JP2005291617A - Ventilation type heat exchanger - Google Patents

Ventilation type heat exchanger Download PDF

Info

Publication number
JP2005291617A
JP2005291617A JP2004106787A JP2004106787A JP2005291617A JP 2005291617 A JP2005291617 A JP 2005291617A JP 2004106787 A JP2004106787 A JP 2004106787A JP 2004106787 A JP2004106787 A JP 2004106787A JP 2005291617 A JP2005291617 A JP 2005291617A
Authority
JP
Japan
Prior art keywords
heat exchange
air
exchange element
path
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004106787A
Other languages
Japanese (ja)
Inventor
Takuji Ando
卓史 安藤
Nobuyuki Tono
伸幸 東野
Kazuhisa Morita
和久 森田
Norio Yoshida
典生 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP2004106787A priority Critical patent/JP2005291617A/en
Publication of JP2005291617A publication Critical patent/JP2005291617A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ventilation type heat exchanger capable of suppressing an air conditioning load at all times according to the temperature and humidity conditions of the outside air and the inside air. <P>SOLUTION: This ventilation type heat exchanger capable of indirectly exchanging the inside air and the outside air with each other through a heat exchange element 10 comprises a heat exchange element group 1 formed of a plurality of heat exchange elements 10 with different latent or sensible heat exchange efficiencies thereof and an element switching means 2 switching at least one of the heat exchange elements 10 selected from the heat exchange element group 1 so as to form an indirect exchange flow passage for the outside air and the inside air. Also, the heat exchange element group 1 may comprise at least the sensible heat exchange element 11 mainly performing sensible heat exchange and the latent heat exchange element 12 mainly performing latent heat exchange. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、顕熱或いは潜熱交換を行なう換気式熱交換器に関するものである。   The present invention relates to a ventilated heat exchanger that performs sensible heat or latent heat exchange.

熱交換素子を備えた換気式熱交換器は、熱交換素子を中心にして、新鮮空気である外気の流入路及び流出路、並びに、汚染空気である内気の流入路及び流出路の四路を有してなる。第一種換気を行いながら外気と内気とからなる2種類の空気を熱交換素子にて熱交換し、これによって温湿度に関する空調負荷を抑えるものである。この熱交換素子は、複数枚の熱交換膜を所定の間隔を開けて積層してなり、この積層間隔毎に外気と内気とを交互に流通させることで、熱交換膜を介して外気と内気を交流させ、もって外気及び内気の全熱(すなわち顕熱及び潜熱)交換を行うものである。   A ventilated heat exchanger equipped with a heat exchange element is mainly composed of an inflow path and an outflow path for fresh air that is fresh air and an inflow path and an outflow path for inside air that is contaminated air, with the heat exchange element as the center. Have. Two types of air consisting of outside air and inside air are exchanged by a heat exchange element while performing first type ventilation, thereby suppressing an air conditioning load related to temperature and humidity. This heat exchange element is formed by laminating a plurality of heat exchange membranes at predetermined intervals. By alternately circulating outside air and inside air at each lamination interval, outside air and inside air are passed through the heat exchange membrane. To exchange the total heat of the outside air and the inside air (that is, sensible heat and latent heat).

この換気式熱交換器に関して、従来、外気および内気それぞれの流入路と流出路とに、熱交換素子をバイパスするバイパス経路を設けたものが存在する。(例えば、特許文献1参照)。2種の換気空気をバイパス経路に切り換えることで、熱交換素子で交流することなく換気が行なわれる。これにより、例えば外気の温度が冷房中の室内温度よりも低い場合には、熱交換素子で交流するよりも空調負荷を抑えることができる。   With regard to this ventilation heat exchanger, there has conventionally been one in which a bypass path for bypassing the heat exchange element is provided in each of the inflow path and the outflow path of the outside air and the inside air. (For example, refer to Patent Document 1). By switching the two types of ventilation air to the bypass path, ventilation is performed without alternating current with the heat exchange element. Thereby, for example, when the temperature of the outside air is lower than the room temperature during cooling, the air conditioning load can be suppressed as compared with the case where the heat exchange element is used for AC.

しかし、前記従来の換気式熱交換器では、換気動作において、1種類の熱交換のオン・オフ切換えしか行なうことが出来ない。このため、外気及び内気の温湿度条件によっては、空調負荷を効率的に抑えることのできない場合があった。
特開平5−322254号公報
However, in the conventional ventilation heat exchanger, only one type of heat exchange can be switched on / off in the ventilation operation. For this reason, depending on the temperature and humidity conditions of the outside air and the inside air, the air conditioning load may not be efficiently suppressed.
JP-A-5-322254

そこで、本発明は、外気及び内気の温湿度条件に応じて、常に空調負荷を抑えることのできる換気式熱交換器を提供することを課題とする。   Then, this invention makes it a subject to provide the ventilation type heat exchanger which can always suppress an air-conditioning load according to the temperature and humidity conditions of outside air and inside air.

上記課題を解決するために、本発明においては、以下(1)ないし(6)の手段を採用するものとしている。   In order to solve the above problems, the following means (1) to (6) are adopted in the present invention.

(1)すなわち、本発明の換気式熱交換器は、内気および外気を熱交換素子10を介して間接交流させることのできる換気式熱交換器であって、それ(熱交換素子10)自体の潜熱交換効率或いは顕熱交換効率が互いに相違した複数の熱交換素子10からなる熱交換素子群1と、この熱交換素子群1から選択した少なくともいずれかの熱交換素子10を外気及び内気の間接交流路とするように切り換える素子切換手段2と、を具備することを特徴とする。   (1) That is, the ventilated heat exchanger according to the present invention is a ventilated heat exchanger that can indirectly exchange the inside air and the outside air via the heat exchange element 10, and it (the heat exchange element 10) itself. A heat exchange element group 1 composed of a plurality of heat exchange elements 10 having different latent heat exchange efficiency or sensible heat exchange efficiency, and at least one of the heat exchange elements 10 selected from the heat exchange element group 1 is indirect of outside air and inside air. And an element switching means for switching so as to be an AC path.

このようなものであれば、素子切換手段2によって、任意の潜熱交換効率或いは顕熱交換効率となるように、いずれか又は複数の熱交換素子10を選択して間接交流路とすることができる。これにより、顕熱交換効率及び潜熱交換(調湿)効率の異なる複数パターンの熱交換を行なうことが可能となり、併用する空調機の空調負荷を効率よく低減させることができる。   If it is such, the element switching means 2 can select any one or a plurality of heat exchange elements 10 to be an indirect AC path so as to have an arbitrary latent heat exchange efficiency or sensible heat exchange efficiency. . Thereby, it becomes possible to perform heat exchange of a plurality of patterns having different sensible heat exchange efficiency and latent heat exchange (humidity adjustment) efficiency, and the air conditioning load of the air conditioner used in combination can be efficiently reduced.

ここで、外気及び内気とは、それぞれ室外及び室内からの各空気をいう。   Here, the outside air and the inside air refer to air from outside and inside the room, respectively.

また、本発明における間接交流(及び間接交流路)とは、それぞれ異なる流路の2種の空気が、それぞれ通気し合うことなく、熱交換素子の熱交換膜を介してのみ交流すること(及びこのように間接交流する流路)をいう。   In addition, indirect alternating current (and indirect alternating current path) in the present invention means that two types of air in different flow paths exchange with each other only through the heat exchange film of the heat exchange element without allowing each other to flow (and Thus, it refers to a channel that indirectly exchanges in this way.

熱交換素子の主要部を構成する熱交換膜は通気性に乏しいため、熱交換膜で遮られた2種の空気はたがいに通気し合うことなく、それぞれの流路を通る。よって2種の空気は、直接交流するものではない一方で、熱交換膜を介して間接的に交流するものである。間接的に交流することで、通気せずに熱交換を行うことができる。   Since the heat exchange membrane constituting the main part of the heat exchange element is poor in air permeability, the two types of air blocked by the heat exchange membrane pass through the respective flow paths without passing through each other. Therefore, the two types of air do not directly exchange with each other, but indirectly exchange with each other through the heat exchange membrane. By indirectly alternating current, heat exchange can be performed without ventilation.

(2)また、前記熱交換素子群1は、顕熱交換を主として行なう顕熱交換素子11と、潜熱交換を主として行なう潜熱交換素子12と、を少なくとも具備するものとしてもよい。このとき、前記素子切換手段2は、前記顕熱交換素子11及び潜熱熱交換素子12のうち一方或いは双方を、2種の空気の間接交流路とする状態へ切り換えたり、或いはいずれも間接交流路としない状態に切り換えたりすることができる。   (2) The heat exchange element group 1 may include at least a sensible heat exchange element 11 that mainly performs sensible heat exchange and a latent heat exchange element 12 that mainly performs latent heat exchange. At this time, the element switching means 2 switches one or both of the sensible heat exchange element 11 and the latent heat exchange element 12 to a state where two air indirect AC paths are used, or both are indirect AC paths. You can switch to a state that does not.

このようなものであれば、全熱のうち顕熱交換のみを主に行なうか、潜熱交換のみを主に行なうか、或いは顕熱及び潜熱の双方の熱交換を行なうかを選択することができ、熱交換に関する細かな空調管理要求に、容易に応えることができる。   In such a case, it is possible to select whether only the sensible heat exchange, the latent heat exchange only, or both the sensible heat and latent heat exchange is performed. It is possible to easily meet detailed air conditioning management requirements regarding heat exchange.

ここで、顕熱交換素子11について“顕熱交換を主として行う”とは、潜熱交換効率(潜熱交換効率)が乏しく且つ顕熱交換効率(顕熱交換効率)が有効値以上であることをいう。また、潜熱交換素子12について“潜熱交換を主として行う”とは、顕熱交換効率(顕熱交換効率)が乏しく且つ潜熱交換効率(潜熱交換効率)が所定値以上である)ことをいう。   Here, “mainly performing sensible heat exchange” for the sensible heat exchange element 11 means that the latent heat exchange efficiency (latent heat exchange efficiency) is poor and the sensible heat exchange efficiency (sensible heat exchange efficiency) is greater than or equal to an effective value. . Further, “latent heat exchange is mainly performed” for the latent heat exchange element 12 means that the sensible heat exchange efficiency (sensible heat exchange efficiency) is poor and the latent heat exchange efficiency (latent heat exchange efficiency) is a predetermined value or more).

(3)また、“外気及び内気の各流路が間接交流せず前記熱交換素子群1を迂回する”ように各流路を切り換えることのできる、素子迂回手段3を具備すると共に、前記素子切換手段2が、前記熱交換素子群1から選択したいずれか一のみの熱交換素子10を外気及び内気の間接交流路とするように切り換えるものとしてもよい。   (3) The device further includes an element bypassing means 3 capable of switching each flow path so that the flow paths of the outside air and the internal air bypass the heat exchange element group 1 without indirect alternating current. The switching means 2 may switch so that only one heat exchange element 10 selected from the heat exchange element group 1 is used as an indirect AC path of outside air and inside air.

このようなものであれば、素子迂回手段によって外気及び内気の熱交換を行なわずに第一種換気のみを行なう状態とすることもできる。このような状態は、例えば、外気の温度が、室内の温度より低いときに選択することが好ましい。換気をしながら各空調機の動力を低減することができ、空調管理の省エネルギー化が可能となる。   If it is such, it can also be set as the state which performs only 1st type ventilation, without performing heat exchange of external air and internal air by an element detour means. Such a state is preferably selected when, for example, the outside air temperature is lower than the room temperature. It is possible to reduce the power of each air conditioner while ventilating, and to save energy in air conditioning management.

またこのような素子切換手段2であれば、換気風量一定のまま熱交換素子10を容易に切り換えることが可能となる。   Further, with such an element switching means 2, it is possible to easily switch the heat exchange element 10 while keeping the ventilation air flow constant.

(4)また、前記(2)の潜熱交換素子12は、厚さ方向に複数の透湿孔121hを設けた発泡プラスチック断熱材121と、この透湿孔121hを覆うように設けた親水性有機高分子膜122と、からなる潜熱交換膜12Fを有し、この潜熱交換膜12Fで潜熱交換を行なうものであることが好ましい。   (4) The latent heat exchange element 12 of (2) includes a foamed plastic heat insulating material 121 provided with a plurality of moisture permeable holes 121h in the thickness direction, and a hydrophilic organic material provided so as to cover the moisture permeable holes 121h. It is preferable to have a latent heat exchange membrane 12F composed of the polymer membrane 122 and perform latent heat exchange with this latent heat exchange membrane 12F.

このようなものであれば、極めて潜熱交換効率に優れた潜熱交換膜となる。   If it is such, it will become a latent heat exchange film | membrane excellent in the latent heat exchange efficiency.

(5)或いは、本発明の換気式熱交換器は、外気と内気とを熱交換素子10を介して間接交流させることのできるものであって、内気を(室外へ)排気する換気排出路Evと外気を(室内へ)給気する換気取込路Svとが熱交換素子10にて間接交流してなる交換気流路vと、内気循環路Icと外気循環路Ocとが熱交換素子10にて間接交流してなる循環気流路cと、を相互に切り換えることができるものとした流路切換手段4を具備することを特徴とする。   (5) Alternatively, the ventilated heat exchanger of the present invention can indirectly exchange the outside air and the inside air via the heat exchange element 10, and the ventilation exhaust path Ev for exhausting the inside air (outside the room). And the ventilation intake path Sv for supplying outside air (into the room) to the heat exchange element 10 by the exchange air flow path v formed by indirect alternating current through the heat exchange element 10, the inside air circulation path Ic, and the outside air circulation path Oc. It is characterized by comprising a flow path switching means 4 which can switch between the circulation air flow path c formed by indirect alternating current.

このようなものであれば、流路切換手段によって循環器流路とすることで、換気を行なわず熱交換のみを行なう状態とすることができる。   If it is such, it can be set as the state which only performs heat exchange, without ventilating by setting it as a circulatory flow path by a flow-path switching means.

(6)前記流路切換手段4は、熱交換素子10を通過した外気及び内気のそれぞれの排出先を、室内或いは室外のうち選択したそれぞれへと振り分けるように切り換えるものであることが好ましい。   (6) It is preferable that the flow path switching means 4 is configured to switch the discharge destinations of the outside air and the inside air that have passed through the heat exchange element 10 to each selected among the indoor and the outdoor.

このようなものであれば、外気及び内気が間接交流した後の排出先のみを切り換えるので、流路切換手段の切換え動作によっても熱交換の流路の圧力損失が変化しにくいものとなり、熱交換素子は安定した熱交換効率を発揮しうる。   In such a case, since only the discharge destination after the outside air and the inside air are indirectly exchanged is switched, the pressure loss of the heat exchange flow path is hardly changed even by the switching operation of the flow path switching means. The element can exhibit stable heat exchange efficiency.

本発明は、上述のような構成としたことで、外気及び内気の温湿度条件に応じて、常に空調負荷を抑えることのできる換気式熱交換器を容易に得ることができる。   Since the present invention is configured as described above, it is possible to easily obtain a ventilated heat exchanger that can always suppress the air conditioning load according to the temperature and humidity conditions of the outside air and the inside air.

以下、本発明を実施するための最良の形態を、実施例として示す図面(図1ないし図8)と共に説明する。図1及び図2は、素子切換手段2による各切換状態(a)ないし(d)を説明する斜視説明図であり、それぞれ(a)は潜熱交換素子11を交流路とし、(b)は顕熱交換素子12を交流路とし、(c)は全熱交換素子13を交流路とし、(d)は非熱交換素子34を交流路とする状態を示す。   The best mode for carrying out the present invention will be described below with reference to the drawings (FIGS. 1 to 8) shown as embodiments. 1 and 2 are perspective explanatory views for explaining the switching states (a) to (d) by the element switching means 2, wherein (a) uses the latent heat exchange element 11 as an AC path, and (b) shows the apparent state. The heat exchange element 12 is an AC path, (c) is a state where the total heat exchange element 13 is an AC path, and (d) is a state where the non-heat exchange element 34 is an AC path.

図3及び図4は、それぞれ図1および図2の(c)の状態を示す平面視説明図である。図5及び図6は、それぞれ図1及び図2における断面視説明図である。   3 and 4 are explanatory views in plan view showing the state shown in FIG. 1 and FIG. 5 and 6 are cross-sectional explanatory views in FIGS. 1 and 2, respectively.

図1ないし図6のうち図1、図3および図5は、換気排出路Evと換気取込路Svとからなる交換気流路v(exchange air exhaust channel)の流路系であり、一方、図2、図4および図6は、内気循環路Icと外気循環路Ocとからなる循環気流路c(circulation air exhaust channel)の流路系である。それぞれの流路系は、流路切換手段4によって切り換えられる。   1, FIG. 3 and FIG. 5 of FIG. 1 to FIG. 6 are flow path systems of an exchange air flow path v (exchange air flow channel) composed of a ventilation discharge path Ev and a ventilation intake path Sv. 2, FIG. 4 and FIG. 6 show a flow path system of a circulation air flow path c (circulation air exhaust channel) composed of an inside air circulation path Ic and an outside air circulation path Oc. Each flow path system is switched by the flow path switching means 4.

また、図7は、熱交換素子群2を構成する複数の熱交換素子10のうち一の熱交換素子10を示す斜視外観図である。図8は、このうち潜熱交換素子12の潜熱交換膜12Fの構造を説明する断面視説明図である。   FIG. 7 is a perspective external view showing one heat exchange element 10 among the plurality of heat exchange elements 10 constituting the heat exchange element group 2. FIG. 8 is a cross-sectional explanatory view illustrating the structure of the latent heat exchange membrane 12F of the latent heat exchange element 12 among them.

本発明の換気式熱交換器は、内気および外気を熱交換素子10を介して間接交流させることのできるものである。この間接交流によって、内気及び外気を互いに通気させることなく、熱交換することができる。   The ventilated heat exchanger of the present invention is capable of indirect alternating current between the inside air and outside air via the heat exchange element 10. With this indirect alternating current, heat can be exchanged without allowing the inside air and the outside air to vent each other.

そして本発明の換気式熱交換器は、複数の熱交換素子10からなる熱交換素子群1と、この熱交換素子群1から選択したいずれか一または複数の熱交換素子10を外気及び内気の間接交流路とするように切り換える素子切換手段2と、を具備することを特徴とする。   The ventilated heat exchanger according to the present invention includes a heat exchange element group 1 composed of a plurality of heat exchange elements 10 and one or more heat exchange elements 10 selected from the heat exchange element group 1 for the outside air and the inside air. And an element switching means for switching so as to be an indirect AC path.

(熱交換素子10)
複数の熱交換素子10は、それぞれの潜熱交換効率或いは顕熱交換効率が互いに相違してなる。潜熱交換効率或いは顕熱交換効率の少なくともいずれかが相違すればよい。
(Heat exchange element 10)
The plurality of heat exchange elements 10 have different latent heat exchange efficiencies or sensible heat exchange efficiencies. At least one of the latent heat exchange efficiency and the sensible heat exchange efficiency may be different.

ここで、潜熱交換効率とは空気中の水蒸気の移行率のことであり、室内外空気の絶対湿度から計算した値をいう。また顕熱交換効率とは、室内外の空気温度から計算した値をいう。   Here, the latent heat exchange efficiency is a transfer rate of water vapor in the air, and is a value calculated from the absolute humidity of indoor and outdoor air. The sensible heat exchange efficiency is a value calculated from the indoor and outdoor air temperatures.

複数の熱交換素子10の好ましい態様のひとつとして、実施例においては顕熱交換を主として行なう顕熱交換素子11と、潜熱交換を主として行なう潜熱交換素子12と、顕熱及び潜熱の双方の熱交換(本発明において全熱交換という)を行なう全熱交換素子13と、を具備する。このうち、少なくとも顕熱交換素子11と潜熱交換素子12とを具備したものであればよく、全熱交換素子13を具備しないもの、或いは他の熱交換素子10を具備したものでもよい。   As a preferable aspect of the plurality of heat exchange elements 10, in the embodiment, the sensible heat exchange element 11 that mainly performs sensible heat exchange, the latent heat exchange element 12 that mainly performs latent heat exchange, and heat exchange of both sensible heat and latent heat. And a total heat exchange element 13 that performs total heat exchange in the present invention. Among these, it is only necessary to have at least the sensible heat exchange element 11 and the latent heat exchange element 12, and may have no total heat exchange element 13, or may have another heat exchange element 10.

それぞれの熱交換素子10は、熱交換膜10Fと、熱交換膜10F上に固定されて熱交換膜10F同士の間隔を維持するスペーサー10Sと、を交互に積層してなる。これにより、複数枚の熱交換膜10Fが等間隔に並設され、この各熱交換膜10F間の各層にスペーサー10Sが固定される。   Each heat exchange element 10 is formed by alternately stacking heat exchange membranes 10F and spacers 10S that are fixed on the heat exchange membranes 10F and maintain the intervals between the heat exchange membranes 10F. Thereby, the plurality of heat exchange membranes 10F are arranged in parallel at equal intervals, and the spacers 10S are fixed to each layer between the heat exchange membranes 10F.

熱交換膜10Fは、それ自体の表面及び裏面を流通する2種の空気の、潜熱及び顕熱を交換するものである。具体的には、多数枚の熱交換膜10Fを積層し、それぞれの熱交換膜間へ交互に外気と内気とを流通させる。これにより、熱交換膜10Fを介してそれぞれの熱交換膜10F間へ交互に流通する外気と内気との全熱(潜熱及び顕熱)交換、或いは潜熱、顕熱のいずれかを主とした熱交換を行う。積層により隣り合う熱交換膜10F同士の並設間隔は、1.5ないし2.0mm、さらには1.7mm程度であることが、高熱交換効率及び低圧力損失のために好ましい。   The heat exchange membrane 10F exchanges latent heat and sensible heat of two kinds of air flowing through the front surface and the back surface thereof. Specifically, a large number of heat exchange membranes 10F are stacked, and the outside air and the inside air are circulated alternately between the heat exchange membranes. Thereby, the total heat (latent heat and sensible heat) exchange between the outside air and the inside air alternately flowing between the heat exchange membranes 10F via the heat exchange membrane 10F, or heat mainly composed of either latent heat or sensible heat. Exchange. It is preferable for the high heat exchange efficiency and the low pressure loss that the parallel arrangement interval between the heat exchange membranes 10F adjacent to each other by lamination is about 1.5 to 2.0 mm, and further about 1.7 mm.

スペーサー10Sは、熱交換膜上において、互いに並行となるように並列固定される、複数本の突条からなる。並設する熱交換膜同士の間隔を維持すると同時に、並行な複数本の線固定によって、換気式熱交換器の形状を保持するものであり、また、換気空気の流れ方向を誘導するものである。   The spacer 10S is composed of a plurality of protrusions that are fixed in parallel so as to be parallel to each other on the heat exchange membrane. While maintaining the interval between the heat exchange membranes arranged side by side, the shape of the ventilation heat exchanger is maintained by fixing a plurality of parallel wires, and the flow direction of the ventilation air is induced. .

また、スペーサー10Sの平面視並列固定角度を、熱交換膜間のひとつおきの層においてそれぞれ略一定角度とすると共に、残りの熱交換膜間の各層において、それぞれを異なる一定角度としている。これにより、室内空気と室外空気とが、熱交換膜間の各層において、それぞれ異なる並列固定角度に誘導される。平面視においては、室内空気と室外空気とが流通方向がある角度で交差する。この熱交換空気同士の交差角度が大きいほど、熱交換効率が高いものとなる。実施例では、いずれも隣り合う各層の交差角度を略90度としている。   In addition, the parallel fixed angle in plan view of the spacer 10S is set to a substantially constant angle in every other layer between the heat exchange films, and is set to a different fixed angle in each layer between the remaining heat exchange films. Thereby, indoor air and outdoor air are induced | guided | derived to a mutually different parallel fixed angle in each layer between heat exchange films | membranes. In plan view, room air and outdoor air intersect at a certain angle in the flow direction. The greater the crossing angle between the heat exchange airs, the higher the heat exchange efficiency. In the embodiment, the crossing angle between adjacent layers is approximately 90 degrees.

尚、本発明の各熱交換膜10F間に並列固定されるスペーサー10Sとしては、厚さ方向へ段層した複数本のホットメルトビードを固化接着してなる突条を、複数本用いる。   In addition, as the spacer 10S fixed in parallel between the heat exchange films 10F of the present invention, a plurality of protrusions formed by solidifying and bonding a plurality of hot melt beads layered in the thickness direction are used.

ホットメルトビードとは、常温を超えた融点で粘性溶融したホットメルト樹脂(熱溶融樹脂)を抽出してなる線(ビード)状体である。このホットメルト樹脂は、スペーサー10Sの材質であり、常温にて硬質又は中硬質固化する。   The hot melt bead is a line (bead) -like body formed by extracting a hot melt resin (thermomelt resin) that has been viscously melted at a melting point exceeding room temperature. This hot melt resin is a material of the spacer 10S, and is hardened or hardened at room temperature.

(顕熱交換素子11)
顕熱交換素子11は、潜熱交換効率が乏しく且つ顕熱交換効率が有効値以上である。具体的には例えば、室内外の空気温度から計算した交換効率が少なくとも50%以上、好ましくは60%以上のものであり、このとき潜熱の交換がないものが好適である。
(Sensible heat exchange element 11)
The sensible heat exchange element 11 has poor latent heat exchange efficiency and has a sensible heat exchange efficiency of an effective value or more. Specifically, for example, it is preferable that the exchange efficiency calculated from the indoor and outdoor air temperature is at least 50% or more, preferably 60% or more, and there is no latent heat exchange at this time.

顕熱交換素子11は、顕熱交換膜11F(図示せず)で顕熱交換を行なうものである。顕熱交換素子の材質は、金属を主成分とすることが望ましい。   The sensible heat exchange element 11 performs sensible heat exchange with a sensible heat exchange membrane 11F (not shown). The material of the sensible heat exchange element is preferably composed mainly of metal.

(潜熱交換素子12)
潜熱交換素子12は、潜熱交換効率(潜熱交換効率)が所定値以上であり且つ顕熱交換効率(顕熱交換効率)が有効値未満である。具体的には例えば、室内外空気の絶対湿度から計算した潜熱交換効率が少なくとも20%以上、好ましくは60%程度以上であり、且つこのとき、顕熱交換効率が少なくとも50%程度未満、好ましくは30%程度未満で十分小さいものが好適である。
(Latent heat exchange element 12)
The latent heat exchange element 12 has a latent heat exchange efficiency (latent heat exchange efficiency) of a predetermined value or more and a sensible heat exchange efficiency (sensible heat exchange efficiency) less than an effective value. Specifically, for example, the latent heat exchange efficiency calculated from the absolute humidity of indoor and outdoor air is at least 20% or more, preferably about 60% or more, and at this time, the sensible heat exchange efficiency is at least less than about 50%, preferably Less than about 30% and small enough are suitable.

潜熱交換膜12Fは、実施例では、厚さ方向に複数の透湿孔121hを設けた発泡プラスチック断熱材121と、この透湿孔121hを覆うように設けた親水性有機高分子膜122と、からなる。   In the embodiment, the latent heat exchange membrane 12F includes a foamed plastic heat insulating material 121 provided with a plurality of moisture permeable holes 121h in the thickness direction, a hydrophilic organic polymer membrane 122 provided so as to cover the moisture permeable holes 121h, Consists of.

発泡プラスチック断熱材121は、独立気泡を有する硬質或いは中硬質プラスチックフォームである。   The foamed plastic heat insulating material 121 is a hard or medium-hard plastic foam having closed cells.

透湿孔121hは、発泡プラスチック断熱材121の広さ方向に略均等に複数個、厚さ方向を透湿路として貫通して設けられる。   A plurality of moisture permeable holes 121h are provided substantially equally in the width direction of the foamed plastic heat insulating material 121 and penetrating through the thickness direction as a moisture permeable path.

親水性有機高分子膜122は、この透湿孔121hを覆うように設けられる。親水性有機高分子膜122の材質は、スルフォン酸ポリマーを主成分としてなる。実施例では、このスルフォン酸ポリマーを、不織布の表裏両面から含浸させ、更に、その製膜した一表面のみ薄膜コーティングしてなるものとしている。   The hydrophilic organic polymer film 122 is provided so as to cover the moisture permeable holes 121h. The material of the hydrophilic organic polymer film 122 is mainly composed of a sulfonic acid polymer. In the examples, the sulfonic acid polymer is impregnated from both the front and back surfaces of the nonwoven fabric, and only one surface of the film is coated with a thin film.

実施例1の全熱交換膜1は、親水性有機高分子膜を、全熱交換を行なう合成樹脂として定着してなる。全熱交換を行なう合成樹脂は、具体的には、下記一般式〔化1〕に示す三元共重合体の親水性スルフォン化ポリマーの構造を有するものである。   The total heat exchange membrane 1 of Example 1 is formed by fixing a hydrophilic organic polymer membrane as a synthetic resin that performs total heat exchange. Specifically, the synthetic resin that performs total heat exchange has a structure of a hydrophilic sulfonated polymer of a terpolymer represented by the following general formula [Chemical Formula 1].

Figure 2005291617
Figure 2005291617

この三元共重合体の親水性スルフォン化ポリマーは、具体的には50〜30重量%のオレフィンモノマーたるエチレンと、50〜70重量%のアリルビニルモノマーたるスチレンとを有してなるエチレン・スチレン・ランダム共重合体を主成分とする。そして、前記親水性スルフォン化ポリマーからなる電解質膜は、高透湿性であって潜熱交換効率が高いものであり、全熱交換効率が高いものである。すなわち、本発明の前記電解質膜はそのミクロ構造の親水性イオンチャンネル内の水分拡散により、従来には無い非常に高い高透湿性(約75%の熱交換効率)を有するものである。   Specifically, the hydrophilic sulfonated polymer of this terpolymer is ethylene / styrene comprising 50 to 30% by weight of ethylene as an olefin monomer and 50 to 70% by weight of styrene as an allyl vinyl monomer.・ The main component is a random copolymer. The electrolyte membrane made of the hydrophilic sulfonated polymer has high moisture permeability, high latent heat exchange efficiency, and high total heat exchange efficiency. That is, the electrolyte membrane according to the present invention has a very high moisture permeability (about 75% heat exchange efficiency) which has not been obtained in the past due to moisture diffusion in the hydrophilic ion channel of the microstructure.

全熱交換素子13は、潜熱及び顕熱を同時に交換する全熱交換膜13Fを有してなる。全熱交換素子13は、全熱交換膜13F(図示せず)で全熱交換を行なうものである。   The total heat exchange element 13 includes a total heat exchange membrane 13F that simultaneously exchanges latent heat and sensible heat. The total heat exchange element 13 performs total heat exchange with a total heat exchange membrane 13F (not shown).

(素子切換手段2)
そして、素子切換手段2は、実施例においては換気する2種の空気の間接交流路を、前記熱交換素子群1から選択したいずれか一のみの熱交換素子10とする、単独選択状態へと切り換えることのできるものとしている。
(Element switching means 2)
And the element switching means 2 is in the single selection state which makes the indirect alternating current path of 2 types of air ventilated in the Example only one heat exchange element 10 selected from the said heat exchange element group 1. It can be switched.

素子切換手段2は、少なくともいずれかの熱交換素子10を外気及び内気の間接交流路とするように切り換えるものであればよく、他に、間接交流路を前記熱交換素子群1から選択した複数の熱交換素子10の組み合わせとする、複数選択状態と切り換えることのできるものとしてもよい。なお、後述の迂回素子手段3によって、熱交換素子群1からひとつも選択しない非選択状態へと切り換えることもできる。   The element switching means 2 only needs to switch at least one of the heat exchange elements 10 to be an indirect AC path of outside air and inside air. In addition, a plurality of the indirect AC paths selected from the heat exchange element group 1 may be used. It is good also as what can be switched to the multiple selection state made into the combination of the heat exchange element 10 of. In addition, it can also switch to the non-selection state which does not select one from the heat exchange element group 1 by the detour element means 3 mentioned later.

実施例における素子切換手段2は、具体的には、熱交換素子群1を構成する複数の熱交換素子10のうち、選択した少なくともいずれかの熱交換素子10において、内気及び外気の取り込み口を覆うことのできる自動ダンパーを設けてなる。   Specifically, the element switching means 2 in the embodiment has an intake port for inside air and outside air in at least one of the plurality of heat exchange elements 10 constituting the heat exchange element group 1. An automatic damper that can be covered is provided.

この自動ダンパーは、実施例では、内気及び外気の各取り込み口を覆う二つ折りの板状体からなる。それぞれの熱交換素子における内気及び外気の各取り込み口で折曲角度を変えて連動し、共に開状態となるか、或いは共に閉状態となる。   In the embodiment, the automatic damper is composed of a folded plate-like body that covers the intake ports for the inside air and the outside air. The respective intake ports for the inside air and the outside air in each heat exchange element are interlocked by changing the bending angle, and both are opened or both are closed.

実施例では、顕熱交換素子11、潜熱熱交換素子12、全熱交換素子13のそれぞれの各取り込み口を覆う第一、第二、第三の3つの自動ダンパー11d、12d、13dからなる。また、次述の素子迂回手段3たる非熱交換素子34の取り込み口を覆う第四の自動ダンパー34d(4つ目の自動ダンパー)も同様の構成となっている。   In the embodiment, the sensible heat exchange element 11, the latent heat exchange element 12, and the total heat exchange element 13 are composed of first, second, and third automatic dampers 11d, 12d, and 13d that cover the respective intake ports. The fourth automatic damper 34d (fourth automatic damper) that covers the intake port of the non-heat exchange element 34 as the element bypassing means 3 described below has the same configuration.

この第一、第二、第三、第四の自動ダンパー11d、12d、13d、34dは、センサーによって、表1のようにして自動的に作動する。   The first, second, third, and fourth automatic dampers 11d, 12d, 13d, and 34d are automatically operated as shown in Table 1 by sensors.

Figure 2005291617
Figure 2005291617

以下、各作動状態を説明する。   Hereinafter, each operation state will be described.

第一の自動ダンパー11dのみが開状態となる場合を詳述する。換気を行なう冷房条件下、及び換気を行なわない暖房条件下においては、内気温度が外気温度より低く、且つ内気絶対湿度が外気絶対湿度より高い場合である。一方、換気を行なう暖房条件下および換気を行わない冷房条件下においては、内気温度が外気温度より高く、且つ内気絶対湿度が外気絶対湿度より低い場合である。第一の自動ダンパー11dは、センサーによって検知され、開状態となるように自動的に作動し、これと共に、第二、第三、第四の自動ダンパー12d、13d、34dは自動的に閉状態へと作動する。   The case where only the first automatic damper 11d is opened will be described in detail. In a cooling condition where ventilation is performed and a heating condition where ventilation is not performed, the inside air temperature is lower than the outside air temperature and the inside air absolute humidity is higher than the outside air absolute humidity. On the other hand, the inside air temperature is higher than the outside air temperature and the inside air absolute humidity is lower than the outside air absolute humidity under the heating condition where ventilation is performed and the cooling condition where ventilation is not performed. The first automatic damper 11d is detected by a sensor and automatically operates to be in an open state, and the second, third, and fourth automatic dampers 12d, 13d, and 34d are automatically closed. Operates to.

第二の自動ダンパー12dのみが開状態となる場合を詳述する。換気を行なう冷房条件下、及び換気を行なわない暖房条件下においては、内気温度が外気温度より高く、且つ内気絶対湿度が外気絶対湿度より低い場合である。一方、換気を行なう暖房条件下および換気を行わない冷房条件下においては、内気温度が外気温度より低く、且つ内気絶対湿度が外気絶対湿度より高い場合である。第二の自動ダンパー12dはセンサーによって検知され、開状態となるように自動的に作動し、これと共に、第一、第三、第四の自動ダンパー11d、13d、34dは自動的に閉状態へと作動する。   The case where only the second automatic damper 12d is opened will be described in detail. In a cooling condition where ventilation is performed and a heating condition where ventilation is not performed, the inside air temperature is higher than the outside air temperature and the inside air absolute humidity is lower than the outside air absolute humidity. On the other hand, the inside air temperature is lower than the outside air temperature and the inside air absolute humidity is higher than the outside air absolute humidity under heating conditions where ventilation is performed and cooling conditions where ventilation is not performed. The second automatic damper 12d is detected by a sensor and automatically operates so as to be in an open state. At the same time, the first, third, and fourth automatic dampers 11d, 13d, and 34d are automatically closed. Operates with.

第三の自動ダンパー13dのみが開状態となる場合を詳述する。換気を行なう冷房条件下、及び換気を行なわない暖房条件下においては、内気温度および内気絶対湿度が、共に外気温度および外気絶対湿度より低い場合である。一方、換気を行なう暖房条件下および換気を行わない冷房条件下においては、内気温度および内気絶対湿度が、共に外気温度および外気絶対湿度より高い場合である。第三の自動ダンパー13dはセンサーによって検知され、自動的に開状態へと作動し、これと共に、第一、第二、第四の自動ダンパー11d、12d、34dは自動的に閉状態へと作動する。   The case where only the third automatic damper 13d is opened will be described in detail. The inside air temperature and the inside air absolute humidity are both lower than the outside air temperature and the outside air absolute humidity under the cooling condition where ventilation is performed and the heating condition where ventilation is not performed. On the other hand, the inside air temperature and the inside air absolute humidity are both higher than the outside air temperature and the outside air absolute humidity under heating conditions in which ventilation is performed and cooling conditions in which ventilation is not performed. The third automatic damper 13d is detected by the sensor and automatically operates to the open state. At the same time, the first, second, and fourth automatic dampers 11d, 12d, and 34d automatically operate to the closed state. To do.

第四の自動ダンパー34dのみが開状態となる場合を詳述する。換気を行なう冷房条件下、及び換気を行なわない暖房条件下においては、内気温度および内気絶対湿度が、共に外気温度および外気絶対湿度より高い場合である。一方、換気を行なう暖房条件下および換気を行わない冷房条件下においては、内気温度および内気絶対湿度が、共に外気温度および外気絶対湿度より低い場合である。第四の自動ダンパー34dもまた、センサーによって開状態となるように自動的に作動し、これと共に、第一、第二、第三の自動ダンパー11d、12d、13dは自動的に閉状態へと作動する。   The case where only the fourth automatic damper 34d is opened will be described in detail. The inside air temperature and the inside air absolute humidity are both higher than the outside air temperature and the outside air absolute humidity under the cooling condition where ventilation is performed and the heating condition where ventilation is not performed. On the other hand, in a heating condition where ventilation is performed and a cooling condition where ventilation is not performed, the inside air temperature and the inside air absolute humidity are both lower than the outside air temperature and the outside air absolute humidity. The fourth automatic damper 34d is also automatically actuated so as to be opened by the sensor. At the same time, the first, second and third automatic dampers 11d, 12d and 13d are automatically closed. Operate.

(素子迂回手段3)
素子迂回手段3は、外気及び内気の各流路が間接交流せず、前記熱交換素子群1を迂回するように、外気及び内気の各流路を切り換えることのできるものである。具体的には、熱交換素子群1に、熱交換を行なわない非熱交換素子34を併設してなる。そして、この非熱交換素子34において、内気及び外気の取り込み口を覆うことのできる自動ダンパー34dを設けている。
(Element bypass means 3)
The element bypass means 3 is capable of switching the external air and internal air flow paths so that the external air and internal air flow paths do not indirectly exchange and bypass the heat exchange element group 1. Specifically, the heat exchange element group 1 is provided with a non-heat exchange element 34 that does not perform heat exchange. The non-heat exchange element 34 is provided with an automatic damper 34d that can cover the intake port for the inside air and the outside air.

他に、換気排出路Ev及び換気取込路Svのそれぞれに、いずれも熱交換素子を迂回させた排気迂回路及び給気迂回路を設けたものとしてもよい。また、外気循環路Oc及び内気循環路Icのそれぞれに、いずれも熱交換素子を迂回させた外気迂回路及び内気迂回路を設けたものとしてもよい。排気迂回路と給気迂回路との双方、または、外気迂回路と内気迂回路との双方には、共に閉状態或いは共に開状態となる自動ダンパーを設けてなる。   In addition, each of the ventilation discharge path Ev and the ventilation intake path Sv may be provided with an exhaust bypass path and an air supply bypass path that bypass the heat exchange element. In addition, both the outside air circulation path Oc and the inside air circulation path Ic may be provided with an outside air bypass circuit and an inside air bypass circuit that bypass the heat exchange element. Both the exhaust bypass route and the supply air bypass route, or both the outside air bypass route and the inside air bypass route are provided with automatic dampers that are both closed or both open.

この自動ダンパーは、実施例において4つ目の自動ダンパーであり、冷房条件下で外気の温度及び絶対湿度が共に内気より低い場合や、暖房条件下で外気の温度及び絶対湿度が共に内気より高い場合に、これをセンサーが検知することによって作動する。   This automatic damper is the fourth automatic damper in the embodiment. When the temperature and absolute humidity of the outside air are both lower than the inside air under the cooling condition, or both the temperature and absolute humidity of the outside air are higher than the inside air under the heating condition. In some cases, this is triggered by the sensor detecting it.

(流路切換手段4)
本発明の換気式熱交換器は、内気を(室外へ)排気する換気排出路Evと外気を(室内へ)給気する換気取込路Svとが熱交換素子10にて間接交流してなる交換気流路v(exchange air exhaust channel)と、
内気循環路Icと外気循環路Ocとが熱交換素子10にて間接交流してなる循環気流路c(circulation air exhaust channel)と、を相互に切り換えることができるものとした流路切換手段4を具備することを特徴とする。
(Flow path switching means 4)
The ventilation heat exchanger according to the present invention is configured such that a ventilation exhaust path Ev for exhausting the inside air (to the outside) and a ventilation intake path Sv for supplying the outside air (to the room) are indirectly exchanged by the heat exchange element 10. An exchange air flow path v (exchange air exhaust channel);
A flow path switching means 4 that can switch between a circulation air flow path c (circulation air exhaust channel) in which the inside air circulation path Ic and the outside air circulation path Oc are indirectly exchanged by the heat exchange element 10. It is characterized by comprising.

流路切換手段4は、交換気流路vと循環気流路cとを相互に切り換えることができ、切り換えによっていずれかの任意の流路にすることができるものである。   The flow path switching means 4 can switch the exchange air flow path v and the circulation air flow path c to each other, and can be changed to any arbitrary flow path by switching.

つまり、流路切換手段4は、還気路RAおよび外気路OAの各連通先である排気路EA、給気路SAを、それぞれ互いに交換するように繋ぎ換えて、それぞれの連通先を給気路SA、排気路EAへと相互に切り換えるものである。実施例では、熱交換素子10を通過した外気及び内気のそれぞれの排出先を、室内或いは室外のうち選択したそれぞれへと振り分けるように切り換え可能とする。   That is, the flow path switching means 4 connects the exhaust passage EA and the air supply passage SA, which are the communication destinations of the return air passage RA and the outside air passage OA, so as to exchange each other, and supplies the respective communication destinations. These are switched to the path SA and the exhaust path EA. In the embodiment, the discharge destinations of the outside air and the inside air that have passed through the heat exchange element 10 can be switched so as to be distributed to selected ones of the inside and the outside.

排出先の切換えは、2流路が熱交換素子群又は非熱交換素子を通過した直後における、排出接続の相互の繋ぎ換えによって行なわれる。具体的には、熱交換素子通過後において、室内給気路と室外排気路とを相互に繋ぎ換えるか、或いは熱交換素子通過前において、外気(新鮮空気)路と還気路とを相互に繋ぎ換えてなる。実施例では、内気及び外気それぞれが熱交換素子10を通過した直後において、チャンバーmを設けてなる。各チャンバーmは、それぞれ給気路SA、排気路EAの双方に連通する。これと共に、各連通路にはそれぞれ給気路連通ダンパー、排気路連通ダンパーを設けている。各連通ダンパーは、一方の開状態と他方の閉状態とが連動することによって、室内への給気路SAと室外への排気路EAとを相互に繋ぎ換えるものとしている。   Switching of the discharge destination is performed by reconnecting the discharge connection immediately after the two flow paths pass through the heat exchange element group or the non-heat exchange element. Specifically, after passing through the heat exchange element, the indoor air supply path and the outdoor exhaust path are connected to each other, or before passing through the heat exchange element, the outside air (fresh air) path and the return air path are mutually connected. Reconnect. In the embodiment, the chamber m is provided immediately after the inside air and the outside air pass through the heat exchange element 10. Each chamber m communicates with both the supply passage SA and the exhaust passage EA. At the same time, an air supply path communication damper and an exhaust path communication damper are provided in each communication path. Each communication damper links the air supply path SA to the indoor and the exhaust path EA to the outdoor by linking one open state and the other closed state.

実施例では、顕熱交換素子11、潜熱熱交換素子12、全熱交換素子13、および非熱交換素子34のそれぞれの各吐出し口を取り纏めて覆う内気チャンバーImと、外気チャンバーOmとからなる。以下、各連通ダンパーの連動動作について詳述する。   In the embodiment, the sensible heat exchange element 11, the latent heat exchange element 12, the total heat exchange element 13, and the non-heat exchange element 34 are each composed of an inside air chamber Im and an outside air chamber Om. . Hereinafter, the interlocking operation of each communication damper will be described in detail.

給気路SAに連通する内気チャンバーImの給気路連通ダンパーISdが閉状態のとき、連動して外気チャンバーOmの給気路連通ダンパーOSdが開状態となり、且つ、内気チャンバーImの排気路連通ダンパーIEdが開状態となると共に、連動して外気チャンバーOmの排気路連通ダンパーOEdが閉状態となる。このとき、外気路OAと給気路SA、還気路RAと排気路EAがそれぞれ連通されて、交換気流路vが形成される(図3)。   When the air supply path communication damper ISd of the inside air chamber Im communicating with the air supply path SA is closed, the air supply path communication damper OSd of the outside air chamber Om is linked and the exhaust air path communication of the inside air chamber Im is performed. The damper IEd is opened, and the exhaust passage communication damper OEd of the outside air chamber Om is closed in conjunction with the damper IEd. At this time, the outside air passage OA and the air supply passage SA, the return air passage RA and the exhaust passage EA are respectively communicated to form an exchange air passage v (FIG. 3).

一方、給気路SAに連通する内気チャンバーImの給気路連通ダンパーISdが開状態のとき、連動して外気チャンバーOmの給気路連通ダンパーOSdが閉状態となり、且つ、内気チャンバーImの排気路連通ダンパーIEdが閉状態となると共に、連動して外気チャンバーOmの排気路連通ダンパーOEdが開状態となる。このとき、還気路RAと給気路SA、外気路OAと排気路EAがそれぞれ連通されて、循環気流路cが形成される(図4)。   On the other hand, when the air supply path communication damper ISd of the inside air chamber Im communicating with the air supply path SA is in the open state, the air supply path communication damper OSd of the outside air chamber Om is linked and the exhaust of the inside air chamber Im is interlocked. The road communication damper IEd is closed, and the exhaust path communication damper OEd of the outside air chamber Om is opened in conjunction with the road communication damper IEd. At this time, the return air path RA and the air supply path SA, the outside air path OA, and the exhaust path EA are communicated with each other to form a circulation air path c (FIG. 4).

先ず、交換気流路v(exchange air exhaust channel)について説明する。流路切換手段4は、交換気流路vへ切り換えることができる。   First, the exchange air flow path v (exchange air exhaust channel) will be described. The channel switching means 4 can switch to the exchange air channel v.

交換気流路vは、外気すなわち室外の新鮮空気と、内気すなわち室内の汚染空気とを第一種換気する流路である。外気を室内へ取り込む換気取込路Svと、内気を室外へ排出する換気排出路Evとが、熱交換素子で間接的に交流してなる。或いは、素子迂回手段3によって、選択により間接交流せずになるものとすることもできる。熱交換素子で間接交流することで、熱交換を行ないながら換気を行なうことができ、交流しないことで、熱交換を行なわずに換気を行なうことができる。   The exchange air flow path v is a flow path for first-type ventilation of the outside air, that is, outdoor fresh air, and the inside air, that is, indoor contaminated air. The ventilation intake path Sv for taking outside air into the room and the ventilation exhaust path Ev for discharging inside air to the outside are indirectly exchanged by the heat exchange element. Alternatively, the element detour means 3 can be used to eliminate indirect alternating current by selection. By performing indirect alternating current with the heat exchange element, ventilation can be performed while performing heat exchange, and by not performing alternating current, ventilation can be performed without performing heat exchange.

換気取込路Svは、室外空気たる新鮮空気を室内へ取込んで供給する流路である。具体的には、連通した室外から外気を取り込む外気(新鮮空気)路OAと、この取り込んだ外気を連通した室内へ供給する給気路SAとが、熱交換素子10を境として繋がってなる。   The ventilation intake path Sv is a flow path that takes in fresh air as outdoor air and supplies it to the room. Specifically, an outside air (fresh air) path OA that takes in outside air from the communicated outdoor room and an air supply path SA that supplies the taken outside air to the communicating room are connected with the heat exchange element 10 as a boundary.

換気排出路Evは、室内空気たる汚染空気を室外へ排出する流路である。具体的には、連通した室内から内気を取り込む還気路RAと、この取り込んだ内気を連通した室外へ排出する排気路EAとが、熱交換素子10を境として繋がってなる。   The ventilation discharge path Ev is a flow path for discharging contaminated air, which is room air, to the outside of the room. Specifically, the return air path RA that takes in the inside air from the communicating room and the exhaust path EA that discharges the taken inside air to the outside of the communicating room are connected with the heat exchange element 10 as a boundary.

次に、循環気流路c(circulation air exhaust channel)について説明する。排出路切換手段4は、熱交換膜の前または後のいずれかの箇所で2流路の接続を相互に繋ぎかえることで、前記交換気流路vから循環流路cへと切り換えることができる。   Next, the circulation air channel c (circulation air exhaust channel) will be described. The discharge path switching means 4 can be switched from the exchange air flow path v to the circulation flow path c by switching the connection of the two flow paths to each other at any location before or after the heat exchange membrane.

循環流路cは、室外の新鮮空気と室内の汚染空気とを換気せずに熱交換だけを行なう流路であり、室外循環路と室内循環路とが熱交換素子で間接的に交流してなる。   The circulation channel c is a channel that performs only heat exchange without ventilating outdoor fresh air and indoor contaminated air, and the outdoor circuit and the indoor circuit are indirectly exchanged by a heat exchange element. Become.

給気路は、室外空気を室内へ供給する流路である。連通した室外から外気を取り込む外気(新鮮空気)路と、この取り込んだ外気を連通した室内へ供給する室内給気路とが、熱交換素子を介して繋がってなる。   The air supply path is a flow path for supplying outdoor air into the room. An outside air (fresh air) path that takes in outside air from the communicated outdoor room and an indoor air supply path that supplies the taken outside air to the communicating room are connected via a heat exchange element.

排気路は、室内空気を室外へ排気する流路である。連通した室内から内気を取り込む還気路と、この取り込んだ内気を連通した室外へ排出する室外排気路とが、熱交換素子を介して繋がってなる。   The exhaust path is a flow path for exhausting room air to the outside. A return air path for taking in the inside air from the communicating room and an outdoor exhaust path for discharging the taken in air to the outside of the communicating room are connected via a heat exchange element.

このようにして得られた実施例の換気式熱交換器は、効率のよい熱交換を行いながら常に第一種換気を行うことができるため、あらゆる外気及び内気の温湿度条件の組み合わせにおいて、室内空気の汚染を防ぎながら他の空調機の空調負荷を低減することができる。さらに、換気を行わずに熱交換のみを行なうこともできるので、換気不要の状態でも他の空調機の空調負荷を低減することもできる。   The ventilated heat exchanger of the embodiment obtained in this way can always perform the first type ventilation while performing efficient heat exchange, so in any combination of temperature and humidity conditions of outside air and inside air, The air conditioning load of other air conditioners can be reduced while preventing air pollution. Furthermore, since only heat exchange can be performed without ventilation, the air conditioning load of other air conditioners can be reduced even in a state where ventilation is not necessary.

その他、各部の具体的な構成は、上述した実施例に限定されるものでなく、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。   In addition, the specific configuration of each part is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

本発明の換気式熱交換器は、総合空気調和機としても利用できる。また、ダクトや噴出し口を含む熱交換空調システムとしても利用できる。   The ventilated heat exchanger of the present invention can also be used as an integrated air conditioner. It can also be used as a heat exchange air conditioning system including a duct and a jet outlet.

本発明の交換気流路vの流路系での各切換状態を説明する斜視説明図である。It is a perspective explanatory view explaining each switching state in the channel system of exchange air channel v of the present invention. 本発明の循環気流路cの流路系での各切換状態を説明する斜視説明図である。It is a perspective explanatory view explaining each switching state in the channel system of circulating air channel c of the present invention. 図1の(c)の状態を示す平面視説明図である。FIG. 2 is an explanatory plan view showing the state of FIG. 図2の(c)の状態を示す平面視説明図である。FIG. 3 is an explanatory plan view showing the state of FIG. 図1における状態を示す断面視説明図である。It is sectional view explanatory drawing which shows the state in FIG. 図2における状態を示す断面視説明図である。FIG. 3 is a cross-sectional view illustrating the state in FIG. 2. 熱交換素子群2を構成する複数の熱交換素子10のうち一の熱交換素子10を示す斜視外観図である。4 is a perspective external view showing one heat exchange element 10 among a plurality of heat exchange elements 10 constituting the heat exchange element group 2. FIG. 潜熱交換素子12の潜熱交換膜12Fの構造を説明する断面視説明図である。FIG. 4 is a cross-sectional view illustrating the structure of a latent heat exchange membrane 12F of the latent heat exchange element 12.

符号の説明Explanation of symbols

1 熱交換素子群
10 熱交換素子
11 顕熱交換素子
12 潜熱交換素子
12F 潜熱交換膜
121 発泡プラスチック断熱材
121h 透湿孔
122 親水性有機高分子膜
2 素子切換手段
3 素子迂回手段
4 流路切換手段
v 換気流路
Ev 換気排出路
Sv 換気取込路
c 循環気流路
Ic 内気循環路
Oc 外気循環路
DESCRIPTION OF SYMBOLS 1 Heat exchange element group 10 Heat exchange element 11 Sensible heat exchange element 12 Latent heat exchange element 12F Latent heat exchange film 121 Foamed plastic heat insulating material 121h Breathable hole 122 Hydrophilic organic polymer film 2 Element switching means 3 Element detour means 4 Flow path switching Means v Ventilation channel Ev Ventilation discharge channel Sv Ventilation intake channel c Circulating air channel Ic Inside air circuit Oc Outside air circuit

Claims (6)

内気および外気を熱交換素子10を介して間接交流させることのできる換気式熱交換器であって、潜熱交換効率或いは顕熱交換効率が互いに相違した複数の熱交換素子10からなる熱交換素子群1と、この熱交換素子群1から選択した少なくともいずれかの熱交換素子10を外気及び内気の間接交流路とするように切り換える素子切換手段2と、を具備することを特徴とする換気式熱交換器。   A heat exchange element group comprising a plurality of heat exchange elements 10 having different latent heat exchange efficiency or sensible heat exchange efficiency, which is a ventilated heat exchanger capable of indirect alternating current between inside air and outside air via the heat exchange element 10 1 and element switching means 2 for switching at least one of the heat exchange elements 10 selected from the heat exchange element group 1 to be an indirect alternating current path between the outside air and the inside air. Exchanger. 熱交換素子群1は、顕熱交換を主として行なう顕熱交換素子11と、潜熱交換を主として行なう潜熱交換素子12と、を少なくとも具備する請求項1記載の換気式熱交換器。   The ventilated heat exchanger according to claim 1, wherein the heat exchange element group 1 includes at least a sensible heat exchange element 11 that mainly performs sensible heat exchange and a latent heat exchange element 12 that mainly performs latent heat exchange. 外気及び内気の各流路が間接交流せず、前記熱交換素子群1を迂回するように各流路を切り換えることのできる素子迂回手段3を具備すると共に、素子切換手段2が、前記熱交換素子群1から選択したいずれか一のみの熱交換素子10を外気及び内気の間接交流路とするように切り換えるものである請求項1又は2記載の換気式熱交換器。   Each of the flow paths of the outside air and the inside air is not indirectly exchanged, and includes an element bypassing means 3 that can switch each flow path so as to bypass the heat exchange element group 1, and the element switching means 2 includes the heat exchange element. The ventilated heat exchanger according to claim 1 or 2, wherein only one heat exchange element 10 selected from the element group 1 is switched to be an indirect AC path of outside air and inside air. 潜熱交換素子12は、厚さ方向に複数の透湿孔121hを設けた発泡プラスチック断熱材121と、この透湿孔121hを覆うように設けた親水性有機高分子膜122と、からなる潜熱交換膜12Fを有し、この潜熱交換膜12Fで潜熱交換を行なうものである請求項2又は3記載の換気式熱交換器。   The latent heat exchange element 12 is a latent heat exchange comprising a foamed plastic heat insulating material 121 provided with a plurality of moisture permeable holes 121h in the thickness direction and a hydrophilic organic polymer film 122 provided so as to cover the moisture permeable holes 121h. The ventilated heat exchanger according to claim 2 or 3, further comprising a membrane 12F and performing latent heat exchange with the latent heat exchange membrane 12F. 外気と内気とを熱交換素子10を介して間接交流させることのできるものであって、内気を排気する換気排出路Evと外気を給気する換気取込路Svとが熱交換素子10にて間接交流してなる交換気流路vと、内気循環路Icと外気循環路Ocとが熱交換素子10にて間接交流してなる循環気流路cと、を相互に切り換えることができるものとした流路切換手段4を具備することを特徴とする換気式熱交換器。   The outside air and the inside air can be indirectly exchanged via the heat exchange element 10, and a ventilation discharge path Ev for exhausting the inside air and a ventilation intake path Sv for supplying the outside air are in the heat exchange element 10. An exchange air flow path v formed by indirect alternating current and a circulation air flow path c formed by indirect alternating current exchange between the inside air circulation path Ic and the outside air circulation path Oc by the heat exchange element 10 can be switched to each other. A ventilated heat exchanger comprising a path switching means 4. 流路切換手段4が、熱交換素子10を通過した外気及び内気のそれぞれの排出先を、室内或いは室外のうち選択したそれぞれへと振り分けるように切り換えるものである請求項5記載の換気式熱交換器。   The ventilated heat exchange according to claim 5, wherein the flow path switching means 4 switches the discharge destinations of the outside air and the inside air that have passed through the heat exchange element 10 to each selected among the indoor and the outdoor. vessel.
JP2004106787A 2004-03-31 2004-03-31 Ventilation type heat exchanger Pending JP2005291617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004106787A JP2005291617A (en) 2004-03-31 2004-03-31 Ventilation type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004106787A JP2005291617A (en) 2004-03-31 2004-03-31 Ventilation type heat exchanger

Publications (1)

Publication Number Publication Date
JP2005291617A true JP2005291617A (en) 2005-10-20

Family

ID=35324739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106787A Pending JP2005291617A (en) 2004-03-31 2004-03-31 Ventilation type heat exchanger

Country Status (1)

Country Link
JP (1) JP2005291617A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128150A1 (en) * 2008-04-16 2009-10-22 三菱電機株式会社 Heat exchanging ventilating apparatus
EP2141422A1 (en) * 2007-05-15 2010-01-06 Panasonic Corporation Heat exchange ventilator
JP2010236768A (en) * 2009-03-31 2010-10-21 Panasonic Corp Heat exchange type ventilation device
RU2449223C1 (en) * 2008-04-16 2012-04-27 Мицубиси Электрик Корпорейшн Heat exchange fan
CN102906508A (en) * 2010-04-23 2013-01-30 乐金华奥斯株式会社 Heat exchange device of ventilation device for windows and heat exchange module having the same
GB2513093A (en) * 2013-02-08 2014-10-22 Polypipe Ltd Mechanical ventilation and heat recovery unit and system
EP3153807A1 (en) * 2015-08-14 2017-04-12 Trane International Inc. Heat exchange assembly in an air to air heat exchanger
DE102018213274A1 (en) * 2018-08-08 2020-02-13 Hansa Klimasysteme GmbH air conditioning

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110189937A1 (en) * 2007-05-15 2011-08-04 Panasonic Corporation Heat exchange ventilator
EP2141422A1 (en) * 2007-05-15 2010-01-06 Panasonic Corporation Heat exchange ventilator
US9222695B2 (en) 2007-05-15 2015-12-29 Panasonic Intellectual Property Management Co., Ltd. Heat exchange ventilator
EP2141422A4 (en) * 2007-05-15 2013-12-25 Panasonic Corp Heat exchange ventilator
JPWO2009128150A1 (en) * 2008-04-16 2011-08-04 三菱電機株式会社 Heat exchange ventilator
RU2449223C1 (en) * 2008-04-16 2012-04-27 Мицубиси Электрик Корпорейшн Heat exchange fan
JP5220102B2 (en) * 2008-04-16 2013-06-26 三菱電機株式会社 Heat exchange ventilator
CN102007346A (en) * 2008-04-16 2011-04-06 三菱电机株式会社 Heat exchanging ventilating apparatus
CN102007346B (en) * 2008-04-16 2014-02-26 三菱电机株式会社 Heat exchanging ventilating apparatus
WO2009128150A1 (en) * 2008-04-16 2009-10-22 三菱電機株式会社 Heat exchanging ventilating apparatus
JP2010236768A (en) * 2009-03-31 2010-10-21 Panasonic Corp Heat exchange type ventilation device
CN102906508A (en) * 2010-04-23 2013-01-30 乐金华奥斯株式会社 Heat exchange device of ventilation device for windows and heat exchange module having the same
GB2513093A (en) * 2013-02-08 2014-10-22 Polypipe Ltd Mechanical ventilation and heat recovery unit and system
GB2513093B (en) * 2013-02-08 2018-10-17 Polypipe Ltd Mechanical ventilation and heat recovery unit and system
EP3153807A1 (en) * 2015-08-14 2017-04-12 Trane International Inc. Heat exchange assembly in an air to air heat exchanger
US10527367B2 (en) 2015-08-14 2020-01-07 Trane International Inc. Heat exchange assembly in an air to air heat exchanger
DE102018213274A1 (en) * 2018-08-08 2020-02-13 Hansa Klimasysteme GmbH air conditioning
DE102018213274B4 (en) 2018-08-08 2023-08-03 Hansa Klimasysteme GmbH Air conditioning device and method for operating an air conditioning device

Similar Documents

Publication Publication Date Title
US20110036541A1 (en) Heat exchange ventilator
US8235093B2 (en) Flat plate heat and moisture exchanger
TWI307401B (en) Dewpoint cooler designed as a frame or part thereof
JP5925004B2 (en) Air conditioning ventilation system
JP2004219053A (en) Air conditioning system for air conditioner
JP2005291617A (en) Ventilation type heat exchanger
JP2006125826A (en) Ventilation device
WO2016074077A1 (en) Energy exchange systems and methods
JP2017072346A (en) Air conditioning system
JP4853127B2 (en) Heat exchange ventilator
KR20150068057A (en) Total heat exchanger and ventilation system using the same
JP2005288216A (en) Latent heat exchange membrane
RU2449223C1 (en) Heat exchange fan
JPWO2019234870A1 (en) Heat exchange ventilator
JP5347420B2 (en) Heat exchange ventilator
KR20140113023A (en) Heat recovery ventilation system with counter-flow heat exchanger
JPS61128048A (en) Partition accomodating type air conditioning auxiliary system
US20060236713A1 (en) Total heat exchange air conditioner
JP2003232540A (en) Humidity controller
JP2006284021A (en) Ventilation type heat exchanger and ventilation type heat exchanger unit
JP2011007345A (en) Ventilation device
JP2018017431A (en) Exhaustion adaptive type floor installed wall-through air conditioner and air conditioning system with same air conditioner
JPH0343543Y2 (en)
JPH05340599A (en) Air conditioner for residence
JP2003314846A (en) Air conditioning system