JP5402192B2 - Cutting method - Google Patents

Cutting method Download PDF

Info

Publication number
JP5402192B2
JP5402192B2 JP2009098867A JP2009098867A JP5402192B2 JP 5402192 B2 JP5402192 B2 JP 5402192B2 JP 2009098867 A JP2009098867 A JP 2009098867A JP 2009098867 A JP2009098867 A JP 2009098867A JP 5402192 B2 JP5402192 B2 JP 5402192B2
Authority
JP
Japan
Prior art keywords
cutting
wear
amount
tool
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009098867A
Other languages
Japanese (ja)
Other versions
JP2010247264A (en
Inventor
章 栗栖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2009098867A priority Critical patent/JP5402192B2/en
Publication of JP2010247264A publication Critical patent/JP2010247264A/en
Application granted granted Critical
Publication of JP5402192B2 publication Critical patent/JP5402192B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Milling Processes (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

本発明は、エンドミル等の切削工具を用いて3次元曲面を切削加工する切削加工方法に関する。   The present invention relates to a cutting method for cutting a three-dimensional curved surface using a cutting tool such as an end mill.

従来より、エンドミル等の切削工具を備えた工作機械を用いてワーク表面に3次元曲面を切削加工する場合、形状精度は、工作機械の位置決め精度と、切削工具の形状精度により決定される。
ここで、切削工具の刃先はワークを切削しながら摩耗していくので、切削工具の刃先の形状は加工中に変化していく。従って、刃先の摩耗によって加工精度が低下している。
また、切削工具における加工量(切削量)と工具摩耗量の関係である切削−摩耗特性を図2に示す。図2に示すように、切削工具の摩耗は、新品状態(図2のS(0)の位置)から第1所定切削量(図2のS(1)の位置)までは、切削量に対する工具摩耗量が比較的大きい初期摩耗領域(グラフの傾きが大きく且つ傾きの変動も大きい領域)と、初期摩耗領域よりも切削量に対する工具摩耗量が小さい第1所定切削量から第2所定切削量(図2のS(2)の位置)までの安定摩耗領域(グラフの傾きが小さく且つ傾きの変動も小さい領域)を有している。
一般的に、ワーク表面に3次元曲面を切削加工する場合、図5に示す「理想的な加工後のワーク輪郭A」に対して、切削工具Tが切込む方向(図5ではZ軸方向)と反対方向に所定量スライドした、いわゆる相似形状(図5中の「加工後のワーク輪郭B」や「加工後のワーク輪郭C」)が要求される。
しかし、加工中に切削工具の摩耗量が大きく変化すると、加工後のワーク輪郭が相似形状から大きくずれる。例えば図3に示すように、新品の切削工具を用いてT(0)からT(1)−T(2)−T(3)(なお、T(1)〜T(3)では切削工具の図を簡略化している)と切削を行った場合、切削工具の初期摩耗領域に相当するT(0)からT(1)の区間では、切削工具の摩耗量の変化が大きく、実際の加工後のワーク輪郭Dの形状は、理想的な加工後のワーク輪郭Aの形状に対して、相似形状からの誤差が大きくなる。なお、図3では説明のために切削工具Tの摩耗量を実際よりも非常に大きくして記載している。
そこで、特許文献1に記載された従来技術では、高い加工精度を得るために、ワークを加工する刃物台ユニットと、加工したワークの寸法を測定する計測ユニットとを備え、刃物台ユニットにてワークを加工した後、刃物台ユニットと計測ユニットとを入れ替えてワークの寸法を測定し、測定値に基づいて刃物台ユニットの位置をフィードバック補正する刃物位置寸法管理装置が開示されている。また、ワークを加工する累積加工数が少なく刃具の摩耗状態が初期摩耗状態である場合には上記のフィードバック補正を高頻度で行い、累積加工数が増加するに従ってフィードバック補正を低頻度で行うことが記載されている。
Conventionally, when a three-dimensional curved surface is cut on a workpiece surface using a machine tool having a cutting tool such as an end mill, the shape accuracy is determined by the positioning accuracy of the machine tool and the shape accuracy of the cutting tool.
Here, since the cutting edge of the cutting tool wears while cutting the workpiece, the shape of the cutting edge of the cutting tool changes during processing. Therefore, the machining accuracy is reduced due to wear of the blade edge.
Further, FIG. 2 shows a cutting-wear characteristic which is a relationship between a processing amount (cutting amount) and a tool wear amount in a cutting tool. As shown in FIG. 2, the wear of the cutting tool is the tool with respect to the cutting amount from the new state (the position of S (0) in FIG. 2) to the first predetermined cutting amount (the position of S (1) in FIG. 2). An initial wear region having a relatively large wear amount (a region where the slope of the graph is large and the fluctuation of the tilt is large) and a first predetermined cut amount to a second predetermined cut amount (where the tool wear amount relative to the cut amount is smaller than the initial wear region ( 2 has a stable wear region (region where the inclination of the graph is small and the variation of the inclination is small) up to the position of S (2) in FIG.
In general, when a three-dimensional curved surface is cut on the workpiece surface, the cutting tool T cuts in the “ideal workpiece contour A after machining” shown in FIG. 5 (Z-axis direction in FIG. 5). A so-called similar shape (“work contour B after machining” or “work contour C after machining” in FIG. 5) is required, which is slid by a predetermined amount in the opposite direction.
However, if the amount of wear of the cutting tool changes greatly during machining, the workpiece contour after machining deviates greatly from the similar shape. For example, as shown in FIG. 3, using a new cutting tool, T (0) to T (1) -T (2) -T (3) (Note that the cutting tool of T (1) to T (3) In the section from T (0) to T (1) corresponding to the initial wear region of the cutting tool, the change in the amount of wear of the cutting tool is large, and after actual machining, In the shape of the workpiece contour D, an error from the similar shape becomes larger than the ideal shape of the workpiece contour A after machining. In FIG. 3, the amount of wear of the cutting tool T is shown to be much larger than the actual amount for explanation.
Therefore, the prior art described in Patent Document 1 includes a tool post unit that processes a workpiece and a measurement unit that measures the dimensions of the processed workpiece in order to obtain high processing accuracy. A tool position dimension management device is disclosed in which the tool post unit and the measurement unit are exchanged to measure the dimensions of the workpiece, and the position of the tool post unit is feedback-corrected based on the measured value. In addition, when the cumulative number of workpieces to be processed is small and the cutting tool wear state is the initial wear state, the feedback correction described above is performed frequently, and the feedback correction is performed less frequently as the cumulative number of workpieces increases. Have been described.

特開2002−079404号公報JP 2002-079404

特許文献1に記載された従来技術では、刃具の摩耗が比較的急激に進行する初期摩耗状態での加工精度を得るために、初期摩耗状態では高頻度に加工後のワークの寸法を測定する必要があるため、加工時間に対する測定時間が増加し、加工効率が低下する。
また、測定頻度に対して予想以上に刃具の摩耗が進行していた場合は、目標位置まで加工されていないことになるため、当該ワークを再加工して目標位置まで加工する必要があり、加工効率が更に低下する可能性がある。
本発明は、このような点に鑑みて創案されたものであり、加工精度を確保するとともに加工効率をより向上させることができる切削加工方法を提供することを課題とする。
In the prior art described in Patent Document 1, in order to obtain the machining accuracy in the initial wear state in which the wear of the cutting tool proceeds relatively rapidly, it is necessary to frequently measure the dimension of the workpiece after machining in the initial wear state. Therefore, the measurement time with respect to the processing time increases and the processing efficiency decreases.
Also, if the wear of the cutting tool has progressed more than expected with respect to the measurement frequency, it means that the workpiece has not been machined to the target position, so it is necessary to rework the workpiece and machine to the target position. Efficiency can be further reduced.
The present invention has been made in view of such a point, and an object of the present invention is to provide a cutting method capable of ensuring machining accuracy and further improving machining efficiency.

上記課題を解決するための手段として、本実施の形態に記載の切削加工方法は、ワークを切削加工する切削工具と、予め設定された移動経路に沿ってワークに対して前記切削工具を相対的に移動させる制御手段と、を用いてワークの表面に3次元曲面を切削加工する切削加工方法において、新品状態から第1所定切削量までの区間である初期摩耗領域ではワークを切削する切削量に対する工具摩耗量が比較的大きく、前記第1所定切削量から第2所定切削量までの区間である安定摩耗領域では切削量に対する工具摩耗量が前記初期摩耗領域よりも小さい、切削−摩耗特性を有している前記切削工具を用いた切削加工方法であって、前記制御手段にて、ワークの仕上げ加工工程の前に、新品状態の前記切削工具にて前記初期摩耗領域に対応する切削量を切削して前記切削工具の摩耗状態を前記安定摩耗領域に到達させるステップを有する、切削加工方法である。 As a means for solving the above-described problem, the cutting method described in the present embodiment includes a cutting tool for cutting a workpiece and the cutting tool relative to the workpiece along a preset movement path. And a control means for moving the workpiece to a cutting surface for cutting a three-dimensional curved surface on the surface of the workpiece with respect to a cutting amount for cutting the workpiece in an initial wear region which is a section from a new state to a first predetermined cutting amount. The tool wear amount is relatively large, and in a stable wear region that is a section from the first predetermined cut amount to the second predetermined cut amount, the tool wear amount with respect to the cut amount is smaller than the initial wear region, and has a cutting-wear characteristic. A cutting method using the cutting tool, wherein the control means corresponds to the initial wear region with the cutting tool in a new state before the workpiece finishing process. Comprising the step of bring the state of wear of the cutting tool in the stable wearing region by cutting the Kezuryou a cutting method.

また、本発明の第1発明は、請求項1に記載されたとおりの切削加工方法である。
請求項1に記載の切削加工方法は、ワークを切削加工する切削工具と、予め設定された移動経路に沿ってワークに対して前記切削工具を相対的に移動させる制御手段と、前記切削工具の寸法を測定可能な測定手段と、を用いてワークの表面に3次元曲面を切削加工する切削加工方法であって、前記切削工具は、新品状態から第1所定切削量までの区間である初期摩耗領域ではワークを切削する切削量に対する工具摩耗量が比較的大きく、前記第1所定切削量から第2所定切削量までの区間である安定摩耗領域では切削量に対する工具摩耗量が前記初期摩耗領域よりも小さい、切削−摩耗特性を有しており、前記制御手段には前記切削−摩耗特性が記憶されており、以下のステップを有する切削加工方法である。
前記制御手段にて、前記測定手段を用いて、新品状態の前記切削工具の寸法を測定して初期工具寸法を求めるステップ。
前記新品状態の切削工具にてワークを第3所定切削量切削した後、前記測定手段を用いて前記切削工具の寸法を測定して切削後工具寸法を求めるステップ。
前記初期工具寸法と前記切削後工具寸法と前記第3所定切削量とに基づいて、前記第3所定切削量に対する前記切削工具の摩耗量を求めるステップ。
求めた前記第3所定切削量に対する前記切削工具の摩耗量と、前記切削−摩耗特性とに基づいて、前記初期摩耗領域に対応する切削量である初期摩耗切削量を推定するステップ。
ワークの粗加工工程において、仕上げ加工代に加えて、前記初期摩耗切削量に対応する初期摩耗代を残すステップ。
前記粗加工工程を終えた後、且つ仕上げ加工工程の前に、新品状態の前記切削工具を用いて前記初期摩耗代を切削して当該切削工具の摩耗状態を前記安定摩耗領域に到達させるステップ。
The first invention of the present invention is a cutting method as described in claim 1 .
The cutting method according to claim 1 is a cutting tool for cutting a workpiece, a control means for moving the cutting tool relative to the workpiece along a preset movement path, A cutting method for cutting a three-dimensional curved surface on the surface of a workpiece using a measuring means capable of measuring dimensions, wherein the cutting tool is a section from a new state to a first predetermined cutting amount. In the region, the tool wear amount relative to the cutting amount for cutting the workpiece is relatively large. In the stable wear region, which is a section from the first predetermined cutting amount to the second predetermined cutting amount, the tool wear amount relative to the cutting amount is larger than that in the initial wear region. The cutting means has a cutting-abrasion characteristic, and the control means stores the cutting-abrasion characteristic, and is a cutting method having the following steps.
A step of measuring the dimensions of the cutting tool in a new state by the measuring means by the control means to obtain initial tool dimensions;
A step of measuring a dimension of the cutting tool by using the measuring means to obtain a post-cutting tool dimension after the workpiece is cut by a third predetermined cutting amount with the new cutting tool;
Obtaining an amount of wear of the cutting tool with respect to the third predetermined cutting amount based on the initial tool size, the post-cutting tool size, and the third predetermined cutting amount;
Estimating an initial wear cutting amount, which is a cutting amount corresponding to the initial wear region, based on the wear amount of the cutting tool with respect to the obtained third predetermined cutting amount and the cutting-wear characteristics.
A step of leaving an initial wear allowance corresponding to the initial wear cutting amount in addition to the finish machining allowance in the rough machining process of the workpiece.
Cutting the initial wear allowance by using the cutting tool in a new state after finishing the roughing process and before the finishing process, so that the wear state of the cutting tool reaches the stable wear region;

また、本実施の形態に記載の切削加工方法は、前記切削工具の寸法を測定可能な測定手段を用い、前記制御手段にて、前記仕上げ加工工程を行う前に、前記測定手段を用いて前記切削工具の寸法を測定して当該切削工具の摩耗状態が前記安定摩耗領域に到達していることを確認するステップを有する切削加工方法である。 Further, the cutting method described in the present embodiment uses a measuring unit capable of measuring the dimensions of the cutting tool, and the control unit uses the measuring unit before performing the finishing process. It is a cutting method which has a step which measures the dimension of a cutting tool and confirms that the wear state of the cutting tool has reached the stable wear region.

また、本発明の第2発明は、請求項2に記載されたとおりの切削加工方法である。
請求項2に記載の切削加工方法は、請求項1に記載の切削加工方法であって、前記制御手段にて、前記仕上げ加工工程を行う前に、前記測定手段を用いて前記切削工具の寸法を測定して当該切削工具の摩耗状態が前記安定摩耗領域に到達していることを確認するステップを有する切削加工方法である。
The second invention of the present invention is a cutting method as described in claim 2 .
The cutting method according to claim 2 is the cutting method according to claim 1 , wherein before the finishing process is performed by the control unit, the measurement unit is used to measure the size of the cutting tool. Is a cutting method including a step of confirming that the wear state of the cutting tool has reached the stable wear region.

また、本発明の第3発明は、請求項3に記載されたとおりの切削加工方法である。
請求項3に記載の切削加工方法は、請求項2に記載の切削加工方法であって、前記制御手段にて、前記安定摩耗領域に到達していることを確認した際に測定した前記切削工具の寸法に基づいて、前記仕上げ加工時における前記切削工具の前記移動経路を補正する切削加工方法である。
A third invention of the present invention is a cutting method as described in claim 3 .
The cutting method according to claim 3 is the cutting method according to claim 2, wherein the cutting tool measured when the control means confirms that the stable wear region has been reached. This is a cutting method that corrects the movement path of the cutting tool during the finishing process based on the dimension of.

また、本発明の第4発明は、請求項4に記載されたとおりの切削加工方法である。
請求項4に記載の切削加工方法は、請求項3に記載の切削加工方法であって、前記制御手段にて、更に、仕上げ加工を行いながら、前記移動経路に基づいて、前記仕上げ加工の開始時からのワークの切削量である累積仕上げ切削量を推定するステップと、前記安定摩耗領域に到達していることを確認した際に測定した前記切削工具の寸法と、推定した累積仕上げ切削量と、前記切削−摩耗特性とに基づいて、現在の切削工具の摩耗量を推定するステップと、推定した現在の切削工具の摩耗量に基づいて前記移動経路を補正するステップと、を有する切削加工方法である。
A fourth invention of the present invention is a cutting method as described in claim 4 .
The cutting method according to claim 4 is the cutting method according to claim 3 , wherein the finishing is started based on the movement path while further performing finishing by the control means. A step of estimating a cumulative finishing cutting amount which is a cutting amount of a workpiece from time, a dimension of the cutting tool measured when confirming that the stable wear region has been reached, an estimated cumulative finishing cutting amount, A cutting method comprising: estimating a wear amount of a current cutting tool based on the cutting-wear characteristics; and correcting the moving path based on the estimated wear amount of the current cutting tool. It is.

また、本発明の第5発明は、請求項5に記載されたとおりの切削加工方法である。
請求項5に記載の切削加工方法は、請求項1〜4のいずれか一項に記載の切削加工方法であって、新品状態の前記切削工具の摩耗状態を前記安定摩耗領域に到達させるための切削では、ワークの仕上げ後の形状に類似した形状を切削して当該切削工具の摩耗状態を前記安定摩耗領域に到達させる切削加工方法である。
The fifth invention of the present invention is a cutting method as described in claim 5 .
The cutting method according to claim 5 is the cutting method according to any one of claims 1 to 4 , wherein the wear state of the cutting tool in a new state is made to reach the stable wear region. The cutting is a cutting method in which a shape similar to the shape after finishing of the workpiece is cut, and the wear state of the cutting tool reaches the stable wear region.

本実施の形態に記載の切削加工方法を用いれば、新品の切削工具にていきなりワークの仕上げ加工を行わず、仕上げ加工工程の前に、新品状態の切削工具の摩耗状態が、初期摩耗領域を超えて安定摩耗領域に達するまで、例えばワークの不要個所を切削し、初期摩耗を完了させる。
これにより、初期摩耗領域を超えて安定摩耗領域に達した切削工具にてワークの仕上げ加工を開始することができるので、加工精度を確保することができるとともに、ワークや切削工具の測定を高頻度で行う必要もなく、加工効率をより向上させることができる。
また、予め安定摩耗領域に達した切削工具を用意しておけば、ワークの粗加工工程を終えた後、切削工具を交換して直ちに仕上げ加工工程を開始することができるので、更に加工効率を向上させることができる。
If the cutting method described in the present embodiment is used, the workpiece is not suddenly finished with a new cutting tool, and the wear state of the new cutting tool is changed to the initial wear region before the finishing process. Until the stable wear region is reached, for example, unnecessary portions of the workpiece are cut to complete the initial wear.
As a result, workpiece finishing can be started with a cutting tool that has reached the stable wear region beyond the initial wear region, so that machining accuracy can be ensured and the workpiece and cutting tool can be measured frequently. The processing efficiency can be further improved without the need to perform the process.
In addition, if a cutting tool that has reached the stable wear area is prepared in advance, the finishing process can be started immediately after replacing the cutting tool after finishing the rough machining process of the workpiece. Can be improved.

また、請求項1に記載の切削加工方法によれば、第3所定切削量に対する新品状態の切削工具の摩耗量から、どれだけの量(初期摩耗切削量)を切削すれば初期摩耗領域を終えて安定摩耗領域に達することができるか、を適切に推定することができる。
そして粗加工工程にて、仕上げ加工代に加えて、初期摩耗領域を終えるために必要な初期摩耗切削量に相当する初期摩耗代を残しておき、仕上げ加工工程を行う前に、新品状態の切削工具にて、まず最初に初期摩耗代を切削して初期摩耗領域を終える。
このため、続く仕上げ代の切削では、安定摩耗領域に達した切削工具で仕上げ加工を開始することができるので、加工精度を確保するとともに加工効率をより向上させることができる。
Further, according to the cutting method according to claim 1, after the wear amount of the cutting tool of new state, how much of the amount of initial wear area when cut (initial wear amount of cutting) for the third predetermined amount of cutting It is possible to appropriately estimate whether the stable wear region can be reached.
Then, in the roughing process, in addition to the finishing machining allowance, leave an initial wear allowance equivalent to the initial wear cutting amount necessary to finish the initial wear area. The tool first cuts the initial wear allowance to finish the initial wear region.
For this reason, in the subsequent finishing allowance cutting, the finishing process can be started with the cutting tool that has reached the stable wear region, so that the processing accuracy can be ensured and the processing efficiency can be further improved.

また、本実施の形態に記載の切削加工方法によれば、本実施の形態に記載の切削加工方法において、仕上げ加工工程を開始する前に、切削工具の摩耗状態が安定摩耗領域に達していることを念のために確認することで、加工精度をより向上させることができる。 Further, according to the cutting method described in the present embodiment, in the cutting method described in the present embodiment, the wear state of the cutting tool has reached the stable wear region before the finishing process is started. By confirming this just in case, the processing accuracy can be further improved.

また、請求項2に記載の切削加工方法によれば、請求項1に記載の切削加工方法において、仕上げ加工工程を開始する前に、切削工具の摩耗状態が安定摩耗領域に達していることを念のために確認することで、加工精度をより向上させることができる。 Further, according to the cutting method according to claim 2, in the cutting method according to claim 1, it is confirmed that the wear state of the cutting tool has reached the stable wear region before the finishing process is started. By confirming just in case, the processing accuracy can be further improved.

また、請求項3に記載の切削加工方法によれば、安定摩耗領域に達している切削工具で仕上げ加工を開始して移動経路の補正を行わない場合は、図5中の理想的な加工後のワーク輪郭Aに対して加工後のワーク輪郭Bに示すような相似形状とすることができる。
これに対して安定摩耗領域に達している切削工具で仕上げ加工を開始して、仕上げ加工の開始時点の切削工具の摩耗量を用いて移動経路の補正を行った場合は、図5中の理想的な加工後のワーク輪郭Aに対して加工後のワーク輪郭Cに示すような相似形状とすることができ、理想的な加工後のワーク輪郭Aにより近い相似形状とすることができる。
Further, according to the cutting method of the third aspect, when the finishing process is started with the cutting tool that has reached the stable wear region and the movement path is not corrected, the ideal after machining in FIG. The workpiece contour A can have a similar shape as shown in the workpiece contour B after machining.
On the other hand, when finishing is started with a cutting tool that has reached the stable wear region, and the movement path is corrected using the amount of wear of the cutting tool at the start of finishing, the ideal in FIG. It is possible to obtain a similar shape as shown in the workpiece contour C after machining with respect to the workpiece contour A after machining, which can be similar to the ideal workpiece contour A after machining.

また、請求項4に記載の切削加工方法によれば、請求項3に記載の、仕上げ加工の開始時点の切削工具の摩耗量を用いた移動経路の補正に加えて、更に、仕上げ加工中の切削工具の摩耗量を用いて補正する。
これにより、図5中の理想的な加工後のワーク輪郭Aに、更に近い相似形状とすることができる。
Further, according to the cutting method according to claim 4, in addition to the correction of the movement path using the amount of wear of the cutting tool at the start of the finishing process according to claim 3 , further, during the finishing process Correction is made using the amount of wear of the cutting tool.
Thereby, it can be made a similar shape closer to the ideal workpiece contour A after machining in FIG.

また、請求項5に記載の切削加工方法によれば、仕上げ形状に類似した形状を切削加工することで、初期摩耗させるための切削加工における切削工具の使用個所及び各使用個所の使用頻度と、ワークの切削加工における切削工具の使用個所及び各使用個所の使用頻度とを同じとすることができる。
これにより、切削工具が初期摩耗領域を終えて安定摩耗領域に達したことを、より正確に知ることができる。
In addition, according to the cutting method according to claim 5, by using a cutting process for initial wear by cutting a shape similar to the finished shape, the usage frequency of the cutting tool in the cutting process for initial wear, The usage location of the cutting tool and the usage frequency of each usage location in the machining of the workpiece can be made the same.
Thereby, it can be known more accurately that the cutting tool has finished the initial wear region and has reached the stable wear region.

本発明の切削加工方法を適用した工作機械1の一実施の形態の概略斜視図を説明する図である。It is a figure explaining the schematic perspective view of one embodiment of machine tool 1 to which the cutting method of the present invention is applied. 切削工具Tにおける切削量に対する工具摩耗量の関係を示す切削−摩耗特性を説明する図である。It is a figure explaining the cutting-wear characteristic which shows the relationship of the tool wear amount with respect to the cut amount in the cutting tool T. FIG. 新品の切削工具Tを用いて切削した場合のワーク形状の例を説明する図である。It is a figure explaining the example of the workpiece | work shape at the time of cutting using the new cutting tool T. FIG. 本発明の切削加工方法の処理手順の例を説明するフローチャートである。It is a flowchart explaining the example of the process sequence of the cutting method of this invention. 本発明の切削加工方法を用いて切削した場合のワーク形状の例を説明する図である。It is a figure explaining the example of the workpiece | work shape at the time of cutting using the cutting method of this invention.

以下に本発明を実施するための形態を図面を用いて説明する。図1は、本発明の切削加工方法を適用した工作機械1の一実施の形態における概略斜視図を示している。
なお、図中においてX軸とY軸とZ軸は互いに直交しており、Y軸は鉛直上向きを示しており、Z軸は工具TがワークWに切り込む方向を示している。
EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated using drawing. FIG. 1 is a schematic perspective view of an embodiment of a machine tool 1 to which a cutting method of the present invention is applied.
In the drawing, the X axis, the Y axis, and the Z axis are orthogonal to each other, the Y axis indicates a vertically upward direction, and the Z axis indicates a direction in which the tool T cuts into the workpiece W.

●[工作機械1の概略構成(図1)]
図1を用いて、本発明の切削加工方法を適用した工作機械1の例について説明する。
工作機械1には、X軸ガイドGXに沿って基台BSに対してX軸方向に往復移動可能なコラムXBと、Y軸ガイドGYに沿ってコラムXBに対してY軸方向に往復移動可能な主軸保持部材YBと、主軸保持部材YBに対してZ軸方向に往復移動可能な主軸Mと、主軸Mの先端に取り付けられた切削工具Tとを備えている。また基台BSには、ワークWを保持するワーク台Dが設けられている。
また、工作機械1には、数値制御装置等の制御手段(図示省略)が備えられており、当該制御手段は、(X軸)駆動モータMXに制御信号を出力してボールねじNXを回転させ、ボールねじNXに係合されているナット(係合部)をX軸方向に移動させ、当該ナットに連結されたコラムXBをX軸方向に移動させる。なお、コラムXBのX軸方向の位置を検出するために、(X軸)駆動モータMXにはエンコーダ等の(X軸)位置検出手段EXが設けられており、制御手段は(X軸)位置検出手段EXからの検出信号に基づいてコラムXBのX軸方向の位置決め制御を行なう。
同様に、制御手段は、(Y軸)駆動モータMYと(Y軸)位置検出手段EYを用いて主軸保持部材YBのY軸方向の位置決め制御を行い、(Z軸)駆動モータ(図示省略)と(Z軸)位置検出手段(図示省略)を用いて主軸MのZ軸方向の位置決め制御を行なう。
工作機械1は、コラムXBのX軸方向の位置決めを行う位置決め装置と、主軸保持部材YBのY軸方向の位置決めを行う位置決め装置と、主軸MのZ軸方向の位置決めを行う位置決め装置を備えている。
なお図1に示す工作機械1では、ワークWを固定して切削工具Tを移動させる例を説明したが、ワークWに対して切削工具Tが相対的に移動する構造であればよく、図1に示す工作機械1の構造に限定されるものではない。
● [Schematic configuration of machine tool 1 (Fig. 1)]
An example of a machine tool 1 to which the cutting method of the present invention is applied will be described with reference to FIG.
The machine tool 1 has a column XB that can reciprocate in the X-axis direction with respect to the base BS along the X-axis guide GX, and a reciprocation in the Y-axis direction with respect to the column XB along the Y-axis guide GY. A main spindle holding member YB, a main spindle M capable of reciprocating in the Z-axis direction with respect to the main spindle holding member YB, and a cutting tool T attached to the tip of the main spindle M. The base BS is provided with a work base D for holding the work W.
Further, the machine tool 1 is provided with control means (not shown) such as a numerical control device, and the control means outputs a control signal to the (X axis) drive motor MX to rotate the ball screw NX. Then, the nut (engagement portion) engaged with the ball screw NX is moved in the X-axis direction, and the column XB connected to the nut is moved in the X-axis direction. In order to detect the position of the column XB in the X-axis direction, the (X-axis) drive motor MX is provided with (X-axis) position detection means EX such as an encoder, and the control means is the (X-axis) position. Based on the detection signal from the detection means EX, the column XB is positioned in the X-axis direction.
Similarly, the control means performs positioning control in the Y-axis direction of the spindle holding member YB using the (Y-axis) drive motor MY and the (Y-axis) position detection means EY, and (Z-axis) drive motor (not shown). And (Z axis) position detection means (not shown) is used to perform positioning control of the spindle M in the Z axis direction.
The machine tool 1 includes a positioning device for positioning the column XB in the X-axis direction, a positioning device for positioning the spindle holding member YB in the Y-axis direction, and a positioning device for positioning the spindle M in the Z-axis direction. Yes.
In the machine tool 1 shown in FIG. 1, the example in which the workpiece W is fixed and the cutting tool T is moved has been described. However, any structure may be used as long as the cutting tool T moves relative to the workpiece W. It is not limited to the structure of the machine tool 1 shown in FIG.

●[切削工具Tの特性(図2)と、従来の切削加工方法によるワークWの仕上げ形状(図3)]
切削工具Tは、例えば(ボール)エンドミルであり、一般的にはワークの切削量に対して工具摩耗が進行する、図2の例に示す切削−摩耗特性を有している。
図2に示す特性からわかるように、新品状態(図2中のS(0)の位置)から切削量S(1)(第1所定切削量に相当)までの区間では、切削量に対する工具摩耗量が大きく、且つ切削量に対する工具摩耗量の変動も大きい(グラフの傾きが大きく、且つ傾きの変動も大きい)。本明細書ではこの区間を「初期摩耗領域」と呼ぶ。
また切削量S(1)から切削量S(2)(第2所定切削量に相当)までの区間では、切削量に対する工具摩耗量が比較的小さく、且つ切削量に対する工具摩耗量の変動も小さい(グラフの傾きが小さく、且つ傾きの変動も小さい)。本明細書ではこの区間を「安定摩耗領域」と呼ぶ。
● [Characteristics of cutting tool T (Fig. 2) and finished shape of workpiece W by conventional cutting method (Fig. 3)]
The cutting tool T is, for example, a (ball) end mill, and generally has a cutting-wear characteristic shown in the example of FIG. 2 in which tool wear progresses with respect to the cutting amount of a workpiece.
As can be seen from the characteristics shown in FIG. 2, in the section from the new state (the position of S (0) in FIG. 2) to the cutting amount S (1) (corresponding to the first predetermined cutting amount), the tool wear relative to the cutting amount. The amount of tool wear with respect to the cutting amount is large (the inclination of the graph is large and the variation of the inclination is also large). In this specification, this section is referred to as an “initial wear region”.
Further, in the section from the cutting amount S (1) to the cutting amount S (2) (corresponding to the second predetermined cutting amount), the tool wear amount with respect to the cutting amount is relatively small, and the variation of the tool wear amount with respect to the cutting amount is also small. (The inclination of the graph is small and the fluctuation of the inclination is also small). In this specification, this section is referred to as a “stable wear region”.

例えば金型を作成する場合、図1に示す工作機械1を用いてワークWの表面を切削工具Tにて切削して作成する。
一般的に、金型を作成する工程は、仕上げ代を残した状態で粗切削する粗加工工程と、粗加工工程で残した仕上げ代を丁寧に切削して仕上げ切削する仕上げ加工工程にて構成される。また、仕上げ加工工程では、新品の切削工具に交換されて仕上げ加工工程が開始される。
For example, when creating a die, the surface of the workpiece W is cut by the cutting tool T using the machine tool 1 shown in FIG.
Generally, the process of creating a mold consists of a rough machining process that performs rough cutting while leaving a finishing allowance, and a finishing process that carefully cuts and finish-cuts the finishing allowance remaining in the roughing process. Is done. Moreover, in a finishing process, it replaces | exchanges for a new cutting tool and a finishing process starts.

次に図3を用いて、従来の切削加工方法によるワークWの仕上げ形状について説明する。なお図3では、切削工具Tを、T(0)の位置からT(1)−T(2)−T(3)の位置へと移動させて切削する様子を示しており、T(0)の位置では新品の切削工具Tを示しており、T(1)、T(2)、T(3)の位置では摩耗が進行した切削工具Tを簡略化した形状で示している。
従来では図3に示すように、仕上げ加工工程を開始した時点の新品の切削工具T(0)の状態から、切削工具Tが初期摩耗領域を終えるまでの切削工具T(1)の位置までは、切削工具Tの摩耗量が大きいので、加工後のワーク輪郭Dの形状は、理想的な加工後のワーク輪郭Aの形状に対して徐々に誤差が大きくなり、相似形状から大きくずれてしまう。
なお、初期摩耗領域を終えた切削工具T(1)の位置からT(2)そしてT(3)の位置までの区間では、切削工具Tの摩耗状態が安定摩耗領域に達しているので、切削工具Tの摩耗量の変化が小さく、このT(1)からT(3)の区間では、加工後のワーク輪郭Dの形状は、理想的な加工後のワーク輪郭Aの形状に対して相似形状である。
しかし上記で説明したように、T(0)からT(1)の区間では誤差が大きく、相似形状であるとは言えないので、加工後のワーク形状Dは結果としては相似形状であるとは言えない。
Next, the finished shape of the workpiece W according to a conventional cutting method will be described with reference to FIG. FIG. 3 shows a state in which the cutting tool T is moved from the position T (0) to the position T (1) -T (2) -T (3) for cutting, and T (0) A new cutting tool T is shown at the position of, and a cutting tool T with increased wear is shown in a simplified shape at the positions of T (1), T (2), and T (3).
Conventionally, as shown in FIG. 3, from the state of the new cutting tool T (0) at the time of starting the finishing process to the position of the cutting tool T (1) until the cutting tool T finishes the initial wear region. Since the amount of wear of the cutting tool T is large, the shape of the workpiece contour D after machining gradually increases from the ideal shape of the workpiece contour A, and deviates greatly from the similar shape.
In the section from the position of the cutting tool T (1) that has finished the initial wear region to the position of T (2) and T (3), the wear state of the cutting tool T has reached the stable wear region. The change in the wear amount of the tool T is small, and in the section from T (1) to T (3), the shape of the workpiece contour D after machining is similar to the ideal shape of the workpiece contour A after machining. It is.
However, as explained above, since the error is large in the section from T (0) to T (1) and it cannot be said that the workpiece has a similar shape, the processed workpiece shape D is a similar shape as a result. I can not say.

●[本実施の形態における切削加工方法の処理手順(図4、図5)]
次に図4(A)及び(B)に示すフローチャートを用いて、本実施の形態における切削加工方法の処理手順について説明する。
本実施の形態における切削加工方法では、切削量に対する工具摩耗量が大きく、且つ切削量に対する工具摩耗量の変動も大きな、初期摩耗領域の切削工具では仕上げ加工を行わず、仕上げ加工を行う場合は、安定摩耗領域に達している切削工具を使用するものである。
まず図4(A)に示す処理手順にて、図4(B)で用いる初期摩耗代を求めるための初期摩耗量を推定する。
なお、この初期摩耗量の推定は、図4(B)の処理を行う前であれば、その工作機械1にて行っても良いし、予め別の工作機械に新品の切削工具Tを取付けて行ってもよい。また、図4(B)の処理を行う前であれば、図4(B)の処理を行う前に毎回実行してもよいし、切削工具Tのロットに対して1度のみ実行するようにしてもよく、図4(B)の処理を行う前であれば、実行の頻度も実行のタイミングも特に限定しない。
また、図4(A)及び(B)に示す処理手順は、NC制御装置等の制御手段の処理手順を示すものである。
● [Processing Procedure of Cutting Method in the Present Embodiment (FIGS. 4 and 5)]
Next, the processing procedure of the cutting method according to the present embodiment will be described with reference to the flowcharts shown in FIGS.
In the cutting method according to the present embodiment, the amount of tool wear with respect to the cutting amount is large, and the variation of the tool wear amount with respect to the cutting amount is also large. A cutting tool that has reached a stable wear region is used.
First, the initial wear amount for obtaining the initial wear allowance used in FIG. 4B is estimated by the processing procedure shown in FIG.
The initial wear amount may be estimated by the machine tool 1 before the process shown in FIG. 4B, or a new cutting tool T is attached to another machine tool in advance. You may go. Moreover, if it is before performing the process of FIG.4 (B), you may perform every time before performing the process of FIG.4 (B), and it is performed only once with respect to the lot of the cutting tool T. The execution frequency and the execution timing are not particularly limited as long as the process of FIG.
Also, the processing procedure shown in FIGS. 4A and 4B shows the processing procedure of the control means such as the NC control device.

以下、図4(A)に示す処理手順について説明する。
ステップS10にて、制御手段は、工作機械の切削工具を新品の切削工具Tに交換する。なお、作業者が新品の切削工具Tに交換してもよい。
ステップS20では、制御手段は、新品状態の切削工具Tの寸法を、例えばレーザ光等を用いた非接触式の測定手段を用いて測定する。なお、作業者が測定手段を操作して測定してもよい。
ステップS30では、制御手段は、ワークを用いて、第3所定切削量を切削する。この場合、ワークの不要部分を切削してもよいし、仕上げ加工するワークと同じ材質である別のワークを切削してもよい。なお、第3所定切削量の切削は平面形状を切削するようにしてもよいが、仕上げ加工形状に類似した形状に切削することが、より好ましい。
ステップS40では、制御手段は、ステップS20にて用いた測定手段を使って、第3所定切削量を切削した後の切削工具Tの寸法を測定する。なお、作業者が測定手段を操作して測定してもよい。
ステップS50では、制御手段は、第3所定切削量を切削した後の切削工具Tの工具摩耗量と、図2に示した切削−摩耗特性とから、実際のワークWと実際の切削工具Tを用いた場合に初期摩耗領域を終えることができる切削量である初期摩耗量を推定する。この推定した初期摩耗量を図4(B)に示す処理にて利用する。
なお、本実施の形態では、測定手段として非接触式の測定手段を用いたが、非接触式の測定手段に限定するものではない。
Hereinafter, the processing procedure illustrated in FIG. 4A will be described.
In step S10, the control means replaces the cutting tool of the machine tool with a new cutting tool T. The operator may replace the cutting tool T with a new one.
In step S20, the control means measures the dimensions of the cutting tool T in a new state using, for example, a non-contact type measuring means using a laser beam or the like. Note that the operator may perform measurement by operating the measuring means.
In step S30, the control means cuts the third predetermined cutting amount using the workpiece. In this case, an unnecessary part of the workpiece may be cut, or another workpiece made of the same material as the workpiece to be finished may be cut. Note that the third predetermined cutting amount may be cut in a planar shape, but it is more preferable to cut into a shape similar to the finished shape.
In step S40, the control means measures the dimension of the cutting tool T after cutting the third predetermined cutting amount using the measuring means used in step S20. Note that the operator may perform measurement by operating the measuring means.
In step S50, the control means selects the actual workpiece W and the actual cutting tool T from the tool wear amount of the cutting tool T after cutting the third predetermined cutting amount and the cutting-wear characteristics shown in FIG. When used, an initial wear amount, which is a cutting amount that can finish the initial wear region, is estimated. The estimated initial wear amount is used in the process shown in FIG.
In this embodiment, a non-contact type measuring unit is used as the measuring unit, but the measuring unit is not limited to the non-contact type measuring unit.

次に図4(B)に示す処理手順について説明する。
ステップS110では、制御手段は、粗加工工程にて、仕上げ加工代に加えて初期摩耗代を残して切削加工する。なお初期摩耗代は、図4(A)の処理にて求めた初期摩耗量から求める。
例えば第1歯〜第n歯の歯数を有する歯車の金型を作成する場合、第1歯に仕上げ加工代に加えて初期摩耗代を残し、第2歯〜第n歯は仕上げ加工代のみを残すように、粗加工する。なお、第1歯の仕上げ形状に対して仕上げ加工代と初期摩耗代とを残した場合、ワークの仕上げ後の形状(この場合、第1歯の仕上げ後の形状=第n歯の仕上げ後の形状)に類似した形状を切削して切削工具Tの摩耗状態を安定摩耗領域に到達させることが非常に容易である。仕上げ後の形状と類似した形状を切削することで、実際の仕上げ加工で使用する切削工具Tの使用個所、及び各使用個所の使用頻度と同等の加工を行って、切削工具Tを安定摩耗領域に到達させることができるので、切削工具Tにおける適切な個所の初期摩耗を完了させることが可能であり、より高精度な仕上げ加工を行うことができる。
なお、粗加工工程を終えた後、仕上げ加工工程の前に、ワークの仕上げ後の形状に類似した形状を切削して切削工具Tの摩耗状態を安定摩耗領域に到達させる方法は、歯車の金型の作成に限定されるものではなく、種々のワークの切削加工において有効な方法である。
ステップS110の処理にて、図5に示すワークWの形状において「加工前のワーク輪郭V」から「粗加工での削り代」を切削し、「初期摩耗代」と「仕上げ加工代」を残した状態までワークWを切削する。
ステップS120では、制御手段は、切削工具Tを新品の切削工具Tに交換し、測定手段を用いて新品状態の切削工具Tの寸法を測定する。
ステップS130では、制御手段は、ステップS110にて「初期摩耗代」と「仕上げ加工代」が残されているワークWから「初期摩耗代」を切削し、「仕上げ加工代」を残した状態までワークWを切削する。
Next, the processing procedure shown in FIG. 4B will be described.
In step S110, the control means performs the cutting process while leaving the initial wear allowance in addition to the finishing allowance in the roughing process. The initial wear allowance is obtained from the initial wear amount obtained in the process of FIG.
For example, when creating a gear mold having the number of teeth from the first tooth to the nth tooth, the initial wear allowance is left in addition to the finish machining allowance for the first tooth, and the second to nth teeth are only the finish machining allowance. Roughly processed to leave When the finishing machining allowance and the initial wear allowance are left for the finished shape of the first tooth, the finished shape of the workpiece (in this case, the finished shape of the first tooth = the finished nth tooth) It is very easy to cut the shape similar to (shape) and bring the wear state of the cutting tool T to the stable wear region. By cutting a shape similar to the shape after finishing, the cutting tool T used in the actual finishing process is processed at the same frequency as the usage location of the cutting tool T, and the usage frequency of each usage location. Therefore, it is possible to complete initial wear at an appropriate location in the cutting tool T, and it is possible to perform finishing with higher accuracy.
In addition, after finishing the rough machining process and before the finishing process, the method of cutting the shape similar to the finished shape of the workpiece to bring the wear state of the cutting tool T into the stable wear region is the same as that of the gear wheel. The method is not limited to the production of a mold, and is an effective method for cutting various workpieces.
In the process of step S110, the “cutting allowance in rough machining” is cut from the “work contour V before machining” in the shape of the workpiece W shown in FIG. 5, and the “initial wear allowance” and the “finish machining allowance” are left. The workpiece W is cut to the state.
In step S120, the control means replaces the cutting tool T with a new cutting tool T, and measures the dimensions of the cutting tool T in a new state using the measuring means.
In step S130, the control means cuts the “initial wear allowance” from the workpiece W in which the “initial wear allowance” and the “finishing allowance” are left in step S110 until the “finishing allowance” remains. The workpiece W is cut.

ステップS140では、制御手段は、測定手段を用いて切削工具Tの寸法を測定し、切削工具Tの摩耗状態が安定摩耗領域に達しているか否かを判定する。制御手段には、図2に示す切削−摩耗特性が記憶されており、初期摩耗代を切削した後の切削工具Tの摩耗量を用いて、初期摩耗領域に相当する摩耗量を超えているか否かを判定する。
安定摩耗領域に達している(Yes)と判定した場合はステップS150に進み、安定摩耗領域に達していない(No)と判定した場合はステップS130に戻る。ここで初期摩耗代を再度切削することが発生するので、初期摩耗代は、少し余分に残しておくことが好ましい。なお、必要以上に初期摩耗代を残すと加工時間が長くなるので、適切な量を余分に残すようにする。
ステップS150では、制御手段は、摩耗状態が安定摩耗領域に達した切削工具Tを用いて、「仕上げ加工代」が残されているワークWから「仕上げ加工代」を切削し、図5における加工後のワーク輪郭Bの位置までワークを切削して仕上げ加工工程を完了する。
以上により、図5における「理想的な加工後のワーク輪郭A」に対してZ軸方向に一定距離だけスライドした「加工後のワーク輪郭B」に示す相似形状に切削加工することができる。
In step S140, the control unit measures the dimension of the cutting tool T using the measuring unit, and determines whether or not the wear state of the cutting tool T has reached the stable wear region. The control means stores the cutting-abrasion characteristics shown in FIG. 2, and whether or not the wear amount corresponding to the initial wear region is exceeded by using the wear amount of the cutting tool T after cutting the initial wear allowance. Determine whether.
When it is determined that the stable wear region has been reached (Yes), the process proceeds to step S150, and when it is determined that the stable wear region has not been reached (No), the process returns to step S130. Here, since the initial wear allowance is cut again, it is preferable to leave the initial wear allowance a little extra. In addition, if the initial wear allowance is left more than necessary, the processing time becomes longer, so an appropriate amount should be left extra.
In step S150, the control means cuts the “finishing allowance” from the workpiece W in which the “finishing allowance” remains, using the cutting tool T whose wear state has reached the stable wear region, and performs the processing in FIG. The workpiece is cut to the position of the subsequent workpiece contour B to complete the finishing process.
As described above, it is possible to perform cutting into a similar shape shown in “work contour B after machining” which is slid by a predetermined distance in the Z-axis direction with respect to “ideal workpiece contour A after machining” in FIG.

以上に説明した本実施の形態における切削加工方法では、仕上げ加工を開始した時点の切削工具Tの摩耗量、及び安定摩耗領域の切削工具Tでの仕上げ加工の切削中の摩耗量を考慮しない例を説明した。しかし、これら仕上げ加工を開始した時点の摩耗量と、仕上げ加工の切削中の摩耗量を用いて加工中の切削工具Tの移動経路を補正すれば、図5に示す「理想的な加工後のワーク輪郭A」により近い形状の「加工後のワーク輪郭C」に示す相似形状に切削加工することができるので、より好ましい。
ここで、仕上げ加工を開始した時点の摩耗量は、ステップS140による測定値から求めることができる。また仕上げ加工の切削中の摩耗量は、仕上げ加工を開始してからの切削工具Tの移動経路から求めた累積仕上げ切削量から、仕上げ加工を開始してからの摩耗量を求めることができる。この仕上げ加工を開始してからの摩耗量と、仕上げ加工を開始した時点の摩耗量から、現在の切削工具Tの摩耗量(累積摩耗量)を推定することができるので、この推定した摩耗量(累積摩耗量)を用いて切削工具Tの移動経路を補正すればよい。
なお、安定摩耗領域に達している切削工具Tでは切削量に対する工具摩耗量が少ないので、初期摩耗領域を終えた時点の摩耗量のみを切削工具の移動経路の補正に用いるようにしてもよい。
例えばステップS140にて測定した切削工具Tの寸法から、切削工具Tの実形状を求めてCAD/CAMのCLデータに入力することで、仕上げ加工を開始する時点の切削工具Tの形状に合わせたNCプログラム(移動経路を制御するプログラム)に補正することができる。
In the cutting method according to the present embodiment described above, an example in which the amount of wear of the cutting tool T at the time when finishing processing is started and the amount of wear during cutting of the finishing work with the cutting tool T in the stable wear region is not considered. Explained. However, if the movement amount of the cutting tool T being processed is corrected by using the wear amount at the time when the finishing process is started and the wear amount during the cutting of the finishing process, the “ideal after processing” shown in FIG. Since it can be cut into a similar shape shown in “work contour C after processing” having a shape closer to “work contour A”, it is more preferable.
Here, the amount of wear at the time when finishing is started can be obtained from the measured value in step S140. In addition, the amount of wear during finishing cutting can be determined from the cumulative amount of finished cutting obtained from the moving path of the cutting tool T after the start of finishing. Since the current wear amount (cumulative wear amount) of the cutting tool T can be estimated from the wear amount after the finishing process is started and the wear amount at the time when the finishing process is started, the estimated wear amount. What is necessary is just to correct | amend the movement path | route of the cutting tool T using (accumulated wear amount).
In addition, since the tool wear amount with respect to the cutting amount is small in the cutting tool T that has reached the stable wear region, only the wear amount at the time of finishing the initial wear region may be used for correcting the moving path of the cutting tool.
For example, by obtaining the actual shape of the cutting tool T from the dimensions of the cutting tool T measured in step S140 and inputting it into the CL data of CAD / CAM, it is matched to the shape of the cutting tool T at the time when finishing processing is started. It can be corrected to an NC program (a program for controlling the movement path).

切削工具を用いて3次元曲面形状を切削加工する場合、曲面形状に応じて切削工具の刃先とワークとの接触点が変化するので、刃先の使用領域を把握することが困難である。
このため、刃先形状の変形(摩耗)を想定した切削工具の作成が困難であるが、本実施の形態にて説明した切削加工方法では、切削量に対する工具摩耗量が小さく且つ変動も少ない安定摩耗領域に達した切削工具Tを用いて仕上げ加工を開始することで、「理想的な加工後のワーク」の形状に対して適切に相似形状となるように切削加工することができる。
また、仕上げ加工において工具の摩耗量と切削−摩耗特性とに基づいて切削工具Tの移動経路を補正することで、「理想的な加工後のワーク」の形状により近い相似形状となるように切削加工することができる。
When a three-dimensional curved surface shape is cut using a cutting tool, the contact point between the cutting edge of the cutting tool and the workpiece changes according to the curved surface shape, so it is difficult to grasp the usage area of the cutting edge.
For this reason, it is difficult to create a cutting tool that assumes the deformation (wear) of the cutting edge shape. However, in the cutting method described in the present embodiment, the tool wear amount with respect to the cut amount is small, and stable wear is small. By starting the finishing process using the cutting tool T that has reached the region, it is possible to perform the cutting process so that the shape of the “ideal processed workpiece” is appropriately similar.
Further, by correcting the moving path of the cutting tool T based on the amount of wear of the tool and the cutting-wear characteristics in the finishing process, the cutting is performed so as to have a similar shape closer to the shape of the “ideal workpiece after machining”. Can be processed.

本発明の切削加工方法は、本実施の形態で説明した処理手順に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。   The cutting method of the present invention is not limited to the processing procedure described in the present embodiment, and various modifications, additions, and deletions can be made without changing the gist of the present invention.

1 工作機械
BS 基台
EX、EY 位置検出手段
M 主軸(可動体)
MX、MY 駆動モータ
NX ボールねじ
NXS 距離検出手段
SX、SY 温度検出手段
STX 基準位置
T 切削工具
W ワーク
XB コラム(可動体)
YB 主軸保持部材(可動体)

1 Machine tool BS Base EX, EY Position detection means M Spindle (movable body)
MX, MY Drive motor NX Ball screw NXS Distance detection means SX, SY Temperature detection means STX Reference position T Cutting tool W Work XB Column (movable body)
YB spindle holding member (movable body)

Claims (5)

ワークを切削加工する切削工具と、
予め設定された移動経路に沿ってワークに対して前記切削工具を相対的に移動させる制御手段と、前記切削工具の寸法を測定可能な測定手段と、を用いてワークの表面に3次元曲面を切削加工する切削加工方法であって、
前記切削工具は、新品状態から第1所定切削量までの区間である初期摩耗領域ではワークを切削する切削量に対する工具摩耗量が比較的大きく、前記第1所定切削量から第2所定切削量までの区間である安定摩耗領域では切削量に対する工具摩耗量が前記初期摩耗領域よりも小さい、切削−摩耗特性を有しており、
前記制御手段には前記切削−摩耗特性が記憶されており、
前記制御手段にて、
前記測定手段を用いて、新品状態の前記切削工具の寸法を測定して初期工具寸法を求めるステップと、
前記新品状態の切削工具にてワークを第3所定切削量切削した後、前記測定手段を用いて前記切削工具の寸法を測定して切削後工具寸法を求めるステップと、
前記初期工具寸法と前記切削後工具寸法と前記第3所定切削量とに基づいて、前記第3所定切削量に対する前記切削工具の摩耗量を求めるステップと、
求めた前記第3所定切削量に対する前記切削工具の摩耗量と、前記切削−摩耗特性とに基づいて、前記初期摩耗領域に対応する切削量である初期摩耗切削量を推定するステップと、
ワークの粗加工工程において、仕上げ加工代に加えて、前記初期摩耗切削量に対応する初期摩耗代を残すステップと、
前記粗加工工程を終えた後、且つ仕上げ加工工程の前に、新品状態の前記切削工具を用いて前記初期摩耗代を切削して当該切削工具の摩耗状態を前記安定摩耗領域に到達させるステップと、を有する、
切削加工方法。
A cutting tool for cutting a workpiece;
A three-dimensional curved surface is formed on the surface of the workpiece using control means for moving the cutting tool relative to the workpiece along a preset movement path and measuring means capable of measuring the dimensions of the cutting tool. A cutting method for cutting,
The cutting tool has a relatively large amount of tool wear relative to the cutting amount for cutting the workpiece in the initial wear region, which is a section from a new state to the first predetermined cutting amount, from the first predetermined cutting amount to the second predetermined cutting amount. In the stable wear region that is the section of the tool, the tool wear amount relative to the cutting amount is smaller than the initial wear region, and has a cutting-wear characteristic,
The control means stores the cutting-wear characteristics,
In the control means,
Using the measuring means to measure the dimensions of the cutting tool in a new state to obtain initial tool dimensions;
After cutting the workpiece with a third predetermined cutting amount with the new cutting tool, measuring the dimension of the cutting tool using the measuring means to obtain the post-cutting tool dimension;
Obtaining an amount of wear of the cutting tool with respect to the third predetermined cutting amount based on the initial tool size, the post-cutting tool size, and the third predetermined cutting amount;
Estimating an initial wear cutting amount that is a cutting amount corresponding to the initial wear region based on the amount of wear of the cutting tool with respect to the determined third predetermined cutting amount and the cutting-wear characteristics;
In the rough machining process of the workpiece, in addition to the finishing machining allowance, a step of leaving an initial wear allowance corresponding to the initial wear cutting amount;
After finishing the roughing process and before the finishing process, cutting the initial wear allowance using the cutting tool in a new state so that the wear state of the cutting tool reaches the stable wear region; Having
Cutting method.
請求項1に記載の切削加工方法であって、
前記制御手段にて、
前記仕上げ加工工程を行う前に、前記測定手段を用いて前記切削工具の寸法を測定して当該切削工具の摩耗状態が前記安定摩耗領域に到達していることを確認するステップを有する、
切削加工方法。
The cutting method according to claim 1 ,
In the control means,
Before performing the finishing process, the step of measuring the dimensions of the cutting tool using the measuring means to confirm that the wear state of the cutting tool has reached the stable wear region,
Cutting method.
請求項2に記載の切削加工方法であって、
前記制御手段にて、
前記安定摩耗領域に到達していることを確認した際に測定した前記切削工具の寸法に基づいて、前記仕上げ加工時における前記切削工具の前記移動経路を補正する、
切削加工方法。
The cutting method according to claim 2 ,
In the control means,
Based on the dimensions of the cutting tool measured when confirming that the stable wear region has been reached, the movement path of the cutting tool during the finishing process is corrected.
Cutting method.
請求項3に記載の切削加工方法であって、
前記制御手段にて、
更に、仕上げ加工を行いながら、前記移動経路に基づいて、前記仕上げ加工の開始時からのワークの切削量である累積仕上げ切削量を推定するステップと、
前記安定摩耗領域に到達していることを確認した際に測定した前記切削工具の寸法と、推定した累積仕上げ切削量と、前記切削−摩耗特性とに基づいて、現在の切削工具の摩耗量を推定するステップと、
推定した現在の切削工具の摩耗量に基づいて前記移動経路を補正するステップと、を有する、
切削加工方法。
The cutting method according to claim 3 ,
In the control means,
Furthermore, while performing the finishing process, based on the movement path, estimating a cumulative finishing cutting amount that is a cutting amount of the workpiece from the start of the finishing process;
Based on the dimensions of the cutting tool measured when it is confirmed that the stable wear region has been reached, the estimated cumulative cutting amount, and the cutting-wear characteristics, the current amount of wear of the cutting tool is calculated. Estimating, and
Correcting the movement path based on the estimated amount of wear of the current cutting tool,
Cutting method.
請求項1〜4のいずれか一項に記載の切削加工方法であって、
新品状態の前記切削工具の摩耗状態を前記安定摩耗領域に到達させるための切削では、ワークの仕上げ後の形状に類似した形状を切削して当該切削工具の摩耗状態を前記安定摩耗領域に到達させる、
切削加工方法。
It is the cutting method as described in any one of Claims 1-4 ,
In cutting for causing the wear state of the cutting tool in a new state to reach the stable wear region, a shape similar to the shape after finishing of the workpiece is cut so that the wear state of the cutting tool reaches the stable wear region. ,
Cutting method.
JP2009098867A 2009-04-15 2009-04-15 Cutting method Expired - Fee Related JP5402192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098867A JP5402192B2 (en) 2009-04-15 2009-04-15 Cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098867A JP5402192B2 (en) 2009-04-15 2009-04-15 Cutting method

Publications (2)

Publication Number Publication Date
JP2010247264A JP2010247264A (en) 2010-11-04
JP5402192B2 true JP5402192B2 (en) 2014-01-29

Family

ID=43310202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098867A Expired - Fee Related JP5402192B2 (en) 2009-04-15 2009-04-15 Cutting method

Country Status (1)

Country Link
JP (1) JP5402192B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11841696B2 (en) 2018-03-29 2023-12-12 Mitsubishi Heavy Industries, Ltd. Tool selection device, method, and program, and NC program creation system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6854658B2 (en) * 2017-02-01 2021-04-07 三菱電機株式会社 Processing equipment and processing method
WO2019176773A1 (en) * 2018-03-13 2019-09-19 日本電産株式会社 Wear amount estimation system, correction system, fault detection system, service life detection system, machine tool and wear amount estimation method, machine tool and fault detection method, and machine tool and service life detection method
JP7423030B2 (en) * 2019-03-08 2024-01-29 中村留精密工業株式会社 Machine tool with automatic correction function when changing tools
CN113199067A (en) * 2021-03-29 2021-08-03 武汉凌科航空复材有限责任公司 Numerical control machining method for aluminum honeycomb of airplane hyperboloid flow guide plate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228759A (en) * 1988-03-03 1989-09-12 Fanuc Ltd Processing situation indication method
JPH06190622A (en) * 1992-12-24 1994-07-12 Honda Motor Co Ltd End mill
JPH07164314A (en) * 1993-12-08 1995-06-27 Amada Washino Co Ltd Grinding wheel dimension measuring method and device in grinding machine
JPH08243883A (en) * 1995-03-08 1996-09-24 Hitachi Ltd Tool dimension automatic measuring device
JP2000198047A (en) * 1999-01-08 2000-07-18 Okuma Corp Machine tool
JP2003241808A (en) * 2002-02-21 2003-08-29 Fuji Seiki Kk Automatic programming system, automatic programming method, and automatic machining system
JP2005040930A (en) * 2003-07-25 2005-02-17 Denso Corp Determination method for wear condition of tool
DE602004020497D1 (en) * 2004-08-12 2009-05-20 Makino Milling Machine METHOD FOR MACHINING A WORKPIECE
JP2006309304A (en) * 2005-04-26 2006-11-09 Sumitomo Denko Shoketsu Gokin Kk Machining method for sintered material capable of correcting abrasion of tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11841696B2 (en) 2018-03-29 2023-12-12 Mitsubishi Heavy Industries, Ltd. Tool selection device, method, and program, and NC program creation system

Also Published As

Publication number Publication date
JP2010247264A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5232313B1 (en) Wire electric discharge machine that performs bite machining, bite machining method using wire electric discharge machine, and program creation device for wire electric discharge machine that performs bite machining
US8858297B2 (en) Gear grinding method
JP5402192B2 (en) Cutting method
CN107102616B (en) Numerical controller having taper angle correction function for taper machining in spin-coating machining
JP5299582B1 (en) Machining control device and machining control method
TWI681835B (en) Method and grinding machine for fabricating a workpiece comprising a helical groove and a program for controlling the grinding machine
JP6259412B2 (en) A numerical controller that performs reciprocating turning in a combined fixed cycle.
KR20150076104A (en) Wire electrical discharge machine, machining path generator of wire electrical discharge machine, and machining method for use in wire electrical discharge machine for performing path compensation in concave arc corner portion
EP3072620B1 (en) Wire electric discharge machine including unit for adjusting position of workpiece before calibrating
JP6038331B2 (en) Tool path generation method and tool path generation apparatus
KR20130075768A (en) Grinding disc and grinding method
JP5708324B2 (en) Grinding machine and grinding method
JP6581557B2 (en) Machine tool control method
CN113547174A (en) Gear machining device
JP2020199611A (en) Machine tool and machine tool control method
JP2016157216A (en) Numerical control device having tool correction function in skiving processing
JP7494596B2 (en) Gear Processing Equipment
JP7177744B2 (en) Cutting device and its cutting control method
JP7457108B2 (en) Tool measuring system and control method
JP4581858B2 (en) Machine tool controller that reciprocates the tool in synchronization with the rotation of the spindle
US11857386B2 (en) Manufacture of a dental tool
JP2008004124A (en) Numerical control machining device
JP2015047683A (en) Processing method using cylindrical tool
JP2009285781A (en) Working method of inside diameter of workpiece in compound working machine
JP2002172513A (en) Cutting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5402192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees