が不十分になり、逆に30%を超えるとセンター陸部30の剛性が著しく低下することに起因して偏摩耗を生じ易くなる。
The maximum width Wmax of the chamfered
面取り部33の最大深さHmax は、図5に示すように、主溝1cの有効深さDの10%以上に設定すると良い。主溝1cの有効深さDとは、主溝1c内に配置されたウエアインジケーター2から踏面までの深さである。面取り部33の最大深さHmax が主溝1cの有効深さDの10%未満であると偏摩耗の抑制効果が不十分になる。
As shown in FIG. 5, the maximum depth Hmax of the chamfered
面取り部33の最大幅位置は、タイヤ周方向に隣り合う一対の傾斜溝31,31の終端と開口端との間に配置すると良い。つまり、図2に示すように、タイヤ周方向に隣り合う一対の傾斜溝31,31の終端と開口端との間に規定される領域Xの中に面取り部33の最大幅Wmax となる部位を配置すると良い。これにより、偏摩耗を効果的に抑制することができる。
The maximum width position of the chamfered
上記空気入りタイヤにおいて、センター陸部30の車両外側に位置する外側中間陸部40をタイヤ周方向に連続するリブ構造とすることにより、排水性能を向上するために設けた傾斜溝21,31に起因する陸部20,30の剛性低下を補ってコーナリング性を改善することができる。
In the pneumatic tire described above, the outer
また、上記空気入りタイヤにおいては、トレッド部Tの接地領域全体の溝面積比率を25%〜40%にすると共に、該トレッド部Tのタイヤ赤道CLから車両外側の接地端までの外側接地領域での溝面積比率(Rout )に対する該トレッド部Tのタイヤ赤道CLから車両内側の接地端までの内側接地領域での溝面積比率(Rin)の比(Rin/Rout )を1.03〜1.20にすると良い。つまり、排水性能への寄与が大きい内側接地領域の溝面積比率を相対的に大きくし、ドライ路面での操縦安定性への寄与が大きい外側接地領域の溝面積比率を相対的に小さくするのである。これにより、ドライ路面での操縦安定性と排水性能との高次元での両立が可能となる。なお、接地領域とは空気圧250kPa、荷重4kNの条件にて空気入りタイヤのトレッド部を接地させたときに形成されるタイヤ周上の接地領域である。 In the pneumatic tire described above, the groove area ratio of the entire ground contact region of the tread portion T is set to 25% to 40%, and the outer ground contact region from the tire equator CL of the tread portion T to the ground contact end outside the vehicle. the ratio of the groove area ratio groove area ratio in the inner contact region from the tire equator CL of the tread portion T for (R out) to the ground terminal of the vehicle interior (R in) (R in / R out) 1.03 It should be set to ˜1.20. That is, the groove area ratio of the inner ground contact area that greatly contributes to drainage performance is relatively increased, and the groove area ratio of the outer ground contact area that significantly contributes to steering stability on the dry road surface is relatively decreased. . As a result, it is possible to achieve both a high level of handling stability and drainage performance on a dry road surface. The ground contact area is a ground contact area on the tire circumference formed when the tread portion of the pneumatic tire is grounded under conditions of an air pressure of 250 kPa and a load of 4 kPa.
タイヤサイズが205/55R16であり、車両装着時におけるタイヤ表裏の装着向きが指定され、タイヤ赤道の両側で非対称となるトレッドパターンを有する空気入りタイヤにおいて、図1に示すように、トレッド部にタイヤ周方向に延びる4本の主溝を設け、これら主溝により5列の陸部を区画すると共に、タイヤ赤道上に位置するセンター陸部にタイヤ周方向に対して傾斜する複数本の第1傾斜溝を設け、該センター陸部の車両内側に位置する内側中間陸部に第1傾斜溝と同方向に傾斜する複数本の第2傾斜溝を設け、各第1傾斜溝の一端をセンター陸部と内側中間陸部との間に位置する主溝に開口しつつ他端をセンター陸部内で終端させ、各第2傾斜溝の一端をセンター陸部と内側中間陸部との間に位置する主溝に開口しつつ他端を内側中間陸部内で終端させ、これら第1傾斜溝及び第2傾斜溝の終端側の領域に底上げ部を形成すると共に、センター陸部の車両外側のエッジに複数の面取り部を設け、第1傾斜溝の底上げ開始位置(L0/L1×100%)、第2傾斜溝の底上げ開始位置(L0/L1×100%)、第1傾斜溝の底上げ部での深さ(D0/D1×100%)、第2傾斜溝の底上げ部での深さ(D0/D1×100%)、車両内側ショルダーラグ溝の開始位置(W11/W10×100%)、車両外側ショルダーラグ溝の開始位置(W51/W50×100%)、車両内側ショルダーラグ溝の傾斜角度a(°)、車両外側ショルダーラグ溝の傾斜角度b(°)、ショルダー陸部のサイプ数(IN/OUT)、第1傾斜溝の平均傾斜角度α(°)、第2傾斜溝の平均傾斜角度β(°)、第1傾斜溝から主溝エッジまでの最小距離(γ1/W30×100%)、第2傾斜溝から主溝エッジまでの最小距離(γ2/W20×100%)、面取り部の最大幅(Wmax /W30×100%)、面取り部の最大深さ(Hmax /D×100%)、トレッド部の溝面積比率(%)、溝面積比率の比(Rin/Rout )を表1及び表2のように設定した実施例1〜16のタイヤを作製した。比較のため、内側中間陸部と外側中間陸部にそれぞれ傾斜溝を設け、各傾斜溝の一端をショルダー側の主溝に開口しつつ他端を陸部内で終端させた空気入りタイヤ(従来例)を用意した。 In a pneumatic tire having a tread pattern in which the tire size is 205 / 55R16, the mounting direction of the front and back of the tire when the vehicle is mounted is specified, and the tire has a tread pattern that is asymmetric on both sides of the tire equator, as shown in FIG. Four main grooves extending in the circumferential direction are provided, and five rows of land portions are defined by these main grooves, and a plurality of first inclinations are inclined at the center land portion located on the tire equator with respect to the tire circumferential direction. A groove is provided, and a plurality of second inclined grooves inclined in the same direction as the first inclined groove are provided in an inner intermediate land portion located on the vehicle inner side of the center land portion, and one end of each first inclined groove is connected to the center land portion. The other end is terminated in the center land portion while opening in the main groove located between the center land portion and the inner intermediate land portion, and one end of each second inclined groove is located between the center land portion and the inner intermediate land portion. Open the other end of the groove The first intermediate slope portion is terminated in the side intermediate land portion, a bottom raised portion is formed in a region on the terminal end side of the first inclined groove and the second inclined groove, and a plurality of chamfered portions are provided at the outer edge of the vehicle in the center land portion. Groove bottom-up start position (L0 / L1 × 100%), bottom-up start position of second inclined groove (L0 / L1 × 100%), depth at bottom-up portion of first inclined groove (D0 / D1 × 100%) , Depth at the bottom raised portion of the second inclined groove (D0 / D1 × 100%), start position of the vehicle inner shoulder lug groove (W11 / W10 × 100%), start position of the vehicle outer shoulder lug groove (W51 / W50) × 100%), vehicle inner shoulder lug groove inclination angle a (°), vehicle outer shoulder lug groove inclination angle b (°), shoulder land sipe number (IN / OUT), first inclination groove average inclination Angle α (°), average inclination of second inclined groove Slope angle β (°), minimum distance from the first inclined groove to the main groove edge (γ1 / W30 × 100%), minimum distance from the second inclined groove to the main groove edge (γ2 / W20 × 100%), chamfering Maximum width (Wmax / W30 × 100%), maximum depth of chamfered portion (Hmax / D × 100%), groove area ratio (%) of tread part, ratio of groove area ratio (R in / R out ) Tires of Examples 1 to 16 were prepared in the manners shown in Tables 1 and 2. For comparison, a pneumatic tire is provided with inclined grooves in the inner intermediate land portion and the outer intermediate land portion, with one end of each inclined groove opened to the main groove on the shoulder side and the other end terminated in the land portion (conventional example) ) Was prepared.
これらタイヤについて、下記の評価方法により、ドライ路面での操縦安定性、排水性能(ウエット性能)、耐偏摩耗性、ノイズ性能を評価し、その結果を表1及び表2に示した。 About these tires, the following evaluation methods evaluated steering stability on a dry road surface, drainage performance (wet performance), uneven wear resistance, and noise performance. The results are shown in Tables 1 and 2.
ドライ路面での操縦安定性:
各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて空気圧を250kPaとして排気量1800ccの乗用車に装着し、乾燥路面からなるテストコースを走行し、テストドライバーによる官能評価を実施した。評価結果は、従来例を100とする指数にて示した。この指数値が大きいほどドライ路面での操縦安定性が優れていることを意味する。
Steering stability on dry roads:
Each test tire was assembled on a wheel with a rim size of 16 × 6.5 J, mounted on a passenger car with a displacement of 1800 cc with an air pressure of 250 kPa, and traveled on a test course consisting of a dry road surface, and sensory evaluation was performed by a test driver. The evaluation results are shown as an index with the conventional example being 100. The larger the index value, the better the steering stability on the dry road surface.
排水性能:
各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて空気圧を250kPaとして排気量1800ccの乗用車に装着し、半径100mの円を描きながら旋回走行し、その旋回路に設けた水深5mmのプールに進入したときの最大横向き加速度を計測した。評価結果は、従来例を100とする指数にて示した。この指数値が大きいほど排水性能が優れていることを意味する。
Drainage performance:
Each test tire is mounted on a wheel with a rim size of 16 × 6.5J and mounted on a passenger car with a displacement of 1800cc with an air pressure of 250 kPa. The maximum lateral acceleration when entering was measured. The evaluation results are shown as an index with the conventional example being 100. A larger index value means better drainage performance.
耐偏摩耗性:
各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて空気圧を250kPaとして排気量1800ccの乗用車に装着し、乾燥路面からなる1周2kmのサーキットを10周走行した後、トレッド面に発生した偏摩耗の状況を目視により観察し、従来例を基準(3)とする5点法にて耐偏摩耗性を評価した。評価結果は、点数が大きいほど耐偏摩耗性が優れていることを意味する。
Uneven wear resistance:
Each test tire was assembled on a wheel with a rim size of 16 × 6.5J and mounted on a passenger car with an air pressure of 250 kPa and a displacement of 1800 cc. After running 10 circuits on a 2 km circuit consisting of a dry road surface, The state of wear was visually observed, and uneven wear resistance was evaluated by a five-point method using the conventional example as a reference (3). An evaluation result means that uneven wear resistance is excellent, so that a score is large.
ノイズ性能:
各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて空気圧を250kPaとして排気量1800ccの乗用車に装着し、乾燥路面からなるテストコースを走行し、テストドライバーによる官能評価を実施し、従来例を基準(3)とする5点法にてノイズ性能を評価した。評価結果は、点数が大きいほどノイズ性能が優れていることを意味する。
Noise performance:
Each test tire is mounted on a wheel with a rim size of 16 × 6.5J, mounted on a passenger car with a displacement of 1800cc with an air pressure of 250 kPa, run on a test course consisting of a dry road surface, and a sensory evaluation by a test driver is carried out. The noise performance was evaluated by a five-point method with reference (3). An evaluation result means that noise performance is excellent, so that a score is large.
表1及び表2から明らかなように、実施例1〜16のタイヤは従来例に比べて耐偏摩耗性を同等以上に維持しながら、ドライ路面での操縦安定性及び排水性能を向上することができた。 As is apparent from Tables 1 and 2, the tires of Examples 1 to 16 improve the steering stability and drainage performance on the dry road surface while maintaining the uneven wear resistance equal to or higher than that of the conventional example. I was able to.
1a,1b,1c,1d 主溝
10,20,30,40,50 陸部
11,51 ラグ溝
12,22,32,52 サイプ
21,31 傾斜溝
41 細溝
T トレッド部
1a, 1b, 1c,
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009247998A JP5402531B2 (en) | 2009-10-28 | 2009-10-28 | Pneumatic tire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009247998A JP5402531B2 (en) | 2009-10-28 | 2009-10-28 | Pneumatic tire |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011093388A JP2011093388A (en) | 2011-05-12 |
JP5402531B2 true JP5402531B2 (en) | 2014-01-29 |
Family
ID=44110817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009247998A Active JP5402531B2 (en) | 2009-10-28 | 2009-10-28 | Pneumatic tire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5402531B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5893951B2 (en) * | 2012-02-21 | 2016-03-23 | 株式会社ブリヂストン | tire |
JP6056359B2 (en) * | 2012-10-11 | 2017-01-11 | 横浜ゴム株式会社 | Pneumatic tire |
JP5715655B2 (en) * | 2013-03-22 | 2015-05-13 | 住友ゴム工業株式会社 | Pneumatic tire |
JP6891559B2 (en) * | 2017-03-15 | 2021-06-18 | 住友ゴム工業株式会社 | Pneumatic tires |
JP7155847B2 (en) * | 2018-10-12 | 2022-10-19 | 住友ゴム工業株式会社 | tire |
JP7183961B2 (en) * | 2019-06-04 | 2022-12-06 | 横浜ゴム株式会社 | pneumatic tire |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2786398B2 (en) * | 1993-12-27 | 1998-08-13 | 住友ゴム工業株式会社 | Heavy duty pneumatic tires |
JP3254171B2 (en) * | 1996-07-04 | 2002-02-04 | 住友ゴム工業株式会社 | Heavy duty pneumatic tires |
JP4432389B2 (en) * | 2003-08-13 | 2010-03-17 | 横浜ゴム株式会社 | Heavy duty pneumatic tire |
JP4505290B2 (en) * | 2004-09-07 | 2010-07-21 | 株式会社ブリヂストン | Pneumatic tire |
JP4598553B2 (en) * | 2005-02-08 | 2010-12-15 | 株式会社ブリヂストン | Pneumatic tire |
JP2007083810A (en) * | 2005-09-21 | 2007-04-05 | Yokohama Rubber Co Ltd:The | Pneumatic tire |
JP4969874B2 (en) * | 2006-03-06 | 2012-07-04 | 株式会社ブリヂストン | Pneumatic tire |
JP2008037139A (en) * | 2006-08-01 | 2008-02-21 | Yokohama Rubber Co Ltd:The | Pneumatic tire |
JP4163244B1 (en) * | 2007-08-08 | 2008-10-08 | 横浜ゴム株式会社 | Pneumatic tire |
JP4217267B1 (en) * | 2007-09-13 | 2009-01-28 | 住友ゴム工業株式会社 | Pneumatic tire |
JP4406455B2 (en) * | 2007-12-18 | 2010-01-27 | 住友ゴム工業株式会社 | Pneumatic tire |
-
2009
- 2009-10-28 JP JP2009247998A patent/JP5402531B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011093388A (en) | 2011-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4829994B2 (en) | Pneumatic tire | |
JP5321093B2 (en) | Pneumatic tire | |
US7891392B2 (en) | Pneumatic tire with tread having curved oblique grooves and chamfers | |
JP5971280B2 (en) | Pneumatic tire | |
US8267135B2 (en) | Pneumatic tire with tread having circumferential grooves and lug grooves | |
JP4217266B1 (en) | Pneumatic tire | |
JP4862090B2 (en) | Pneumatic tire | |
JP5131248B2 (en) | Pneumatic tire | |
JP5088319B2 (en) | Pneumatic tire | |
JP6110586B2 (en) | Pneumatic tire | |
US10899178B2 (en) | Pneumatic tire | |
JP4816675B2 (en) | Pneumatic tire | |
JP6699270B2 (en) | Pneumatic tire | |
JP5200520B2 (en) | Pneumatic tire | |
JP4899787B2 (en) | Pneumatic tire | |
JP6055521B1 (en) | Pneumatic tire | |
JP6393216B2 (en) | Pneumatic tire | |
JP4548551B2 (en) | Pneumatic tire | |
JPWO2016121858A1 (en) | Pneumatic tire | |
JP2010247759A (en) | Pneumatic tire | |
JP6571093B2 (en) | Pneumatic tire | |
JP5402531B2 (en) | Pneumatic tire | |
JP2009161112A (en) | Pneumatic tire | |
JP4367667B1 (en) | Pneumatic tire | |
JP6358970B2 (en) | Pneumatic tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121010 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131014 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5402531 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |