JP5401978B2 - Method and apparatus for measuring lysate concentration - Google Patents

Method and apparatus for measuring lysate concentration Download PDF

Info

Publication number
JP5401978B2
JP5401978B2 JP2008329877A JP2008329877A JP5401978B2 JP 5401978 B2 JP5401978 B2 JP 5401978B2 JP 2008329877 A JP2008329877 A JP 2008329877A JP 2008329877 A JP2008329877 A JP 2008329877A JP 5401978 B2 JP5401978 B2 JP 5401978B2
Authority
JP
Japan
Prior art keywords
light
concentration
measured
liquid
lysate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008329877A
Other languages
Japanese (ja)
Other versions
JP2010151605A (en
Inventor
淳一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008329877A priority Critical patent/JP5401978B2/en
Publication of JP2010151605A publication Critical patent/JP2010151605A/en
Application granted granted Critical
Publication of JP5401978B2 publication Critical patent/JP5401978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光の透過率又は吸光度に基づいて試料中の溶解物濃度を測定する溶解物濃度の測定方法及び測定装置に関するものである。また、本発明は、被検出液による光の吸収作用に基づいて、この被検出液の色調を検出する色調の検出方法及び検出装置に関するものである。   The present invention relates to a lysate concentration measuring method and a measuring apparatus for measuring a lysate concentration in a sample based on light transmittance or absorbance. The present invention also relates to a color tone detection method and a detection apparatus for detecting the color tone of the liquid to be detected based on the light absorbing action of the liquid to be detected.

液体中に溶解している溶解物の濃度は、吸光光度法により求められる場合も多い。この吸光光度法では、例えば、溶解物を有する試料に試薬を添加し、この試料を発色させて被測定液とした後、この被測定液を透明な測定セル中に収容する。つぎに、この被測定液に、測定セルを介して、発光体からの、吸収度合いの高い特定波長の光を透過させて、この被測定液に一部の光を吸収させた後、この透過光を受光体で受光し、このときの透過光強度を計測する。つづいて、このとき測定した透過光強度と、別に測定した、例えば透明液に対する特定波長の光の透過光強度とから吸光度(又は透過率)を求めることにより、この溶解物に関して予め既知濃度の試料により作成した、吸光度(又は透過率)と溶解物濃度との関係を示す検量グラフを用いて、試料中の溶解物濃度を求める。   In many cases, the concentration of the dissolved substance dissolved in the liquid is determined by absorptiometry. In this absorptiometric method, for example, a reagent is added to a sample having a lysate, and the sample is colored to form a liquid to be measured, and then the liquid to be measured is accommodated in a transparent measurement cell. Next, the liquid to be measured is allowed to transmit a specific wavelength of light having a high degree of absorption from the illuminant through the measurement cell, and a part of the light is absorbed by the liquid to be measured. The light is received by the photoreceptor, and the transmitted light intensity at this time is measured. Subsequently, by obtaining the absorbance (or transmittance) from the transmitted light intensity measured at this time and the transmitted light intensity of light having a specific wavelength with respect to the transparent liquid measured separately, for example, a sample having a known concentration in advance with respect to this lysate. Using the calibration graph showing the relationship between the absorbance (or transmittance) and the lysate concentration created by the above, the lysate concentration in the sample is determined.

ここで、種類の異なる複数の溶解物の濃度を調べる場合には、それぞれ波長の異なる光を発する複数の発光体を使用して、溶解物の濃度を測定したり(特許文献1参照)、光源からの光を複数の特定波長に調整できる発光体を使用して、溶解物の濃度を測定している。また、溶解物の濃度によって被測定液が色変わりする場合にも、それぞれ波長の異なる光を発する複数の発光体を使用して、溶解物の濃度を測定している。   Here, when investigating the concentration of a plurality of lysates of different types, the concentration of the lysate is measured using a plurality of light emitters that emit light of different wavelengths (see Patent Document 1), or a light source. The concentration of the lysate is measured using a light emitter that can adjust the light from the light to a plurality of specific wavelengths. In addition, even when the liquid to be measured changes color depending on the concentration of the dissolved matter, the concentration of the dissolved matter is measured using a plurality of light emitters that emit light having different wavelengths.

特開2006−275753号公報JP 2006-257553 A

しかしながら、波長の異なる複数の発光体を使用すると、受光体の数も複数必要となるため、装置の高コスト化や大型化を招いてしまうという問題があった。また、複数の発光体を同時使用すると、光が相互に干渉しやすく、測定値に誤差が出やすいという問題があった。さらに、発光体として特定波長のLEDを使用した場合、その光の波長は、製造ロット毎に違いが生じたり、出力の大小によっても変動しやすいため、測定値に誤差が出やすいという問題があった。   However, when a plurality of light emitters having different wavelengths are used, a plurality of light receivers are required, resulting in an increase in cost and size of the apparatus. Further, when a plurality of light emitters are used at the same time, there is a problem that light easily interferes with each other, and an error is likely to occur in a measured value. In addition, when an LED with a specific wavelength is used as the light emitter, the wavelength of the light varies depending on the production lot, and is likely to fluctuate depending on the output level. It was.

また、光源からの光を複数の特定波長に調整できる発光体を使用した場合も、装置の高コスト化や大型化を招いてしまうという問題があった。   In addition, when a light emitter that can adjust light from a light source to a plurality of specific wavelengths is used, there is a problem in that the cost and size of the apparatus are increased.

この発明は、以上の点に鑑み、光の吸光度に基づいて試料中の溶解物濃度を測定するに当たり、装置の低コスト化や小型化を達成できる溶解物濃度の測定方法及び測定装置を提供することを目的とする。 In view of the above points, the present invention provides a measurement method and a measurement apparatus for a lysate concentration that can achieve cost reduction and downsizing of the apparatus when measuring the lysate concentration in a sample based on the absorbance of light. For the purpose.

この発明の請求項1記載の発明は、試料への試薬の添加により発色した被測定液又は溶解物によって着色している試料である被測定液と、光の吸収のない透明な被測定液とに発光体からの光を透過させ、これらの透過光を、前記被測定液を挟むように、前記発光体に対向して置かれた受光体にてそれぞれ受光することにより算出される、発色又は着色している前記被測定液に対する前記透過光の吸光度に基づいて、前記試料中の特定の溶解物の濃度を測定する溶解物濃度の測定方法であって、前記発光体は可視光域を含んだ光を発するとともに、前記受光体は、前記被測定液を透過した前記発光体からの光のうち、前記可視光域の光を略3分割して得られる、レッド領域成分の光、グリーン領域成分の光、又はブルー領域成分の光の何れかを受光するか、又はこれらを組み合わせた複数の前記領域成分の光をそれぞれ受光し、かつ、前記被測定液が、前記特定の溶解物の濃度の変化に伴って色相を変化させる場合には、複数の前記領域成分の光について算出された前記吸光度の値を用いて、前記特定の溶解物の濃度を算出するとともに、前記被測定液が前記特定の溶解物の濃度の変化に伴って色相を変化させない場合には、1つの前記領域成分の光について算出された前記吸光度の値を用いて、前記特定の溶解物の濃度を算出することを特徴とする。 According to the first aspect of the present invention, a liquid to be measured which is colored by the addition of a reagent to the sample or a sample colored by a lysate, and a liquid to be measured which does not absorb light, Calculated by transmitting light from the light emitter to each other and receiving the transmitted light with a light receiver placed opposite the light emitter so as to sandwich the liquid to be measured. A lysate concentration measurement method for measuring a concentration of a specific lysate in the sample based on the absorbance of the transmitted light with respect to the colored liquid to be measured , wherein the illuminant includes a visible light region. The light receiver emits light, and the light from the light emitter that has passed through the liquid to be measured is obtained by substantially dividing the light in the visible light region into three parts. component of the light, or blue regions ingredient either light If either light or respectively receive light of a plurality of said regions ingredients a combination of these, and, where the measured fluid, wherein with a change in concentration of a particular lysate changing the hue, a plurality The concentration of the specific lysate is calculated using the absorbance value calculated for the light of the region component, and the hue of the liquid to be measured changes with the change in the concentration of the specific lysate. If not, the concentration of the specific lysate is calculated using the absorbance value calculated for the light of one region component .

この発明では、受光体は、被測定液を透過した発光体からの光のうち、可視光域の光の波長帯を略3分割して得られる、レッド領域成分の光とグリーン領域成分の光とブルー領域成分の光の、何れかを受光して、その光の強度を計測する。例えば、試薬の添加により被測定液が特定の溶解物によって黄色に発色する場合には、受光体により、黄色の補色である青色、すなわち、ブルー領域成分の光の強度を、黄色に発色する被測定液と光の吸収のない透明な被測定液とについて計測し、これらの値を用いて、ブルー領域成分の光について黄色に発色する被測定液の吸光度を算出することにより、試料中の特定の溶解物の濃度を容易に求めることができる。 In the present invention, the light receiver is obtained by substantially dividing the wavelength band of light in the visible light region out of the light from the light emitter transmitted through the liquid to be measured, and is obtained by dividing the light of the red region component and the light of the green region component. And blue region component light are received, and the intensity of the light is measured. For example, when coloring in yellow by test liquid specific lysate by addition of the reagent, the photoreceptor, blue is a complementary color of yellow, that is, the intensity of the light blue region components, coloring in yellow the the test solution and by measuring the absorption with no clear target solution of the light, using these values, by calculating the absorbance of the test liquid coloring in yellow for the light blue region components, specific sample The concentration of the lysate can be easily determined.

また、この発明では、受光体は、被測定液を透過した発光体からの光のうち、可視光域の光の波長帯を略3分割して得られる、レッド領域成分の光とグリーン領域成分の光とブルー領域成分の光とを組み合わせた、複数の色領域成分の光を受光して、それぞれの光の強度を計測している。例えば、被測定液の色が、特定の溶解物の濃度の大小によって、赤色の補色から青色の補色に変わるように変化する場合には、受光体により、レッド領域成分の光とブルー領域成分の光の強度を、発色している被測定液と光の吸収のない透明な被測定液とについて計測し、これらの値を用いて、発色している被測定液の吸光度を、レッド領域成分の光とブルー領域成分の光について算出することにより、試料中の特定の溶解物の濃度を容易に求めることができる。もちろん、被測定液の色が特定の溶解物の濃度によって種々に変化する場合には、受光体により、レッド領域成分の光とグリーン領域成分の光とブルー領域成分の光の、何れをも受光し、3つの領域成分の光の吸光度をそれぞれ算出して、試料中の特定の溶解物の濃度を求める。 Further, in the present invention, the light receiver is obtained by substantially dividing the wavelength band of light in the visible light region out of the light from the light emitter that has passed through the liquid to be measured, and the light of the red region component and the green region component. The light of a plurality of color region components, which is a combination of the light of the blue region component and the light of the blue region component, is received, and the intensity of each light is measured. For example , when the color of the solution to be measured changes from a red complementary color to a blue complementary color depending on the concentration of a specific lysate , the light of the red region component and the blue region component are changed by the photoreceptor. The intensity of light is measured for a colored liquid to be measured and a transparent liquid to be measured that does not absorb light. Using these values, the absorbance of the colored liquid to be measured is calculated as the red region component. By calculating the light and the light of the blue region component, the concentration of a specific lysate in the sample can be easily obtained. Of course, when the color of the liquid to be measured varies depending on the concentration of the specific lysate , the photoreceiver receives the red region component light, the green region component light, and the blue region component light. Then, the light absorbance of each of the three region components is calculated to determine the concentration of a specific lysate in the sample .

この発明の請求項2記載の発明は、試料への試薬の添加により発色した被測定液又は溶解物によって着色している試料である被測定液と、光の吸収のない透明な被測定液とに発光体からの光を透過させ、これらの透過光を、前記被測定液を挟むように、前記発光体に対向して置かれた受光体にてそれぞれ受光することにより算出される、発色又は着色している前記被測定液に対する前記透過光の吸光度に基づいて、前記試料中の特定の溶解物の濃度を測定する溶解物濃度の測定装置であって、前記発光体は可視光域を含んだ光を発するとともに、前記受光体は、前記被測定液を透過した前記発光体からの光のうち、前記可視光域の光を略3分割して得られる、レッド領域成分の光、グリーン領域成分の光、又はブルー領域成分の光の何れかを透過させるためのフィルタか、又はこれらを組み合わせた複数の領域成分の光をそれぞれ透過させるためのフィルタを有しており、かつ、前記被測定液が、前記特定の溶解物の濃度の変化に伴って色相を変化させる場合には、複数の前記領域成分の光について算出された前記吸光度の値を用いて、前記特定の溶解物の濃度を算出するとともに、前記被測定液が前記特定の溶解物の濃度の変化に伴って色相を変化させない場合には、1つの前記領域成分の光について算出された前記吸光度の値を用いて、前記特定の溶解物の濃度を算出する演算処理装置を有していることを特徴とする。 According to a second aspect of the present invention, there is provided a liquid to be measured that is colored by addition of a reagent to the sample or a sample that is colored by a lysate, a liquid to be measured that does not absorb light, Calculated by transmitting light from the light emitter to each other and receiving the transmitted light with a light receiver placed opposite the light emitter so as to sandwich the liquid to be measured. A lysate concentration measuring device that measures the concentration of a specific lysate in the sample based on the absorbance of the transmitted light with respect to the liquid to be measured , wherein the illuminant includes a visible light region. The light receiver emits light, and the light from the light emitter that has passed through the liquid to be measured is obtained by substantially dividing the light in the visible light region into three parts. component of the light, or blue regions ingredient either light Whether the filter for the bulk, or have a filter for transmitting each light in the plurality of regions ingredients a combination thereof, and the measured liquid, with a change in the concentration of the specific lysate In the case of changing the hue, the concentration of the specific lysate is calculated using the absorbance values calculated for the light of the plurality of region components, and the measured liquid is the specific lysate. In the case where the hue does not change with the change in the concentration of the light source, it has an arithmetic processing unit that calculates the concentration of the specific lysate using the absorbance value calculated for the light of one region component. It is characterized by.

この発明の請求項1及び請求項2記載の発明によれば、どのような溶解物の濃度を測定する場合でも、簡単な1組の発光体と受光体があればよく、例えば従来のように、溶解物の種類毎に波長の異なる発光体を使用したり、濃度によって色変わりを生じる溶解物濃度を測定する場合に複数組の発光体や受光体を使用する必要がないので、測定コストの低減や測定装置の小型化を図ることができる。このため、複数の発光体を同時に使用する場合に生じる光の相互干渉を生じさせることもない。また、この発明によれば、発光体は、可視光域を含む光を発すればよく、従来のもののように特定波長の光のみを発する必要がないので、発光体(例えば、LED)の製品ロットによる波長のばらつきや、出力の経時変化による影響を受けにくく、いつも精度の良い測定を行うことができる。   According to the first and second aspects of the present invention, a simple pair of a light emitter and a light receiver is sufficient for measuring the concentration of any lysate. Reduces measurement costs by eliminating the need to use multiple sets of illuminants and photoreceptors when measuring lysates with different wavelengths for each type of lysate, or when measuring lysate concentrations that change color depending on the concentration In addition, the size of the measuring device can be reduced. For this reason, the mutual interference of the light which arises when using several light-emitting body simultaneously is not produced. In addition, according to the present invention, the light emitter need only emit light including a visible light range, and it is not necessary to emit only light of a specific wavelength unlike the conventional one. It is difficult to be affected by wavelength variations among lots and changes in output over time, and can always perform highly accurate measurements.

以下、この発明の実施の形態を図面を参照しつつ説明する。
実施形態1.
図1はこの発明の一実施の形態に係る濃度測定装置の主要部を示しており、図2はこの濃度測定装置の作用説明図である。
Embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1. FIG.
FIG. 1 shows a main part of a concentration measuring apparatus according to an embodiment of the present invention, and FIG. 2 is an explanatory view of the operation of the concentration measuring apparatus.

濃度測定装置1は、例えば、工業用水や生活用水等に溶解する、溶存酸素、リン酸、アルカリ度成分、硬度成分、シリカといった溶解物の濃度を、光の透過率や吸光度を用いて簡便に測定するものである。この濃度測定装置1は、図1及び図2で示されるように、内部に被測定液S1や調整液S0が通される測定セル2と、測定セル2の一方の側面側に設けられ、この測定セル2内に計測用の光を発する発光体3と、測定セル2の他方の側面側に設けられ、この測定セル2を透過した発光体3からの光を受光する受光体4と、発光体3や受光体4に対する入出力部5と、測定セル2に被測定液S1や調整液S0を供給する液供給ライン6と、測定セル2からの被測定液S1や調整液S0を排出する液排出ライン7と、入出力部5からの出力信号(透過光強度信号)が入力される演算処理装置8とを有している。なお、液供給ライン6には、チューブポンプ60とストレーナ61とが設けられている。 The concentration measuring apparatus 1 can be used to easily determine the concentration of a dissolved material such as dissolved oxygen, phosphoric acid, alkalinity component, hardness component, and silica dissolved in industrial water or domestic water, using light transmittance and absorbance. Measure. As shown in FIG . 1 and FIG. 2 , the concentration measuring device 1 is provided on the measurement cell 2 through which the liquid S1 to be measured and the adjustment liquid S0 are passed, and on one side of the measurement cell 2. A light emitter 3 that emits measurement light in the measurement cell 2; a light receiver 4 that is provided on the other side surface of the measurement cell 2 and receives light from the light emitter 3 that has passed through the measurement cell 2; The input / output unit 5 for the body 3 and the light receiving body 4, the liquid supply line 6 for supplying the measurement liquid S1 and the adjustment liquid S0 to the measurement cell 2, and the measurement liquid S1 and the adjustment liquid S0 from the measurement cell 2 are discharged. A liquid discharge line 7 and an arithmetic processing unit 8 to which an output signal (transmitted light intensity signal) from the input / output unit 5 is input are provided. The liquid supply line 6 is provided with a tube pump 60 and a strainer 61.

測定セル2は、図1及び図2で示されるように、左側面部21と右側面部22と前面部と後面部との間に、被測定液S1や調整液S0が通される、一定断面の流路20が形成されているとともに、下面部に、液供給ライン6が連結され、上面部に、液排出ライン7が連結されている。また、測定セル2には、左側面部21と右側面部22の中央部の、互いに対向する位置に、円形の透明部21a,22aが形成されている。そして、例えば、測定セル2の透明部22a側に、発光体3が配置され、この発光体3に対向するように光軸を一致させて、測定セル2の透明部21a側に、受光体4が配置されている。 As shown in FIGS. 1 and 2, the measurement cell 2 has a constant cross section through which the measured liquid S <b> 1 and the adjustment liquid S <b> 0 are passed between the left side surface portion 21, the right side surface portion 22, the front surface portion, and the rear surface portion. While the flow path 20 is formed, the liquid supply line 6 is connected to the lower surface portion, and the liquid discharge line 7 is connected to the upper surface portion. Further, in the measurement cell 2, circular transparent portions 21 a and 22 a are formed at positions facing each other in the central portion of the left side surface portion 21 and the right side surface portion 22. Then, for example, the light emitter 3 is disposed on the transparent portion 22a side of the measurement cell 2, the optical axes are aligned so as to face the light emitter 3, and the light receiver 4 is disposed on the transparent portion 21a side of the measurement cell 2. Is arranged.

発光体3は、測定セルG内に光を発し、この光を、測定セル2内の被測定液S1中や調整液S0中に透過させるものである。この発光体3には、可視光域を含んだ光(白色光)を発する、例えば、発光ダイオード(LED)のような光源が使用される。   The illuminant 3 emits light into the measurement cell G and transmits this light into the measured liquid S1 and the adjustment liquid S0 in the measurement cell 2. For the light emitter 3, a light source such as a light emitting diode (LED) that emits light including white light (white light) is used.

受光体4は、発光体3から発せられ、測定セル2を介して、被測定液S1中や調整液S0中を透過した透過光を受光して、これらの透過光の強度を計測するものである。この受光体4は、3つのフォトダイオードと、可視光域の光の波長帯を略3分割して得られる、レッド領域成分の光(以下赤色帯域光という)、グリーン領域成分の光(以下緑色帯域光という)、又はブルー領域成分の光(以下青色帯域光という)のみをそれぞれ透過させる3つのカラーフィルタF、すなわち、赤色(R)フィルタ、緑色(G)フィルタ、青色(B)フィルタとを有している。すなわち、この受光体4には、Rフィルタを備えたフォトダイオードD1と、Gフィルタを備えたフォトダイオードD2と、Bフィルタを備えたフォトダイオードD3とを有したRGBカラーセンサが使用されており(図3参照)、この受光体4により、被測定液S1等を透過した光のうち、各フィルタを透過した赤色帯域光と緑色帯域光と青色帯域光の、それぞれの光の強度が同時に計測される。なお、Rフィルタは、赤色帯域光のうち赤色光を最も透過し、Gフィルタは、緑色帯域光のうち緑色光を最も透過し、Bフィルタは、青色帯域光のうち青色光を最も透過する。 The light receiver 4 receives the transmitted light emitted from the light emitter 3 and transmitted through the measurement cell 2 through the measurement liquid S1 and the adjustment liquid S0, and measures the intensity of the transmitted light. is there. The photoreceptor 4 includes three photodiodes, light of a red region component (hereinafter referred to as red band light), and light of a green region component (hereinafter referred to as green) obtained by substantially dividing the wavelength band of light in the visible light region into three. that band light), or three color filters F which transmits a blue region component light (hereinafter referred to as the blue band light) only, respectively, i.e., red (R) filter, a green (G) filter and a blue (B) filter Have. That is, an RGB color sensor having a photodiode D1 having an R filter, a photodiode D2 having a G filter, and a photodiode D3 having a B filter is used for the photoreceptor 4. 3), the light intensity of each of the red band light, the green band light, and the blue band light transmitted through each filter among the light transmitted through the liquid S1 to be measured is measured simultaneously. The The R filter transmits most red light in the red band light, the G filter transmits most green light in the green band light, and the B filter transmits blue light most in the blue band light.

入出力部5は、発光体3と受光体4用の制御回路を備えている。図3は発光体3と受光体4とを含めた入出力部5内の回路図である。図中、符号D1は、Rフィルタを備えたフォトダイオードであり、符号D2は、Gフィルタを備えたフォトダイオードであり、符号D3は、Bフィルタを備えたフォトダイオードであり、これらが一体になって、受光体4を形成している。また、図中、符号Lは、発光体3となる発光ダイオード(LED)であり、符号C1,C2,C3は、各フォトダイオードD1,D2,D3用の主回路であり、符号O1,O2,O3は、各フォトダイオードD1,D2,D3用のオペアンプ(演算増幅器)である。受光体4から出力された各帯域光の透過光強度の信号は、オペアンプO1,O2,O3を通って、演算処理装置8に伝達される。   The input / output unit 5 includes a control circuit for the light emitter 3 and the light receiver 4. FIG. 3 is a circuit diagram in the input / output unit 5 including the light emitter 3 and the light receiver 4. In the figure, reference sign D1 is a photodiode having an R filter, reference sign D2 is a photodiode having a G filter, reference sign D3 is a photodiode having a B filter, and these are integrated. Thus, the photoreceptor 4 is formed. Further, in the figure, symbol L is a light emitting diode (LED) that becomes the light emitter 3, symbols C1, C2, and C3 are main circuits for the photodiodes D1, D2, and D3, and symbols O1, O2, and so on. O3 is an operational amplifier (operational amplifier) for each of the photodiodes D1, D2, and D3. A signal of transmitted light intensity of each band light output from the light receiving body 4 is transmitted to the arithmetic processing unit 8 through the operational amplifiers O1, O2, and O3.

演算処理装置8は、受光体4から出力された、赤色帯域光と緑色帯域光と青色帯域光の光の強度信号に基づいて、各帯域光についての時間平均強度を算出したり、特定色が吸収された光の透過光強度と吸収のない光の透過光強度とを用いて、赤色帯域光と緑色帯域光と青色帯域光の、各吸光度や透過率を算出したり、赤色帯域光と緑色帯域光と青色帯域光の、各吸光度や透過率から溶解物濃度を算出する演算部を有すとともに、溶解物の種類毎に、赤色帯域光と緑色帯域光と青色帯域光の、各吸光度や透過率と溶解物濃度との関係を示す表等を記憶する記憶部や、溶解物濃度等を表示する表示部を有している。   The arithmetic processing unit 8 calculates the time average intensity for each band light based on the intensity signals of the light of the red band light, the green band light, and the blue band light output from the light receiver 4, or the specific color is Using the transmitted light intensity of absorbed light and the transmitted light intensity of non-absorbed light, the absorbance and transmittance of red band light, green band light and blue band light can be calculated, or red band light and green light can be calculated. It has a calculation unit that calculates the concentration of lysate from each absorbance and transmittance of band light and blue band light, and for each type of lysate, each absorbance of red band light, green band light, and blue band light It has a memory | storage part which memorize | stores the table | surface etc. which show the relationship between the transmittance | permeability and a melt | dissolution density | concentration, and a display part which displays a melt | dissolution density | concentration etc.

つぎに、この濃度測定装置1を用いて試料中の溶解物(例えば、リン酸イオン)の濃度を測定する手順について説明する。
まず、リン酸3ナトリウム(Na3PO4)を溶解した一定量(40mL)の試料に、試薬(モリブデン酸アンモニウムとアステル酸の混合液)を一定量(例えば4mL)添加後、この試料を、20〜40℃の状態で約15分間放置し充分に発色させて、被測定液S1を作る。この場合、被測定液S1の色は、溶解物(リン酸イオン)の濃度によって濃淡が異なる。
Next, a procedure for measuring the concentration of dissolved matter (for example, phosphate ions) in the sample using the concentration measuring apparatus 1 will be described.
First, after adding a certain amount (for example, 4 ml) of a reagent (a mixture of ammonium molybdate and astellic acid) to a certain amount (40 mL) of a sample in which trisodium phosphate (Na 3 PO 4 ) is dissolved, The solution to be measured S1 is made by allowing the sample to stand for about 15 minutes at 20 to 40 ° C. and causing sufficient color development. In this case, the color of the liquid S1 to be measured varies depending on the concentration of the dissolved substance (phosphate ion).

つづいて、光の吸収が生じない透明な調整液S0(例えば、純水や発色前の透明な試料)を、チューブポンプ50(例えば、EYELA製SMP21)を使用して、液排出ライン6から測定セル2に、10mL/分の流量で3分間程度通水した後、通水を止め、1分間の間、発光体3からの光を、測定セル2の透明部21a,22aを通して、被測定液S1中に照射(発射)させる。このことにより、発光体3からの可視光域を含んだ光は、被測定液S1を透過して受光体4により受光される。この場合、受光体4は、発光体3からの被測定液S1の透過光を、RGBの3つのカラーフィルタFを介して受光するので、受光体4は、可視光域の光の波長帯を略3分割した、赤色帯域光と緑色帯域光と青色帯域光の、それぞれの光の強度を同時に計測する。そして、演算処理装置8は、1分間にわたる受光体4からの出力値を平均して、被測定液S1による光の吸収が無い場合(透過率100%)の、赤色帯域光と緑色帯域光と青色帯域光の、それぞれの平均の光強度を算出する。   Subsequently, a transparent adjustment liquid S0 (for example, pure water or a transparent sample before color development) that does not absorb light is measured from the liquid discharge line 6 using a tube pump 50 (for example, SMP21 manufactured by EYELA). After passing water through the cell 2 at a flow rate of 10 mL / min for about 3 minutes, the water flow was stopped and light from the light emitter 3 was passed through the transparent portions 21a and 22a of the measuring cell 2 for 1 minute. Irradiate (fire) during S1. As a result, the light including the visible light region from the light emitter 3 passes through the liquid S1 to be measured and is received by the light receiver 4. In this case, the light receiver 4 receives the transmitted light of the liquid S1 to be measured from the light emitter 3 through the three color filters F of RGB, so the light receiver 4 has a wavelength band of light in the visible light range. The intensity of each of the red band light, the green band light, and the blue band light divided into approximately three is measured simultaneously. Then, the arithmetic processing unit 8 averages the output values from the photoreceptor 4 over one minute, and the red band light and the green band light when there is no light absorption by the liquid S1 to be measured (transmittance 100%). The average light intensity of each blue band light is calculated.

つぎに、試薬を加えて一定時間放置し、充分に発色した被測定液S1を、上記調整液S0の場合と同様に、測定セル2に10mL/分の流量で3分間通水して、通水を止め、その後1分間の間、発光体3からの光を、被測定液S1中に透過させて、受光体4により受光させる。受光体4は、受光時に、被測定液S1により一部の光の吸収がなされた、赤色帯域光と緑色帯域光と青色帯域光の、それぞれの光の強度を計測する。演算処理装置8は、1分間にわたる受光体4からの出力値を平均して、被測定液S1により一部の光の吸収がなされた、赤色帯域光と緑色帯域光と青色帯域光の、それぞれの平均光強度を算出した後、透過率100%の調整液S0を用いて計測された、赤色帯域光と緑色帯域光と青色帯域光の、それぞれの平均光強度を用いて、赤色帯域光と緑色帯域光と青色帯域光についての、それぞれの吸光度(又は透過率)を算出する。そして、演算処理装置8は、特定の溶解物(リン酸イオン)について記憶している、赤色帯域光と緑色帯域光と青色帯域光についての、それぞれの吸光度(又は透過率)と溶解物の濃度との関係から、試料中の溶解物の濃度を算出して表示する。   Next, the reagent is added and allowed to stand for a certain period of time, and the liquid S1 that has sufficiently developed color is passed through the measuring cell 2 at a flow rate of 10 mL / min for 3 minutes in the same manner as in the case of the adjustment liquid S0. The water is stopped, and light from the light emitter 3 is transmitted through the liquid S1 to be measured and received by the light receiver 4 for one minute thereafter. The light receiver 4 measures the intensity of each of the red band light, the green band light, and the blue band light that has been partially absorbed by the liquid S1 to be measured during light reception. The arithmetic processing unit 8 averages the output values from the photoreceptor 4 over 1 minute, and each of the red band light, the green band light, and the blue band light in which a part of the light is absorbed by the liquid S1 to be measured. After calculating the average light intensity of the red band light, the average light intensity of each of the red band light, the green band light, and the blue band light measured using the adjustment liquid S0 having a transmittance of 100% is used. The respective absorbances (or transmittances) of the green band light and the blue band light are calculated. The arithmetic processing unit 8 stores the absorbance (or transmittance) and the concentration of the lysate for the red band light, the green band light, and the blue band light, which are stored for the specific lysate (phosphate ions). From the relationship, the concentration of the lysate in the sample is calculated and displayed.

ここで、被測定液S1は、例えば、溶解物の濃度に比例するような色の濃さを示しており、発色した色光の補色光を、この濃さに比例する割合で吸収する。したがって、被測定液S1を透過した光のうち、赤色帯域光と緑色帯域光と青色帯域光の、それぞれの吸光度(又は透過率)と、被測定液S1中の溶解物の濃度との関係を事前に求めておけば、被測定液S1を透過した、赤色帯域光と緑色帯域光と青色帯域光の、それぞれの吸光度(又は透過率)により、試料中の溶解物濃度は容易に算出できる。   Here, the liquid S1 to be measured shows, for example, a color depth proportional to the concentration of the dissolved matter, and absorbs the complementary color light of the colored light that has been developed at a rate proportional to this concentration. Therefore, the relationship between the absorbance (or transmittance) of the red band light, the green band light, and the blue band light among the light transmitted through the measured liquid S1 and the concentration of the dissolved substance in the measured liquid S1 is expressed as follows. If obtained in advance, the concentration of the lysate in the sample can be easily calculated from the respective absorbances (or transmittances) of the red band light, the green band light, and the blue band light transmitted through the liquid S1 to be measured.

なお、被測定液S1が、試薬の添加により、例えば黄色に発色している場合は、この被測定液S1は、赤色帯域光と緑色帯域光をほとんど吸収せず、補色光である青色帯域光のみを吸収すると考えられるので、光の強度は、Bフィルタを備えたフォトダイオードにより計測される青色帯域光のみを考慮すればよい。また、被測定液S1が、例えば、青色に発色している場合は、この被測定液S1は青色帯域光をほとんど吸収せず、赤色帯域光と緑色帯域光を吸収すると考えられるので、光の強度は、RフィルタとGフィルタとを備えたフォトダイオードにより計測される赤色帯域光と緑色帯域光の強度を考慮すればよい。   When the liquid S1 to be measured is colored yellow, for example, by adding a reagent, the liquid S1 to be measured hardly absorbs red band light and green band light, and is blue band light that is complementary color light. Therefore, it is necessary to consider only the blue band light measured by the photodiode provided with the B filter. Further, when the liquid S1 to be measured is colored blue, for example, the liquid S1 to be measured hardly absorbs blue band light and absorbs red band light and green band light. The intensity may be determined in consideration of the intensity of red band light and green band light measured by a photodiode having an R filter and a G filter.

また、被測定液S1の色は、例えば、溶解物の濃度に従って、特定色から他の色にしだいに色変わりする場合もある。この場合でも、被測定液S1を透過した、赤色帯域光と緑色帯域光と青色帯域光の、それぞれの吸光度(又は透過率)と、被測定液S1中の溶解物の濃度との関係を事前に求めておけば、被測定液S1を透過した、赤色帯域光と緑色帯域光と青色帯域光の、それぞれの吸光度(又は透過率)により、被測定液S1中の溶解物濃度は容易に算出できる。   Further, the color of the liquid S1 to be measured may change gradually from a specific color to another color, for example, according to the concentration of the dissolved matter. Even in this case, the relationship between the respective absorbances (or transmittances) of the red band light, the green band light, and the blue band light transmitted through the measurement liquid S1 and the concentration of the dissolved substance in the measurement liquid S1 is previously determined. Therefore, the concentration of the dissolved substance in the measured liquid S1 can be easily calculated from the respective absorbances (or transmittances) of the red band light, the green band light, and the blue band light transmitted through the measured liquid S1. it can.

つぎに、濃度測定装置1を用いて試料中の溶解物濃度を測定する方法(以下、濃度測定方法という)の作用効果について説明する。   Next, the function and effect of a method for measuring the concentration of dissolved matter in a sample using the concentration measuring device 1 (hereinafter referred to as a concentration measuring method) will be described.

この濃度測定方法では、受光体4が、被測定液S1を透過した発光体3からの光のうち、可視光域の光の波長帯を略3分割して得られる、赤色帯域光と緑色帯域光と青色帯域光とを受光して、それぞれの光の強度を計測し、このことによって、これらの色帯域光の吸光度(又は透過率)を算出している。このため、この濃度測定方法では、どのような溶解物濃度を測定する場合でも(例えば、被測定液S1の色が何色であっても、又は、被測定液S1の色が、溶解物の濃度の大小によって特定色から他の色に変化する場合でも)、簡単な1組の発光体3と受光体4があればよく、例えば従来のように、溶解物の種類毎に波長の異なる発光体を使用したり、濃度によって色変わりを生じる溶解物濃度を測定する場合に複数組の発光体や受光体を使用する必要がないので、測定コストの低減や測定装置の小型化を図ることができる。このため、複数の発光体を同時に使用する場合に生じる光の相互干渉を生じさせることもない。   In this concentration measurement method, the light-receiving body 4 is obtained by substantially dividing the wavelength band of light in the visible light range out of the light from the light-emitting body 3 that has passed through the liquid S1 to be measured. Light and blue band light are received and the intensity of each light is measured, thereby calculating the absorbance (or transmittance) of these color band lights. For this reason, in this concentration measurement method, no matter what lysate concentration is measured (for example, the color of the liquid S1 to be measured is any color or the color of the liquid S1 to be measured is Even if the density changes from a specific color to another color), a simple pair of light emitters 3 and light receivers 4 is sufficient. For example, as in the past, light emission with different wavelengths for each type of dissolved material. It is not necessary to use multiple sets of light emitters and light receivers when using a body or measuring the concentration of a lysate that changes color depending on the concentration, so that measurement costs can be reduced and the measuring device can be downsized. . For this reason, the mutual interference of the light which arises when using several light-emitting body simultaneously is not produced.

また、この濃度測定方法では、発光体3は、可視光域を含む光を発すればよく、従来のもののように特定波長の光のみを発する必要がないので、発光体(例えば、LED)の製品ロットによる波長のばらつきや、出力の経時変化による影響を受けにくく、この発光体3を用いて、いつも精度の良い測定を行うことができる。   Further, in this concentration measurement method, the light emitter 3 only needs to emit light including a visible light range, and it is not necessary to emit only light of a specific wavelength unlike the conventional one. It is difficult to be affected by variations in wavelength depending on product lots or changes in output over time, and this illuminant 3 can always be used for highly accurate measurements.

また、この濃度測定方法では、発光体3や受光体4の受発光部に汚れや泡等が付着して光の減衰効果が生じても、従来の測定方法で使用される、発光体(特定波長の光を発する)や受光体に比べて、その影響を受けにくく、測定に支障を生じさせにくい。   Further, in this concentration measurement method, even if dirt or bubbles adhere to the light emitting / receiving portions of the light emitting body 3 or the light receiving body 4 to cause a light attenuation effect, the light emitting body (specification used in the conventional measuring method) It emits light of a wavelength) and is less susceptible to the influence of a light receiving body and does not cause trouble in measurement.

なお、受光体4は、被測定液S1の色が、赤色の補色、緑色の補色、又は青色の補色のみを示す場合には、それぞれ、Rフィルタを備えたフォトダイオードD1、Gフィルタを備えたフォトダイオードD2、Bフィルタを備えたフォトダイオードD3のうち、何れか1つを有しておればよい。また、受光体4は、被測定液S1の色が上記3つの補色の中間色を示す場合、Rフィルタを備えたフォトダイオードD1、Gフィルタを備えたフォトダイオードD2、Bフィルタを備えたフォトダイオードD3のうち、何れか2つのものを有しておればよい。   In addition, when the color of the liquid S1 to be measured indicates only a red complementary color, a green complementary color, or a blue complementary color, the light receiving body 4 includes a photodiode D1 and an G filter each including an R filter. Any one of the photodiode D2 and the photodiode D3 including the B filter may be provided. In addition, when the color of the liquid S1 to be measured indicates an intermediate color between the three complementary colors, the photoreceptor 4 includes a photodiode D1 having an R filter, a photodiode D2 having a G filter, and a photodiode D3 having a B filter. It is sufficient to have any two of them.

さらに、受光体4には、RGBカラーセンサ以外に、CCDセンサやCMOSセンサを用いたものであってもよい。   Furthermore, the photoreceptor 4 may be one using a CCD sensor or a CMOS sensor in addition to the RGB color sensor.

また、濃度測定方法に関する以上の説明は、濃度測定装置1についても、同様に当てはまる。   Further, the above description regarding the concentration measuring method applies to the concentration measuring apparatus 1 as well.

さらに、図4で示されるように、液排出ライン6に、ストレーナ61とともに定流量弁62や電磁弁63を設け、これらを使用して、被測定液S1を測定セル2に供給するようにしてもよい。また、図4で示されるように、測定せる2に試薬供給ライン9を設け、ポンプ90を用いて、タンク91中の試薬を直接、測定セル2に供給して、この試薬と液供給ライン6から供給された試料とを測定セル2中で撹拌し、この測定セル2中で、試薬により発色した被測定液S1を作るようにしてもよい。   Further, as shown in FIG. 4, the liquid discharge line 6 is provided with a constant flow valve 62 and an electromagnetic valve 63 together with a strainer 61, and these are used to supply the liquid S1 to be measured to the measurement cell 2. Also good. Also, as shown in FIG. 4, a reagent supply line 9 is provided in 2 that can be measured, and the reagent in the tank 91 is directly supplied to the measurement cell 2 using the pump 90, and this reagent and liquid supply line 6 is supplied. The sample to be measured may be stirred in the measurement cell 2, and the measurement liquid S1 colored by the reagent may be produced in the measurement cell 2.

また、以上の説明では、試料へ試薬を添加することにより、溶解物濃度に従って発色させた被測定液S1について述べているが、試料自身が溶解物により着色し、その濃淡等がこの溶解物濃度に従って定まる場合には、試料自身が被測定液S1となり、試薬の添加は不要である。   In the above description, the liquid S1 to be measured is colored according to the dissolved substance concentration by adding a reagent to the sample. However, the sample itself is colored by the dissolved substance, and the density of the sample is determined by the concentration of the dissolved substance. In this case, the sample itself becomes the liquid S1 to be measured, and it is not necessary to add a reagent.

つぎに、この濃度測定方法による濃度の測定結果と、分光光度計を用いたJIS分析法による濃度の測定結果とを、具体的な測定データを示しつつ比較説明する。なお、この濃度測定方法による測定データは、被測定液S1を透過した発光体3からの光を、この発光体3に対向して置かれた反射板で反射して、この反射光を、被測定液S1中に再度透過させた後、発光体3側にある受光体4で受光して得られたものであるが、光の透過に関するデータとしてはほぼ同一視できるので、この場合の測定データを、この濃度測定方法による測定データとして説明する。
[測定例1]
まず、リン酸イオン濃度の測定について説明する。
Next, the density measurement result by this density measurement method and the density measurement result by the JIS analysis method using a spectrophotometer will be compared and described while showing specific measurement data. Note that the measurement data obtained by this concentration measurement method is that light from the light emitter 3 that has passed through the liquid S1 to be measured is reflected by a reflecting plate placed opposite the light emitter 3, and the reflected light is reflected on the light to be measured. The light is transmitted through the measuring liquid S1 again and then received by the light receiving body 4 on the light emitting body 3 side. However, since the data relating to the light transmission can be almost identical, the measurement data in this case Will be described as measurement data by this concentration measurement method.
[Measurement Example 1]
First, the measurement of phosphate ion concentration will be described.

リン酸3ナトウムを純水に溶解して、リン酸イオン濃度が、0、1、2、3、4、5mg/Lとなるように調整した試料を準備し、これに、JIS8224−1993のモリブデン青(アスコルビン酸還元)吸光光度法(光源の波長は880nm)に基づき、試薬を添加し、この試料を発色させて被測定液S1を作る。つづいて、これらの被測定液S1の吸光度を、同上のJIS8224−1993に基づき、分光光度計(島津製作所製UV1700)を用いて測定した。この場合、参考として、赤色光、緑色光、青色光に対応する、波長が、630nm、550nm、470nmの光源を用いた吸光度の測定も行った。つづいて、これらの被測定液S1の吸光度を、濃度測定装置1を使用した、この濃度測定方法により、赤色帯域光と緑色帯域光と青色帯域光とについて、それぞれ測定した。この場合、測定セル2に試薬添加前の透明な試料を通液した際の発光体3からの光を受光体4で受光した場合の各帯域光の強度を、透過率100%のものとした。この透過率100%に関する測定は、溶解物の複数の濃度に対して1回だけ行ってもよいが、測定精度を上げるためには、濃度毎に行うのがよい。   A sample prepared by dissolving 3 sodium phosphate in pure water and adjusting the phosphate ion concentration to 0, 1, 2, 3, 4, 5 mg / L was prepared. To this, molybdenum according to JIS 8224-1993 was prepared. Based on the blue (ascorbic acid reduction) absorptiometric method (the wavelength of the light source is 880 nm), a reagent is added, and this sample is colored to produce the measurement liquid S1. Subsequently, the absorbance of these liquids S1 to be measured was measured using a spectrophotometer (UV1700, manufactured by Shimadzu Corporation) based on JIS 8224-1993. In this case, as a reference, absorbance was also measured using light sources with wavelengths of 630 nm, 550 nm, and 470 nm corresponding to red light, green light, and blue light. Subsequently, the absorbance of these liquids S1 to be measured was measured for red band light, green band light, and blue band light by this concentration measurement method using the concentration measuring apparatus 1. In this case, the intensity of each band light when the light from the light emitter 3 when the transparent sample before addition of the reagent is passed through the measurement cell 2 is received by the light receiver 4 is assumed to have a transmittance of 100%. . The measurement regarding the transmittance of 100% may be performed only once for a plurality of concentrations of the lysate. However, in order to increase the measurement accuracy, it is preferable to perform the measurement for each concentration.

図5の(a)は、この濃度測定方法と分光光度計を用いた方法とで測定された、種々のリン酸イオン濃度に対する吸光度の値を示している。また、図5の(b)は、この濃度測定方法で測定された赤色帯域光と、分光光度計を用いた方法で測定された、波長が880nmと630nmの光とについての、吸光度とリン酸イオン濃度との関係をグラフで示している。   FIG. 5 (a) shows the absorbance values for various phosphate ion concentrations measured by this concentration measurement method and a method using a spectrophotometer. FIG. 5B shows the absorbance and phosphoric acid for red band light measured by this concentration measurement method and light having wavelengths of 880 nm and 630 nm measured by a method using a spectrophotometer. The relationship with the ion concentration is shown in a graph.

図5の(a)から、分光光度計を用いた方法では、光源の波長が880nm(赤外光)の場合に、リン酸イオン濃度に対して吸光度の変化が大きく、特定の光源を1つ選択する場合には、波長が880nmの光源を選択することが好ましいことがわかる。また、図5の(a)から、この濃度測定方法では、赤色帯域光の場合が、緑色帯域光や青色帯域光の場合に比べて、リン酸イオン濃度に対して吸光度の変化が大きく、特定の帯域光を1つ選択する場合には、赤色帯域光を選択することが好ましいことがわかる。また、図5の(b)から、赤色帯域光や波長が630nmの光の場合でも、リン酸イオン濃度に対する吸光度の変化が大きい(グラフの傾きが大きい)ので、これらの光を用いた場合でも、リン酸イオン濃度の測定に支障がないことがわかる。なお、赤色帯域光の場合は、波長が630nmよりも長い波長領域の光の影響をうけることにより、波長が630nmの光の場合より、吸光度の変化が大きくなっていると考えられる。   From FIG. 5A, in the method using the spectrophotometer, when the wavelength of the light source is 880 nm (infrared light), the change in absorbance is large with respect to the phosphate ion concentration, and one specific light source is used. When selecting, it turns out that it is preferable to select the light source whose wavelength is 880 nm. Further, from FIG. 5 (a), in this concentration measurement method, the change in absorbance with respect to the phosphate ion concentration is larger in the case of red band light than in the case of green band light or blue band light, and thus the specific measurement. It is understood that it is preferable to select red band light when selecting one of the band lights. Further, from FIG. 5B, even in the case of red band light or light having a wavelength of 630 nm, the change in absorbance with respect to the phosphate ion concentration is large (the slope of the graph is large), so even when these lights are used. It can be seen that there is no hindrance in the measurement of the phosphate ion concentration. In the case of red band light, it is considered that the change in absorbance is larger than that in the case of light having a wavelength of 630 nm due to the influence of light in a wavelength region longer than 630 nm.

[測定例2]
つぎに、カルシウム硬度の測定について説明する。なお、カルシウム硬度成分が溶解している試料は、試薬(トリエタノールアミン80%、エタノール20%、エリオクロムブラックT0.025%)を添加すると発色するが、その色は、硬度の値(濃度)によって変化する。
[Measurement Example 2]
Next, measurement of calcium hardness will be described. The sample in which the calcium hardness component is dissolved develops color when a reagent (triethanolamine 80%, ethanol 20%, Eriochrome Black T 0.025%) is added, but the color is a hardness value (concentration). It depends on.

塩化カルシウム2水和物を純水に溶解して、カルシウム硬度として、0、2、5、10mgCaCO3/Lに調整した試料を準備し、これらの試料50mgに4mgの試薬を添加し、充分に撹拌・発色させて被測定液S1を作る。つぎに、これらの被測定液S1の吸光度を、波長が、630nm、550nm、470nmの光を用いて、分光光度計(島津製作所製UV1700)により測定した。つづいて、これらの被測定液S1の吸光度を、濃度測定装置1を使用した、この濃度測定方法により、赤色帯域光と緑色帯域光と青色帯域光とについて、それぞれ測定した。この場合、測定セル2に試薬添加前の透明な試料を通液した際の発光体3からの光を受光体4で受光した場合の各帯域光強度を、透過率100%のものとした。   Prepare samples prepared by dissolving calcium chloride dihydrate in pure water and adjusting the calcium hardness to 0, 2, 5, 10 mg CaCO3 / L, add 4 mg of reagent to 50 mg of these samples, and stir well -Color development is performed to make the liquid S1 to be measured. Next, the absorbance of these liquids S1 to be measured was measured with a spectrophotometer (UV1700 manufactured by Shimadzu Corporation) using light with wavelengths of 630 nm, 550 nm, and 470 nm. Subsequently, the absorbance of these liquids S1 to be measured was measured for red band light, green band light, and blue band light by this concentration measurement method using the concentration measuring apparatus 1. In this case, the light intensity of each band when the light from the light emitter 3 when the transparent sample before addition of the reagent was passed through the measurement cell 2 was received by the light receiver 4 was assumed to have a transmittance of 100%.

図6の(a)は、この濃度測定方法と分光光度計を用いた方法とで測定された、種々のカルシウム硬度に対する吸光度を示し、図6の(b)は、この濃度測定方法と分光光度計を用いた方法で測定された吸光度と、カルシウム硬度との関係をグラフで示している。     FIG. 6A shows the absorbance for various calcium hardnesses measured by this concentration measurement method and a method using a spectrophotometer, and FIG. 6B shows the concentration measurement method and the spectrophotometer. The graph shows the relationship between the absorbance measured by a method using a meter and the calcium hardness.

図6の(b)から、分光光度計を用いた方法では、波長が630nmの光の場合、カルシウム硬度の上昇に対し吸光度が減少するようにグラフN1が変化し、波長が550nmの光の場合、カルシウム硬度の上昇に対し吸光度が上昇するようにグラフN2が変化し、かつ、カルシウム硬度が一定値を超えると、グラフN1とグラフN2とが交差して、波長550nmの光の吸光度が波長630nmの光の吸光度より大きくなることが分かる。一方、この濃度測定方法でも、吸光度のグラフに関して、赤色帯域光の場合のグラフM1をグラフN1に近づけることができ、緑色帯域光の場合のグラフM2をグラフN2に近づけることができるので、事前にカルシウム硬度に関する吸光度の検量グラフを赤色帯域光と緑色帯域光について作成しておけば、赤色帯域光と緑色帯域光の各吸光度から、カルシウム濃度を容易に算出できる。なお、(赤色帯域光の吸光度/緑色帯域光の吸光度)の値とと、カルシウム硬度との関係を示す検量グラフを作成しておけば、これらの帯域光の吸光度の比の値を求めることにより、カルシウム硬度を簡易に算出できる。   From FIG. 6B, in the method using a spectrophotometer, in the case of light having a wavelength of 630 nm, the graph N1 changes so that the absorbance decreases with an increase in calcium hardness, and in the case of light having a wavelength of 550 nm. When the graph N2 changes so that the absorbance increases as the calcium hardness increases, and the calcium hardness exceeds a certain value, the graph N1 and the graph N2 intersect, and the absorbance of light having a wavelength of 550 nm is 630 nm. It turns out that it becomes larger than the light absorbency of. On the other hand, even in this concentration measurement method, regarding the absorbance graph, the graph M1 in the case of red band light can be brought closer to the graph N1, and the graph M2 in the case of green band light can be brought closer to the graph N2. If a calibration graph of absorbance relating to calcium hardness is prepared for red band light and green band light, the calcium concentration can be easily calculated from the respective absorbances of red band light and green band light. In addition, if a calibration graph showing the relationship between the value of (absorbance of red band light / absorbance of green band light) and calcium hardness is prepared, the ratio value of the absorbance of these band lights is obtained. The calcium hardness can be calculated easily.

実施形態2.
ところで、濃度測定装置1は、被検出液S2の色調(色合い)を検出する場合にも使用できる。そこで、以下に、この濃度測定装置1と同様な色調検出装置1Aを使用した、被検出液S2の色調の検出方法(以下、色調検出方法という)について説明する。なお、色調検出装置1Aについて、濃度測定装置1と同一機能を有する部分には同一符号を付し、その説明を省略する。
Embodiment 2. FIG.
By the way, the concentration measuring apparatus 1 can also be used when detecting the color tone (hue) of the liquid S2 to be detected. Therefore, a method for detecting a color tone of the liquid S2 to be detected (hereinafter referred to as a color tone detection method) using the same color tone detection device 1A as the concentration measuring device 1 will be described below. In the color tone detection apparatus 1A, parts having the same functions as those of the density measurement apparatus 1 are denoted by the same reference numerals, and description thereof is omitted.

まず、色調検出装置1Aと濃度測定装置1との違いについて説明する。
色調検出装置1Aは、種々の色調を検出する必要があることから、その受光体4は、例えば、Rフィルタを備えたフォトダイオードD1と、Gフィルタを備えたフォトダイオードD2と、Bフィルタを備えたフォトダイオードD3の、3つのフォトダイオードを有している必要がある。また、色調検出装置1Aの演算処理装置8Aは、被検出液S2の種々の色調に対して、赤色帯域光と緑色帯域光と青色帯域光の、各吸光度や透過率との関係を示す表等を記憶する記憶部と、受光体4から出力された、赤色帯域光と緑色帯域光と青色帯域光の、各光強度信号に基づいて、時間平均の光強度を算出したり、特定色が吸収された光の強度と吸収のない光の強度(代表的な値を記憶しておいてもよい)とを用いて、赤色帯域光と緑色帯域光と青色帯域光の、各吸光度や透過率を算出する演算部と、赤色帯域光と緑色帯域光と青色帯域光の、各吸光度や透過率に基づいて、被検出液S2の色調を上記記憶部から選択する選択部と、選択された色調を色番号や色見本等で表示する表示部とを有している。
First, the difference between the color tone detection device 1A and the density measurement device 1 will be described.
Since the color tone detecting device 1A needs to detect various color tones, the photoreceptor 4 includes, for example, a photodiode D1 having an R filter, a photodiode D2 having a G filter, and a B filter. It is necessary to have three photodiodes D3. Further, the arithmetic processing unit 8A of the color tone detection device 1A has a table showing the relationship between the absorbance and transmittance of the red band light, the green band light, and the blue band light with respect to various color tones of the liquid S2 to be detected. Based on the light intensity signals of the red band light, the green band light, and the blue band light output from the light receiving body 4 and calculating the time average light intensity or absorbing the specific color Using the intensity of the emitted light and the intensity of the light without absorption (which may store a representative value), the absorbance and transmittance of each of the red band light, the green band light, and the blue band light are calculated. A calculation unit that calculates, a selection unit that selects the color tone of the liquid S2 to be detected from the storage unit based on the absorbance and transmittance of the red band light, the green band light, and the blue band light; and the selected color tone And a display unit for displaying color numbers and color samples.

なお、色調検出装置1Aが特定色調の検出に特化されている場合には、演算処理装置8Aは、赤色帯域光と緑色帯域光と青色帯域光について、吸光度や透過率を算出せず、それぞれの光の強度につき一定の演算(例えば、赤色帯域光強度/緑色帯域光強度、赤色帯域光強度/青色帯域光強度など)を行って、その演算値をもとに、被検出液が特定色調をしているか否かの検出を行うようにしてもよい。   In addition, when the color tone detection device 1A is specialized in detecting a specific color tone, the arithmetic processing device 8A does not calculate the absorbance and the transmittance for the red band light, the green band light, and the blue band light, respectively. A certain calculation (for example, red band light intensity / green band light intensity, red band light intensity / blue band light intensity, etc.) is performed for each light intensity, and the detected liquid has a specific color tone based on the calculated values. It may also be possible to detect whether or not

この色調検出方法では、測定セル2に通された後、測定セル2中で静止した被検出液S2に、発光体3からの光を当てて透過させ、一部の光が被検出液S2に吸収された透過光を、受光体4にて受光することにより、被検出液S2の色調を検出する。この場合、受光体4は、被測定液S1を透過した発光体3からの光のうち、可視光域の光の波長帯を略3分割して得られる、赤色帯域光と緑色帯域光と青色帯域光とを受光して、それぞれの光の強度を計測する。このため、この色調検出方法では、どのような色調を検出する場合でも、又は、時間とともに変化する色調を検出する場合でも、簡単な1組の発光体3と受光体4があればよく、検出する色調の数によって波長の違う複数の発光体を用いる必要がないので、検出コストの低減や検出装置の小型化を図ることができる。このため、複数の発光体を同時に使用する場合に生じる光の相互干渉を生じさせることもない。   In this color tone detection method, after passing through the measurement cell 2, the light to be detected S2 that is stationary in the measurement cell 2 is made to pass through the light from the light emitter 3, and a part of the light passes through the liquid S2 to be detected. The absorbed transmitted light is received by the photoreceptor 4 to detect the color tone of the liquid S2 to be detected. In this case, the light receiver 4 is obtained by substantially dividing the wavelength band of light in the visible light region out of the light from the light emitter 3 that has passed through the liquid S1 to be measured. Band light is received and the intensity of each light is measured. For this reason, in this color tone detection method, no matter what color tone is detected or when a color tone that changes with time is detected, a simple set of light emitter 3 and light receiver 4 is sufficient. Since it is not necessary to use a plurality of light emitters having different wavelengths depending on the number of color tones, the detection cost can be reduced and the size of the detection apparatus can be reduced. For this reason, the mutual interference of the light which arises when using several light-emitting body simultaneously is not produced.

また、この色調検出方法では、発光体3は、可視光域を含む光を発すればよく、特定波長の光のみを発する必要がないので、発光体(例えば、LED)の製品ロットによる波長のばらつきや、出力の経時変化による影響を受けにくく、この発光体3を用いて、いつも精度の良い測定を行うことができる。   Further, in this color tone detection method, the light emitter 3 only needs to emit light including a visible light range, and it is not necessary to emit only light of a specific wavelength. It is difficult to be affected by variations and changes in output with time, and this illuminant 3 can always be used for accurate measurement.

さらに、この色調検出方法では、発光体3や受光体4の受発光部に汚れや泡等が付着して光の減衰効果が生じても、従来の測定方法で使用される、発光体(特定波長の光を発する)や受光体に比べて、その影響を受けにくく、測定に支障を生じさせにくい。   Further, in this color tone detection method, even if dirt or bubbles adhere to the light emitting / receiving portions of the light emitting body 3 or the light receiving body 4 to cause a light attenuation effect, the light emitting body (specification used in the conventional measuring method) It emits light of a wavelength) and is less susceptible to the influence of a light receiving body and does not cause trouble in measurement.

なお、色調検出方法に関する以上の説明は、色調測定装置1Aについても、同様に当てはまる。   In addition, the above description regarding the color tone detection method is similarly applied to the color tone measuring apparatus 1A.

また、受光体4は、RGBカラーセンサ以外に、CCDセンサやCMOSセンサを用いたものであってもよく、色フィルタについても、赤、青、緑以外の帯域のものを用いても同様な効果を得ることができる。   The photoreceptor 4 may be one using a CCD sensor or a CMOS sensor in addition to the RGB color sensor, and the same effect can be obtained even if a color filter having a band other than red, blue, or green is used. Can be obtained.

さらに、この色調検出方法により、着色液(例えば、不凍液)のプロセス側へのリーク検知や、染色工場、食品工場(お茶など)、メッキ工場、塗装ブースなどの排水処理水の管理や、紙パルプ工場におけるスメルト溶解液(緑液)のクラリファイヤー処理(清澄処理)時の良不良(良好なら、上澄み液は緑色を呈するが、不良(不十分)なら、緑色から赤味を帯びるように変色してくる)の検知等を容易に行うことができる。   Furthermore, this color tone detection method detects leaks of colored liquids (for example, antifreeze liquid) to the process side, manages wastewater treatment water from dyeing factories, food factories (such as tea), plating factories, painting booths, and paper pulp. Good and bad during clarifier treatment (clarification treatment) of the smelt solution (green liquor) in the factory (if it is good, the supernatant liquid is green, but if it is poor (insufficient), the color changes from green to reddish Etc.) can be easily detected.

この発明の一実施の形態に係る濃度測定装置の全体構成を示す図である。It is a figure which shows the whole structure of the density | concentration measuring apparatus which concerns on one embodiment of this invention. 濃度測定装置の作用説明図である。It is operation | movement explanatory drawing of a density | concentration measuring apparatus. 入出力部内等の電気配線図である。It is an electrical wiring diagram in the input / output part. 他の濃度測定装置の説明図である。It is explanatory drawing of another density | concentration measuring apparatus. 濃度測定装置を使用した場合と分光光度計を使用した場合における、リン酸イオン濃度に対する吸光度の測定値を示す図であり、(a)はリン酸イオン濃度と吸光度の値とを表にまとめたものであり、(b)はリン酸イオン濃度と吸光度との関係をグラフで示したものである。It is a figure which shows the measured value of the light absorbency with respect to the phosphate ion concentration when using the concentration measuring device and when using the spectrophotometer, and (a) summarizes the phosphate ion concentration and the absorbance value in a table. (B) is a graph showing the relationship between phosphate ion concentration and absorbance. 濃度測定装置を使用した場合と分光光度計を使用した場合における、カルシウム硬度に対する吸光度の測定値を示す図であり、(a)はカルシウム硬度と吸光度の値とを表にまとめたものであり、(b)はカルシウム硬度と吸光度との関係をグラフで示したものである。である。It is a figure showing the measured value of absorbance with respect to calcium hardness when using a concentration measuring device and when using a spectrophotometer, (a) is a table summarizing the values of calcium hardness and absorbance, (B) is a graph showing the relationship between calcium hardness and absorbance. It is.

符号の説明Explanation of symbols

1 濃度測定装置
1A 色調測定装置
3 発光体
4 受光体
F フィルタ
S1 被測定液
S2 被検出液
DESCRIPTION OF SYMBOLS 1 Density measuring device 1A Color tone measuring device 3 Light emitter 4 Light receiver F Filter
S1 liquid to be measured
S2 liquid to be detected

Claims (2)

試料への試薬の添加により発色した被測定液又は溶解物によって着色している試料である被測定液と、光の吸収のない透明な被測定液とに発光体からの光を透過させ、これらの透過光を、前記被測定液を挟むように、前記発光体に対向して置かれた受光体にてそれぞれ受光することにより算出される、発色又は着色している前記被測定液に対する前記透過光の吸光度に基づいて、前記試料中の特定の溶解物の濃度を測定する溶解物濃度の測定方法であって、
前記発光体は可視光域を含んだ光を発するとともに、前記受光体は、前記被測定液を透過した前記発光体からの光のうち、前記可視光域の光を略3分割して得られる、レッド領域成分の光、グリーン領域成分の光、又はブルー領域成分の光の何れかを受光するか、又はこれらを組み合わせた複数の前記領域成分の光をそれぞれ受光し、
かつ、前記被測定液が、前記特定の溶解物の濃度の変化に伴って色相を変化させる場合には、複数の前記領域成分の光について算出された前記吸光度の値を用いて、前記特定の溶解物の濃度を算出するとともに、前記被測定液が前記特定の溶解物の濃度の変化に伴って色相を変化させない場合には、1つの前記領域成分の光について算出された前記吸光度の値を用いて、前記特定の溶解物の濃度を算出することを特徴とする溶解物濃度の測定方法。
And the measured fluid in the sample that are colored with test solution or lysates colored by the addition of a reagent to the sample, by transmitting light from the light emitters and no absorption of light transparent target solution, these The transmitted light with respect to the liquid to be measured, which is colored or colored, is calculated by receiving each of the transmitted light with a light receiving body placed facing the light emitter so as to sandwich the liquid to be measured. A lysate concentration measurement method for measuring a concentration of a specific lysate in the sample based on light absorbance ,
The light emitter emits light including a visible light region, and the light receiver is obtained by substantially dividing the light in the visible light region out of light from the light emitter transmitted through the liquid to be measured. Receiving either the light of the red region component, the light of the green region component, or the light of the blue region component, or each of the plurality of region components that is a combination thereof ,
And when the liquid to be measured changes the hue with a change in the concentration of the specific dissolved matter, the specific absorbance is calculated using the absorbance values calculated for the light of the plurality of region components. When calculating the concentration of the lysate and the liquid to be measured does not change the hue with a change in the concentration of the specific lysate, the absorbance value calculated for the light of one region component is calculated. A method for measuring a concentration of a lysate , wherein the concentration of the specific lysate is calculated .
試料への試薬の添加により発色した被測定液又は溶解物によって着色している試料である被測定液と、光の吸収のない透明な被測定液とに発光体からの光を透過させ、これらの透過光を、前記被測定液を挟むように、前記発光体に対向して置かれた受光体にてそれぞれ受光することにより算出される、発色又は着色している前記被測定液に対する前記透過光の吸光度に基づいて、前記試料中の特定の溶解物の濃度を測定する溶解物濃度の測定装置であって、
前記発光体は可視光域を含んだ光を発するとともに、前記受光体は、前記被測定液を透過した前記発光体からの光のうち、前記可視光域の光を略3分割して得られる、レッド領域成分の光、グリーン領域成分の光、又はブルー領域成分の光の何れかを透過させるためのフィルタか、又はこれらを組み合わせた複数の領域成分の光をそれぞれ透過させるためのフィルタを有しており、
かつ、前記被測定液が、前記特定の溶解物の濃度の変化に伴って色相を変化させる場合には、複数の前記領域成分の光について算出された前記吸光度の値を用いて、前記特定の溶解物の濃度を算出するとともに、前記被測定液が前記特定の溶解物の濃度の変化に伴って色相を変化させない場合には、1つの前記領域成分の光について算出された前記吸光度の値を用いて、前記特定の溶解物の濃度を算出する演算処理装置を有していることを特徴とする溶解物濃度の測定装置。
And the measured fluid in the sample that are colored with test solution or lysates colored by the addition of a reagent to the sample, by transmitting light from the light emitters and no absorption of light transparent target solution, these The transmitted light with respect to the liquid to be measured, which is colored or colored, is calculated by receiving each of the transmitted light with a light receiving body placed facing the light emitter so as to sandwich the liquid to be measured. A lysate concentration measuring device that measures the concentration of a specific lysate in the sample based on light absorbance ,
The light emitter emits light including a visible light region, and the light receiver is obtained by substantially dividing the light in the visible light region out of light from the light emitter transmitted through the liquid to be measured. , have a filter for transmitting light in the red region component, the green region component light, or blue region component or filter for transmitting any of the light, or light of a plurality of regions ingredient in combination with their respective And
And when the liquid to be measured changes the hue with a change in the concentration of the specific dissolved matter, the specific absorbance is calculated using the absorbance values calculated for the light of the plurality of region components. When calculating the concentration of the lysate and the liquid to be measured does not change the hue with a change in the concentration of the specific lysate, the absorbance value calculated for the light of one region component is calculated. A device for measuring the concentration of a lysate , comprising an arithmetic processing unit for calculating the concentration of the specific lysate .
JP2008329877A 2008-12-25 2008-12-25 Method and apparatus for measuring lysate concentration Active JP5401978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008329877A JP5401978B2 (en) 2008-12-25 2008-12-25 Method and apparatus for measuring lysate concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008329877A JP5401978B2 (en) 2008-12-25 2008-12-25 Method and apparatus for measuring lysate concentration

Publications (2)

Publication Number Publication Date
JP2010151605A JP2010151605A (en) 2010-07-08
JP5401978B2 true JP5401978B2 (en) 2014-01-29

Family

ID=42570878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008329877A Active JP5401978B2 (en) 2008-12-25 2008-12-25 Method and apparatus for measuring lysate concentration

Country Status (1)

Country Link
JP (1) JP5401978B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034236A1 (en) * 2018-08-16 2020-02-20 南京福碧源环境技术有限公司 Water hardness detection system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5648759B2 (en) * 2013-02-22 2015-01-07 栗田工業株式会社 Method for measuring lysate concentration
JP6115199B2 (en) * 2013-03-11 2017-04-19 栗田工業株式会社 Determination method of fat-soluble component content of microalgae and culture method of microalgae
CN106885802A (en) * 2015-12-16 2017-06-23 范石军 The real-time monitoring system of the antibiotic residue of sewage discharge in a kind of breeding process
CN106404681A (en) * 2016-11-10 2017-02-15 李秀超 Water quality detection method and system
CN107764750B (en) * 2017-10-18 2021-03-16 西安鹿谱工控有限公司 Non-contact type chromaticity detection device and detection method
JP2019215298A (en) * 2018-06-14 2019-12-19 栗田工業株式会社 Measurement method and measurement device for residual chlorine concentration
JP7262110B2 (en) 2019-07-04 2023-04-21 株式会社岐阜多田精機 redox flow battery
JP7070612B2 (en) * 2020-07-02 2022-05-18 栗田工業株式会社 Green liquid treatment method, green liquid treatment management system
JP7290783B1 (en) 2022-11-14 2023-06-13 松田産業株式会社 metal recovery system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54148586A (en) * 1978-05-15 1979-11-20 Minolta Camera Co Ltd Jaundice meter
JPS6431037A (en) * 1987-07-28 1989-02-01 Mitsui Constr Apparatus for discriminating kind of oil feed through oil feed pipe
JPH03220445A (en) * 1990-01-24 1991-09-27 Internatl Reagents Corp Analyzing method of inspection of component by test paper
JPH04142447A (en) * 1990-10-02 1992-05-15 Ishikawajima Harima Heavy Ind Co Ltd Lubricant monitoring device
JPH09503854A (en) * 1993-07-26 1997-04-15 バイオテクトロニックス インコーポレイテッド Colorimetric titration method and device
JPH07306094A (en) * 1994-03-18 1995-11-21 Tokai Senko Kk Measuring instrument of degree of stain of factory drain
JP3095954B2 (en) * 1994-08-31 2000-10-10 富士電機株式会社 Tap water color and turbidity detector
FR2738065B1 (en) * 1995-08-21 1997-11-07 Inst Francais Du Petrole IMPROVED DEVICE AND METHOD FOR OPTICALLY MEASURING CHARACTERISTICS OF A SUBSTANCE
JPH09308624A (en) * 1996-05-23 1997-12-02 Minolta Co Ltd Attachment for concentration measuring instrument and concentration measuring system
JP3589530B2 (en) * 1996-08-08 2004-11-17 株式会社リコー Liquid concentration correction device
JPH11258048A (en) * 1998-03-09 1999-09-24 Shinko Electric Co Ltd Coloring degree measuring method for solution
JPH11344382A (en) * 1998-06-02 1999-12-14 Shinko Electric Co Ltd Method for measuring tinted degree of solution
JP3882347B2 (en) * 1998-07-03 2007-02-14 神鋼電機株式会社 Measuring method of light transmittance of liquid
US6875414B2 (en) * 2002-01-14 2005-04-05 American Air Liquide, Inc. Polysulfide measurement methods using colormetric techniques
US6872545B2 (en) * 2003-03-20 2005-03-29 Dade Behring Inc. Microbiological analyzer using colorimetric means for biochemical color and growth determinations
JP4622623B2 (en) * 2005-03-29 2011-02-02 三浦工業株式会社 Optical measuring device
JP2007003202A (en) * 2005-06-21 2007-01-11 Cti Science System Co Ltd Coloration monitoring method and coloration monitoring device of sewage treated water
JP2007033036A (en) * 2005-07-22 2007-02-08 Taiheiyo Cement Corp Method for quantifying substance in solution and alkali/silica reactivity testing method of aggregate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034236A1 (en) * 2018-08-16 2020-02-20 南京福碧源环境技术有限公司 Water hardness detection system

Also Published As

Publication number Publication date
JP2010151605A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5401978B2 (en) Method and apparatus for measuring lysate concentration
JP5777848B2 (en) Method and apparatus for measuring lysate concentration
US7400407B2 (en) Meter for measuring the turbidity of fluids using reflected light
WO2014129365A1 (en) Method for measuring dissolved-substance concentration
CN109655110A (en) Composite package LED light source and water monitoring device based on the light source
US9696261B2 (en) Multi-channel device and method for measuring optical properties of a liquid
US20060198761A1 (en) Portable multi-channel device for optically testing a liquid sample
US20050200848A1 (en) Ozone concentration sensor
CN110672523A (en) Turbidity sensor
US10788416B2 (en) Multiple wavelength light source for colorimetric measurement
JP2018080990A (en) Concentration measurement system
JP2009300337A (en) Fluid detection sensor
CN209387061U (en) Composite package LED light source and water monitoring device based on the light source
US20090087191A1 (en) Color sensors using polarimetric techniques
US20140329330A1 (en) Soil testing systems and methods thereof
WO2007038120A2 (en) Light returning target for a photometer
CN103217392A (en) Food safety inspection device and food safety inspection method of photoelectric colorimetry based on colored light detector
US6304327B1 (en) Method and apparatus for photometric analysis of chlorine dioxide solutions
Samah et al. Sensing mechanism of water turbidity using LED for in situ monitoring system
US20150316486A1 (en) Method for automatically measuring concentration of dissolved substance
US10591411B1 (en) Wideband optical sensor and use thereof in dispensing systems
JP6322953B2 (en) Silica concentration measuring device
JPS58178243A (en) Optical apparatus for measuring suspended substance concentration
CN105738298B (en) A kind of aqueous solution turbidimetry method and device based on chromaticity coordinates value
CN105372239B (en) Urine desiccation analytical equipment and analysis method based on optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5401978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250