JP5402161B2 - Heat exchange ventilator - Google Patents

Heat exchange ventilator Download PDF

Info

Publication number
JP5402161B2
JP5402161B2 JP2009084596A JP2009084596A JP5402161B2 JP 5402161 B2 JP5402161 B2 JP 5402161B2 JP 2009084596 A JP2009084596 A JP 2009084596A JP 2009084596 A JP2009084596 A JP 2009084596A JP 5402161 B2 JP5402161 B2 JP 5402161B2
Authority
JP
Japan
Prior art keywords
air
exhaust
heat exchanger
blowing means
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009084596A
Other languages
Japanese (ja)
Other versions
JP2010236768A (en
Inventor
洋祐 濱田
拓也 村山
誠 杉山
若菜 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009084596A priority Critical patent/JP5402161B2/en
Publication of JP2010236768A publication Critical patent/JP2010236768A/en
Application granted granted Critical
Publication of JP5402161B2 publication Critical patent/JP5402161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ventilation (AREA)

Description

本発明は、寒冷地等で使用され、室内の空気を室外へ排気する排気流と、室外の空気を室内へ給気する給気流との間で熱交換する熱交換形換気装置に関する。   The present invention relates to a heat exchange type ventilator that is used in a cold district or the like and performs heat exchange between an exhaust flow for exhausting indoor air to the outside and an air supply air for supplying outdoor air to the room.

この種の熱交換形換気装置は、冬季に室外の温度が、例えば−10℃以下のような低い温度になると、室内からの温かい排気流が流れる熱交換器内の流路内において、隣接する給気の流路に室外から通風される冷たい給気の影響を受けて凍結し目詰まりしていくが、従来の熱交換形換気装置では、この凍結による目詰まりを防止する構成をとっていた(例えば、特許文献1参照)。 This type of heat exchange type ventilator is adjacent in the flow path in the heat exchanger in which a warm exhaust flow from the room flows when the outdoor temperature becomes low, for example, −10 ° C. or lower in winter. Although it freezes and clogs due to the influence of cold supply air that is ventilated from outside into the supply air flow path, conventional heat exchange ventilators have been configured to prevent clogging due to freezing. (For example, refer to Patent Document 1).

また、室外の温度が−25℃のようなきわめて低い温度となる地域では、実用に供する熱交換形換気装置がないのが実状であった。   Moreover, in an area where the outdoor temperature is extremely low such as −25 ° C., there is actually no heat exchange type ventilator for practical use.

以下、特許文献1に示す熱交換形換気装置について、図10を参照しながら説明する。   Hereinafter, the heat exchange type ventilator disclosed in Patent Document 1 will be described with reference to FIG.

図12に示すように、熱交換器ユニット101は室内の空気と室外の空気の間で熱交換換気を行い、熱交換器ユニット101は、熱交換器102と、室内の空気を室外へ排気し、熱交換器102を経由する排気経路103と、室外の空気を室内へ給気し、熱交換器102を経由する給気経路104と、排気経路103に組み込まれる排気ファン105と、給気経路104に組み込まれる給気ファン106と、室外の空気の外気温度を検出する温度センサー107と、温度センサー107で検出した外気温度によって排気ファン105と給気ファン106の運転制御を行う制御部を備えている。   As shown in FIG. 12, the heat exchanger unit 101 performs heat exchange ventilation between indoor air and outdoor air, and the heat exchanger unit 101 exhausts the heat exchanger 102 and indoor air to the outside. The exhaust path 103 passing through the heat exchanger 102, the outdoor air is supplied into the room, the air supply path 104 passing through the heat exchanger 102, the exhaust fan 105 incorporated in the exhaust path 103, and the air supply path An air supply fan 106 incorporated in the air conditioner 104, a temperature sensor 107 that detects the outside air temperature of the outdoor air, and a control unit that controls the operation of the exhaust fan 105 and the air supply fan 106 according to the outside air temperature detected by the temperature sensor 107 are provided. ing.

そして、熱交換器ユニット101の制御部は、外気温度が−10℃を下回った時に、熱交換器102が凍結することを抑えるため、外気温度に応じて2つの凍結抑制制御を行い、この2つの凍結抑制制御は第1凍結抑制制御及び第2凍結抑制制御である。   And the control part of the heat exchanger unit 101 performs two freezing suppression control according to outside air temperature, in order to suppress that the heat exchanger 102 freezes, when outside temperature falls below -10 degreeC, and this 2 The two freeze suppression controls are the first freeze suppression control and the second freeze suppression control.

第1凍結抑制制御は、外気温度が−10℃を下回った場合に、熱交換器102の凍結を抑制する制御であり、排気ファン105を常時作動させ、給気ファン106の動作を60分のうち最初の15分だけ休止させる運転を繰り返す。   The first freezing suppression control is a control for suppressing freezing of the heat exchanger 102 when the outside air temperature falls below −10 ° C., and the exhaust fan 105 is always operated and the operation of the air supply fan 106 is performed for 60 minutes. Repeat the operation to pause for the first 15 minutes.

第2凍結抑制制御は、外気温度が−15℃を下回った場合に、第1凍結抑制制御よりも強力に熱交換器102の凍結を抑制する制御であり、排気ファン105及び給気ファン106の間欠運転を行う。第2凍結抑制制御は、排気ファン105及び給気ファン106を60分休止させた後に5分だけ作動を再開させる運転を繰り返す。   The second freezing suppression control is a control that suppresses freezing of the heat exchanger 102 more strongly than the first freezing suppression control when the outside air temperature falls below −15 ° C., and the exhaust fan 105 and the supply fan 106 are controlled. Perform intermittent operation. In the second freezing suppression control, the exhaust fan 105 and the air supply fan 106 are paused for 60 minutes and then restarted for 5 minutes.

特許第3744409号公報Japanese Patent No. 3744409

従来の熱交換気装置では、室外がきわめて低い温度となる寒冷地の冬季に運転すると、室内の温かい湿気を含む空気と、室外のきわめて低い温度の空気とで熱交換器の排気流路において結露が発生する。そのまま運転を継続すると結露水は排気流路に徐々に溜まり、更に運転を継続すると結露水は凍結していき排気流路が塞がって、排気が行えなくなる。   In a conventional heat exchange device, when operating outdoors in a cold region where the outdoor temperature is very low, condensation occurs in the exhaust air flow path of the heat exchanger between the air containing warm indoor air and the outdoor low-temperature air. Will occur. If the operation is continued as it is, the condensed water gradually accumulates in the exhaust flow path, and if the operation is further continued, the condensed water freezes and the exhaust flow path is blocked, so that the exhaust cannot be performed.

そこで、給気送風手段のみ、もくは給気送風手段と排気送風手段の両方を一時的に停止させることにより排気流路における結露や凍結を生じにくくさせることができるが、給気送風手段のみを停止させると室内が負圧となって建物の隙間から室外の空気が流入し、室内空間にコールドドラフトや結露を生じさせることとなり、給気送風手段と排気送風手段の両方を停止させると、室内の必要換気量を確保することが困難であった。   Therefore, it is possible to prevent condensation or freezing in the exhaust flow path by temporarily stopping only the air supply / air blowing means, or both the air supply / air blowing means and the exhaust air blowing means. When the air pressure is stopped, the room becomes negative pressure and the outdoor air flows from the gaps between the buildings, causing cold drafts and condensation in the indoor space.When both the air supply and exhaust air blowing means are stopped, It was difficult to secure the necessary ventilation volume in the room.

そのため従来の熱交換気装置においては、結露や凍結の影響を回避して、室内空間におけるコールドドラフトや結露を抑制し必要な換気量を確保しつつ本来の熱交換換気を継続するために、熱交換気装置内に複数の熱交換気構造を備え、室外空気と室内空気とで熱交換しながら換気を行う熱交換気運転と、室内空気により熱交換器の排気流路の結露や凍結を解消させる熱交換器のデフロスト運転とを、順次切り換えることで熱交換気の継続を可能としていたが、熱交換気構造を複数備えることで装置が大型化するという課題があった。   For this reason, in conventional heat exchange air devices, in order to avoid the effects of condensation and freezing, suppress cold drafts and condensation in the indoor space and maintain the necessary ventilation, while maintaining the original heat exchange ventilation, Multiple heat exchange air structures are provided in the exchange air device, heat exchange air operation that ventilates while exchanging heat between outdoor air and indoor air, and condensation and freezing of the exhaust flow path of the heat exchanger are eliminated by indoor air The heat exchange air can be continued by sequentially switching the defrosting operation of the heat exchanger to be performed, but there is a problem that the apparatus is enlarged by providing a plurality of heat exchange air structures.

本発明は、このような課題を解決するものであり、室外がきわめて低い温度となる寒冷地の冬季に運転しても、複数の熱交換器を切り換えて用いることで、熱交換器内部での凍結の影響を回避して本来の熱交換換気を継続して実施することができ、さらに、熱交換器と送風手段の接続を繋ぎかえることのできる機構を持たせることで、従来の寒冷地に対応した装置より小型化を実現できる熱交換装置を提供することを目的としている。   The present invention solves such a problem, and even when operating in a cold region in winter when the outdoor temperature is extremely low, a plurality of heat exchangers can be switched and used. It is possible to continue the original heat exchange ventilation while avoiding the effects of freezing, and to provide a mechanism that can change the connection between the heat exchanger and the air blowing means, so that it can be used in conventional cold districts. It aims at providing the heat exchange apparatus which can implement | achieve size reduction from the corresponding apparatus.

そして、この目的を達成するために本発明は、室外より室外の空気を吸い込む室外吸込口と室内より室内の空気を吸い込む室内吸込口と室外へ室内の空気を排気する室外排出口と室内へ室外の空気を給気する室内給気口を備えた本体箱内に、室外空気を通風させる給気流路と室内空気を通風させる排気流路を備え、前記給気流路を流れる室外の空気と前記排気流路を流れる室内の空気とを熱交換する熱交換器を複数備え、室外の空気を吸い込み、前記給気流路を通じて室内へ給気を行う給気送風手段と、室内の空気を吸い込み、前記排気流路を通じて室外へ排気を行う排気送風手段と、室内の空気を吸い込み、前記排気流路を通じて室内へ空気を循環させる循環送風手段を備え、前記給気送風手段及び前記排気送風手段といずれかの前記熱交換器を接続し、前記循環送風手段と他の熱交換器を接続し、前記給気送風手段及び前記排気送風手段、前記循環送風手段と接続する前記熱交換器を選択する選択手段を備えた構成であって、前記給気送風手段及び前記排気送風手段を駆動させる給気排気原動機と前記循環送風手段を駆動させる循環原動機を備え、前記給気送風手段と接続する熱交換器を選択する選択手段である第1風向調整板を備え、前記第1風向調整板が、前記給気送風手段と接続する熱交換器を選択して切り換えでき、前記給気送風手段が、全ての熱交換器と接続でき、前記循環原動機は、前記給気送風手段が全ての熱交換器と接続する場合には停止することを特徴とする熱交換形換気装置である。 In order to achieve this object, the present invention includes an outdoor suction port that sucks outdoor air from the outside, an indoor suction port that sucks indoor air from the indoor space, an outdoor discharge port that exhausts indoor air to the outdoor space, and the outdoor A main body box having an indoor air supply port for supplying the air is provided with an air supply passage for allowing outdoor air to flow and an exhaust passage for allowing indoor air to flow, and the outdoor air and the exhaust flowing through the air supply passage are provided. A plurality of heat exchangers for exchanging heat with indoor air flowing through the flow path, sucking outdoor air and supplying air into the room through the supply flow path, sucking indoor air, and exhausting the air Exhaust air blowing means for exhausting the air through the flow path, and circulation air blowing means for sucking indoor air and circulating the air through the exhaust flow path to the room. Heat exchange And a selection means for selecting the heat exchanger to be connected to the supply air blower means, the exhaust blower means, and the circulation blower means. A selection means for selecting a heat exchanger connected to the supply air blowing means, comprising a supply air exhaust motor for driving the supply air blowing means and the exhaust ventilation means, and a circulation prime mover for driving the circulation ventilation means. A first air direction adjusting plate, the first air direction adjusting plate can select and switch a heat exchanger connected to the air supply / air blowing means, and the air supply / air blowing means is connected to all the heat exchangers. can, the circulation motor, when the air supply blowing means is connected to all of the heat exchanger is a heat exchanger type ventilating device comprising that you stopped.

本発明によれば、室外がきわめて低い温度となる寒冷地の冬季に運転しても、複数の熱交換器を切り換えて用いることで、熱交換器内部での凍結の影響を回避して本来の熱交換換気を継続して実施することができ、さらに、熱交換器と送風手段の接続を繋ぎかえることのできる機構を持たせることで、従来の寒冷地に対応した装置より小型化を実現すると共に、送風手段の数を必要最小限に抑えることができる。   According to the present invention, even when the outdoor is operated in a cold region where the temperature is extremely low, by using a plurality of heat exchangers, the influence of freezing inside the heat exchanger can be avoided and the original effect can be avoided. Heat exchange ventilation can be carried out continuously, and further, by providing a mechanism that can connect the heat exchanger and the blowing means, it is possible to reduce the size compared to conventional cold district devices. At the same time, the number of blowing means can be minimized.

しかも、給気・排気用送風手段とデフロスト運転用の循環送風手段の原動機を別にすることでデフロスト運転が必要ない時期にデフロスト運転用の循環送風手段の原動機を停止するなど、デフロスト運転状況に合わせたデフロスト運転用の循環送風手段の制御が可能になり、本来の熱交換換気を継続して実施する上でデフロスト運転に使用する電力を必要最小限に抑えられ、熱交換装置の消費電力を抑えることができる。   In addition, by separating the air supply / exhaust air blowing means and the circulation air blowing means for the defrost operation separately from each other, the motor for the circulation air blowing means for the defrost operation is stopped when the defrost operation is not required. In addition, it is possible to control the circulating air blowing means for defrost operation, and to keep the original heat exchange ventilation continuously, the power used for defrost operation can be minimized and the power consumption of the heat exchange device can be reduced. be able to.

(a)本発明における実施の形態1、通常時の熱交換気運転中の熱交換形換気装置を示す水平断面図、(b)本発明における実施の形態1、通常時の熱交換気運転中の熱交換形換気装置を示す鉛直断面図(A) Embodiment 1 in the present invention, horizontal sectional view showing a heat exchange type ventilator during normal heat exchange air operation, (b) Embodiment 1 in the present invention, during normal heat exchange air operation Vertical sectional view showing a heat exchange type ventilator 同、第1デフロスト運転及び第2凍結時の熱交換気運転中の熱交換形換気装置を示す水平断面図及び鉛直断面図The horizontal sectional view and the vertical sectional view showing the heat exchange type ventilator during the heat exchange air operation at the time of the first defrost operation and the second freezing 同、第2デフロスト運転及び第1凍結時の熱交換気運転中の熱交換形換気装置を示す水平断面図及び鉛直断面図The horizontal sectional view and the vertical sectional view showing the heat exchange type ventilator during the second defrost operation and the heat exchange air operation during the first freezing (a)本発明における実施の形態10の第2風向調整板を示す概略水平断面図、(b)本発明における実施の形態10の第2風向調整板を示す概略鉛直断面図、(c)本発明における実施の形態10の第2風向調整板を示す概略分解斜視図(A) Schematic horizontal sectional view showing the second wind direction adjusting plate of Embodiment 10 in the present invention, (b) Schematic vertical sectional view showing the second wind direction adjusting plate of Embodiment 10 in the present invention, (c) Book Schematic exploded perspective view showing the second wind direction adjusting plate of Embodiment 10 in the invention (a)本発明における実施の形態13の熱交換形換気装置を示す水平断面図、(b)本発明における実施の形態13の熱交換形換気装置を示す鉛直断面図(A) Horizontal sectional view showing a heat exchange type ventilator according to a thirteenth embodiment of the present invention, (b) Vertical sectional view showing a heat exchange type ventilator according to a thirteenth embodiment of the present invention. 同、実施の形態14の熱交換形換気装置を示す水平断面図及び鉛直断面図The horizontal sectional view and the vertical sectional view showing the heat exchange type ventilator of the fourteenth embodiment 同、実施の形態15の熱交換形換気装置を示す水平断面図及び鉛直断面図The horizontal sectional view and the vertical sectional view showing the heat exchange type ventilation apparatus of the fifteenth embodiment 同、実施の形態16の熱交換形換気装置を示す水平断面図及び鉛直断面図The horizontal sectional view and the vertical sectional view showing the heat exchange type ventilation apparatus of the sixteenth embodiment 本発明における実施の形態17の熱交換器と皿状の構造を示す概略分解斜視図Schematic exploded perspective view showing a heat exchanger and a dish-like structure of Embodiment 17 in the present invention 従来の熱交換器ユニットを示す概略断面図Schematic sectional view showing a conventional heat exchanger unit

本発明の請求項1に記載の熱交換形換気装置は、室外より室外の空気を吸い込む室外吸込口と室内より室内の空気を吸い込む室内吸込口と室外へ室内の空気を排出する室外排出口と室内へ室外の空気を給気する室内給気口を備えた本体箱内に、室外空気を通風させる給気流路と室内空気を通風させる排気流路を備え、前記給気流路を流れる室外の空気と前記排気流路を流れる室内の空気とを熱交換する熱交換器を複数備え、室外の空気を吸い込み、前記給気流路を通じて室内へ給気を行う給気送風手段と、室内の空気を吸い込み、前記排気流路を通じて室外へ排気を行う排気送風手段と、室内の空気を吸い込み、前記排気流路を通じて室内へ空気を循環させる循環送風手段を備え、前記給気送風手段及び前記排気送風手段といずれかの前記熱交換器を接続し、前記循環送風手段と他の熱交換器を接続し、前記給気送風手段及び前記排気送風手段、前記循環送風手段と接続する前記熱交換器を選択する選択手段を備えた構成であって、前記給気送風手段及び前記排気送風手段を駆動させる給気排気原動機と前記循環送風手段を駆動させる循環原動機を備え、前記給気送風手段と接続する熱交換器を選択する選択手段である第1風向調整板を備え、前記第1風向調整板が、前記給気送風手段と接続する熱交換器を選択して切り換えでき、前記給気送風手段が、全ての熱交換器と接続でき、前記循環原動機は、前記給気送風手段が全ての熱交換器と接続する場合には停止す構成であり、室外がきわめて低い温度になり熱交換器内に結露や凍結が発生して熱交換が困難になる時に、複数の熱交換器にて熱交換気運転熱交換気運転とデフロスト運転を順次切り換える構成とすることで、本来の熱交換換気を継続させることができ、前記熱交換気運転に使用する熱交換器と前記デフロスト運転に使用する熱交換器とで組み合わせる給気用送風手段を共通にすることで、熱交換器ごと、目的ごとに送風手段を揃える必要を無くし、送風手段の削減が図られ小型化できる他、前記熱交換気運転に使用する給気送風手段及び排気送風手段を駆動する給気排気原動機と前記デフロスト運転を行うための循環送風手段を駆動する循環原動機が別になっているので、前記熱交換気運転のみをした場合に、前記循環送風手段を停止でき、消費電力を低減することができる。 The heat exchange ventilator according to claim 1 of the present invention includes an outdoor suction port for sucking outdoor air from the outside, an indoor suction port for sucking indoor air from the indoor, and an outdoor discharge port for discharging indoor air to the outdoor. An outdoor air flowing in the air supply passage is provided in the main body box having an indoor air supply port for supplying outdoor air into the room, and includes an air supply passage for passing outdoor air and an exhaust passage for letting indoor air flow. A plurality of heat exchangers for exchanging heat with the indoor air flowing through the exhaust flow path, sucking outdoor air, and supplying air into the room through the air supply flow path, and sucking indoor air An exhaust air blowing means for exhausting air outside the room through the exhaust flow path, and a circulation air blowing means for sucking indoor air and circulating the air through the exhaust flow path to the room, and the air supply air blowing means and the exhaust air blowing means, Any of the heat And a selection means for selecting the heat exchanger to be connected to the supply air blowing means, the exhaust air blowing means, and the circulation air blowing means. A selection comprising a supply air / exhaust prime mover for driving the supply / air supply means and the exhaust / air supply means and a circulation prime mover for driving the circulation blower means , and selecting a heat exchanger connected to the supply / air supply means A first wind direction adjusting plate, which is a means, and the first wind direction adjusting plate can select and switch a heat exchanger connected to the air supply / air blowing means, and the air supply / air blowing means is connected to all the heat exchangers. The circulation prime mover is configured to stop when the supply air blowing means is connected to all the heat exchangers , and the outdoor temperature becomes extremely low, causing condensation and freezing in the heat exchanger. When heat exchange becomes difficult, multiple heat Heat exchanger air operation and heat exchanger air operation and defrost operation are sequentially switched by a converter, so that the original heat exchange ventilation can be continued, and the heat exchanger and the defrost used for the heat exchanger air operation By making the air supply means combined with the heat exchanger used for operation in common, there is no need to arrange the air supply means for each heat exchanger and for each purpose, the air supply means can be reduced and the size can be reduced, Since the supply air exhaust means for driving the heat exchange air operation and the supply air exhaust motor for driving the exhaust air ventilation means and the circulation prime mover for driving the circulation air blow means for performing the defrost operation are separated, the heat exchange air When only driving | running | working, the said circulation ventilation means can be stopped and power consumption can be reduced.

また、給気送風手段と接続する熱交換器を選択する選択手段である第1風向調整板を備える構成であり、給気送風手段が通風させる熱交換器を選択することで熱交換気運転と熱交換器のデフロスト運転の切り換えを行うことができ、熱交換器内部での凍結の影響を回避して本来の熱交換換気を継続して実施することができる。  Moreover, it is the structure provided with the 1st wind direction adjustment board which is a selection means which selects the heat exchanger connected with an air supply ventilation means, and heat exchange air operation | movement is selected by selecting the heat exchanger which an air supply ventilation means ventilates. The defrosting operation of the heat exchanger can be switched, and the original heat exchange ventilation can be continued by avoiding the influence of freezing inside the heat exchanger.

また、第1風向調整板が、給気送風手段と接続する熱交換器を選択して切り換えできることと、かつ、前記給気送風手段が、全ての熱交換器と接続できる構成であり、この構成により、簡単な構成で少なくとも1つの熱交換器へ給気送風手段が通風させるように切り換えができ、熱交換気運転と熱交換器のデフロスト運転の切り換えを容易に行うことができる。  Further, the first air direction adjusting plate can select and switch the heat exchanger connected to the supply air blowing means, and the supply air blowing means can be connected to all the heat exchangers. Thus, it is possible to switch so that the supply air blowing means passes through at least one heat exchanger with a simple configuration, and switching between the heat exchange air operation and the defrost operation of the heat exchanger can be easily performed.

また、循環原動機は、給気送風手段が全ての熱交換器と接続する場合に停止する構成であり、全ての熱交換器で熱交換気運転を行っている時に、使用しない循環送風手段及び循環原動機を停止し、消費電力を低減することができる。  The circulation prime mover is configured to stop when the supply air blowing means is connected to all the heat exchangers. When the heat exchange air operation is performed in all the heat exchangers, the circulation blowing means and the circulation which are not used are used. It is possible to stop the prime mover and reduce power consumption.

また、請求項2に記載の熱交換形換気装置は、給気送風手段を、給気流路から空気を吸い込み、室内へ給気するように配置するとともに、排気送風手段を排気流路から空気を吸い込み、室外へ排気するように配置する構成であり、このことで、給気送風手段及び排気送風手段で給気流路及び排気流路をそれぞれ負圧にして空気を移動させる形となり、前記熱交換器の風の流入分布を整えることで、前記熱交換器の風路間圧力差を小さくできることから、排気流路と給気流路間での風の漏れを低減することができる。 Further, the heat exchanger type ventilation system according to claim 2, the air supply blowing means draws air from the air supply channel, while arranged to supply air into the room, the air exhaust blowing means from the exhaust passage It is configured to be sucked in and exhausted to the outside of the room. With this arrangement, the supply air blowing means and the exhaust blowing means move the air with the negative pressure in the supply air flow path and the exhaust flow path, respectively, and the heat exchange By adjusting the wind inflow distribution of the heat exchanger, the pressure difference between the air passages of the heat exchanger can be reduced, so that the leakage of wind between the exhaust passage and the air supply passage can be reduced.

また、請求項3に記載の熱交換形換気装置は、給気排気原動機が給気送風手段によって形成される風路内に設置されている構成であり、熱交換後に室内へ給気する空気を給気排気原動機の排熱で暖めることができ、室内へ給気する空気の温度を上昇させることができる。 The heat exchanger type ventilation system according to claim 3 has a configuration air supply exhaust prime mover is disposed in the wind path formed by the air supply blowing means, the air supply into the room after heat exchange It can be warmed by the exhaust heat of the supply / exhaust prime mover, and the temperature of the air supplied to the room can be raised.

また、請求項4に記載の熱交換形換気装置は、循環送風手段を排気流路から空気を吸い込み、室内へ排気するように配置する構成であり、循環送風手段によって駆動される排気流路を負圧にすることで、前記循環送風手段運転中に前記排気流路から低温の給気流路へ湿度の高い室内空気が流入することを防ぎ、前記給気流路内に結露や凍結が発生することを抑制できる。 The heat exchanger type ventilation system according to claim 4 sucks air circulation blower means from the exhaust passage, a configuration arranged to exhaust the chamber, an exhaust passage which is driven by a circulation blower means Is set to a negative pressure to prevent high-humidity indoor air from flowing from the exhaust passage into the low-temperature air supply passage during operation of the circulating air blowing means, and condensation or freezing occurs in the air supply passage. This can be suppressed.

また、請求項5に記載の熱交換形換気装置は、循環原動機が循環送風手段によって形成される風路内に設置されている構成であり、熱交換後に室内へ給気する空気を循環原動機の排熱で暖めることができ、室内へ排気する空気の温度を上昇させることができる。 The heat exchanger type ventilation system according to claim 5 has a structure in which circulation motor is installed in the wind path formed by the circulation blower means, circulating engine air to supply air into the room after heat exchange It can be warmed by the exhaust heat, and the temperature of the air exhausted into the room can be raised.

また、請求項6に記載の熱交換形換気装置は、循環送風手段の羽根車が給気送風手段及び排気送風手段の羽根車よりも体積の小さい構成であり、循環送風手段が駆動する風路は給気送風手段や排気送風手段が駆動する風路に比べダクト配管が無く通風抵抗が低いことから送風に必要な静圧が小さくなるため、前記羽根車の体積を小さくすることで送風性能を損なわずに熱交換形換気装置を小型化できる。また、羽根車の体積を小さくすることで駆動に必要な動力も小さくなり消費電力を低減することができる。 The heat exchanger type ventilation system according to claim 6 is a small structure of volume than the impeller of the impeller of the circulation blower means supply air blowing means and exhaust blowing means, air circulating blower means is driven Since the road has no duct piping compared to the air passage driven by the air supply and exhaust air blowing means and the ventilation resistance is low, the static pressure required for air blowing is reduced, so the air blowing performance is reduced by reducing the volume of the impeller The heat exchange type ventilator can be downsized without damaging it. In addition, by reducing the volume of the impeller, the power required for driving can be reduced and the power consumption can be reduced.

また、請求項に記載の熱交換形換気装置は、第1風向調整板を、室外吸込口と、熱交換器の間に備える構成であり、循環送風手段と接続している熱交換器への外気の流入を防ぐことで、循環送風手段によるデフロスト運転中に前記熱交換器の温度が低下することを抑制できるので、前記デフロスト運転の効率を上げることができる。 The heat exchanger type ventilation system according to claim 7, the first wind direction adjusting plate, and an outdoor suction port is configured to include between the heat exchanger, the heat exchanger is connected to the circulating blower means By preventing the outside air from flowing in, it is possible to suppress the temperature of the heat exchanger from being lowered during the defrost operation by the circulating air blowing means, so that the efficiency of the defrost operation can be increased.

また、請求項に記載の熱交換形換気装置は、第1風向調整板が給気送風手段と熱交換器の接続を切り換える時に、給気排気原動機の回転数を低下させる構成としたもので、第1風向調整板の切換の間に室外空気が複数の熱交換器へ不均一に流入することで給気温度が低下してしまうことを抑制し、給気の熱交換効率の低下を抑制できる。 In addition, the heat exchange type ventilator according to claim 8 is configured to reduce the rotation speed of the supply / exhaust prime mover when the first wind direction adjusting plate switches the connection between the supply / air supply means and the heat exchanger. , Suppresses a decrease in the supply air temperature due to non-uniform flow of outdoor air into the plurality of heat exchangers during the switching of the first air direction adjusting plate, and suppresses a decrease in the heat exchange efficiency of the supply air it can.

また、請求項に記載の熱交換形換気装置は、排気送風手段及び循環送風手段と接続する熱交換器を選択する選択手段である第2風向調整板を備える構成であり、簡単な構成で排気送風手段及び循環送風手段が通風させる熱交換器の切換ができ、熱交換気運転と熱交換器のデフロスト運転の切り換えを容易に行うことができる。 Further, the heat exchanger type ventilation system of claim 9, a configuration in which a second airflow direction adjusting plate is a selection means for selecting a heat exchanger connected to the exhaust blower unit and the circulation blower means, a simple structure Thus, the heat exchanger to be ventilated by the exhaust air blowing means and the circulation air blowing means can be switched, and the heat exchange air operation and the defrost operation of the heat exchanger can be easily switched.

また、請求項10に記載の熱交換形換気装置は、第2風向調整板が、循環送風手段と全ての熱交換器の接続を遮断することができる構成であり、全ての熱交換器で熱交換気運転を行っている場合に、排気送風手段によって形成される風路へ、循環送風手段によって形成される風路から室内の空気が漏れることを抑制できる。 Further, in the heat exchange ventilator according to claim 10 , the second wind direction adjusting plate is configured such that the connection between the circulating air blowing means and all the heat exchangers can be cut off, and the heat is exchanged in all the heat exchangers. When the exchange air operation is performed, the indoor air can be prevented from leaking from the air passage formed by the circulation air blowing means to the air passage formed by the exhaust air blowing means.

また、請求項11に記載の熱交換形換気装置は、循環原動機が第2風向調整板によって循環送風手段が熱交換器と接続する場合に駆動し、前記第2風向調整板によって前記循環送風手段が熱交換器と接続しない場合には停止する構成であり、全ての熱交換器で熱交換気運転を行っている時に、使用しない循環送風手段及び循環原動機を停止し、消費電力を低減することができる。 The heat exchanger type ventilation system of claim 11 drives when circulation prime mover is circulation blowing means by the second wind direction adjusting plate connected to the heat exchanger, the circulating blown by the second wind direction adjusting plate When the means is not connected to the heat exchanger, it is configured to stop. When the heat exchange operation is performed in all the heat exchangers, the circulation fan means and the circulation prime mover that are not used are stopped to reduce power consumption. be able to.

また、請求項12に記載の熱交換形換気装置は、第1風向調整板の切り換えに合わせて、第2風向調整板は、排気送風手段が前記給気送風手段の接続する熱交換器へ接続し、かつ循環送風手段が前記給気送風手段及び排気送風手段が接続していない前記熱交換器へ接続するように切り換わる構成であり、複数の熱交換器と風向調整板を用いることで、給気送風手段及び排気送風手段が接続し熱交換気運転を行う熱交換器と、循環送風手段が接続し熱交換器のデフロスト運転を行う熱交換器の切り換えを、簡単な構成で容易に行うことができ、装置を小型化し熱交換気運転の継続を確実に行うことができる。 Further, in the heat exchange type ventilator according to claim 12 , the second air direction adjusting plate is connected to the heat exchanger to which the exhaust air blowing unit is connected to the air supply air blowing unit in accordance with the switching of the first air direction adjusting plate. And the circulation air blowing means is configured to switch to connect to the heat exchanger to which the air supply air blowing means and the exhaust air blowing means are not connected, and by using a plurality of heat exchangers and an airflow direction adjusting plate, Switching between the heat exchanger that connects the air supply and exhaust air means and performs the heat exchange operation and the heat exchanger that connects the circulation air means and performs the defrost operation of the heat exchanger can be easily performed with a simple configuration. Therefore, the apparatus can be downsized and the heat exchange air operation can be continued reliably.

また、請求項13に記載の熱交換形換気装置は、第2風向調整板が循環送風手段と熱交換器を接続した直後、または前記循環送風手段に接続される熱交換器を切り換えた直後に、循環原動機の回転数を上昇させることを特徴とする構成であり、外気によって冷却された熱交換器でデフロスト運転を開始した時に、デフロスト風量を増加させることで、デフロスト後に室内へ吹き出す風の温度低下を軽減することができる。 Moreover, the heat exchange type ventilator according to claim 13 immediately after the second wind direction adjusting plate connects the circulating air blowing means and the heat exchanger or immediately after switching the heat exchanger connected to the circulating air blowing means. The temperature of the wind blown into the room after defrosting is increased by increasing the defrost air volume when starting the defrost operation with the heat exchanger cooled by the outside air. Reduction can be reduced.

また、請求項14に記載の熱交換形換気装置は、排気流路の流出口から室外排出口の間に、結露や凍結の状態を検知できる結露検知手段を備え、前記結露検知手段の検出値により給気排気原動機の回転数を低下させ、循環原動機の回転数を上昇させる構成であり、熱交換器に結露や凍結が発生した場合に、それら結露や凍結が乾燥するまで熱交換気運転の風量を落とし、デフロスト運転の風量を増加させることによって、デフロスト効率をあげることができる。 The heat exchanger type ventilation system according to claim 14, in between the outlet of the exhaust air flow path of the outdoor outlet comprises condensation detecting means capable of detecting the state of condensation or freezing, the detection value of said condensation detecting means This reduces the rotational speed of the supply / exhaust prime mover and increases the rotational speed of the circulating prime mover.When condensation or freezing occurs in the heat exchanger, the heat exchange air operation is continued until the condensation or freezing is dried. Defrost efficiency can be increased by reducing the air volume and increasing the air volume during defrost operation.

また、請求項15に記載の熱交換形換気装置は、室内給気口の空気の温度を検知する温度検知手段を備え、前記室内給気口から供給される空気の温度が所定の温度を下回った場合、給気排気原動機の回転数を低下させ、循環原動機の回転数を上昇させる構成であり、給気温度が低すぎる場合に、給排気風量を低下させて熱交換効率を上昇させると共に、熱交換器内での結露・凍結の発生を抑制することができる。 The heat exchanger type ventilation system of claim 15, comprising a temperature detecting means for detecting the temperature of the air in chamber air inlet, the temperature temperature is in a predetermined air supplied from the indoor air supply opening When the air supply temperature is lower, the rotation speed of the supply / exhaust prime mover is decreased and the rotation speed of the circulation prime mover is increased.When the supply air temperature is too low, the supply / exhaust air volume is decreased to increase the heat exchange efficiency. The occurrence of condensation and freezing in the heat exchanger can be suppressed.

また、請求項16に記載の熱交換形換気装置は、給気流路へ室外の空気が流入しないようにする風路遮蔽手段を備える構成であり、換気運転を行っていない場合に、本体内に外気が入り込んだことによる熱交換器の凍結を抑制できる。 The heat exchange ventilator according to claim 16 is configured to include an air passage shielding means for preventing outdoor air from flowing into the air supply flow path, and when the ventilation operation is not performed, Freezing of the heat exchanger due to the entry of outside air can be suppressed.

また、請求項17に記載の熱交換形換気装置は、循環原動機の運転時は給気送風手段によって室内へ送られる室外の空気と、循環送風手段によって室内へ送られる室内の空気を混合して排出する構成であり、室内へ給気される空気の温度を循環送風手段によって室内から吸い込んだ空気によって上昇させることができ、室内給気口近傍の空間の温度低下を抑制することができる。 The heat exchanger type ventilation system according to claim 17, during operation of the circulation motor is mixed with outdoor air sent into the room by the air supply blowing means, the indoor air sent into the room by the circulation blower means The temperature of the air supplied into the room can be raised by the air sucked from the room by the circulating air blowing means, and the temperature drop in the space near the indoor air supply port can be suppressed.

また、請求項18に記載の熱交換形換気装置は、熱交換器を、排気流路の流入口が鉛直下方向へ開口し、前記排気流路の流出口が前記流入口に比べ鉛直上方向に位置する構成であり、前記排気流路に結露水が発生した場合に重力によって前記排気流路の流入口へ熱交換器内の前記結露水を排出することで、前記排気流路から第2風向調整板や排気送風手段もしくは循環送風手段へ前記結露水が流れ込むことを抑制することができる。 The heat exchange ventilator according to claim 18 , wherein the heat exchanger is configured such that the inlet of the exhaust passage opens vertically downward, and the outlet of the exhaust passage is vertically upward compared to the inlet. And when dew condensation water is generated in the exhaust flow channel, the dew condensation water in the heat exchanger is discharged from the exhaust flow channel to the inlet of the exhaust flow channel by gravity. It is possible to suppress the condensed water from flowing into the wind direction adjusting plate, the exhaust air blowing means or the circulation air blowing means.

また、請求項19に記載の熱交換形換気装置は、排気流路の流入口の鉛直下方向には皿状の構造が配置されている構成であり、前記排気流路に結露水が発生した場合、前記結露水が室内へ流出することを抑制すると共に、前記皿状の構造を通過する室内空気によって前記結露水を乾燥させることができる。以下、本発明の実施の形態について、図1〜図9を参照しながら説明する。 The heat exchanger type ventilation system of claim 19, vertically downward in the inlet of the exhaust air flow path is a configuration in which dish-like structure is arranged, condensed water is generated in the exhaust passage In this case, the condensed water can be prevented from flowing out into the room, and the condensed water can be dried by the room air passing through the dish-like structure. Hereinafter, embodiments of the present invention will be described with reference to FIGS.

(実施の形態1)
本発明では少なくとも1台以上の熱交換器を2組用いるが、以下実施の形態では便宜上、請求項1に記載したいずれかの熱交換器は1台で第1熱交換器23とし、請求項1に記載した他の熱交換器も1台で第2熱交換器24として説明する。熱交換器を複数台使用した形態については後述する。
(Embodiment 1)
In the present invention, two sets of at least one heat exchanger are used. However, in the following embodiments, for convenience, any one of the heat exchangers described in claim 1 is used as the first heat exchanger 23. The other heat exchanger described in 1 is also described as the second heat exchanger 24 by one unit. The form using a plurality of heat exchangers will be described later.

図1〜図3の(a)に熱交換形換気装置の水平方向の断面図、(b)に熱交換形換気装置の鉛直方向の断面図を示す。図1では、熱交換器2台を用いて熱交換気運転を行う図を、図2、図3では熱交換器2台のうち片側1台を用いて熱交換気運転を行う図を示した。   1-3 is a horizontal cross-sectional view of the heat exchange ventilator, and (b) is a vertical cross-sectional view of the heat exchange ventilator. In FIG. 1, the figure which performs heat exchange air operation using two heat exchangers is shown, and in FIG. 2 and FIG. 3, the figure which performs heat exchange air operation using one side of two heat exchangers is shown. .

図1に示すように、熱交換形換気装置は、室外吸込口1と室内吸込口2と室外排出口3と室内給気口4と循環空気排出口22を備えた本体箱5で構成される。室外吸込口1から吸い込んだ空気は室内給気口4より給気され、室内吸込口2から吸い込んだ空気は室外排出口3または循環空気排出口22から吐出される。   As shown in FIG. 1, the heat exchange ventilator is constituted by a main body box 5 having an outdoor suction port 1, an indoor suction port 2, an outdoor discharge port 3, an indoor air supply port 4, and a circulating air discharge port 22. . Air sucked from the outdoor suction port 1 is supplied from the indoor air supply port 4, and air sucked from the indoor suction port 2 is discharged from the outdoor discharge port 3 or the circulating air discharge port 22.

本体箱5内部には第1熱交換器23と第2熱交換器24を備え、第1熱交換器23は室外の空気を通風させる第1給気流路25と室内の空気を通風させる第1排気流路26を備え、第2熱交換器24は室外の空気を通風させる第2給気流路27と室内の空気を通風させる第2排気流路28を備える。   The main body box 5 includes a first heat exchanger 23 and a second heat exchanger 24, and the first heat exchanger 23 has a first air supply passage 25 that allows outdoor air to flow and a first air that allows indoor air to flow. An exhaust passage 26 is provided, and the second heat exchanger 24 includes a second air supply passage 27 that ventilates outdoor air and a second exhaust passage 28 that ventilates indoor air.

また、送風手段として給気送風手段9と、排気送風手段10、循環送風手段11を備え、例えば送風手段として遠心送風機や軸流送風機を用いる。送風手段を駆動させる原動機として給気排気原動機12と循環原動機13を備え、送風手段と接続する熱交換器を選択するための選択手段として第1風向調整板14と第2風向調整板15を備えた構成である。   In addition, the air supply means 9, the exhaust air supply means 10, and the circulation air supply means 11 are provided as the air supply means. For example, a centrifugal fan or an axial flow fan is used as the air supply means. A supply / exhaust prime mover 12 and a circulation prime mover 13 are provided as prime movers for driving the blowing means, and a first wind direction adjusting plate 14 and a second wind direction adjusting plate 15 are provided as selection means for selecting a heat exchanger connected to the blowing means. It is a configuration.

さらに本体箱5は、給気排気原動機12の回転軸に固着された給気送風手段9によって室外の空気を室内へ給気する給気流を通風させる給気流経路29と、同じく給気排気原動機12の回転軸に固着された排気送風手段10によって室内の空気を室外に吐出する排気流を通風させる排気流経路30、循環原動機13の回転軸に固着された循環送風手段11によって室内の空気を熱交換器に通風させ、循環空気排出口22より室内へ循環させる循環空気流を通風させる循環空気流経路31を備えた構成である。   Further, the main body box 5 includes an air supply passage 29 for supplying outdoor air into the room by an air supply / air blowing means 9 fixed to the rotation shaft of the air supply / exhaust motor 12, and an air supply / exhaust motor 12. The exhaust air blowing means 10 fixed to the rotating shaft of the exhaust air blows out the indoor air through the exhaust air flow path 30 and the circulating air blowing means 11 fixed to the rotating shaft of the circulation motor 13 heats the indoor air. It is the structure provided with the circulation air flow path 31 which ventilates the exchanger and ventilates the circulation air flow circulated into the room from the circulation air discharge port 22.

第1風向調整板14は、室外吸込口1に第1熱交換器23もしくは第2熱交換器24のどちらか一方または両方を接続し、第2風向調整板15は、第1熱交換器23及び第2熱交換器24を、それぞれ排気送風手段10もしくは循環送風手段11のどちらか少なくとも一方に接続する構成である。   The first wind direction adjusting plate 14 connects either one or both of the first heat exchanger 23 and the second heat exchanger 24 to the outdoor suction port 1, and the second wind direction adjusting plate 15 is connected to the first heat exchanger 23. The second heat exchanger 24 is connected to at least one of the exhaust air blowing means 10 and the circulation air blowing means 11, respectively.

排気流経路30において結露や凍結が起こらない場合では第1熱交換器23と第2熱交換器24を用いた熱交換気運転である通常時の熱交換気運転を行い、第1排気流路26または第2排気流路28の少なくとも一方において結露や凍結が起こる場合では、熱交換気運転を継続しつつどちらかの排気流路の結露や凍結を乾燥させるための運転であるデフロスト運転を行う。   When condensation or freezing does not occur in the exhaust flow path 30, a normal heat exchange air operation that is a heat exchange operation using the first heat exchanger 23 and the second heat exchanger 24 is performed, and the first exhaust flow path is performed. When dew condensation or freezing occurs in at least one of 26 or the second exhaust flow path 28, a defrost operation, which is an operation for drying the dew condensation or freezing of either exhaust flow path, is performed while continuing the heat exchange air operation. .

この時、例えば通常時の熱交換気運転とデフロスト運転で換気風量を変化させない場合、通常時の熱交換気運転で第1熱交換器23と第2熱交換器24を流れる風量を合わせた風量がデフロスト運転中に熱交換気運転する熱交換器を流れるように、通常時の熱交換気運転とデフロスト運転中の熱交換気運転では同じ熱交換器でも風量が異なる場合があるので、デフロスト運転中の熱交換気運転を通常時の熱交換気運転と区別し、以下では凍結時の熱交換気運転と記載する。   At this time, for example, when the ventilation airflow is not changed in the normal heat exchange air operation and the defrost operation, the airflow combined with the airflow flowing through the first heat exchanger 23 and the second heat exchanger 24 in the normal heat exchange air operation. Since the flow rate of the same heat exchanger may differ between the normal heat exchange air operation and the heat exchange air operation during the defrost operation so that the air flow may flow through the heat exchanger that performs the heat exchange air operation during the defrost operation, the defrost operation The internal heat exchange air operation is distinguished from the normal heat exchange air operation, and is described as a heat exchange air operation during freezing hereinafter.

第1熱交換器23を乾燥させるデフロスト運転を行う場合は第2熱交換器24で凍結時の熱交換気運転を行い、この状態を第1デフロスト運転とする。第2熱交換器24を乾燥させるデフロスト運転を行う場合は第1熱交換器23で凍結時の熱交換気運転を行い、この状態を第2デフロスト運転とする。   When performing the defrost operation which dries the 1st heat exchanger 23, the heat exchange air operation at the time of freezing is performed with the 2nd heat exchanger 24, and this state is made into the 1st defrost operation. When performing the defrost operation which dries the 2nd heat exchanger 24, the heat exchange air operation at the time of freezing is performed with the 1st heat exchanger 23, and this state is made into the 2nd defrost operation.

上記のように構成された熱交換形換気装置における通常時の熱交換気運転について図1を用いて以下に説明する。   A normal heat exchange air operation in the heat exchange ventilator configured as described above will be described below with reference to FIG.

室外の空気は給気流経路29に従って、室外吸込口1から本体箱5へ吸い込まれ、第1風向調整板14によって接続された第1給気流路25及び第2給気流路27を通過し、給気送風手段9によって、室内給気口4から室内へ給気される。   The outdoor air is sucked from the outdoor suction port 1 into the main body box 5 according to the air supply path 29, passes through the first air supply passage 25 and the second air supply passage 27 connected by the first air direction adjusting plate 14, and is supplied. Air is supplied into the room through the air supply port 4 by the air blowing means 9.

室内の空気は排気流経路30に従って、室内吸込口2から本体箱5へ吸い込まれ、第1排気流路26及び第2排気流路28を通過した後に、第2風向調整板15によって接続された、排気送風手段10によって室外排出口3へ送られ室外へ吐出される。   The indoor air is sucked into the main body box 5 from the indoor suction port 2 according to the exhaust flow path 30, and after passing through the first exhaust flow path 26 and the second exhaust flow path 28, is connected by the second wind direction adjusting plate 15. Then, the air is sent to the outdoor discharge port 3 by the exhaust air blowing means 10 and discharged outside the room.

この時、給気送風手段9によって第1給気流路25及び第2給気流路27を通風される室外の空気と排気送風手段10によって第1排気流路26及び第2排気流路28を通風される室内の空気がそれぞれ熱交換を行う。ここでは給気排気原動機12のみ運転すればよく、循環原動機13は運転しなくて良い。   At this time, outdoor air passed through the first air supply passage 25 and the second air supply passage 27 by the air supply and blowing means 9 and the first exhaust passage 26 and the second exhaust passage 28 through the exhaust air blowing means 10. Each of the indoor air to be exchanged heats. Here, only the supply / exhaust prime mover 12 needs to be operated, and the circulation prime mover 13 need not be operated.

室外がきわめて低い温度となる寒冷地において図1で説明した熱交換気運転を継続すると、室内の温かい湿度を含む空気は、室外のきわめて低い温度の空気と熱交換を行うことによって冷却されて第1排気流路26及び第2排気流路28で徐々に結露し凍結していく。結露、凍結していくことで風路が狭まり熱交換器の通風抵抗が増し、また、熱交換器の伝熱板表面に水または氷の層が生じることで伝熱板の熱伝導率が低下することなどから、熱交換気機能が低下していき、本来の熱交換気運転を継続することができなくなる。   If the heat exchange air operation described with reference to FIG. 1 is continued in a cold region where the outdoor temperature is extremely low, the air containing the indoor warm humidity is cooled by exchanging heat with the extremely low temperature outdoor air. Condensation is gradually condensed and frozen in the first exhaust passage 26 and the second exhaust passage 28. Condensation and freezing will narrow the air path and increase the heat resistance of the heat exchanger, and the heat transfer plate will have a water or ice layer on the surface of the heat exchanger to reduce the heat conductivity of the heat transfer plate. As a result, the heat exchange function declines and the original heat exchange operation cannot be continued.

そこで、上記のように構成された熱交換形換気装置におけるデフロスト運転について、図2及び図3を用いて以下に説明する。   Therefore, the defrosting operation in the heat exchange type ventilator configured as described above will be described below with reference to FIGS.

図2に示すように、第1デフロスト運転では、室内の空気は循環空気流経路31に従って室内吸込口2から本体箱5へ吸い込まれ、第1排気流路26を通過する時に第1排気流路26の結露や凍結を融解、乾燥させた後、第2風向調整板15によって循環送風手段11へ接続され、循環送風手段11によって循環空気排出口22から室内へ吐出される。
同時に第2熱交換器24において凍結時の熱交換気運転が行われ、第1風向調整板14によって、室外吸込口1は第2熱交換器24のみに接続され、給気送風手段9によって通風される室外の空気は、室外吸込口1から吸い込まれた後、第2給気流路27を通過して、室内給気口4から室内へ給気される。
As shown in FIG. 2, in the first defrost operation, indoor air is sucked into the main body box 5 from the indoor suction port 2 according to the circulating air flow path 31, and passes through the first exhaust flow path 26. After the condensation and freezing of 26 are melted and dried, they are connected to the circulating air blowing means 11 by the second air direction adjusting plate 15 and discharged from the circulating air discharge port 22 into the room by the circulating air blowing means 11.
At the same time, heat exchange air operation during freezing is performed in the second heat exchanger 24, the outdoor air inlet 1 is connected only to the second heat exchanger 24 by the first air direction adjusting plate 14, and ventilation is performed by the air supply / air blowing means 9. After the outdoor air is sucked from the outdoor suction port 1, it passes through the second air supply passage 27 and is supplied into the room from the indoor air supply port 4.

また、第2風向調整板15は排気送風手段10と第2熱交換器24を接続し、排気送風手段10によって通風される室内の空気は、室内吸込口2から吸い込まれた後第2排気流路28を通過して、第2給気流路27を通過する室外の空気と熱交換した後に、室外排出口3から吐出される。   The second air direction adjusting plate 15 connects the exhaust air blowing means 10 and the second heat exchanger 24, and the indoor air ventilated by the exhaust air blowing means 10 is sucked from the indoor air inlet 2 and then the second exhaust flow. After passing through the passage 28 and exchanging heat with outdoor air passing through the second air supply passage 27, the air is discharged from the outdoor discharge port 3.

第1デフロスト運転によって第1熱交換器23へ室外の空気を通さず、室内の暖かい空気のみを通風させることで、第1排気流路26の結露や凍結を融解、乾燥することを促進させることができ、第1排気流路26における結露や凍結の影響を短時間で回復することができる。同時に、第2熱交換器24では凍結時の熱交換気運転が行われるため、熱交換気運転を継続することができる。   Promoting the dew condensation and freezing of the first exhaust passage 26 to be melted and dried by allowing only the indoor warm air to pass through the first heat exchanger 23 without passing the outdoor air through the first defrost operation. The effects of condensation and freezing in the first exhaust flow path 26 can be recovered in a short time. At the same time, in the second heat exchanger 24, since the heat exchange air operation during freezing is performed, the heat exchange air operation can be continued.

図3に示すように、第2デフロスト運転では、室内の空気は循環空気流経路31に従って室内吸込口2から本体箱5へ吸い込まれ、第2排気流路28を通過する時に、第2排気流路28の結露や凍結を融解、乾燥させた後、第2風向調整板15によって循環送風手段11へ接続され、循環送風手段11によって循環空気排出口22から室内へ吐出される。   As shown in FIG. 3, in the second defrost operation, the indoor air is sucked into the main body box 5 from the indoor suction port 2 according to the circulating air flow path 31 and passes through the second exhaust flow path 28, so that the second exhaust flow After the condensation and freezing of the passage 28 are melted and dried, the second air direction adjusting plate 15 connects to the circulating air blowing means 11, and the circulating air blowing means 11 discharges the indoor air from the circulating air discharge port 22.

同時に第1熱交換器23で凍結時の熱交換気運転が行われ、第1風向調整板14によって室外吸込口1は第1熱交換器23のみに接続され、給気送風手段9によって通風される室外の空気は、室外吸込口1から吸い込まれた後、第1給気流路25を通過して、室内給気口4から室内へ給気される。   At the same time, heat exchange air operation during freezing is performed in the first heat exchanger 23, the outdoor air inlet 1 is connected only to the first heat exchanger 23 by the first air direction adjusting plate 14, and is ventilated by the air supply / air blowing means 9. After the outdoor air is sucked from the outdoor suction port 1, it passes through the first air supply passage 25 and is supplied into the room from the indoor air supply port 4.

また、第2風向調整板15は排気送風手段10と第1熱交換器23を接続し、排気送風手段10によって通風される室内の空気は、室内吸込口2から吸い込まれた後、第1排気流路26を通過して、第1給気流路25を通過する室外の空気と熱交換した後に、室外排出口3から吐出される。   The second air direction adjusting plate 15 connects the exhaust air blowing means 10 and the first heat exchanger 23, and the indoor air ventilated by the exhaust air blowing means 10 is sucked from the indoor air inlet 2 and then the first exhaust air. After passing through the flow path 26 and exchanging heat with outdoor air passing through the first air supply flow path 25, the heat is discharged from the outdoor discharge port 3.

第2デフロスト運転によって第2熱交換器24へ室外の空気を通さず、室内の暖かい空気のみを通風させることで、第2排気流路28の結露や凍結を融解、乾燥することを促進させることができ、第2排気流路28における結露や凍結の影響を短時間で回復することができる。同時に、第1熱交換器23では凍結時の熱交換気運転が行われるため熱交換気運転を継続することができる。   Promoting the dew condensation and freezing of the second exhaust passage 28 to be melted and dried by allowing only the indoor warm air to pass through the second heat exchanger 24 without passing the outdoor air through the second defrost operation. Thus, the influence of condensation or freezing in the second exhaust flow path 28 can be recovered in a short time. At the same time, in the first heat exchanger 23, since the heat exchange air operation at the time of freezing is performed, the heat exchange air operation can be continued.

上記の第1デフロスト運転と第2デフロスト運転を交互に行うことにより、第1排気流路26及び第2排気流路28で発生した結露や凍結の影響を回復し、室外がきわめて低い温度となる寒冷地においても本来の熱交換気運転を継続することができる。   By alternately performing the first defrost operation and the second defrost operation, the influence of condensation or freezing generated in the first exhaust passage 26 and the second exhaust passage 28 is recovered, and the outdoor temperature becomes extremely low. The original heat exchange air operation can be continued even in a cold region.

また、第1風向調整板14及び第2風向調整板15を組み合わせて用いることにより、第1熱交換器23及び第2熱交換器24の2台の熱交換器に対して、熱交換気運転に必要な給気送風手段9及び排気送風手段10、デフロスト運転に必要な循環送風手段11を1組揃えることで、寒冷地における本来の熱交換気運転の継続という機能を果たすことができる。そのため従来の熱交換気構造を複数備えた構成に比べ、送風手段を削減し、装置全体を小型化することができる。   Further, by using the first air direction adjusting plate 14 and the second air direction adjusting plate 15 in combination, the heat exchange air operation is performed for the two heat exchangers of the first heat exchanger 23 and the second heat exchanger 24. By providing one set of the air supply / air blowing means 9 and the exhaust air blowing means 10 necessary for the defrosting operation and the circulation air blowing means 11 necessary for the defrost operation, the function of continuing the original heat exchange air operation in a cold region can be achieved. Therefore, compared with the structure provided with two or more conventional heat exchange air structures, it can reduce an air blower and can reduce the whole apparatus in size.

さらに、熱交換気運転に必要な給気送風手段9及び排気送風手段10を駆動する給気排気原動機12と、デフロスト運転に必要な循環送風手段11を駆動する循環原動機13が別となる構成のため、通常時の熱交換気運転において、循環原動機13を停止して消費電力を低減することができる。   Further, the supply / exhaust prime mover 12 that drives the supply / air blowing means 9 and the exhaust blower means 10 necessary for the heat exchange air operation and the circulation prime mover 13 that drives the circulation blower means 11 necessary for the defrost operation are different. Therefore, in the normal heat exchange air operation, the circulation prime mover 13 can be stopped to reduce power consumption.

また、上記のように熱交換器を2台用いる場合、対となる熱交換器の熱交換効率及び通風抵抗を揃えることで以下に記述する風路構成及び原動機の回転数制御において対となる熱交換器を同等のものとして扱えるため構成または制御が単純になり、より好適である。   Further, when two heat exchangers are used as described above, the heat exchange efficiency and ventilation resistance of the paired heat exchangers are made uniform so that the heat to be paired in the air path configuration and the motor speed control described below are matched. Since the exchangers can be treated as equivalent, the configuration or control is simplified, which is more preferable.

なお、1台の熱交換器として成型された熱交換器を役割上2つの部分へ分け、それぞれの部分に対して別の給気流路、排気流路を設けることで、一方の部分を第1熱交換器23、他方の部分を第2熱交換器24として用いても同じ効果が得られる。   In addition, the heat exchanger molded as one heat exchanger is divided into two parts in terms of roles, and a separate air supply passage and exhaust passage are provided for each part, so that one part is the first part. Even if the heat exchanger 23 and the other part are used as the second heat exchanger 24, the same effect can be obtained.

なお、本実施の形態では、第1熱交換器23、第2熱交換器24が各1台として説明したが、例えば第1熱交換器23が複数台ある場合、複数台の給気流路と排気流路をそれぞれ同じ送風手段に接続すれば、同様の効果が得られる。   In the present embodiment, the first heat exchanger 23 and the second heat exchanger 24 are each described as one unit. However, when there are a plurality of first heat exchangers 23, for example, a plurality of air supply channels and The same effect can be obtained by connecting the exhaust passages to the same blowing means.

(実施の形態2)
以下では、給気流経路29においては、室外吸込口1を上流、室内給気口4を下流とし、排気流経路30においては、室内吸込口2を上流、室外排出口3を下流とする。
(Embodiment 2)
In the following, in the air supply path 29, the outdoor suction port 1 is upstream, the indoor air supply port 4 is downstream, and in the exhaust flow path 30, the indoor suction port 2 is upstream and the outdoor discharge port 3 is downstream.

図1に示すように、給気送風手段9を、第1熱交換器23及び第2熱交換器24の下流側で、室内給気口4の上流側に設置することで、給気送風手段9が第1給気流路25と第2給気流路27の一方または両方から空気を吸い込み、室内給気口4から室内へ給気するように構成する。   As shown in FIG. 1, the air supply / air blowing means 9 is installed on the downstream side of the first heat exchanger 23 and the second heat exchanger 24 and upstream of the indoor air supply port 4. 9 sucks air from one or both of the first air supply passage 25 and the second air supply passage 27 and supplies the air from the indoor air supply port 4 into the room.

また、排気送風手段10を、第2風向調整板15の下流側で、室外排出口3の上流側に設置することで、排気送風手段10が第1排気流路26と第2排気流路28の一方または両方から空気を吸い込み、室外排出口3から室外へ吐出するように構成する。   Further, the exhaust air blowing means 10 is installed on the downstream side of the second air direction adjusting plate 15 and on the upstream side of the outdoor discharge port 3, so that the exhaust air blowing means 10 has the first exhaust flow path 26 and the second exhaust flow path 28. The air is sucked from one or both of them, and discharged from the outdoor discharge port 3 to the outside.

このような構成で給気送風手段9及び排気送風手段10を設置することによって、給気送風手段9で、第1給気流路25と第2給気流路27の一方または両方から空気を吸い込むことから、給気送風手段9と接続されている給気流路を負圧にすることができる。   By installing the air supply / air blowing means 9 and the exhaust air blowing means 10 in such a configuration, the air supply / air blowing means 9 sucks air from one or both of the first air supply passage 25 and the second air supply passage 27. Therefore, the air supply flow path connected to the air supply / air blowing means 9 can be set to a negative pressure.

また、排気送風手段10で、第1排気流路26と第2排気流路28の一方または両方から空気を吸い込むことから、排気送風手段10と接続されている排気流路を負圧にすることができる。   In addition, since the exhaust air blowing means 10 sucks air from one or both of the first exhaust flow path 26 and the second exhaust flow path 28, the exhaust flow path connected to the exhaust air blowing means 10 is set to a negative pressure. Can do.

給気送風手段9及び排気送風手段10で通風する熱交換器は共通しており、この構成により熱交換器が備える給気流路及び排気流路両方を負圧にすることができるので、熱交換器の風の流入分布が整い、給気流路及び排気流路の圧力差を小さくでき、給気流路と排気流路間での相互方向の空気の漏れを抑えることができる。   The heat exchanger that is ventilated by the air supply / air blowing means 9 and the exhaust air blowing means 10 is common, and by this configuration, both the air supply flow path and the exhaust flow path included in the heat exchanger can be made negative pressure. The flow distribution of the wind in the vessel is uniform, the pressure difference between the air supply flow path and the exhaust flow path can be reduced, and air leakage between the air supply flow path and the exhaust flow path can be suppressed.

また、給気流経路29を通過する風量と排気流経路30を通過する風量については特定しなかったが、同じ給気排気原動機12を使用しているため、例えば遠心送風機を使用した場合や軸流送風機を使用した場合は同じ羽根車を用いることで風量が等しくなるように調節でき、給気流路及び排気流路の圧力差をより小さくできることから、より好適な構成となる。   Further, although the air volume passing through the air supply path 29 and the air volume passing through the exhaust flow path 30 were not specified, since the same air supply / exhaust prime mover 12 is used, for example, when a centrifugal blower is used or an axial flow When a blower is used, the air flow can be adjusted to be equal by using the same impeller, and the pressure difference between the air supply flow path and the exhaust flow path can be further reduced.

(実施の形態3)
図1に示すように、給気排気原動機12が給気送風手段9によって形成される風路内である給気流経路29に設置されている構成とする。
(Embodiment 3)
As shown in FIG. 1, the supply / exhaust prime mover 12 is installed in an air supply path 29, which is an air path formed by the supply / air blowing means 9.

具体的には例えば、給気送風手段9及び排気送風手段10として遠心送風機を用い、給気排気原動機12として両側2軸のモーターを用いて、給気流経路29と排気流経路30を隔てる壁面の給気流経路29側にモーターを設置する。モーターの回転軸の一方を延長して、給気流経路29の中央付近に給気送風手段9を設置し、他方の回転軸を給気流経路29と排気流経路30を隔てる壁面を貫通させて排気流経路30へ延長し、排気流経路30の中央付近に排気送風手段10を設置する構成が上げられる。   Specifically, for example, a centrifugal blower is used as the air supply / air blowing means 9 and the exhaust air blowing means 10, and a biaxial motor on both sides is used as the air supply / exhaust motor 12, and the wall surface separating the air supply path 29 and the exhaust flow path 30 is used. A motor is installed on the air supply path 29 side. One of the rotating shafts of the motor is extended, the air supply / air blowing means 9 is installed near the center of the air supply passage 29, and the other rotation shaft is exhausted through the wall surface separating the air supply passage 29 and the exhaust flow passage 30. The structure which extends to the flow path 30 and installs the exhaust air blowing means 10 near the center of the exhaust flow path 30 is raised.

このような構成で給気排気原動機12を設置することによって、熱交換器において熱交換が行われた後の給気流経路29を給気排気原動機12の排熱で暖めることができ、その結果、熱交換器を通過した空気の温度をさらに上昇させて、室内給気口4から室内へ給気することができる。   By installing the air supply / exhaust prime mover 12 in such a configuration, the air supply path 29 after heat exchange in the heat exchanger can be warmed by the exhaust heat of the air supply / exhaust prime mover 12, and as a result, The temperature of the air that has passed through the heat exchanger can be further increased, and air can be supplied into the room from the indoor air supply port 4.

なお、モーターは、給気流経路29と排気流経路30を隔てる壁面の内部に埋設して、給気流経路29へ一方の回転軸を伸ばして給気送風手段9を設置し、排気流経路30へ他方の軸を伸ばして排気送風手段10を設置してもよい。   The motor is embedded in the wall surface separating the air supply path 29 and the exhaust flow path 30, one of the rotating shafts is extended to the air supply path 29, and the air supply / air blowing means 9 is installed. You may install the exhaust ventilation means 10 by extending the other axis | shaft.

この場合、モーターと排気流経路30を隔てる壁を断熱し、モーターと給気流経路29を隔てる壁に錆びにくく熱伝導率の高い素材、例えばアルミニウムや銅などを用いるかまたは、モーターと排気流経路30を隔てる壁に比べ、モーターと給気流経路29を隔てる壁を薄く構成するか、モーターと給気流経路29を隔てる壁を一部除去し、モーター表面の一部を給気流経路29へ露出させるという構成により、同様の効果が得られる。   In this case, the wall that separates the motor and the exhaust flow path 30 is insulated, and the wall that separates the motor and the air supply path 29 is made of a material that is not easily rusted and has high thermal conductivity, such as aluminum or copper, or the motor and the exhaust flow path. Compared to the wall separating 30, the wall separating the motor and the air supply path 29 is made thinner, or a part of the wall separating the motor and the air supply path 29 is removed to expose a part of the motor surface to the air supply path 29. With this configuration, the same effect can be obtained.

(実施の形態4)
以下では、循環空気流経路31においては、室内吸込口2を上流、循環空気排出口22を下流とする。図2または図3に示すように、循環送風手段11を、第2風向調整板15の下流側で、循環空気排出口22の上流側に設置することで、循環送風手段11が第1排気流路26または第2排気流路28から空気を吸い込み、循環空気排出口22から室内へ吐出するように構成する。
(Embodiment 4)
In the following, in the circulating air flow path 31, the indoor suction port 2 is the upstream, and the circulating air discharge port 22 is the downstream. As shown in FIG. 2 or FIG. 3, the circulating air blowing means 11 is installed on the downstream side of the second air direction adjusting plate 15 and on the upstream side of the circulating air discharge port 22, so that the circulating air blowing means 11 is in the first exhaust flow. Air is sucked from the passage 26 or the second exhaust passage 28 and discharged from the circulating air outlet 22 into the room.

このような構成で循環送風手段11を設置することによって、循環送風手段11が第1排気流路26または第2排気流路28から空気を吸い込むことから、循環送風手段11と接続されている排気流路を負圧にすることができる。   By installing the circulation blower means 11 in such a configuration, the circulation blower means 11 sucks air from the first exhaust flow path 26 or the second exhaust flow path 28, so that the exhaust connected to the circulation blower means 11. The flow path can be negative.

循環送風手段11と接続されている熱交換器の給気流路は送風手段と接続されていないため圧力がかかっておらず、熱交換器の給気流路と排気流路間で空気の漏れが発生した場合に、漏れた空気は給気流路から排気流路へと流入する。   The supply air flow path of the heat exchanger connected to the circulation blower means 11 is not connected to the blower means, so no pressure is applied, and air leakage occurs between the supply air flow path and the exhaust flow path of the heat exchanger. In this case, the leaked air flows from the air supply passage to the exhaust passage.

漏れた空気により結露や凍結が発生した場合、結露や凍結は漏れた先である排気流路で発生するため、循環送風手段11によって排気流路へ吸い込まれる温かい室内の空気によって融解、乾燥させることができる。そのため、熱交換器の給気流路と排気流路間で空気の漏れが発生した場合でも、デフロスト運転を継続して行うことができる。   When condensation or freezing occurs due to leaked air, condensation or freezing occurs in the exhaust flow path that is the destination of the leakage, so it is melted and dried by the warm indoor air sucked into the exhaust flow path by the circulating air blowing means 11. Can do. Therefore, even when air leakage occurs between the air supply passage and the exhaust passage of the heat exchanger, the defrosting operation can be continued.

(実施の形態5)
図2に示すように、循環原動機13が循環送風手段11によって形成される風路内である循環空気流経路31に設置されている構成としている。
(Embodiment 5)
As shown in FIG. 2, the circulation prime mover 13 is installed in a circulation air flow path 31 that is in an air passage formed by the circulation blower unit 11.

具体的には例えば、循環送風手段11に遠心送風機を用い、循環原動機13に片側1軸のモーターを用いて、循環空気流経路31の壁面にモーターを設置し、そこから回転軸を延長して循環空気流経路31の中央付近に循環送風手段11を設置する構成があげられる。   Specifically, for example, a centrifugal blower is used as the circulation blower means 11, a single-axis motor is used as the circulation prime mover 13, a motor is installed on the wall surface of the circulation air flow path 31, and the rotation shaft is extended therefrom. The structure which installs the circulation ventilation means 11 near the center of the circulation airflow path 31 is mention | raise | lifted.

このような構成で循環原動機13を設置することによって、熱交換器において熱交換が行われた後の循環空気流経路31を循環原動機13の排熱で暖めることができ、その結果、前記熱交換器を通過した室内の空気の温度をさらに上昇させて、循環空気排出口22から室内へ吐出することができる。   By installing the circulation prime mover 13 with such a configuration, the circulation air flow path 31 after the heat exchange is performed in the heat exchanger can be warmed by the exhaust heat of the circulation prime mover 13, and as a result, the heat exchange The temperature of the indoor air that has passed through the container can be further raised and discharged from the circulating air outlet 22 into the room.

なお、循環送風手段11に遠心送風機を用い、循環原動機13に片側1軸のモーターを用いて、循環空気流経路31の壁面の内部にモーターを埋設し、循環空気流経路31へ軸を延長して循環送風手段11を設置してもよい。   It should be noted that a centrifugal blower is used as the circulation blower 11, a single-axis motor is used as the circulation prime mover 13, a motor is embedded inside the wall surface of the circulation air flow path 31, and the shaft is extended to the circulation air flow path 31. Then, the circulating air blowing means 11 may be installed.

この場合、モーターと循環空気流経路31を隔てる壁に錆びにくく熱伝導率の高い素材、例えばアルミニウムや銅などを用いるかまたは、モーターと給気流経路29を隔てる壁を薄く構成するか、壁を一部除去しモーター表面の一部を給気流経路29へ露出させるという構成によって同様の効果が得られる。   In this case, the wall separating the motor and the circulating air flow path 31 is made of a material having high heat conductivity such as aluminum or copper, or the wall separating the motor and the air supply path 29 is made thin, or the wall is The same effect can be obtained by removing a part of the motor surface and exposing a part of the motor surface to the air supply path 29.

(実施の形態6)
図1に示すように、循環送風手段11の羽根車は給気送風手段9及び排気送風手段10の羽根車よりも体積を小さくした構成とする。
(Embodiment 6)
As shown in FIG. 1, the impeller of the circulating air blowing means 11 is configured to have a smaller volume than the impellers of the air supply and air blowing means 9 and the exhaust air blowing means 10.

具体的には例えば、給気送風手段9及び排気送風手段10、循環送風手段11に遠心送風機を用い、循環送風手段11の羽根車の外径または羽根車の厚みの少なくとも一方を給気送風手段9及び排気送風手段10の羽根車よりも小さくして循環送風手段11のケーシングを縮小する構成があげられる。   Specifically, for example, a centrifugal blower is used as the air supply / air blowing means 9, the exhaust air blowing means 10, and the circulation air blowing means 11, and at least one of the outer diameter of the impeller or the thickness of the impeller of the circulation air blowing means 11 is supplied as the air supply / air blowing means. 9 and the exhaust air blowing means 10 are smaller than the impeller, and the casing of the circulation air blowing means 11 is reduced.

循環送風手段11が駆動する循環空気流経路31は給気送風手段9や排気送風手段10が駆動する給気流経路29や排気流経路30に比べダクト配管が無いため通風抵抗が低いため、このような構成が可能であり、この構成をとることで循環送風手段11の体積を小さくし、性能を損なわずに熱交換形換気装置を小型化でき、また循環送風手段11の駆動に必要な動力も減少することから、消費電力を低減することができる。   Since the circulating air flow path 31 driven by the circulating air blowing means 11 has no duct piping compared to the air supply air flow path 29 and the exhaust air flow path 30 driven by the air supply air blowing means 9 and the exhaust air blowing means 10, the ventilation resistance is low. By adopting this configuration, the volume of the circulating air blowing means 11 can be reduced, the heat exchange type ventilator can be downsized without impairing the performance, and the power required for driving the circulating air blowing means 11 can also be reduced. Therefore, power consumption can be reduced.

(実施の形態7)
図1〜図3に示すように、送風手段と接続する熱交換器を選択するための選択手段として第1風向調整板14を室外吸込口1の下流側で第1熱交換器23と第2熱交換器24の上流側に備える。第1風向調整板14が室外吸込口1と、第1熱交換器23または第2熱交換器24のどちらか一方または両方とを接続することで給気流経路29を形成し、第1熱交換器23と第2熱交換器24のどちらか一方または両方に給気送風手段9が通風できるように構成する。
(Embodiment 7)
As shown in FIGS. 1 to 3, the first air direction adjusting plate 14 is connected to the first heat exchanger 23 and the second downstream of the outdoor suction port 1 as a selection means for selecting a heat exchanger to be connected to the blower means. Provided upstream of the heat exchanger 24. The first air direction adjustment plate 14 connects the outdoor suction port 1 and either one or both of the first heat exchanger 23 and the second heat exchanger 24 to form the air supply path 29, and the first heat exchange. The supply air blowing means 9 is configured to be able to ventilate either one or both of the heat exchanger 23 and the second heat exchanger 24.

具体的には例えば、図1〜図3に示すように第1風向調整板14として板状のダンパーとダンパーを回転させるモーターの組み合わせを用いる。室外吸込口1と第1風向調整板14の間の給気流経路29は1本の経路とし、第1風向調整板14の下流側の給気流経路29は、第1熱交換器23につながる給気流経路29と、第2熱交換器24につながる給気流経路29の互いに独立した2本の経路として構成する。   Specifically, for example, a combination of a plate-like damper and a motor that rotates the damper is used as the first wind direction adjusting plate 14 as shown in FIGS. The air supply path 29 between the outdoor suction port 1 and the first air direction adjusting plate 14 is a single path, and the air supply path 29 on the downstream side of the first air direction adjusting plate 14 is connected to the first heat exchanger 23. The airflow path 29 and the airflow path 29 connected to the second heat exchanger 24 are configured as two independent paths.

第1熱交換器23につながる給気流経路29と第2熱交換器24につながる給気流経路29が分岐する場所において、1枚の板状ダンパーが回転することで、第1熱交換器23につながる給気流経路29を接続し、第2熱交換器24につながる給気流経路29を遮蔽する位置aと、第1熱交換器23につながる給気流経路29を遮蔽し、第2熱交換器24につながる給気流経路29を接続する位置bと、第1熱交換器23につながる給気流経路29を接続し、第2熱交換器24につながる給気流経路29を接続する位置c全てをとることができる構成とする。   In the place where the air supply path 29 connected to the first heat exchanger 23 and the air supply path 29 connected to the second heat exchanger 24 are branched, a single plate-shaped damper rotates, so that the first heat exchanger 23 A position a that connects the connected air supply path 29 and shields the air supply path 29 connected to the second heat exchanger 24 and a supply air path 29 connected to the first heat exchanger 23 are shielded, and the second heat exchanger 24. All positions c connecting the air supply path 29 connected to the first heat exchanger 23 and the position b connecting the air supply path 29 connected to the second heat exchanger 24 are connected. It is set as the structure which can do.

この構成により、図3で示すように、第1風向調整板14が位置aをとった場合、第2デフロスト運転が行われる。第1風向調整板14によって室外吸込口1は第1熱交換器23に接続され、室外の空気は、室外吸込口1から吸い込まれた後、第1給気流路25を通過して、給気送風手段9によって室内給気口4から室内へ給気される。同時に、第1風向調整板14によって室外吸込口1は第2熱交換器24と遮断される。   With this configuration, as shown in FIG. 3, when the first wind direction adjusting plate 14 takes the position a, the second defrost operation is performed. The outdoor air inlet 1 is connected to the first heat exchanger 23 by the first air direction adjusting plate 14, and the outdoor air is sucked from the outdoor air inlet 1 and then passes through the first air supply passage 25 to supply air. Air is supplied into the room through the air supply port 4 by the air blowing means 9. At the same time, the outdoor air inlet 1 is disconnected from the second heat exchanger 24 by the first air direction adjusting plate 14.

また、第2風向調整板15によって排気送風手段10に第1熱交換器23が接続され、室内の空気は、室内吸込口2から吸い込まれた後、第1排気流路26を通過して、第1給気流路25を通過する室外の空気と熱交換した後に、排気送風手段10によって室外排出口3から吐出される。   In addition, the first heat exchanger 23 is connected to the exhaust air blowing means 10 by the second air direction adjusting plate 15, and the indoor air is sucked from the indoor suction port 2 and then passes through the first exhaust flow path 26. After exchanging heat with outdoor air passing through the first air supply passage 25, the air is discharged from the outdoor discharge port 3 by the exhaust air blowing means 10.

循環送風手段11によって通風される室内の空気は、室内吸込口2から本体箱5へ吸い込まれ、第2排気流路28を通過する時に、第2排気流路28の結露や凍結を融解、乾燥させ、第2風向調整板15によって循環送風手段11へと導かれ、循環送風手段11によって循環空気排出口22から室内へ吐出される。   The indoor air ventilated by the circulating air blowing means 11 is sucked into the main body box 5 from the indoor suction port 2 and melts and dries out condensation and freezing of the second exhaust passage 28 when passing through the second exhaust passage 28. Then, the air is guided to the circulating air blowing means 11 by the second air direction adjusting plate 15 and discharged from the circulating air discharge port 22 into the room by the circulating air blowing means 11.

また、図2で示すように第1風向調整板14が位置bをとった場合、第1デフロスト運転が行われる。第1風向調整板14によって、室外吸込口1は第2熱交換器24に接続され、室外の空気は、室外吸込口1から吸い込まれた後、第2給気流路27を通過して、給気送風手段9によって室内給気口4から室内へ給気される。同時に、第1風向調整板14によって室外吸込口1は第1熱交換器23と遮断される。   Further, as shown in FIG. 2, when the first wind direction adjusting plate 14 takes the position b, the first defrost operation is performed. The outdoor air inlet 1 is connected to the second heat exchanger 24 by the first air direction adjusting plate 14, and the outdoor air is sucked in from the outdoor air inlet 1 and then passes through the second air supply passage 27 to be supplied. Air is supplied into the room through the air supply port 4 by the air blowing means 9. At the same time, the outdoor air inlet 1 is disconnected from the first heat exchanger 23 by the first air direction adjusting plate 14.

また、第2風向調整板15によって排気送風手段10に第2熱交換器24が接続され、室内の空気は、室内吸込口2から吸い込まれた後第2排気流路28を通過して、第2給気流路27を通過する室外の空気と熱交換した後に、排気送風手段10によって室外排出口3から吐出される。   In addition, the second heat exchanger 24 is connected to the exhaust air blowing means 10 by the second air direction adjusting plate 15, and the indoor air passes through the second exhaust passage 28 after being sucked from the indoor suction port 2, After exchanging heat with outdoor air passing through the two air supply passages 27, the air is discharged from the outdoor outlet 3 by the exhaust air blowing means 10.

循環送風手段11によって通風される室内の空気は循環空気流経路31に従って、室内吸込口2から本体箱5へ吸い込まれ、第1排気流路26を通過する時に第1排気流路26の結露や凍結を融解、乾燥させ、第2風向調整板15によって循環送風手段11へと導かれ、循環送風手段11によって循環空気排出口22から室内へ吐出される。   The indoor air ventilated by the circulating air blowing means 11 is sucked into the main body box 5 from the indoor suction port 2 according to the circulating air flow path 31 and passes through the first exhaust flow path 26 to cause condensation in the first exhaust flow path 26. The freeze is thawed and dried, guided to the circulating air blowing means 11 by the second air direction adjusting plate 15, and discharged from the circulating air discharge port 22 into the room by the circulating air blowing means 11.

また、図1に示すように第1風向調整板14が位置cをとった場合、通常時の熱交換気運転が行われ、室外の空気は給気流経路29に従って、室外吸込口1から本体箱5へ吸い込まれ、第1風向調整板14によって第1給気流路25及び第2給気流路27へと導かれ、給気送風手段9によって室内給気口4から室内へ給気される。   Further, as shown in FIG. 1, when the first air direction adjusting plate 14 takes the position c, the normal heat exchange air operation is performed, and the outdoor air follows the air supply path 29 from the outdoor suction port 1 to the main body box. 5, is guided to the first air supply passage 25 and the second air supply passage 27 by the first air direction adjusting plate 14, and is supplied into the room from the indoor air supply port 4 by the air supply air blowing means 9.

室内の空気は排気流経路30に従って、室内吸込口2から本体箱5へ吸い込まれ、第1排気流路26及び第2排気流路28を通過した後に、第2風向調整板15によって排気送風手段10へと導かれ、排気送風手段10によって室外排出口3から室外へ吐出される。   The indoor air is sucked into the main body box 5 from the indoor suction port 2 along the exhaust flow path 30, passes through the first exhaust flow path 26 and the second exhaust flow path 28, and then is exhausted by the second air direction adjusting plate 15. 10 and discharged from the outdoor discharge port 3 to the outside by the exhaust air blowing means 10.

この時、給気送風手段9によって第1給気流路25及び第2給気流路27を通風される室外の空気と排気送風手段10によって第1排気流路26及び第2排気流路28を通風される室内の空気が熱交換を行う。   At this time, outdoor air passed through the first air supply passage 25 and the second air supply passage 27 by the air supply and blowing means 9 and the first exhaust passage 26 and the second exhaust passage 28 through the exhaust air blowing means 10. The indoor air that is used performs heat exchange.

このような構成で第1風向調整板14を備えることにより、例えば1枚の板状ダンパーとダンパーを回転させる1個のモーターを組み合わせる簡単な構成によって給気流経路29を切り換えることができ、それによって通常時の熱交換気運転とデフロスト運転を容易に切り換えることができる。   By providing the first wind direction adjusting plate 14 with such a configuration, the air supply path 29 can be switched by a simple configuration combining, for example, one plate-like damper and one motor that rotates the damper, thereby It is possible to easily switch between normal heat exchange air operation and defrost operation.

(実施の形態8)
図1に示す実施の形態1にたいし、循環原動機13は、給気送風手段9が全ての熱交換器と接続する場合に停止する構成とする。
(Embodiment 8)
In contrast to the first embodiment shown in FIG. 1, the circulation prime mover 13 is configured to stop when the supply air blowing means 9 is connected to all the heat exchangers.

具体的には例えば、第1風向調整板14が実施の形態7における位置cをとった場合に、循環原動機13を停止する。   Specifically, for example, when the first wind direction adjusting plate 14 takes the position c in the seventh embodiment, the circulation prime mover 13 is stopped.

給気送風手段9が全ての熱交換器と接続する場合には通常時の熱交換気運転が行われており、循環送風手段11は稼動する必要性を失う。循環送風手段11を駆動する循環原動機13は、給気送風手段9及び排気送風手段10を駆動する給気排気原動機12と独立しているため、循環原動機13だけを停止でき、装置全体の消費電力を低減することができる。   When the supply air blowing means 9 is connected to all the heat exchangers, the normal heat exchange air operation is performed, and the circulation blowing means 11 loses the necessity to operate. Since the circulation prime mover 13 that drives the circulation blower 11 is independent of the supply air exhaust prime mover 12 that drives the supply air blower 9 and the exhaust blower 10, only the circulation prime mover 13 can be stopped, and the power consumption of the entire apparatus Can be reduced.

(実施の形態9)
図1に示す実施の形態1にたいし、第1風向調整板14が給気送風手段9を第1熱交換器23または第2熱交換器24と接続する時に、給気排気原動機12の回転数を所定の時間、例えばダンパー切り換えに必要な10秒間、所定の回転数、例えば通常時の熱交換気運転時の回転数の2/3に低下させる構成とする。
(Embodiment 9)
In contrast to the first embodiment shown in FIG. 1, when the first air direction adjusting plate 14 connects the air supply / air blowing means 9 to the first heat exchanger 23 or the second heat exchanger 24, the rotation of the air supply / exhaust prime mover 12. The number is reduced to a predetermined time, for example, 10 seconds required for changing the damper, to a predetermined number of rotations, for example, 2/3 of the number of rotations during normal heat exchange operation.

より具体的には例えば、実施の形態7に対して、第1風向調整板14が、位置aから位置bまたは位置cに切り換わった場合、あるいは位置bから位置aまたは位置cに切り換わった場合、あるいは位置cから位置aまたは位置bに切り換わった場合に、給気排気原動機12の回転数を所定の時間、所定の回転数へ低下させ、給気送風手段9及び排気送風手段10によって駆動される空気の風量を減少させる構成とする。   More specifically, for example, with respect to the seventh embodiment, the first wind direction adjusting plate 14 is switched from the position a to the position b or the position c or from the position b to the position a or the position c. In this case, or when the position c is switched to the position a or the position b, the rotational speed of the air supply / exhaust prime mover 12 is reduced to a predetermined rotational speed for a predetermined time. The air volume of the driven air is reduced.

寒冷地における冬季の標準的な室外の温度環境で給気排気原動機12の回転数を低下させずに運転している状態において、第1風向調整板14が切り換わったことによる室内への給気温度の低下が大きく見られる時間を予め測定し、この給気温度が大きく低下している時間を最小限にできるような給気排気原動機12の回転数を低下させる時間及び低下した場合の回転数を予め実験、計算などにより設定しておくことができる。   Air supply to the room due to the switching of the first wind direction adjusting plate 14 in a state of operating in a cold winter area without reducing the rotational speed of the air supply / exhaust prime mover 12 in a standard outdoor temperature environment in winter. The time during which the temperature drop is greatly observed is measured in advance, and the time during which the rotation speed of the supply / exhaust prime mover 12 is reduced so that the time during which the supply air temperature is greatly reduced can be minimized, and the rotation speed when the supply temperature decreases. Can be set in advance by experiment, calculation, or the like.

この構成によって、給気排気原動機12の回転数を低下させることで給気流経路29の風量を減少させ、単位時間あたりに単位体積の空気に接している熱交換器の伝熱板面積が増加させることで、第1熱交換器23及び第2熱交換器24における熱交換器単体の熱交換効率を上昇させることができる。   With this configuration, the air flow rate in the air supply path 29 is reduced by reducing the rotational speed of the supply / exhaust prime mover 12, and the heat transfer plate area of the heat exchanger in contact with the unit volume of air per unit time is increased. Thus, the heat exchange efficiency of the heat exchanger alone in the first heat exchanger 23 and the second heat exchanger 24 can be increased.

また、第1風向調整板14の切換の間に空気が第1熱交換器23及び第2熱交換器24へ不均一に流入することによって熱交換器の伝熱面積を有効に使えず、給気温度が低下してしまうことによる影響も軽減できる。以上の効果により第1風向調整板14の切り換えによって生じる、給気される空気の温度低下を抑制できる。   In addition, since air flows unevenly into the first heat exchanger 23 and the second heat exchanger 24 during the switching of the first air direction adjusting plate 14, the heat transfer area of the heat exchanger cannot be effectively used, The influence of the lowering of the air temperature can also be reduced. Due to the above effects, it is possible to suppress the temperature drop of the supplied air, which occurs due to the switching of the first wind direction adjusting plate 14.

(実施の形態10)
図1〜図3に示すように、送風手段と接続する熱交換器を選択するための選択手段として、第2風向調整板15を第1熱交換器23及び第2熱交換器24の下流側で排気送風手段10及び循環送風手段11の上流側に備える。
(Embodiment 10)
As shown in FIGS. 1 to 3, the second wind direction adjusting plate 15 is disposed downstream of the first heat exchanger 23 and the second heat exchanger 24 as a selection means for selecting a heat exchanger connected to the air blowing means. And provided on the upstream side of the exhaust air blowing means 10 and the circulation air blowing means 11.

第2風向調整板15が排気送風手段10と、第1熱交換器23または第2熱交換器24のどちらか一方または両方とを接続することで排気流経路30を形成し、第1熱交換器23と第2熱交換器24のどちらか一方または両方に排気送風手段10が通風できる構成とする。   The second air direction adjusting plate 15 connects the exhaust air blowing means 10 to either one or both of the first heat exchanger 23 and the second heat exchanger 24 to form the exhaust flow path 30, and the first heat exchange It is set as the structure which the exhaust ventilation means 10 can ventilate to either one or both of the heat exchanger 23 and the 2nd heat exchanger 24.

同時に第2風向調整板15が循環送風手段11を排気送風手段10が接続していない熱交換器に接続し、排気送風手段10が第1熱交換器23及び第2熱交換器24と接続している場合に第2風向調整板15が循環送風手段11と第1熱交換器23及び第2熱交換器24との接続を遮断することができる構成とする。   At the same time, the second wind direction adjusting plate 15 connects the circulating air blowing means 11 to the heat exchanger not connected to the exhaust air blowing means 10, and the exhaust air blowing means 10 connects to the first heat exchanger 23 and the second heat exchanger 24. In this case, the second air direction adjusting plate 15 can block the connection between the circulating air blowing means 11 and the first heat exchanger 23 and the second heat exchanger 24.

具体的には例えば、図4(a)に熱交換形換気装置の第2風向調整板15近傍の水平方向概略断面図を示す。第1熱交換器23と第2風向調整板15の間の排気流経路30または循環空気流経路31と、第2熱交換器24と第2風向調整板15の間の排気流経路30または循環空気流経路31とが水平方向に隣接する構成とする。   Specifically, for example, FIG. 4A shows a horizontal schematic cross-sectional view in the vicinity of the second wind direction adjusting plate 15 of the heat exchange type ventilator. The exhaust flow path 30 or the circulation air flow path 31 between the first heat exchanger 23 and the second air direction adjustment plate 15 and the exhaust flow path 30 or the circulation between the second heat exchanger 24 and the second air direction adjustment plate 15. The air flow path 31 is configured to be adjacent in the horizontal direction.

また、図4(b)に熱交換形換気装置の第2風向調整板15近傍の鉛直方向概略断面図を示す。第2風向調整板15と排気送風手段10の間の排気流経路30と、第2風向調整板15と循環送風手段11の間の循環空気流経路31とが鉛直方向に隣接する構成とする。   FIG. 4B shows a schematic vertical sectional view in the vicinity of the second wind direction adjusting plate 15 of the heat exchange type ventilator. The exhaust flow path 30 between the second air direction adjusting plate 15 and the exhaust air blowing means 10 and the circulating air flow path 31 between the second air direction adjusting plate 15 and the circulating air blowing means 11 are adjacent to each other in the vertical direction.

図4(c)に熱交換形換気装置の第2風向調整板15近傍を熱交換器側より描写した概略分解斜視図を示す。第1熱交換器23‐排気送風手段10を接続する開口34、第1熱交換器23‐循環送風手段11を接続する開口35、第2熱交換器24‐排気送風手段10を接続する開口36、第2熱交換器24‐循環送風手段11を接続する開口37の4箇所に開口が空いた田の字型の仕切りと2枚の板状のダンパー、ダンパーを駆動する2台のモーターを組み合わせたものを第2風向調整板15として構成する。   FIG. 4C is a schematic exploded perspective view depicting the vicinity of the second air direction adjusting plate 15 of the heat exchange type ventilator from the heat exchanger side. First heat exchanger 23-opening 34 connecting exhaust air blowing means 10, first heat exchanger 23-opening 35 connecting circulating air blowing means 11, second heat exchanger 24-opening 36 connecting exhaust air blowing means 10 , The second heat exchanger 24-a combination of a rice-shaped partition with two openings 37 connecting the circulating air blowing means 11, two plate-shaped dampers, and two motors for driving the dampers The second wind direction adjusting plate 15 is configured.

第2風向調整板15の開口のうち、熱交換器側にある水平方向に見て中央にある仕切りに対して、一方に開口34、開口35を鉛直方向上下に並置し、他方に開口36、開口37を鉛直方向上下に並置する。   Among the openings of the second wind direction adjusting plate 15, the opening 34 and the opening 35 are juxtaposed vertically in the vertical direction with respect to the partition located in the center when viewed in the horizontal direction on the heat exchanger side, and the opening 36 on the other side. The openings 37 are juxtaposed vertically in the vertical direction.

さらに、送風手段側にある鉛直方向に見て中央にある仕切りに対して、鉛直方向上部に、開口34、開口36を並置し、鉛直方向下部に開口35、開口37を並置する。   Further, the opening 34 and the opening 36 are juxtaposed in the upper part in the vertical direction and the opening 35 and the opening 37 are juxtaposed in the lower part in the vertical direction with respect to the partition in the center as viewed in the vertical direction on the air blowing means side.

送風手段側にある鉛直方向に見て中央にある仕切りを2台のモーターの回転軸とし、回転軸に対して、上下1つの開口のどちらか一方を塞ぐことができる板状のダンパーを2枚水平方向へ並置し、ダンパーが回転することにより、一方のダンパーが開口34と開口35の開放と遮蔽を行い、他方のダンパーが開口36と開口37の開放と遮蔽を行う構成とする。   The partition in the center as viewed in the vertical direction on the air blower side is the rotational axis of the two motors, and two plate-shaped dampers that can block either one of the upper and lower openings with respect to the rotational axis When the dampers are juxtaposed in the horizontal direction and the damper rotates, one damper opens and shields the openings 34 and 35, and the other damper opens and shields the openings 36 and 37.

この図4に示すような構成により、板状のダンパーは排気流経路30において第2風向調整板15の上流側を通過して回転でき、ダンパーが遮蔽されている場合、ダンパー板は排気送風手段10もしくは循環送風手段11によって負圧を受け、第2風向調整板15の開口へ押し付けられるので、ダンパー板と第2風向調整板15の開口の隙間より空気が漏れることを抑制できる。   With the configuration shown in FIG. 4, the plate-like damper can rotate by passing through the upstream side of the second wind direction adjusting plate 15 in the exhaust flow path 30, and when the damper is shielded, the damper plate is the exhaust air blowing means. 10 or the circulating air blowing means 11 receives a negative pressure and is pressed against the opening of the second air direction adjusting plate 15, so that air can be prevented from leaking from the gap between the damper plate and the opening of the second air direction adjusting plate 15.

第2風向調整板15は、第1熱交換器23を排気送風手段10に接続し、第2熱交換器24を循環送風手段11と接続する位置dと、第1熱交換器23を循環送風手段11と接続し、第2熱交換器24を排気送風手段10と接続する位置eと、第1熱交換器23と第2熱交換器24両方を排気送風手段10と接続する位置fの全てが取れる構成としている。   The second air direction adjusting plate 15 connects the first heat exchanger 23 to the exhaust air blowing means 10, positions d connecting the second heat exchanger 24 to the circulation air blowing means 11, and circulation air blowing through the first heat exchanger 23. All the positions e where the second heat exchanger 24 is connected to the exhaust air blowing means 10 and the positions f where both the first heat exchanger 23 and the second heat exchanger 24 are connected to the exhaust air blowing means 10 are connected to the means 11. It can be taken.

この構成により、図3で示すように第2風向調整板15が位置dをとった場合、第2デフロスト運転が行われ、第1風向調整板14によって室外吸込口1は第1熱交換器23に接続され、室外の空気は、室外吸込口1から吸い込まれた後、第1給気流路25を通過して、給気送風手段9によって室内給気口4から室内へ給気される。同時に、第1風向調整板14によって室外吸込口1は第2熱交換器24と遮断される。   With this configuration, as shown in FIG. 3, when the second wind direction adjusting plate 15 takes the position d, the second defrost operation is performed, and the outdoor air inlet 1 is connected to the first heat exchanger 23 by the first wind direction adjusting plate 14. After the outdoor air is sucked in from the outdoor suction port 1, the outdoor air passes through the first air supply passage 25 and is supplied into the room from the indoor air supply port 4 by the air supply / air blowing means 9. At the same time, the outdoor air inlet 1 is disconnected from the second heat exchanger 24 by the first air direction adjusting plate 14.

また、第2風向調整板15は排気送風手段10と第1熱交換器23を接続し、室内の空気は、室内吸込口2から吸い込まれた後、第1排気流路26を通過して、第1給気流路25を通過する室外の空気と熱交換した後に、排気送風手段10によって室外排出口3から吐出される。   Further, the second air direction adjusting plate 15 connects the exhaust air blowing means 10 and the first heat exchanger 23, and the indoor air is sucked from the indoor suction port 2 and then passes through the first exhaust flow path 26. After exchanging heat with outdoor air passing through the first air supply passage 25, the air is discharged from the outdoor discharge port 3 by the exhaust air blowing means 10.

循環送風手段11によって通風される室内の空気は、室内吸込口2から本体箱5へ吸い込まれ、第2排気流路28を通過する時に、第2排気流路28の結露や凍結を融解、乾燥させ、第2風向調整板15によって循環送風手段11へと導かれ、循環空気排出口22から室内へ吐出される。   The indoor air ventilated by the circulating air blowing means 11 is sucked into the main body box 5 from the indoor suction port 2 and melts and dries out condensation and freezing of the second exhaust passage 28 when passing through the second exhaust passage 28. Then, the air is guided to the circulating air blowing means 11 by the second air direction adjusting plate 15 and discharged from the circulating air discharge port 22 into the room.

また、図2で示すように第2風向調整板15が位置eをとった場合、第1デフロスト運転が行われ、第1風向調整板14によって、室外吸込口1は第2熱交換器24に接続され、室外の空気は、室外吸込口1から吸い込まれた後、第2給気流路27を通過して、給気送風手段9によって室内給気口4から室内へ給気される。同時に、第1風向調整板14によって室外吸込口1は第1熱交換器23と遮断される。   Further, as shown in FIG. 2, when the second wind direction adjusting plate 15 takes the position e, the first defrosting operation is performed, and the outdoor air inlet 1 is moved to the second heat exchanger 24 by the first wind direction adjusting plate 14. After being connected and being sucked in from the outdoor suction port 1, the outdoor air passes through the second air supply flow path 27 and is supplied into the room from the indoor air supply port 4 by the supply air blowing means 9. At the same time, the outdoor air inlet 1 is disconnected from the first heat exchanger 23 by the first air direction adjusting plate 14.

また、第2風向調整板15は排気送風手段10と第2熱交換器24を接続し、室内の空気は、室内吸込口2から吸い込まれた後第2排気流路28を通過して、第2給気流路27を通過する室外の空気と熱交換した後に、排気送風手段10によって室外排出口3から吐出される。   Further, the second air direction adjusting plate 15 connects the exhaust air blowing means 10 and the second heat exchanger 24, and the indoor air passes through the second exhaust passage 28 after being sucked from the indoor suction port 2, After exchanging heat with outdoor air passing through the two air supply passages 27, the air is discharged from the outdoor outlet 3 by the exhaust air blowing means 10.

循環送風手段11によって通風される室内の空気は循環空気流経路31に従って、室内吸込口2から本体箱5へ吸い込まれ、第1排気流路26を通過する時に第1排気流路26の結露や凍結を融解、乾燥させ、第2風向調整板15によって循環送風手段11へと導かれ、循環空気排出口22から室内へ吐出される。   The indoor air ventilated by the circulating air blowing means 11 is sucked into the main body box 5 from the indoor suction port 2 according to the circulating air flow path 31 and passes through the first exhaust flow path 26 to cause condensation in the first exhaust flow path 26. Freezing is thawed and dried, guided to the circulating air blowing means 11 by the second air direction adjusting plate 15, and discharged from the circulating air discharge port 22 into the room.

また、図1に示すように第2風向調整板15が位置fをとった場合、通常時の熱交換気運転が行われ、室外の空気は給気流経路29に従って、室外吸込口1から本体箱5へ吸い込まれ、第1風向調整板14によって第1給気流路25及び第2給気流路27へと導かれ、給気送風手段9によって、室内給気口4から室内へ給気される。   Further, as shown in FIG. 1, when the second air direction adjusting plate 15 takes the position f, the normal heat exchange air operation is performed, and the outdoor air follows the air supply path 29 from the outdoor suction port 1 to the main body box. 5, is led to the first air supply passage 25 and the second air supply passage 27 by the first air direction adjusting plate 14, and is supplied into the room from the indoor air supply port 4 by the air supply air blowing means 9.

室内の空気は排気流経路30に従って、室内吸込口2から本体箱5へ吸い込まれ、第1排気流路26及び第2排気流路28を通過した後に、第2風向調整板15によって、排気送風手段10へと導かれ、排気送風手段10によって室外排出口3へ送られ室外へ吐出される。   The indoor air is sucked into the main body box 5 from the indoor suction port 2 according to the exhaust flow path 30, passes through the first exhaust flow path 26 and the second exhaust flow path 28, and then is exhausted by the second wind direction adjusting plate 15. It is guided to the means 10, sent to the outdoor discharge port 3 by the exhaust air blowing means 10, and discharged outside the room.

この時、給気送風手段9によって第1給気流路25及び第2給気流路27を通風される室外の空気と排気送風手段10によって第1排気流路26及び第2排気流路28を通風される室内の空気が熱交換を行う。   At this time, outdoor air passed through the first air supply passage 25 and the second air supply passage 27 by the air supply and blowing means 9 and the first exhaust passage 26 and the second exhaust passage 28 through the exhaust air blowing means 10. The indoor air that is used performs heat exchange.

このような構成で第2風向調整板15を備えることにより、2枚のダンパーと2台のモーターを組み合わせた簡単な構成によって、第1熱交換器23及び第2熱交換器24と排気送風手段10及び循環送風手段11の接続を切り換えることができ、それによって通常時の熱交換気運転とデフロスト運転を容易に切り換えることができる。   By providing the second wind direction adjusting plate 15 with such a configuration, the first heat exchanger 23, the second heat exchanger 24, and the exhaust air blowing means can be obtained by a simple configuration in which two dampers and two motors are combined. 10 and the circulation blower 11 can be switched, whereby the normal heat exchange air operation and the defrost operation can be easily switched.

その上、第2風向調整板15が、循環送風手段11と全ての熱交換器の接続を遮断することによって、第1熱交換器23及び第2熱交換器24で熱交換気運転を行っている場合に、排気送風手段10によって形成される風路へ、循環送風手段11によって形成される風路から室内の空気が漏れることを抑制できる。   In addition, the second air direction adjusting plate 15 performs the heat exchange air operation in the first heat exchanger 23 and the second heat exchanger 24 by cutting off the connection between the circulating air blowing means 11 and all the heat exchangers. When it is, it can suppress that indoor air leaks from the air path formed by the circulation ventilation means 11 to the air path formed by the exhaust ventilation means 10.

なお、田の字型の仕切りに対して、水平方向に見て中央にある仕切りをモーターの回転軸とし、回転軸に対して、左右1つの開口のどちらか一方を塞ぐことができる板状のダンパー1枚を鉛直上側に、左右どちらか1つの開口または両方の開口を塞ぐことができる板状のダンパー1枚を鉛直下側に並べる構成も可能である。   In addition, with respect to the rice-shaped partition, the partition in the center when viewed in the horizontal direction is used as the rotation shaft of the motor, and the plate-shaped partition that can block either one of the left and right openings with respect to the rotation shaft A configuration is also possible in which one damper is arranged vertically on the upper side, and one plate-like damper that can block either one of the left or right openings or both openings is arranged on the lower vertical side.

なお、ダンパー等を用いて第2風向調整板15の4つの開口を個別に塞ぐ構成も可能である。   A configuration in which the four openings of the second wind direction adjusting plate 15 are individually closed using a damper or the like is also possible.

(実施の形態11)
図1に示す実施の形態1にたいし、循環原動機13は、循環送風手段11が第1熱交換器23または第2熱交換器24と接続する場合に駆動し、排気送風手段10が第1熱交換器23及び第2熱交換器24と接続する場合に停止する構成とする。
(Embodiment 11)
In contrast to the first embodiment shown in FIG. 1, the circulating prime mover 13 is driven when the circulating air blowing means 11 is connected to the first heat exchanger 23 or the second heat exchanger 24, and the exhaust air blowing means 10 is the first. When connecting with the heat exchanger 23 and the 2nd heat exchanger 24, it is set as the structure which stops.

具体的には例えば、第2風向調整板15が実施の形態10における位置dまたは位置eをとった場合に循環原動機13が駆動し、位置fをとった場合に、循環原動機13を停止する。   Specifically, for example, the circulation prime mover 13 is driven when the second wind direction adjusting plate 15 takes the position d or the position e in the tenth embodiment, and the circulation prime mover 13 is stopped when the position f is taken.

循環送風手段11が第1熱交換器23または第2熱交換器24と接続する場合には、第1デフロスト運転または第2デフロスト運転が行われており、循環送風手段11によって循環空気流経路31に通風する必要性があるが、排気送風手段10が全ての熱交換器と接続する場合には通常時の熱交換気運転が行われており、循環送風手段11は稼動する必要性を失う。   When the circulating air blowing means 11 is connected to the first heat exchanger 23 or the second heat exchanger 24, the first defrosting operation or the second defrosting operation is performed. However, when the exhaust air blowing means 10 is connected to all the heat exchangers, a normal heat exchange air operation is performed, and the circulation air blowing means 11 loses the necessity to operate.

循環送風手段11を駆動する循環原動機13は、給気送風手段9及び排気送風手段10を駆動する給気排気原動機12と独立しており、循環送風手段11の必要性に応じて循環原動機13を稼動もしくは停止することで、装置全体の消費電力を低減することができる。   The circulation prime mover 13 that drives the circulation blower means 11 is independent of the supply air exhaust prime mover 12 that drives the supply air blower means 9 and the exhaust blower means 10, and the circulation prime mover 13 is changed according to the necessity of the circulation blower means 11. By operating or stopping, the power consumption of the entire apparatus can be reduced.

(実施の形態12)
図1に示す実施の形態1にたいし、第2風向調整板15が循環送風手段11を第1熱交換器23または第2熱交換器24と接続した直後に、循環原動機13の回転数を所定の時間、例えばダンパー切り換えに必要な10秒間、所定の回転数、例えば通常時の熱交換気運転時の回転数の11/10に上昇させる構成とする。
(Embodiment 12)
In contrast to the first embodiment shown in FIG. 1, immediately after the second air direction adjusting plate 15 connects the circulating air blowing means 11 to the first heat exchanger 23 or the second heat exchanger 24, the rotational speed of the circulating prime mover 13 is set. A predetermined time, for example, 10 seconds required for damper switching, is increased to a predetermined number of revolutions, for example, 11/10 of the number of revolutions during normal heat exchange operation.

より具体的には例えば、実施の形態10に対して、第2風向調整板15が、位置dから位置eに切り換わった場合、あるいは位置eから位置dに切り換わった場合、あるいは位置fから位置dまたは位置eに切り換わった場合に、循環原動機13の回転数を所定の時間、所定の回転数へ上昇させ、循環送風手段11によって駆動される空気の風量を増加させる構成とする。   More specifically, for example, with respect to the tenth embodiment, when the second wind direction adjusting plate 15 is switched from the position d to the position e, or from the position e to the position d, or from the position f. When the position is switched to the position d or the position e, the rotational speed of the circulating prime mover 13 is increased to a predetermined rotational speed for a predetermined time to increase the air volume of the air driven by the circulating air blowing means 11.

寒冷地における冬季の標準的な室外の温度環境で循環原動機13の回転数を上昇させずに運転している状態において、第2風向調整板15が切り換わったことによる室内へ循環させる空気の温度低下が大きく見られる時間を予め測定し、この循環させる空気の温度が大きく低下している時間を最小限にできるような循環原動機13の回転数を上昇させる時間及び回転数を予め実験、計算などにより設定できる。   The temperature of the air circulated into the room due to the switching of the second wind direction adjusting plate 15 in a state where the engine is operated without increasing the rotational speed of the circulating prime mover 13 in a standard outdoor temperature environment in winter in a cold region. The time during which the decrease is seen is measured in advance, and the time and the number of rotations for increasing the number of rotations of the circulating prime mover 13 so that the time during which the temperature of the circulating air is greatly decreased can be minimized are tested and calculated in advance. Can be set.

循環原動機13の回転数を上昇させることで、循環空気流経路31の風量を増加させ、単位時間当たりに熱交換器表面から空気へ伝わる熱に対する、単位時間当たりの熱交換器表面を通過する空気の量を増加させることで、空気全体の温度低下を軽減させることができる。   The air passing through the heat exchanger surface per unit time with respect to the heat transferred from the heat exchanger surface to the air per unit time is increased by increasing the rotational speed of the circulation prime mover 13 to increase the air volume of the circulating air flow path 31. By increasing the amount of air, the temperature drop of the entire air can be reduced.

そのためこの構成によって、第2風向調整板15の切り換え直後に、熱交換気運転中の冷たい室外の空気によって冷え切った第1熱交換器23または第2熱交換器24へ室内に循環させる空気が流れ込んだ時の、室内へ循環させる空気の温度低下を軽減することができる。   Therefore, with this configuration, immediately after the switching of the second air direction adjusting plate 15, the air circulated indoors to the first heat exchanger 23 or the second heat exchanger 24 that has been cooled by the cold outdoor air during the heat exchange operation. It is possible to reduce the temperature drop of the air circulated into the room when it flows.

なお、第2風向調整板15が切り換わる直前及び、切り換わっている最中に循環原動機13の回転数を増加させることでも同様の効果を得ることができる。ただしこの場合、具体的に例えばダンパー板を駆動するモーターのトルクがより多く必要になるなど、切り換えに必要な動力がより多く必要になる。   Note that the same effect can be obtained by increasing the rotational speed of the circulating prime mover 13 immediately before and during the switching of the second wind direction adjusting plate 15. In this case, however, more power is required for switching, for example, more torque is required for the motor that drives the damper plate.

また、第1風向調整板14及び第2風向調整板15が同時に切り換わる際に、2台の熱交換器へ同時に風が流れるで熱交換器を通過する風量が一時的に減少する。このとき、給気流路を流れる風量の減少度合いに比べ排気流路を流れる風量の減少度合いがより小さくなるため、風量バランスが崩れて冷えた給気流路から排気流路へ空気が漏れることが考えられ、結露が排気流路で発生しやすくなるという問題がある。   Further, when the first wind direction adjusting plate 14 and the second wind direction adjusting plate 15 are switched at the same time, the wind flows through the two heat exchangers at the same time, so that the amount of air passing through the heat exchanger is temporarily reduced. At this time, since the degree of decrease in the amount of air flowing through the exhaust passage is smaller than the degree of decrease in the amount of air flowing through the air supply passage, air flow may be lost and air may leak from the cooled air supply passage to the exhaust passage. Therefore, there is a problem that condensation tends to occur in the exhaust passage.

そこでこの場合、循環原動機13に合わせて、給気排気原動機12の回転数も増加させ、風量バランスをとる構成をとることで、前記実施の形態12と同等の効果を得ることができる。   Therefore, in this case, the same effect as that of the above-described Embodiment 12 can be obtained by adopting a configuration in which the rotational speed of the supply / exhaust prime mover 12 is increased in accordance with the circulation prime mover 13 to balance the air volume.

(実施の形態13)
図5に示すように、第1熱交換器23及び第2熱交換器24の排気流路の流出口から室外排出口3の間に、第1熱交換器23及び第2熱交換器24の結露や凍結の状態を検知できる第1結露検知手段32及び第2結露検知手段33を備える。
(Embodiment 13)
As shown in FIG. 5, the first heat exchanger 23 and the second heat exchanger 24 are arranged between the outlet of the exhaust passage of the first heat exchanger 23 and the second heat exchanger 24 and the outdoor outlet 3. A first dew condensation detection unit 32 and a second dew condensation detection unit 33 that can detect the state of dew condensation or freezing are provided.

第1結露検知手段32または第2結露検知手段33の検出値により、結露または凍結が検知された場合は給気排気原動機12の回転数を、例えば通常時の熱交換気運転時の90%相当の回転数に低下させ、循環原動機13の回転数を、例えば通常時の熱交換気運転時の110%相当の回転数に上昇させる。   When dew condensation or freezing is detected by the detection value of the first dew condensation detection means 32 or the second dew condensation detection means 33, the rotation speed of the supply / exhaust prime mover 12 is equivalent to, for example, 90% of normal heat exchange air operation The rotational speed of the circulating prime mover 13 is increased to, for example, a rotational speed equivalent to 110% during normal heat exchange air operation.

第1結露検知手段32及び第2結露検知手段33として、温度検知手段、湿度検知手段、圧力検知手段、電極間の抵抗値を利用した水滴検知手段を単独で、あるいは複数組み合わせて用いる。以下、本明細書において、第1結露検知手段32及び第2結露検知手段33として用いる検知手段に関しては、検知手段名のあとに(結露)と付記する。   As the first dew condensation detection unit 32 and the second dew condensation detection unit 33, a temperature detection unit, a humidity detection unit, a pressure detection unit, and a water droplet detection unit using a resistance value between electrodes are used alone or in combination. Hereinafter, in the present specification, regarding the detection means used as the first dew condensation detection means 32 and the second dew condensation detection means 33, (dew condensation) is added after the detection means name.

より具体的には例えば、第1結露検知手段32及び第2結露検知手段33として、温度検知手段を用い、第1熱交換器23と第2風向調整板15の間の排気流経路30に第1温度検知手段(結露)を設置し、第2熱交換器24と第2風向調整板15の間の排気流経路30に第2温度検知手段(結露)を設置する。   More specifically, for example, a temperature detection unit is used as the first dew condensation detection unit 32 and the second dew condensation detection unit 33, and the first dew detection unit 32 and the second dew detection unit 33 are arranged in the exhaust flow path 30 between the first heat exchanger 23 and the second wind direction adjusting plate 15. 1 temperature detection means (condensation) is installed, and the second temperature detection means (condensation) is installed in the exhaust flow path 30 between the second heat exchanger 24 and the second wind direction adjusting plate 15.

室外がきわめて低い温度、例えば−0℃から−25℃となる寒冷地では、通常時の熱交換気運転を継続すると、温かく湿度を多く含む室内の空気が、きわめて低い温度の室外の空気と熱交換することで、第1排気流路26と第2排気流路28のどちらか一方あるいは両方で徐々に結露し凍結していく。   In cold regions where the outdoor temperature is extremely low, for example, −0 ° C. to −25 ° C., if the normal heat exchange air operation is continued, the indoor air that is warm and rich in humidity is converted into the outdoor air and the heat at a very low temperature. By exchanging, the condensation gradually freezes in one or both of the first exhaust passage 26 and the second exhaust passage 28 and freezes.

第1排気流路26と第2排気流路28のどちらか一方あるいは両方で結露し凍結していくことによって、通常時の熱交換気運転に結露や凍結による影響、例えば風量の低下が現れた時点で、第1デフロスト運転及び第2デフロスト運転が交互に切り換わって運転され、第1排気流路26及び第2排気流路28に結露や凍結による影響がなくなるまで切り換えが継続される。   By condensation and freezing in one or both of the first exhaust flow path 26 and the second exhaust flow path 28, the influence of dew condensation and freezing, for example, a decrease in the air flow, appeared in the normal heat exchange air operation. At the time, the first defrost operation and the second defrost operation are alternately switched, and the switching is continued until the first exhaust passage 26 and the second exhaust passage 28 are not affected by condensation or freezing.

ここで、第1排気流路26または第2排気流路28に結露や凍結が発生した場合に、デフロスト運転によって結露または凍結の乾燥が完了した時における循環空気流経路31の空気の設定温度、例えば15℃から25℃、を予め実験、計算などにより求めておく。   Here, when condensation or freezing occurs in the first exhaust passage 26 or the second exhaust passage 28, the set temperature of the air in the circulation air flow path 31 when the condensation or freezing drying is completed by the defrost operation, For example, 15 ° C. to 25 ° C. is obtained in advance through experiments, calculations, and the like.

デフロスト運転が継続されているにもかかわらず、第1温度検知手段(結露)または第2温度検知手段(結露)によって、第1排気流路26と第2排気流路28の少なくともどちらか一方において結露や凍結の影響の乾燥が完了した時における循環空気流経路31の空気の設定温度より低い温度、例えば設定温度よりも5℃程度低い温度が所定の時間検知され続けると、給気排気原動機12の回転数を低下させ、循環原動機13の回転数を上昇させる構成とする。所定の時間に関しては、通常時の熱交換気運転とデフロスト運転を切り換える検知手段と合わせて後述する。   Despite the continued defrost operation, the first temperature detection means (condensation) or the second temperature detection means (condensation) causes at least one of the first exhaust flow path 26 and the second exhaust flow path 28 to be detected. When the temperature lower than the set temperature of the air in the circulating air flow path 31 when the drying due to the influence of condensation or freezing is completed, for example, about 5 ° C. lower than the set temperature is continuously detected for a predetermined time, the supply / exhaust prime mover 12 It is set as the structure which decreases the rotation speed of this and raises the rotation speed of the circulation motor | power_engine 13. The predetermined time will be described later together with detection means for switching between normal heat exchange air operation and defrost operation.

または、第1結露検知手段32及び第2結露検知手段33として、温度検知手段及び湿度検知手段を用い、第1熱交換器23と第2風向調整板15の間の排気流経路30に第1温湿度検知手段(結露)を設置し、第2熱交換器24と第2風向調整板15の間の排気流経路30に第2温湿度検知手段(結露)を設置する。   Alternatively, as the first dew condensation detection means 32 and the second dew condensation detection means 33, temperature detection means and humidity detection means are used, and the first flow path 30 between the first heat exchanger 23 and the second wind direction adjustment plate 15 is firstly connected. Temperature / humidity detection means (condensation) is installed, and second temperature / humidity detection means (condensation) is installed in the exhaust flow path 30 between the second heat exchanger 24 and the second wind direction adjusting plate 15.

第1排気流路26または第2排気流路28に結露や凍結が発生しデフロスト運転が完了した時における循環空気流経路31の空気の温湿度、例えば15℃30%から20℃45%を予め実験、計算などにより設定する。   The temperature and humidity of the air in the circulation air flow path 31 when the defrosting operation is completed due to condensation or freezing in the first exhaust passage 26 or the second exhaust passage 28, for example, 15 ° C. to 30 ° C. to 45 ° C. in advance. Set by experiment, calculation, etc.

デフロスト運転が継続されているにもかかわらず、第1温湿度検知手段(結露)または第2温湿度検知手段(結露)によって、第1排気流路26と第2排気流路28のどちらか少なくとも一方において結露や凍結の乾燥が完了した時における循環空気流経路31の空気の設定温湿度より絶対湿度が高くなるような温湿度、例えば設定温湿度条件における絶対湿度の110%程度の絶対湿度となるような温湿度範囲を15℃30%なら1℃94%から10℃50%の間というように予め設定し、その温湿度が所定の時間検知され続けると、給気排気原動機12の回転数を低下させ、循環原動機13の回転数を上昇させる構成とする。   Although the defrost operation is continued, at least one of the first exhaust passage 26 and the second exhaust passage 28 is detected by the first temperature / humidity detection means (condensation) or the second temperature / humidity detection means (condensation). On the other hand, the temperature and humidity at which the absolute humidity is higher than the set temperature and humidity of the air in the circulating air flow path 31 when the condensation and freezing drying is completed, for example, an absolute humidity of about 110% of the absolute humidity under the set temperature and humidity conditions If the temperature / humidity range is 15 ° C. and 30%, it is preset between 1 ° C. 94% and 10 ° C. 50%. If the temperature and humidity are continuously detected for a predetermined time, the rotation speed of the supply / exhaust prime mover 12 And the rotational speed of the circulating prime mover 13 is increased.

所定の時間に関しては、通常時の熱交換気運転とデフロスト運転を切り換える手段と合わせて後述する。   The predetermined time will be described later together with means for switching between normal heat exchange air operation and defrost operation.

または、結露検知手段16として、圧力検知手段を用い、第1熱交換器23と第2風向調整板15の間の排気流経路30に第1圧力検知手段(結露)を設置し、第2熱交換器24と第2風向調整板15の間の排気流経路30に第2圧力検知手段(結露)を設置する。   Alternatively, the pressure detection means is used as the dew condensation detection means 16, the first pressure detection means (condensation) is installed in the exhaust flow path 30 between the first heat exchanger 23 and the second wind direction adjusting plate 15, and the second heat A second pressure detection means (condensation) is installed in the exhaust flow path 30 between the exchanger 24 and the second air direction adjusting plate 15.

第1排気流路26または第2排気流路28に結露や凍結が発生した場合は熱交換器内の送風抵抗が増大するため、結露や凍結が発生した場合の循環空気流経路31の静圧または全圧、例えば静圧で70Paを予め実験、計算などにより設定する。   When dew condensation or freezing occurs in the first exhaust flow path 26 or the second exhaust flow path 28, the air blowing resistance in the heat exchanger increases. Therefore, the static pressure of the circulating air flow path 31 when dew condensation or freezing occurs. Alternatively, the total pressure, for example, 70 Pa is set in advance by experiment, calculation, etc. at static pressure.

デフロスト運転中に、第1圧力検知手段(結露)または第2圧力検知手段(結露)によって、第1排気流路26と第2排気流路28のどちらか少なくとも一方において結露や凍結の影響が見られるような循環空気流経路31の静圧または全圧が所定の時間検知され続けると、給気排気原動機12の回転数を低下させ、循環原動機13の回転数を上昇させる構成とする。   During the defrost operation, the first pressure detection means (condensation) or the second pressure detection means (condensation) causes the influence of condensation or freezing in at least one of the first exhaust flow path 26 and the second exhaust flow path 28. When the static pressure or the total pressure of the circulating air flow path 31 is continuously detected for a predetermined time, the rotational speed of the supply / exhaust prime mover 12 is decreased and the rotational speed of the circulation prime mover 13 is increased.

所定の時間に関しては、通常時の熱交換気運転とデフロスト運転を切り換える手段と合わせて後述する。   The predetermined time will be described later together with means for switching between normal heat exchange air operation and defrost operation.

または、結露検知手段16として、電極間の抵抗値を利用した水滴検知手段を用い、第1排気流路26の流出口近傍に第1水滴検知手段(結露)を設置し、第2排気流路28の流出口近傍に第2水滴検知手段(結露)を設置する。   Alternatively, as the dew condensation detection means 16, a water drop detection means using a resistance value between the electrodes is used, the first water drop detection means (condensation) is installed in the vicinity of the outlet of the first exhaust flow path 26, and the second exhaust flow path. The second water droplet detection means (condensation) is installed in the vicinity of the 28 outlets.

電極へ水滴が触れることで電極間の抵抗値が低下、例えばDC100Vにおいて10MΩの抵抗を持つ電極間が、水分による導通によって5kΩまで抵抗が低下するため、第1排気流路26または第2排気流路28に結露や凍結が発生したことを検知できる。   The resistance value between the electrodes decreases when the water droplets touch the electrodes. For example, the resistance between the electrodes having a resistance of 10 MΩ at DC 100 V decreases to 5 kΩ due to conduction by moisture, so the first exhaust flow path 26 or the second exhaust flow It can be detected that condensation or freezing has occurred on the road 28.

デフロスト運転中に、第1水滴検知手段(結露)または第2水滴検知手段(結露)によって、第1排気流路26と第2排気流路28のどちらか少なくとも一方において結露や凍結が所定の時間、例えば5分間、検知され続けると、給気排気原動機12の回転数を低下させ、循環原動機13の回転数を上昇させる構成とする。   During the defrost operation, the first water droplet detection means (condensation) or the second water droplet detection means (condensation) causes the condensation or freezing to occur in at least one of the first exhaust passage 26 and the second exhaust passage 28 for a predetermined time. For example, if the detection continues for 5 minutes, the rotation speed of the supply / exhaust prime mover 12 is decreased and the rotation speed of the circulation prime mover 13 is increased.

所定の時間に関しては、通常時の熱交換気運転とデフロスト運転を切り換える手段と合わせて後述する。   The predetermined time will be described later together with means for switching between normal heat exchange air operation and defrost operation.

通常時の熱交換気運転とデフロスト運転を切り換えるための、通常時の熱交換気運転への結露の影響を検知する手段として、第1結露検知手段32及び第2結露検知手段33のどちらか一方、または両方を使用する。   One of the first dew condensation detection means 32 and the second dew condensation detection means 33 is a means for detecting the influence of dew condensation on the normal heat exchange air operation for switching between the normal heat exchange air operation and the defrost operation. Or both.

ここで、第1結露検知手段32及び第2結露検知手段33のどちらか一方を使用することで、デフロスト運転開始までに使用していない結露検知手段を停止することができ、消費電力を低減することができる。   Here, by using one of the first dew condensation detection means 32 and the second dew condensation detection means 33, the dew condensation detection means that is not used before the start of the defrost operation can be stopped, and the power consumption is reduced. be able to.

また、第1結露検知手段32及び第2結露検知手段33両方を使用することで、第1熱交換器及び第2熱交換器に不均一に風が流れ込むなどの場合によって、結露が熱交換器間で不均一に発生したとしても正確に結露を検知することができる。   Further, by using both the first dew condensation detection means 32 and the second dew condensation detection means 33, dew condensation may occur in the heat exchanger depending on the case where the wind flows unevenly into the first heat exchanger and the second heat exchanger. Condensation can be accurately detected even if it occurs unevenly between the two.

この場合、第1結露検知手段32または第2結露検知手段33が循環空気流経路31の環境から結露を検知した方法と同様に、排気流経路30の環境から結露を検知できるように設定する。   In this case, the first condensation detection means 32 or the second condensation detection means 33 is set so that the condensation can be detected from the environment of the exhaust flow path 30 in the same manner as the method of detecting the condensation from the environment of the circulating air flow path 31.

結露または凍結を検知した時点で通常時の熱交換気運転からデフロスト運転へ切り換わり、予め実験または計算により排気流路内の結露または凍結を全て乾燥させることのできる時間として求められた所定の時間、例えば10分間ごとに第1デフロスト運転と第2デフロスト運転が切り換わる。   When dew condensation or freezing is detected, the normal heat exchange air operation is switched to the defrost operation, and a predetermined time obtained as a time in which all condensation or freezing in the exhaust passage can be dried in advance by experiment or calculation For example, the first defrost operation and the second defrost operation are switched every 10 minutes.

そして第1デフロスト運転中または第2デフロスト運転中を通じてそれぞれ第1結露検知手段32または第2結露検知手段33において結露または凍結が検知され続けた場合に、給気排気原動機12の回転数は低下し、循環原動機13の回転数が上昇する構成とする。   When the first dew condensation detection means 32 or the second dew condensation detection means 33 continues to detect dew condensation or freezing during the first defrost operation or the second defrost operation, the rotation speed of the supply / exhaust prime mover 12 decreases. The rotational speed of the circulating prime mover 13 is increased.

デフロスト運転によって、第1排気流路26または第2排気流路28の結露や凍結の乾燥を完了させることができなかった場合に、給気排気原動機12の回転数を下げ、給気送風手段9及び排気送風手段10の駆動する風量を減少させる。   When the defrosting operation cannot complete the condensation or freezing drying of the first exhaust passage 26 or the second exhaust passage 28, the rotational speed of the supply / exhaust prime mover 12 is lowered, and the supply / air blowing means 9 And the air volume which the exhaust ventilation means 10 drives is reduced.

これにより単位時間当たりに排気流路を通過する水分量も減少し、凍結時の熱交換気運転中に新たに排気流路内に発生する結露または凍結の量を減少させることができる。   As a result, the amount of water passing through the exhaust passage per unit time is also reduced, and the amount of condensation or freezing newly generated in the exhaust passage during the heat exchange air operation during freezing can be reduced.

また、循環原動機13の回転数を上げ、循環送風手段11の駆動する風量を増加させることで、単位時間当たりに空気中へ蒸発することのできる水分量も増加し、デフロスト運転中に乾燥させることのできる結露または凍結の量を増加させることができ、合わせて排気流路をより早く完全に乾燥させることができる。   Further, by increasing the number of rotations of the circulating prime mover 13 and increasing the amount of air driven by the circulating air blowing means 11, the amount of water that can be evaporated into the air per unit time also increases, and drying is performed during the defrost operation. The amount of condensation or freezing that can be increased can be increased, and the exhaust flow path can be completely dried earlier.

または、通常時の熱交換気運転とデフロスト運転を切り換えるための、通常時の熱交換気運転への結露の影響を検知する手段として、第1結露検知手段32または第2結露検知手段33が循環空気流経路31の環境から結露を検知した方法と同様に、排気流経路30の環境から結露を検知できるように設定する。   Alternatively, the first dew condensation detection means 32 or the second dew condensation detection means 33 circulates as means for detecting the influence of dew condensation on the normal heat exchange air operation for switching between the normal heat exchange air operation and the defrost operation. Similar to the method of detecting dew condensation from the environment of the air flow path 31, the setting is made so that dew condensation can be detected from the environment of the exhaust flow path 30.

第1結露検知手段32または第2結露検知手段33が結露または凍結を検知した時点で、通常時の熱交換気運転から、第1結露検知手段32で検知された場合は第1デフロスト運転へ切り換わり、第2結露検知手段33で検知された場合は第2デフロスト運転へ切り換わる。   When the first condensation detection means 32 or the second condensation detection means 33 detects condensation or freezing, if the first condensation detection means 32 detects that the heat exchange air operation is normal, it switches to the first defrost operation. Instead, when it is detected by the second dew condensation detection means 33, the operation is switched to the second defrost operation.

最初に結露を検知した第1結露検知手段32または第2結露検知手段33において結露が検知されなくなった時点で第1デフロスト運転または第2デフロスト運転は終了する。   The first defrosting operation or the second defrosting operation ends when the first dew condensation detection unit 32 or the second dew condensation detection unit 33 that first detects dew condensation no longer detects dew condensation.

その後、第1デフロスト運転が行われていた場合は第2結露検知手段33の、第2デフロスト運転が行われていた場合は第1結露検知手段32の検知値が結露を検知していた場合にそれぞれ第2デフロスト運転もしくは第1デフロスト運転が開始され、第1結露検知手段32及び第2結露検知手段33が結露を検知しなくなった時点で通常時の熱交換気運転が実行される構成とする。   After that, when the first defrost operation is being performed, the detection value of the second dew condensation detection means 33, and when the second defrost operation is being performed, the detection value of the first dew condensation detection means 32 is detecting condensation. The second defrost operation or the first defrost operation is started, and the normal heat exchange air operation is performed when the first dew condensation detection means 32 and the second dew condensation detection means 33 no longer detect dew condensation. .

予め、結露が検知されてから凍結時の熱交換気運転を継続した場合に、蓄積した結露によって運転に著しい障害、例えば排気流路が結露によってふさがり十分な換気風量が得られなくなった場合などが発生するまでの時間、例えば1時間を実験または計算により算出し、その時間を元に、例えばその時間の1/12の時間だけデフロスト運転を行うというようにデフロスト運転継続時間を設定する。   When heat exchange air operation during freezing is continued after condensation has been detected in advance, there may be significant obstacles to the operation due to accumulated condensation, such as when the exhaust passage is blocked by condensation and sufficient ventilation airflow cannot be obtained. The time until occurrence, for example, 1 hour is calculated by experiment or calculation, and the defrost operation duration is set based on that time, for example, the defrost operation is performed for 1/12 of the time.

そしてデフロスト運転が開始され、デフロスト運転継続時間が経過しても結露が検知されていた場合に、給気排気原動機12の回転数は低下し、循環原動機13の回転数が上昇する構成とする。   When the defrost operation is started and dew condensation is detected even after the defrost operation duration time has elapsed, the rotation speed of the supply / exhaust prime mover 12 decreases and the rotation speed of the circulation prime mover 13 increases.

なお、通常時の熱交換気運転とデフロスト運転を切り換えるための検知手段として、図5に示すように外気温度検知手段38を室外吸込口1の近傍へ備えてもよい。   In addition, as a detection means for switching between normal heat exchange air operation and defrost operation, an outside air temperature detection means 38 may be provided in the vicinity of the outdoor inlet 1 as shown in FIG.

外気温度が予め所定の温度を下回った場合、具体的に例えば−10℃を下回った場合に、熱交換器内で結露もしくは凍結が発生していると判断してデフロスト運転を開始し、外気温度が前記所定の温度を上回った時点でデフロスト運転を終了するという構成で通常時の熱交換気運転とデフロスト運転を切り換えることができる。   When the outside air temperature falls below a predetermined temperature in advance, specifically when it falls below, for example, −10 ° C., it is determined that condensation or freezing has occurred in the heat exchanger, and the defrost operation is started. When the temperature exceeds the predetermined temperature, the defrost operation is terminated, and the normal heat exchange air operation and the defrost operation can be switched.

この場合、予め、結露が検知されてから凍結時の熱交換気運転を継続した場合に、蓄積した結露によって運転に著しい障害、例えば排気流路が結露によってふさがり十分な換気風量が得られなくなった場合などが発生するまでの時間、例えば1時間を実験または計算により算出し、その時間を元に、例えばその時間の1/12の時間だけデフロスト運転を行うというようにデフロスト運転継続時間を設定する。   In this case, if the heat exchange air operation during freezing is continued after condensation has been detected in advance, the accumulated condensation will cause a significant obstacle to the operation, for example, the exhaust passage will be blocked by condensation, and sufficient ventilation air volume will not be obtained. A time until a case occurs, for example, 1 hour is calculated by experiment or calculation, and the defrost operation duration time is set based on the time, for example, the defrost operation is performed for 1/12 of the time. .

デフロスト運転が開始され、デフロスト運転継続時間が経過しても結露が検知されていた場合に、給気排気原動機12の回転数は低下し、循環原動機13の回転数が上昇する構成とする。   When the defrost operation is started and dew condensation is detected even after the defrost operation duration time has elapsed, the rotation speed of the supply / exhaust prime mover 12 decreases and the rotation speed of the circulation prime mover 13 increases.

なお、第1結露検知手段32及び第2結露検知手段33として、温度検知手段、湿度検知手段、圧力検知手段を用いた場合、同種の結露検知手段を熱交換器の上流側に設け、第1熱交換器23及び第2熱交換器24の上流側、下流側の結露検知手段を組として、それぞれ第1結露検知手段32及び第2結露検知手段33としてもよい。   In the case where a temperature detection unit, a humidity detection unit, and a pressure detection unit are used as the first dew condensation detection unit 32 and the second dew condensation detection unit 33, the same type of dew condensation detection unit is provided on the upstream side of the heat exchanger. Condensation detection means on the upstream side and downstream side of the heat exchanger 23 and the second heat exchanger 24 may be combined into a first condensation detection means 32 and a second condensation detection means 33, respectively.

この場合、結露検知手段の検出値が絶対値だけでなく、熱交換器の上流側、下流側の結露検知手段の検出値の差によって制御することができる。   In this case, the detection value of the dew condensation detection means can be controlled not only by the absolute value but also by the difference between the detection values of the dew condensation detection means upstream and downstream of the heat exchanger.

(実施の形態14)
図6に示すように、室内給気口4の近傍に空気の温度を検知する温度検知手段17を備え、室内給気口4から供給される空気の温度が所定の温度を下回った場合、給気排気原動機12の回転数を所定の値まで、例えば通常時の熱交換気運転時の90%相当の回転数に低下させ、循環原動機13の回転数を所定の値まで、例えば通常時の熱交換気運転時の110%相当の回転数に上昇させる構成とする。
(Embodiment 14)
As shown in FIG. 6, a temperature detection means 17 for detecting the temperature of the air is provided in the vicinity of the indoor air supply port 4, and when the temperature of the air supplied from the indoor air supply port 4 falls below a predetermined temperature, The rotational speed of the air exhaust motor 12 is reduced to a predetermined value, for example, to a rotational speed equivalent to 90% during normal heat exchange air operation, and the rotational speed of the circulation motor 13 is reduced to a predetermined value, for example, normal heat. It is set as the structure which raises to the rotation speed equivalent to 110% at the time of exchange air driving | operation.

より具体的には例えば、予め室内給気口4から供給される空気の温度が低すぎて不快に感じる温度、例えば氷結の生じる0℃などを所定の温度として設定する。   More specifically, for example, a temperature at which the temperature of the air supplied from the indoor air supply port 4 is too low and feels uncomfortable, for example, 0 ° C. where freezing occurs is set as the predetermined temperature.

温度検知手段17において、室内給気口4から供給される空気の温度が前記所定の温度以下になったと検知された場合は、それぞれある一定の割合ずつ、例えば双方1%ずつ給気排気原動機12の回転数を低下させるとともに循環原動機13の回転数を上昇させ、室内給気口4から供給される空気の温度が所定の温度以上になるまで、所定の時間、例えば1分間ごとに温度検知手段17が検知し、回転数を制御することを繰り返す構成とする。   When the temperature detection means 17 detects that the temperature of the air supplied from the indoor air supply port 4 is equal to or lower than the predetermined temperature, the supply air / exhaust prime mover 12 is in a certain ratio, for example, 1% of each. The temperature detecting means increases the rotational speed of the circulation prime mover 13 and increases the rotational speed of the circulating prime mover 13 until the temperature of the air supplied from the indoor air supply port 4 becomes equal to or higher than a predetermined temperature, for example, every minute. 17 is configured to repeatedly detect and control the rotational speed.

この構成により、給気排気原動機12の回転数が低下することで、給気送風手段9及び排気送風手段10の駆動する風量が減少する。そのため、単位時間あたりに単位体積の空気に接している熱交換器の伝熱板面積が増加することから、熱交換器単体の熱交換効率が上昇することで給気される空気の温度を上昇させることができる。   With this configuration, the rotational speed of the air supply / exhaust prime mover 12 decreases, so that the air volume driven by the air supply / air blowing means 9 and the exhaust air blowing means 10 decreases. Therefore, the heat transfer plate area of the heat exchanger that is in contact with the unit volume of air per unit time increases, so the heat exchange efficiency of the heat exchanger alone increases, increasing the temperature of the supplied air Can be made.

さらに循環原動機13の回転数が上昇し、循環送風手段11の駆動する風量が増加し排気流路の結露や凍結を乾燥させる速度が上昇することでデフロスト運転中の循環空気流経路31を流れる空気の温度が早く上昇することから、熱交換器を含め、循環空気流経路31と共通している排気流経路30の一部をより暖めることができる。これらの効果によって、室内へ給気される温度を不快にならない程度へ抑えることができる。   Further, the number of rotations of the circulation prime mover 13 is increased, the amount of air driven by the circulation blower unit 11 is increased, and the speed of drying the condensation and freezing of the exhaust passage is increased, so that the air flowing through the circulation air flow path 31 during the defrost operation Therefore, a part of the exhaust flow path 30 common to the circulating air flow path 31 including the heat exchanger can be further warmed. With these effects, the temperature of the air supplied to the room can be suppressed to such an extent that it does not become uncomfortable.

また、予め実験または計算によって、寒冷地の冬季の標準的な室外の温度環境、例えば−25℃における、給気排気原動機12及び循環原動機13の回転数と室内給気口4から供給される空気の温度の関係性を求め、また、室内給気口4から供給される空気の温度が低すぎて不快に感じる温度、例えば氷結の生じる0℃を所定の温度として設定しておく。   In addition, through experiments or calculations in advance, the rotation speed of the supply / exhaust prime mover 12 and the circulation prime mover 13 and the air supplied from the indoor intake port 4 in a standard outdoor temperature environment in a cold region in winter, for example, −25 ° C. Further, a temperature at which the temperature of the air supplied from the indoor air supply port 4 is too low and feels uncomfortable, for example, 0 ° C. where freezing occurs is set as a predetermined temperature.

温度検知手段17において、室内給気口4から供給される空気の温度が所定の温度以下になったと検知された場合は、回転数と空気の温度の関係性から設定されたそれぞれ給気排気原動機12または循環原動機13の所定の回転数まで、給気排気原動機12の回転数を低下、例えば通常時の回転数の90%程度に低下させ、循環原動機13の回転数を上昇、例えば通常時の110%程度に増加させる構成でも同様の効果が得られる。   When the temperature detection means 17 detects that the temperature of the air supplied from the indoor air supply port 4 has become equal to or lower than a predetermined temperature, the supply air / exhaust prime mover set from the relationship between the rotational speed and the air temperature. 12 or a predetermined number of rotations of the circulation prime mover 13, the rotation number of the supply / exhaust prime mover 12 is decreased, for example, reduced to about 90% of the normal number of rotations, and the rotation number of the circulation prime mover 13 is increased, for example, The same effect can be obtained with a configuration in which it is increased to about 110%.

(実施の形態15)
図7に示すように給気流路6へ室外の空気が流入しないようにする風路遮蔽手段として例えばダンパー18を備える。
(Embodiment 15)
As shown in FIG. 7, for example, a damper 18 is provided as a wind path shielding means for preventing outdoor air from flowing into the air supply flow path 6.

具体的には例えば、室外吸込口1にダンパー18を設置し、給気流経路29に空気が流れている場合に、空気の風圧によってダンパー18が開放され、給気流経路29に空気が流れていない場合はバネもしくは重力の作用によってダンパー18が給気流経路29を遮断する構成とする。   Specifically, for example, when the damper 18 is installed in the outdoor suction port 1 and air flows through the air supply path 29, the damper 18 is opened by the wind pressure of the air, and no air flows through the air supply path 29. In this case, the damper 18 blocks the air supply path 29 by the action of a spring or gravity.

この構成により、熱交換形換気装置が停止している場合に、室外の空気が室外吸込口1から入り込み、第1風向調整板14や熱交換器を冷却することによって、凍結した水滴による第1風向調整板14の作動不全や熱交換器の給気流路及び排気流路の目詰まりが発生することや、冷却による第1風向調整板14の動力発生部の作動不全がおきることを抑制する。   With this configuration, when the heat exchange type ventilator is stopped, outdoor air enters from the outdoor suction port 1 and cools the first air direction adjusting plate 14 and the heat exchanger, whereby the first due to the frozen water droplets. It is possible to suppress the malfunction of the airflow direction adjusting plate 14, the clogging of the air supply passage and the exhaust passage of the heat exchanger, and the malfunction of the power generating portion of the first airflow direction adjusting plate 14 due to cooling.

なお、第1風向調整板14において、室外吸込口1と熱交換器全てとの接続を遮断する機構を備えることで、第1風向調整板14の作動不全を抑制することはできないものの熱交換器の給気流路及び排気流路の目詰まりが発生することは抑制でき、部分的に風路遮蔽手段として効果を発揮することができる。   In addition, although the 1st wind direction adjustment board 14 is equipped with the mechanism which interrupts | blocks the connection with the outdoor suction inlet 1 and all the heat exchangers, although the malfunction of the 1st wind direction adjustment board 14 cannot be suppressed, a heat exchanger Occurrence of clogging of the air supply flow path and the exhaust flow path can be suppressed, and the effect as partial air path shielding means can be exhibited.

なおこの場合、第1風向調整板14の作動部の断熱を厚くするとともに、例えば第1風向調整板14の動力発生部としてモーターを用い、前記モーターに用いるグリスを−35℃まで潤滑性を保つものに変更することや、作動部の軸を予熱するヒーターを導入することでより好適な構成となる。   In this case, the heat insulation of the operating portion of the first wind direction adjusting plate 14 is increased, and for example, a motor is used as the power generating portion of the first wind direction adjusting plate 14, and the grease used for the motor is kept lubricated to −35 ° C. It becomes a more suitable structure by changing to a thing and introducing the heater which preheats the axis | shaft of an action | operation part.

(実施の形態16)
図8に示すように、循環原動機13の運転時に、給気送風手段9によって室内へ送られる室外の空気と、循環送風手段11によって室内へ送られる室内の空気を混合して給気する構成とする。
(Embodiment 16)
As shown in FIG. 8, when the circulating prime mover 13 is operated, the outdoor air sent into the room by the supply air blowing means 9 and the indoor air sent into the room by the circulation blowing means 11 are mixed and supplied. To do.

具体的には例えば、給気送風手段9の下流側で室内給気口4の上流側の給気流経路29へ循環送風手段11の下流側の循環空気流経路31を合流させ、本体箱5内で混合した後に室内給気口4を通して室内へ給気する構成とする。   Specifically, for example, the circulating air flow path 31 on the downstream side of the circulating air blowing means 11 is joined to the air flow path 29 on the downstream side of the air supply blowing means 9 and on the upstream side of the indoor air supply port 4 to Then, the air is supplied into the room through the indoor air supply port 4 after mixing.

給気流経路29を通過して室内へ給気される空気よりも循環空気流経路31を通過して室内へ循環する空気の温度のほうが高く、給気される空気と循環する空気を混合することで、室内へ給気される空気の温度を上昇させることができ、室内給気口4近傍の空間の温度低下を抑制することができる。   The temperature of the air circulating through the circulation air flow path 31 and circulating into the room is higher than the air supplied through the supply air path 29 into the room, and the supplied air and the circulating air are mixed. Thus, the temperature of the air supplied into the room can be raised, and the temperature drop in the space near the indoor air inlet 4 can be suppressed.

特に実施の形態14の構成をとる場合、給気流経路29を通過して室内へ給気される空気の風量が減少し、循環空気流経路31を通過して室内へ循環する空気の風量が増加するため、室内へ給気する空気の温度がより上昇し好適である。   In particular, when the configuration of the fourteenth embodiment is adopted, the air volume of the air supplied to the room through the air supply path 29 is reduced, and the air volume of the air that is circulated into the room through the circulating air path 31 is increased. For this reason, the temperature of the air supplied to the room rises more suitably.

なお、室内給気口4の近傍に循環空気排出口22を設置し、吐出された空気が室内ですぐに混ざるような構成でも同様の効果が得られる。   The same effect can be obtained even in a configuration in which the circulating air discharge port 22 is installed in the vicinity of the indoor air supply port 4 and the discharged air is immediately mixed in the room.

(実施の形態17)
熱交換器を、排気流路の流入口19が鉛直下方向に開口し、排気流路の流出口20が排気流路の流入口19に比べ鉛直上方向に位置する構成とし、排気流路の流入口19の鉛直下方向には鉛直上方向が凹状になっている皿状の構造21が配置されている構成とする。
(Embodiment 17)
The heat exchanger is configured such that the inlet 19 of the exhaust passage opens vertically downward, and the outlet 20 of the exhaust passage is positioned vertically upward compared to the inlet 19 of the exhaust passage. A dish-like structure 21 having a concave shape in the vertically upward direction is arranged in the vertically downward direction of the inflow port 19.

具体的に例えば、L字型の給気流路6とL字型の排気流路7が交互に重なっている構成の箱型の熱交換器8を用い、図の上方向を鉛直上方向、下方向を鉛直下方向とした断面図を図9に示す。   Specifically, for example, a box-shaped heat exchanger 8 having a configuration in which L-shaped air supply flow paths 6 and L-shaped exhaust flow paths 7 are alternately overlapped is used. FIG. 9 shows a cross-sectional view in which the direction is vertically downward.

この構成により、通常時の熱交換気運転あるいは凍結時の熱交換気運転によって発生した結露や、デフロスト運転中に凍結が融かされ発生した水滴が流れ出した場合に、排気流路の流出口20を排気流路の流入口19の鉛直上方向に備えることで、水滴を重力によって排気流路の流入口19へ流しだすことができる。   With this configuration, when the dew condensation generated by the heat exchange air operation at the normal time or the heat exchange air operation at the time of freezing or the water droplets generated by freezing during the defrost operation flows out, the outlet 20 of the exhaust passage. Is provided vertically above the inlet 19 of the exhaust passage, so that water droplets can flow out to the inlet 19 of the exhaust passage by gravity.

さらに、排気流路の流入口19を鉛直下方向へ向けることで、熱交換器内より流れてきた水滴は、排気流路の流入口19に溜まることなく、熱交換器から流出する。ここで、排気流路の流入口19の鉛直下方向に鉛直上方向が凹状になっている皿状の構造21を備えることで、熱交換器より流出した水滴を皿状の構造21の凹部分に溜めることができる。   Furthermore, by directing the inlet 19 of the exhaust flow path vertically downward, water droplets flowing from inside the heat exchanger flow out of the heat exchanger without collecting at the inlet 19 of the exhaust flow path. Here, by providing a dish-like structure 21 in which the vertically upward direction is concave in the vertically downward direction of the inlet 19 of the exhaust flow path, water droplets flowing out from the heat exchanger are separated into the concave parts of the dish-like structure 21. Can be stored.

この皿状の構造21は給気流経路29の中でも室外の空気と熱交換を行う前の室内の暖かい空気が移動する部分にあり、水滴を室内の暖かい空気により乾燥させることができる。   This dish-like structure 21 is located in a portion of the air supply path 29 where warm air in the room before heat exchange with outdoor air moves, and water droplets can be dried by warm air in the room.

なお、実施の形態13において、第1結露検知手段32及び第2結露検知手段33として電極間の抵抗値を利用した水滴検知手段を用いた場合、実施の形態13において例示した設置場所のほかに、排気流路の流入口19または皿状の構造21の凹部分に設置する構成もあげられる。   In the thirteenth embodiment, when the water droplet detection means using the resistance value between the electrodes is used as the first dew condensation detection means 32 and the second dew condensation detection means 33, in addition to the installation locations exemplified in the thirteenth embodiment. In addition, a configuration in which the air inlet 19 of the exhaust passage or the concave portion of the dish-like structure 21 is installed is also exemplified.

この構成により、熱交換器内より流れ集まってきた水滴から結露を検知することができる。また、皿状の構造21の凹部分に設置する場合では前記凹部分の底に対する鉛直方向の設置高さを変化させることで、所定の水滴量が前記凹部分へ蓄積したことを検知し、給気排気原動機12の回転数を低下し、循環原動機13の回転数を上昇させることで結露をより確実に乾燥させることができる。   With this configuration, dew condensation can be detected from water droplets that have flowed and collected from within the heat exchanger. In addition, when installing in the concave portion of the dish-like structure 21, it is detected that a predetermined amount of water droplets has accumulated in the concave portion by changing the vertical installation height with respect to the bottom of the concave portion. By reducing the rotational speed of the air exhaust prime mover 12 and increasing the rotational speed of the circulation prime mover 13, condensation can be dried more reliably.

本発明に係る熱交換形換気装置は、室外がきわめて低い温度であっても、本来の熱交換換気を継続して行うことができ、寒冷地の冬季に熱交換換気する換気装置として有用である。   The heat exchange type ventilator according to the present invention can continuously perform the original heat exchange ventilation even when the outdoor temperature is extremely low, and is useful as a ventilator for heat exchange ventilation in cold regions in winter. .

1 室外吸込口
2 室内吸込口
3 室外排出口
4 室内給気口
5 本体箱
6 給気流路
7 排気流路
8 熱交換器
9 給気送風手段
10 排気送風手段
11 循環送風手段
12 給気排気原動機
13 循環原動機
14 第1風向調整板
15 第2風向調整板
16 結露検知手段
17 温度検知手段
18 ダンパー
19 排気流路の流入口
20 排気流路の流出口
21 皿状の構造
22 循環空気排出口
23 第1熱交換器
24 第2熱交換器
25 第1給気流路
26 第1排気流路
27 第2給気流路
28 第2排気流路
29 給気流経路
30 排気流経路
31 循環空気流経路
32 第1結露検知手段
33 第2結露検知手段
34 第1熱交換器‐排気送風手段を接続する開口
35 第1熱交換器‐循環送風手段を接続する開口
36 第2熱交換器‐排気送風手段を接続する開口
37 第2熱交換器‐循環送風手段を接続する開口
38 外気温度検知手段
DESCRIPTION OF SYMBOLS 1 Outdoor suction port 2 Indoor suction port 3 Outdoor discharge port 4 Indoor air supply port 5 Main body box 6 Air supply flow path 7 Exhaust flow path 8 Heat exchanger 9 Air supply air blow means 10 Exhaust air blow means 11 Circulation air blow means 11 Supply air exhaust prime mover DESCRIPTION OF SYMBOLS 13 Circulation motor 14 1st wind direction adjustment board 15 2nd wind direction adjustment board 16 Condensation detection means 17 Temperature detection means 18 Damper 19 Exhaust flow path inlet 20 Exhaust flow path outlet 21 Dish-shaped structure 22 Circulating air discharge port 23 1st heat exchanger 24 2nd heat exchanger 25 1st air supply flow path 26 1st exhaust flow path 27 2nd air supply flow path 28 2nd exhaust flow path 29 Supply air flow path 30 Exhaust flow path 31 Circulating air flow path 32 1st DESCRIPTION OF SYMBOLS 1 Condensation detection means 33 2nd condensation detection means 34 1st heat exchanger-opening which connects exhaust air blowing means 35 1st heat exchanger-opening which connects circulation air blowing means 36 2nd heat exchanger-exhaust air blowing means Continued opening 37 second heat exchanger - opening connecting the circulating blower means 38 outside air temperature detecting means

Claims (19)

室外より室外の空気を吸い込む室外吸込口と室内より室内の空気を吸い込む室内吸込口と室外へ室内の空気を排気する室外排出口と室内へ室外の空気を給気する室内給気口を備えた本体箱内に、室外空気を通風させる給気流路を流れる室外の空気と室内空気を通風させる排気流路を流れる室内の空気とを熱交換する熱交換器を複数備え、室外の空気を吸い込み、前記給気流路を通じて室内へ給気を行う給気送風手段と、室内の空気を吸い込み、前記排気流路を通じて室外へ排気を行う排気送風手段と、室内の空気を吸い込み、前記排気流路を通じて室内へ空気を循環させる循環送風手段を備え、前記給気送風手段及び前記排気送風手段といずれかの前記熱交換器を接続し、前記循環送風手段と他の熱交換器を接続し、前記給気送風手段及び前記排気送風手段、前記循環送風手段と接続する前記熱交換器を選択する選択手段を備えた構成であって、前記給気送風手段及び前記排気送風手段を駆動させる給気排気原動機と前記循環送風手段を駆動させる循環原動機を備え、前記給気送風手段と接続する熱交換器を選択する選択手段である第1風向調整板を備え、前記第1風向調整板が、前記給気送風手段と接続する熱交換器を選択して切り換えでき、前記給気送風手段が、全ての熱交換器と接続でき、前記循環原動機は、前記給気送風手段が全ての熱交換器と接続する場合には停止することを特徴とする熱交換形換気装置。 An outdoor suction port for sucking outdoor air from the outside, an indoor suction port for sucking indoor air from the room, an outdoor discharge port for exhausting indoor air to the outside, and an indoor air supply port for supplying outdoor air to the room The main body box is provided with a plurality of heat exchangers for exchanging heat between the outdoor air flowing through the air supply passage for passing outdoor air and the indoor air flowing through the exhaust flow passage for passing indoor air, and sucks the outdoor air, Air supply and blowing means for supplying air into the room through the air supply flow path, exhaust air blowing means for sucking in indoor air and exhausting the air through the exhaust flow path, and indoor air are sucked into the room through the exhaust flow path. A circulation blower that circulates air to the supply air blower and the exhaust blower and connects any one of the heat exchangers, connects the circulation blower and another heat exchanger, and supplies the air Blower and front An exhaust air blowing means, a selection means for selecting the heat exchanger to be connected to the circulation air blowing means, and a supply air exhaust motor for driving the air supply air blowing means and the exhaust air blowing means, and the circulation air blowing means And a first wind direction adjusting plate that is a selection means for selecting a heat exchanger to be connected to the supply air blowing means, and the first wind direction adjustment plate is connected to the supply air blowing means. to switch between and select the heat exchanger, the air supply blowing means can be connected to all of the heat exchanger, the circulation motor is stopped when the air supply blowing means is connected to all of the heat exchanger heat exchange type ventilator you wherein a. 給気送風手段を、給気流路から空気を吸い込み、室内へ給気するように配置するとともに、排気送風手段を、排気流路から空気を吸い込み、室外へ排気するように配置することを特徴とする請求項1に記載の熱交換形換気装置。 The air supply / air blowing means is arranged so as to suck air from the air supply flow path and supply air into the room, and the exhaust air blowing means is arranged so as to suck air from the exhaust flow path and exhaust it outside the room. The heat exchange ventilator according to claim 1. 給気排気原動機が給気送風手段によって形成される風路内に設置されていることを特徴とする請求項2に記載の熱交換形換気装置。 The heat exchange type ventilator according to claim 2, wherein the supply / exhaust prime mover is installed in an air passage formed by supply / air blowing means. 循環送風手段を、排気流路から空気を吸い込み、室内へ排気するように配置することを特徴とする請求項1に記載の熱交換形換気装置。 The heat exchange ventilator according to claim 1, wherein the circulating air blowing means is arranged so as to suck air from the exhaust passage and exhaust the air into the room. 循環原動機が循環送風手段によって形成される風路内に設置されていることを特徴とする請求項4に記載の熱交換形換気装置。 The heat exchanging ventilator according to claim 4, wherein the circulation prime mover is installed in an air passage formed by a circulation air blowing means. 給気送風手段及び排気送風手段、循環送風手段はそれぞれ羽根車を備え、循環送風手段の羽根車は給気送風手段及び排気送風手段の羽根車よりも体積を小さくした構成を特徴とする請求項1に記載の熱交換形換気装置。 The supply air blowing means, the exhaust ventilation means, and the circulation ventilation means are each provided with an impeller, and the impeller of the circulation ventilation means is configured to have a smaller volume than the impeller of the supply air blowing means and the exhaust ventilation means. 2. The heat exchange type ventilator according to 1. 第1風向調整板を、室外吸込口と、熱交換器の間に備えることを特徴とする請求項のいずれかに記載の熱交換形換気装置。 The heat exchange ventilator according to any one of claims 1 to 6 , wherein the first wind direction adjusting plate is provided between the outdoor suction port and the heat exchanger. 第1風向調整板が給気送風手段と熱交換器の接続を切り換える時に、給気排気原動機の回転数を低下させる構成とすることを特徴とする請求項のいずれかに記載の熱交換形換気装置。 The heat according to any one of claims 1 to 7 , wherein the first air direction adjusting plate is configured to reduce the rotation speed of the supply / exhaust prime mover when the connection between the supply / air supply means and the heat exchanger is switched. Exchangeable ventilator. 排気送風手段及び循環送風手段と接続する熱交換器を選択する選択手段である第2風向調整板を備えることを特徴とする請求項に記載の熱交換形換気装置。 The heat exchange type ventilator according to claim 1 , further comprising a second wind direction adjusting plate which is a selection means for selecting a heat exchanger connected to the exhaust air blowing means and the circulation air blowing means. 第2風向調整板が、循環送風手段と全ての熱交換器の接続を遮断することができることを特徴とする請求項に記載の熱交換形換気装置。 The heat exchange type ventilator according to any one of claims 1 to 9 , wherein the second wind direction adjusting plate can block connection between the circulating air blowing means and all the heat exchangers. 循環原動機は、第2風向調整板によって、循環送風手段が熱交換器と接続する場合に駆動し、前記第2風向調整板によって、前記循環送風手段が熱交換器と接続しない場合には停止することを特徴とする請求項10に記載の熱交換形換気装置。 The circulation motor is driven by the second wind direction adjusting plate when the circulating air blowing means is connected to the heat exchanger, and is stopped by the second wind direction adjusting plate when the circulating air blowing means is not connected to the heat exchanger. The heat exchange type ventilator according to claim 10 . 第1風向調整板の切り換えに合わせて、第2風向調整板は、排気送風手段が前記給気送風手段の接続する熱交換器へ接続し、かつ循環送風手段が前記第1及び排気送風手段が接続していない前記熱交換器へ接続するように切り換わることを特徴とする請求項11のいずれかに記載の熱交換形換気装置。 In accordance with the switching of the first air direction adjusting plate, the second air direction adjusting plate is connected to the heat exchanger to which the exhaust air blowing means is connected, and the circulation air blowing means is connected to the first and exhaust air blowing means. heat exchange type ventilator according to any one of claims 1 to 11, wherein the switch to be connected to the heat exchanger is not connected. 第2風向調整板が循環送風手段と熱交換器を接続した直後、または、前記循環送風手段に接続される熱交換器を切り換えた直後に、循環原動機の回転数を上昇させることを特徴とする請求項10に記載の熱交換形換気装置。 Immediately after the second wind direction adjusting plate connects the circulating air blowing means and the heat exchanger, or immediately after switching the heat exchanger connected to the circulating air blowing means, the rotational speed of the circulating prime mover is increased. The heat exchange type ventilator according to claim 10 . 排気流路の出口から室外排出口の間に、結露や凍結の状態を検知できる結露検知手段を備え、前記結露検知手段の検出値により給気排気原動機の回転数を低下させ、循環原動機の回転数を上昇させることを特徴とする請求項1〜13のいずれかに記載の熱交換形換気装置。 Condensation detection means that can detect condensation and freezing conditions are provided between the outlet of the exhaust passage and the outdoor outlet, and the rotation speed of the circulation prime mover is reduced by reducing the rotational speed of the supply / exhaust prime mover according to the detection value of the condensation detection means. heat exchange type ventilator according to any one of claims 1 to 13, characterized in that to increase the number. 室内給気口の空気の温度を検知する温度検知手段を備え前記室内給気口から供給される空気の温度が所定の温度を下回った場合、給気排気原動機の回転数を低下させ、循環原動機の回転数を上昇させることを特徴とする請求項1から14のいずれかに記載の熱交換形換気装置。 A temperature detection means for detecting the temperature of the air at the indoor air supply port, and when the temperature of the air supplied from the indoor air supply port falls below a predetermined temperature, the rotational speed of the supply air / exhaust motor is reduced, The heat exchange type ventilator according to any one of claims 1 to 14 , wherein the number of rotations is increased. 給気流路へ室外の空気が流入しないようにする風路遮蔽手段を備えることを特徴とする請求項1〜15のいずれかに記載の熱交換形換気装置。 The heat exchange type ventilator according to any one of claims 1 to 15, further comprising an air passage shielding means for preventing outdoor air from flowing into the air supply passage. 循環原動機の運転時は給気送風手段によって室内へ送られる室外の空気と、循環送風手段によって室内へ送られる室内の空気を混合して排出する構成を特徴とする請求項1または15に記載の熱交換形換気装置。 16. The structure according to claim 1 or 15 , wherein during operation of the circulation prime mover, the outdoor air sent into the room by the supply air blowing means and the indoor air sent into the room by the circulation blowing means are mixed and discharged. Heat exchange ventilator. 熱交換器を、排気流路の流入口が鉛直下方向へ向き、前記排気流路の流出口が前記流入口に比べ鉛直上方向に位置する構成としたことを特徴とする請求項1〜17のいずれかに記載の熱交換形換気装置。 The heat exchanger, the orientation inlet of the exhaust passage to the vertically downward direction, claim outlet of the exhaust flow path, characterized in that a structure located vertically upward than in the inlet 1-17 The heat exchange ventilator according to any one of the above. 排気流路の流入口の鉛直下方向には皿状の構造が配置されていることを特徴とする請求項18に記載の熱交換形換気装置。 The heat exchange type ventilator according to claim 18 , wherein a dish-like structure is arranged vertically downward of the inlet of the exhaust passage.
JP2009084596A 2009-03-31 2009-03-31 Heat exchange ventilator Active JP5402161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009084596A JP5402161B2 (en) 2009-03-31 2009-03-31 Heat exchange ventilator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009084596A JP5402161B2 (en) 2009-03-31 2009-03-31 Heat exchange ventilator

Publications (2)

Publication Number Publication Date
JP2010236768A JP2010236768A (en) 2010-10-21
JP5402161B2 true JP5402161B2 (en) 2014-01-29

Family

ID=43091255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009084596A Active JP5402161B2 (en) 2009-03-31 2009-03-31 Heat exchange ventilator

Country Status (1)

Country Link
JP (1) JP5402161B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5800078B1 (en) * 2014-10-27 2015-10-28 青島冷凍工業株式会社 Heat exchange method for air containing organic solvent and air heat exchange apparatus containing organic solvent
JP2020122598A (en) * 2019-01-29 2020-08-13 パナソニックIpマネジメント株式会社 Heat exchange type ventilation device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023641U (en) * 1983-07-26 1985-02-18 ミサワホ−ム株式会社 air conditioning ventilation fan
JPH01210750A (en) * 1988-02-17 1989-08-24 Matsushita Seiko Co Ltd Heat exchanging device
JPH07158899A (en) * 1993-12-07 1995-06-20 Matsushita Seiko Co Ltd Vintilation control device of air conditioner
JP2005291617A (en) * 2004-03-31 2005-10-20 Nitta Ind Corp Ventilation type heat exchanger
JP4978303B2 (en) * 2007-05-15 2012-07-18 パナソニック株式会社 Heat exchange ventilator

Also Published As

Publication number Publication date
JP2010236768A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
CN108488920B (en) Air conditioner and control method and device thereof
JP4846696B2 (en) Blower and heating cooker provided with the same
JP6357258B2 (en) Air conditioning method and air conditioner
JP2011202814A (en) Heat exchange type ventilation device
JP5022026B2 (en) Desiccant air conditioner
KR100916156B1 (en) Air conditioner
CN109425063B (en) Air conditioner
JP5402161B2 (en) Heat exchange ventilator
JP6075088B2 (en) Air conditioner
WO2017051524A1 (en) Heat exchanging ventilation device
JP5434202B2 (en) Heat exchange ventilator
KR101898869B1 (en) Heat exchanging ventilation system with adiabatic cooling for underground parking lot
JP2009058220A (en) Air conditioning method and air-conditioner
KR102436120B1 (en) Dehumidifier for lowering temperature of output air
JP2018144019A (en) Dehumidifier
KR20040091578A (en) Indoor unit of air conditioner
JP4851629B2 (en) Air conditioning method and air conditioner
JP5567542B2 (en) Air conditioning method and air conditioner
JP5705015B2 (en) Air conditioning system and building
JP5326884B2 (en) Heat exchange ventilator
JP2015099009A (en) Air conditioning method and air conditioner
JP5286903B2 (en) Heat exchange ventilator
KR20080062890A (en) Airconditioner
JP6329584B2 (en) Air conditioning method and air conditioner
JP7244764B2 (en) Humidification unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20120313

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R151 Written notification of patent or utility model registration

Ref document number: 5402161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151