JP5400682B2 - Exhaust flow control valve sliding part structure - Google Patents

Exhaust flow control valve sliding part structure Download PDF

Info

Publication number
JP5400682B2
JP5400682B2 JP2010076614A JP2010076614A JP5400682B2 JP 5400682 B2 JP5400682 B2 JP 5400682B2 JP 2010076614 A JP2010076614 A JP 2010076614A JP 2010076614 A JP2010076614 A JP 2010076614A JP 5400682 B2 JP5400682 B2 JP 5400682B2
Authority
JP
Japan
Prior art keywords
valve
valve body
flow control
exhaust
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010076614A
Other languages
Japanese (ja)
Other versions
JP2011208566A (en
Inventor
浩一 椎野
大輔 桐生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010076614A priority Critical patent/JP5400682B2/en
Publication of JP2011208566A publication Critical patent/JP2011208566A/en
Application granted granted Critical
Publication of JP5400682B2 publication Critical patent/JP5400682B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Silencers (AREA)

Description

本発明は、内燃機関(エンジン)の排気通路に設けられ、前記排気通路を流通する排気ガスの流量を制御することが可能な排気流量制御弁の摺動部構造に関する。   The present invention relates to a sliding portion structure of an exhaust flow rate control valve provided in an exhaust passage of an internal combustion engine (engine) and capable of controlling the flow rate of exhaust gas flowing through the exhaust passage.

従来から、例えば、自動車のエンジンの排気通路中に開閉弁を配設し、ばねで閉弁方向に付勢された前記開閉弁によって、前記排気通路を流通する排気ガスの流量を制御することが行われている。例えば、特許文献1には、自動車用制御型消音器に組み込まれた排気流量制御弁を閉じ側に付勢するねじりコイルばねのバネ取付構造が開示されている。このバネ取付構造では、前記ねじりコイルばねの付勢力を弁閉位置で最大に作用させると共に、前記排気流量制御弁が弁開側に回動するにしたがって、前記ねじりコイルばねの付勢力を小さく作用させることができるとしている。   Conventionally, for example, an on-off valve is provided in an exhaust passage of an automobile engine, and the flow rate of exhaust gas flowing through the exhaust passage is controlled by the on-off valve biased in a valve closing direction by a spring. Has been done. For example, Patent Document 1 discloses a spring mounting structure of a torsion coil spring that urges an exhaust flow control valve incorporated in a control silencer for an automobile toward a closing side. In this spring mounting structure, the urging force of the torsion coil spring is applied to the maximum at the valve closing position, and the urging force of the torsion coil spring is reduced as the exhaust flow control valve rotates to the valve opening side. It can be made to.

また、特許文献1に開示されたバネ取付構造では、固定軸によって支持されるねじりコイルばねの一端部に折曲したフック部を設け、前記フック部に回転支持用の円筒状のコロを回転自在に装着している。この場合、特許文献1では、排気流量制御弁の開閉時にフック部に装着された円筒状のコロがプレート部の摺動面を転動することによって、フック部を小さな抵抗で変位させることができるとしている。   In the spring mounting structure disclosed in Patent Document 1, a bent hook portion is provided at one end of a torsion coil spring supported by a fixed shaft, and a cylindrical roller for rotation support is freely rotatable on the hook portion. It is attached to. In this case, in Patent Document 1, the cylindrical roller attached to the hook portion rolls on the sliding surface of the plate portion when the exhaust flow control valve is opened and closed, so that the hook portion can be displaced with a small resistance. It is said.

特許第4141601号公報Japanese Patent No. 4141601

しかしながら、特許文献1に開示された排気流量制御弁では、バネ取付構造を構成するねじりコイルばね、摺動面を有するプレート部、コロの部品精度(寸法精度)や、排気ガスで荷重(負荷)が付与されることによるねじりコイルばねのフック部の折曲角度の変形等に起因して、フック部に装着されたコロとプレート部の摺動面との接触角度が変化し、円筒状のコロの外周面とプレート部の摺動面との接触面において均一な接触状態が得られず、コロの軸方向の一方に偏った接触状態となってしまうおそれがある。   However, in the exhaust flow control valve disclosed in Patent Document 1, the torsion coil spring constituting the spring mounting structure, the plate portion having the sliding surface, the roller component accuracy (dimensional accuracy), and the exhaust gas load (load) The contact angle between the roller mounted on the hook portion and the sliding surface of the plate portion changes due to deformation of the bending angle of the hook portion of the torsion coil spring due to being applied, and the cylindrical roller There is a possibility that a uniform contact state cannot be obtained on the contact surface between the outer peripheral surface of the plate and the sliding surface of the plate portion, and the contact state is biased to one of the rollers in the axial direction.

フック部に装着されたコロとプレート部の摺動面とのこのような偏った接触状態では、摺動面に沿って転動する円筒状のコロの外周面の一部に偏磨耗が発生したり、摺動面とコロとの間における相対移動の円滑さが失われることから、排気流量制御弁の開閉動作が不安定となるおそれがある。   In such a biased contact state between the roller mounted on the hook portion and the sliding surface of the plate portion, uneven wear occurs on a part of the outer peripheral surface of the cylindrical roller that rolls along the sliding surface. In addition, since smoothness of relative movement between the sliding surface and the roller is lost, the opening / closing operation of the exhaust flow control valve may become unstable.

本発明は、前記の点に鑑みてなされたものであり、摺動部に沿って転動子を円滑に転動させることより、弁体の安定した開閉動作を確保することが可能な排気流量制御弁の摺動部構造を提供することを目的とする。   The present invention has been made in view of the above points, and an exhaust flow rate capable of ensuring a stable opening / closing operation of a valve body by smoothly rolling a rolling element along a sliding portion. It aims at providing the sliding part structure of a control valve.

前記の目的を達成するために、本発明は、内燃機関から排出される排気ガスを外部に排出する排気系に設けられ、弁体が開閉動作することによって排気通路を流通する排気ガスの流量を制御する排気流量制御弁の摺動部構造において、弁ボディと、前記弁ボディの内部に配設された前記弁体を弁閉状態に付勢するねじりコイルばねと、前記弁ボディに回動自在に軸支され、前記弁体に連結されて前記弁体と一体的に回動する弁軸と、前記ねじりコイルばねの可動端に転動自在に軸着される転動子と、一端部側に前記転動子が転動乃至摺動する摺動部を有し、他端部が前記弁軸に固定されて前記弁軸と一体的に回動するステー部材とを備え、前記転動子は、前記ステー部材の前記摺動部に対し、2箇所でそれぞれ点接触するように設けられることを特徴とする。
この場合、転動子は、球体であり、摺動部には、前記球体の半径よりも大きく且つ同一の曲率半径からなる2つの円弧面を含む係合面が形成されるとよい。
In order to achieve the above-mentioned object, the present invention is provided in an exhaust system that exhausts exhaust gas discharged from an internal combustion engine to the outside. In the sliding part structure of the exhaust flow control valve to be controlled, the valve body, a torsion coil spring for biasing the valve body disposed inside the valve body to a valve closed state, and the valve body are rotatable. A valve shaft that is pivotally supported by the valve body and rotates integrally with the valve body, a rolling element that is rotatably mounted on the movable end of the torsion coil spring, and one end side And a stay member that is fixed to the valve shaft and rotates integrally with the valve shaft. Are provided so as to make point contact with the sliding portion of the stay member at two locations. The features.
In this case, the rolling element is a sphere, and an engagement surface including two arc surfaces having a radius of curvature larger than the radius of the sphere and the same curvature radius may be formed on the sliding portion.

本発明によれば、ステー部材の一端部側に転動子が転動乃至摺動自在な摺動部が設けられ、前記転動子は、前記摺動部と2箇所でそれぞれ点接触するように設けられる。従って、本発明では、摺動部構造を構成する、例えば、ねじりコイルばね、摺動部を有するステー部材、転動子等の部品精度(寸法精度)や、排気ガスで荷重(負荷)が付与されることによるねじりコイルばねの可動端の変形等に起因して、前記可動端に軸着された転動子と摺動部との接触角度が変化した場合であっても、転動子の外表面と摺動部(例えば、2つの円弧面を含む係合面)との均一な点接触状態が得られる。   According to the present invention, the one end of the stay member is provided with a sliding portion on which the rolling element rolls or slides, and the rolling element is in point contact with the sliding portion at two locations. Is provided. Therefore, in the present invention, component accuracy (dimensional accuracy) such as a torsion coil spring, a stay member having a sliding portion, a rolling element, etc. constituting a sliding portion structure, or a load (load) is applied by exhaust gas. Even if the contact angle between the rolling element pivotally attached to the movable end and the sliding portion changes due to deformation of the movable end of the torsion coil spring caused by the A uniform point contact state between the outer surface and the sliding portion (for example, an engagement surface including two arc surfaces) is obtained.

この結果、本発明では、従来技術において摺動面に沿って転動する円筒状のコロの外周面の一部に偏磨耗が発生したり、摺動面とコロとの間における相対移動の円滑さが失われることを好適に回避することができ、摺動部(例えば、2つの円弧面を含む係合面)に沿って転動子(例えば、球体)を円滑に転動させることより、弁体の安定した開閉動作を確保することができる。   As a result, in the present invention, uneven wear occurs on a part of the outer peripheral surface of the cylindrical roller that rolls along the sliding surface in the prior art, and smooth relative movement between the sliding surface and the roller occurs. Loss of thickness can be preferably avoided, and by smoothly rolling a rolling element (for example, a sphere) along a sliding portion (for example, an engagement surface including two arc surfaces), A stable opening and closing operation of the valve body can be ensured.

本発明では、摺動部に沿って転動子を円滑に転動させることより、弁体の安定した開閉動作を確保することが可能な排気流量制御弁の摺動部構造を得ることができる。   In the present invention, the sliding part structure of the exhaust flow control valve capable of ensuring a stable opening / closing operation of the valve body can be obtained by smoothly rolling the rolling element along the sliding part. .

本発明の実施形態に係る排気流量制御弁を自動車用エンジンの排気系に組み込み、前記排気流量制御弁からカバー部材を外した分解斜視図である。FIG. 3 is an exploded perspective view in which an exhaust flow control valve according to an embodiment of the present invention is incorporated in an exhaust system of an automobile engine and a cover member is removed from the exhaust flow control valve. (a)は、カバー部材を省略した排気流量制御弁の概略斜視図、(b)は、(a)のII−II線に沿った縦断面図である。(A) is a schematic perspective view of the exhaust flow control valve in which the cover member is omitted, and (b) is a longitudinal sectional view taken along line II-II in (a). (a)は、前側の斜め方向から見た透視斜視図、(b)は、後側の斜め方向から見た透視斜視図である。(A) is the perspective view seen from the diagonal direction of the front side, (b) is the transparent perspective view seen from the diagonal direction of the rear side. 内管を省略した要部分解斜視図である。It is a principal part disassembled perspective view which abbreviate | omitted the inner pipe | tube. ばね機構と弁体との位置関係を示す側面透視図である。It is a side perspective view which shows the positional relationship of a spring mechanism and a valve body. 図5のVI−VI線に沿った横断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 5. 本実施形態に係る排気流量制御弁の動作説明図であって、(a)は、弁体の弁閉状態を示し、(b)及び(c)は、弁体の弁開状態を示している。It is operation | movement explanatory drawing of the exhaust flow control valve which concerns on this embodiment, Comprising: (a) shows the valve closed state of a valve body, (b) and (c) have shown the valve open state of the valve body. . (a)〜(d)は、本実施形態及び変形例に係る摺動部と球体との接触状態を示した要部断面図であり、各分図における向って左図は、通常の接触状態を示したものであり、各分図における向って右図は、接触角度が変化したときの接触状態を示したものである。(A)-(d) is principal part sectional drawing which showed the contact state of the sliding part which concerns on this embodiment and a modification, and a spherical body, and the left figure toward each part figure is a normal contact state The right diagram in each drawing shows the contact state when the contact angle changes. 本実施形態に係る摺動部に形成され、球体と点接触する係合面の説明図である。It is explanatory drawing of the engaging surface which is formed in the sliding part which concerns on this embodiment, and makes a point contact with a spherical body. (a)は、比較例に係る摺動部とコロとの接触状態を示す要部断面図、(b)は、比較例に係る摺動部とコロとの接触角度が変化したときの接触状態を示す要部断面図である。(A) is principal part sectional drawing which shows the contact state of the sliding part which concerns on a comparative example, and a roller, (b) is a contact state when the contact angle of the sliding part which concerns on a comparative example, and a roller changes. It is principal part sectional drawing which shows these.

次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。図1は、本発明の実施形態に係る排気流量制御弁を自動車用エンジンの排気系に組み込み、前記排気流量制御弁からカバー部材を外した分解斜視図である。   Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. FIG. 1 is an exploded perspective view in which an exhaust flow control valve according to an embodiment of the present invention is incorporated in an exhaust system of an automobile engine, and a cover member is removed from the exhaust flow control valve.

図1に示されるように、排気系10は、図示しない自動車用エンジン(内燃機関)の排気ポートに接続され、自動車11の前後方向に沿って延在するように設けられる。この排気系10の上流側から下流側に沿って、第1消音器12、一対の第2消音器14a、14b、及び一対の第3消音器16a、16bがそれぞれ配設され、これらの第1〜第3消音器12、14a、14b、16a、16bは、複数のパイプ部材を介して一体的に接続されている。前記第2消音器14a、14bの手前であって前記第1消音器12の出力側には、本発明の実施形態に係る排気流量制御弁30が設けられる。   As shown in FIG. 1, the exhaust system 10 is connected to an exhaust port of an automobile engine (internal combustion engine) (not shown) and is provided so as to extend along the front-rear direction of the automobile 11. A first silencer 12, a pair of second silencers 14a and 14b, and a pair of third silencers 16a and 16b are disposed along the downstream side from the upstream side of the exhaust system 10, respectively. The third silencers 12, 14a, 14b, 16a, 16b are integrally connected via a plurality of pipe members. An exhaust flow control valve 30 according to an embodiment of the present invention is provided in front of the second silencers 14a and 14b and on the output side of the first silencer 12.

なお、本実施形態では、排気流量制御弁30を第1消音器12と第2消音器14a、14bとの間に配置した排気系10を例示しているが、これに限定されるものではなく、排気流量制御弁30を排気系10の他の部位に配置してもよい。   In the present embodiment, the exhaust system 10 in which the exhaust flow control valve 30 is disposed between the first silencer 12 and the second silencers 14a and 14b is illustrated, but the present invention is not limited to this. The exhaust flow control valve 30 may be disposed at another part of the exhaust system 10.

図2(a)は、カバー部材を省略した排気流量制御弁の概略斜視図、図2(b)は、図2(a)のII−II線に沿った縦断面図、図3(a)は、前側の斜め方向から見た透視斜視図、図3(b)は、後側の斜め方向から見た透視斜視図、図4は、内管を省略した要部分解斜視図、図5は、ばね機構と弁体との位置関係を示す側面透視図、図6は、図5のVI−VI線に沿った横断面図である。   2A is a schematic perspective view of an exhaust flow control valve in which a cover member is omitted, FIG. 2B is a longitudinal sectional view taken along line II-II in FIG. 2A, and FIG. FIG. 3B is a perspective view seen from the front oblique direction, FIG. 3B is a perspective view seen from the rear oblique direction, FIG. 4 is an exploded perspective view of the main part with the inner tube omitted, and FIG. FIG. 6 is a side perspective view showing the positional relationship between the spring mechanism and the valve body, and FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.

この排気流量制御弁30は、図2に示されるように、第1消音器12に接続されるインレットポート32a及び第2消音器14a、14b側の分岐したパイプ部材に接続されるアウトレットポート32bが形成される内管(弁ボディ)34と、上下一対の2分割構造に形成された矩形体からなり前記内管34を囲繞する一対のカバー部材36a、36b(図1参照)とを含む。   As shown in FIG. 2, the exhaust flow control valve 30 has an inlet port 32a connected to the first silencer 12 and an outlet port 32b connected to a branched pipe member on the second silencer 14a, 14b side. An inner pipe (valve body) 34 to be formed, and a pair of cover members 36a and 36b (see FIG. 1) that are formed of a rectangular body formed in a pair of upper and lower parts and surround the inner pipe 34 are included.

内管34は、貫通孔38が形成された略楕円形状の筒体からなり、インレットポート32a及びアウトレットポート32bに沿った内管34の中間部位であって軸線と直交する方向の内管34の両側部には、内側に向かって窪む凹部40がそれぞれ形成される。   The inner tube 34 is formed of a substantially oval cylindrical body in which a through hole 38 is formed. The inner tube 34 is an intermediate portion of the inner tube 34 along the inlet port 32a and the outlet port 32b, and the inner tube 34 is perpendicular to the axis. Concave portions 40 that are recessed inward are formed on both sides.

また、内管34には、図3に示されるように、インレットポート32aから導入されアウトレットポート32bから導出される排気ガスの流量を制御するための弁体42を有する弁機構44と、前記弁体42を弁閉状態に付勢するねじりコイルばね(コイルスプリング)46を含むばね機構48と、前記弁体42を弁閉状態に向って付勢する前記ねじりコイルばね46の付勢力(ばね力)を弁体42に伝達する付勢力伝達機構50とが設けられる。なお、ねじりコイルばね46の付勢力(ばね力)とは、後記する弁軸52を回動支点として弁体42をストッパ部材60へ当接させる方向へ回動させようとする力をいう。   Further, as shown in FIG. 3, the inner pipe 34 includes a valve mechanism 44 having a valve body 42 for controlling the flow rate of exhaust gas introduced from the inlet port 32a and led out from the outlet port 32b, and the valve A spring mechanism 48 including a torsion coil spring (coil spring) 46 that urges the body 42 to the valve closed state, and an urging force (spring force) of the torsion coil spring 46 that urges the valve body 42 toward the valve closed state. ) Is transmitted to the valve body 42. The urging force (spring force) of the torsion coil spring 46 refers to a force that causes the valve body 42 to rotate in a direction in which the valve body 42 abuts against the stopper member 60 with a valve shaft 52 described later as a rotation fulcrum.

弁機構44は、インレットポート32a及びアウトレットポート32bを結ぶ軸線と直交する方向に延在し、一対の支持孔を介して内管34の両側部を貫通して回動自在に軸支される弁軸52と、内管34の軸方向から見て矩形状の板体からなり(図2(b)参照)、前記弁軸52を支点として所定角度回動自在に設けられる弁体42と、前記矩形状の弁体42の一方の長辺近傍部位に固定されるウェイト部材56とを含む。   The valve mechanism 44 extends in a direction orthogonal to the axis connecting the inlet port 32a and the outlet port 32b, and is pivotally supported through a pair of support holes so as to pass through both side portions of the inner tube 34. The shaft 52 and a valve body 42 made of a rectangular plate body as viewed from the axial direction of the inner pipe 34 (see FIG. 2B) and provided so as to be rotatable at a predetermined angle with the valve shaft 52 as a fulcrum, And a weight member 56 fixed to a portion in the vicinity of one long side of the rectangular valve body 42.

この場合、前記弁軸52には、その軸方向に沿って延在し外周の一部を平面状に切り欠いて形成した連結部52aが設けられ(図3(b)、図4、図6参照)、前記連結部52aを合わせ面として、矩形状の板体からなる弁体42の他方の長辺近傍部位がねじ部材58を介して弁軸52に固定される。また、弁軸52の一端部側には、半径外方向に沿って突出する環状のフランジ部52bが設けられる。   In this case, the valve shaft 52 is provided with a connecting portion 52a that extends along the axial direction and is formed by cutting out a part of the outer periphery in a planar shape (FIG. 3B, FIG. 4, FIG. 6). The other long side vicinity part of the valve body 42 which consists of a rectangular-shaped board body is fixed to the valve shaft 52 via the screw member 58 by making the said connection part 52a into a mating surface. Further, an annular flange portion 52b that protrudes along the radially outward direction is provided on one end portion side of the valve shaft 52.

さらに、弁機構44は、内管34の内壁に固定された断面略L字状の部材からなり弁体42が当接して弁閉状態となるストッパ部材60と、前記ストッパ部材60に固着され弁体42がストッパ部材60に当接したときの衝撃を緩衝する緩衝部材62と、前記弁軸52の両側であって内管34の外部に設けられ弁軸52を回動自在に軸支する金属製メッシュからなる軸受部材64と、前記軸受部材64の変形を防止するリング体66とを備える(図6参照)。なお、弁体42がストッパ部材60に当接した弁閉状態にあるとき、図2(b)に示されるように、内管34の内壁と弁体42の外面との間隙67によって形成される排気ガス通路面積が最も絞られた状態(最小面積)となる。   Further, the valve mechanism 44 is composed of a member having a substantially L-shaped cross section fixed to the inner wall of the inner pipe 34, and a valve member 42 which comes into contact with the valve member 42 to be in a closed state. A buffer member 62 that cushions an impact when the body 42 abuts against the stopper member 60, and a metal that is provided on both sides of the valve shaft 52 and outside the inner tube 34, and rotatably supports the valve shaft 52. A bearing member 64 made of a mesh is provided, and a ring body 66 for preventing deformation of the bearing member 64 (see FIG. 6). When the valve body 42 is in the valve closed state in contact with the stopper member 60, it is formed by a gap 67 between the inner wall of the inner tube 34 and the outer surface of the valve body 42 as shown in FIG. The exhaust gas passage area is the most constricted (minimum area).

内管34から外部に突出する弁軸52の両端部や、ねじりコイルばね46等は、略楕円形状の筒体からなる内管34の外部で内側に向って窪む凹部40に配設されている(図2及び図6参照)。このため、内管34が上下一対のカバー部材36a、36bによって被覆されても前記ねじりコイルばね46等が邪魔となることがなく、カバー部材36a、36bが装着された状態における排気流量制御弁30の全体形状が略直方体形状に構成される。   Both end portions of the valve shaft 52 projecting outward from the inner tube 34, the torsion coil spring 46, and the like are disposed in a recess 40 that is recessed inwardly outside the inner tube 34 formed of a substantially elliptical cylindrical body. (See FIGS. 2 and 6). For this reason, even if the inner pipe 34 is covered with the pair of upper and lower cover members 36a and 36b, the torsion coil spring 46 and the like do not get in the way, and the exhaust flow control valve 30 in a state where the cover members 36a and 36b are mounted. The overall shape is configured in a substantially rectangular parallelepiped shape.

図6に示されるように、ばね機構48は、ねじりコイルばね46を含み、前記ねじりコイルばね46は、略円筒状の螺旋体からなるコイル部46aと、内管34から離間する前記コイル部46aの一側に設けられ前記コイル部46aの軸方向と略直交する方向に延在し固定端からなる固定側アーム46bと、内管34に近接する前記コイル部46aの他側に設けられ前記コイル部46aの軸方向と略直交する方向に延在し可動端からなる可動側アーム46cとによって構成される。   As shown in FIG. 6, the spring mechanism 48 includes a torsion coil spring 46, and the torsion coil spring 46 includes a coil portion 46 a formed of a substantially cylindrical spiral body and a coil portion 46 a that is separated from the inner tube 34. A fixed side arm 46b which is provided on one side and extends in a direction substantially orthogonal to the axial direction of the coil part 46a and which is a fixed end; and the coil part provided on the other side of the coil part 46a adjacent to the inner tube 34 The movable arm 46c includes a movable end that extends in a direction substantially orthogonal to the axial direction of 46a.

さらに、ばね機構48は、内管34の軸方向に沿った中間部位の外壁に溶接等によって固着され側面視して矩形状からなるプレート68と、前記プレート68に固定され、ねじりコイルばね46のコイル部46aを内周側から支持する円柱状の支持部材70と、前記支持部材70のねじ穴に螺入されるボルト71を介して前記支持部材70に装着され、前記支持部材70からの前記ねじりコイルばね46の離脱を阻止する円板状の押さえプレート72とを有する。なお、本実施形態では、支持部材70としてねじりコイルばね46のコイル部46aを内周側から保持する形状を例示しているが、これに限定されるものではなく、例えば、内管34の外壁に固着された帯状体(図示せず)からなり、側面視して略Ω状に形成された湾曲部でコイル部46aの外周面を把持するものであってもよい。   Further, the spring mechanism 48 is fixed to the outer wall of the intermediate portion along the axial direction of the inner tube 34 by welding or the like, and is fixed to the plate 68 having a rectangular shape when viewed from the side, and the torsion coil spring 46. A cylindrical support member 70 that supports the coil portion 46 a from the inner peripheral side and a bolt 71 that is screwed into a screw hole of the support member 70 are attached to the support member 70, and And a disc-shaped pressing plate 72 that prevents the torsion coil spring 46 from being detached. In the present embodiment, the shape of holding the coil portion 46a of the torsion coil spring 46 from the inner peripheral side is illustrated as the support member 70, but the shape is not limited to this, for example, the outer wall of the inner tube 34 The outer peripheral surface of the coil portion 46a may be gripped by a curved portion formed in a substantially Ω shape when viewed from the side.

この場合、前記支持部材70のプレート68に近接する部位には、軸方向に沿った外周面の一部を平面視して断面略円弧状に切り欠いて形成された変形吸収部73が設けられる。この変形吸収部73は、内管34内を流通する排気ガスの圧力によって、弁体42がストッパ部材60に当接した弁閉状態(初期状態)から弁開状態に切り換わろうとするとき、可動側アーム46cを介してねじりコイルばね46のコイル部46aに付与される力(圧縮力)を吸収するものである。   In this case, a portion of the support member 70 adjacent to the plate 68 is provided with a deformation absorbing portion 73 formed by cutting a part of the outer peripheral surface along the axial direction into a substantially arc shape in cross section. . When the deformation absorbing portion 73 tries to switch from the valve closed state (initial state) in which the valve body 42 contacts the stopper member 60 to the valve open state due to the pressure of the exhaust gas flowing through the inner pipe 34, A force (compression force) applied to the coil portion 46a of the torsion coil spring 46 through the movable arm 46c is absorbed.

図2〜図6に示されるように、付勢力伝達機構50は、内管34から外部に露呈する弁軸52の軸方向に沿った一端部側に形成され、ねじりコイルばね46の固定端からなる固定側アーム46bが係止される環状溝74と、前記環状溝74に隣接する環状段部に装着されるCクリップ76と、前記ねじりコイルばね46の可動端からなる可動側アーム46cの折曲部46dに転動自在に軸着され、転動子として機能する球体78と、一端部側に前記球体78が転動乃至摺動する摺動部80aを有し、他端部に弁軸52に固定される断面略円弧状の固定部80bが設けられて前記弁軸52を支点として弁軸52と一体的に回動動作するステー部材80を備える。   As shown in FIGS. 2 to 6, the biasing force transmission mechanism 50 is formed on one end side along the axial direction of the valve shaft 52 exposed to the outside from the inner tube 34, and from the fixed end of the torsion coil spring 46. An annular groove 74 to which the fixed arm 46b is locked, a C clip 76 attached to an annular step adjacent to the annular groove 74, and a folding of the movable arm 46c comprising the movable end of the torsion coil spring 46. It has a sphere 78 that is pivotally attached to the curved portion 46d and functions as a rotator, a sliding portion 80a on which the sphere 78 rolls or slides on one end, and a valve shaft on the other end. A fixing member 80b having a substantially arc-shaped cross section fixed to 52 is provided, and a stay member 80 that rotates integrally with the valve shaft 52 with the valve shaft 52 as a fulcrum is provided.

図4に示されるように、ねじりコイルばね46の可動側アーム46cは、弁軸52の軸線と略直交する方向に延在する直線部に連続し弁軸52の軸線と並行になるように略L字状に折曲して形成された折曲部46dを有する。前記球体78が転動する前記ステー部材80の摺動部80aには、球体78の半径R1よりも大きくて同一の曲率半径R2(R1<R2)からなる2つの円弧面ARC1及び円弧面ARC2(後記する図9参照)を含む係合面81が形成され、前記球体78と前記係合面81との接触角度が変化した場合であっても、前記球体78は、前記ステー部材80の摺動部80aの係合面81に対し、2箇所(接触点C1、C2)でそれぞれ点接触するように設けられる。この点については、後記で詳細に説明する。前記摺動部80aに連続するステー部材80の先端部には、円弧状に湾曲して球体78の離脱を阻止する湾曲部80cが設けられる。   As shown in FIG. 4, the movable side arm 46 c of the torsion coil spring 46 is substantially continuous with the straight line portion extending in a direction substantially orthogonal to the axis of the valve shaft 52 and parallel to the axis of the valve shaft 52. It has a bent portion 46d formed by bending in an L shape. On the sliding portion 80a of the stay member 80 on which the sphere 78 rolls, there are two arc surfaces ARC1 and ARC2 (which are larger than the radius R1 of the sphere 78 and have the same curvature radius R2 (R1 <R2)). Even if the engagement surface 81 including the later-described FIG. 9) is formed and the contact angle between the sphere 78 and the engagement surface 81 changes, the sphere 78 slides on the stay member 80. It is provided so as to make point contact with the engaging surface 81 of the portion 80a at two locations (contact points C1, C2). This will be described in detail later. A bending portion 80c that is curved in an arc shape and prevents the sphere 78 from being detached is provided at the tip of the stay member 80 that is continuous with the sliding portion 80a.

なお、ステー部材80の摺動部80a(係合面81)に沿って転動乃至摺動する転動子としては、球体78が好ましいが前記球体78に限定されるものではなく、ステー部材80の摺動部80a(係合面81)と2点(2箇所)で点接触しながら、転動乃至摺動するものであれば非球体であってもよい。また、図6に示されるように、弁軸52の軸方向に沿った他端部には、孔部を介して円板部材82が固定され、前記円板部材82によって内管34の支持孔からの弁軸52の抜け止めがなされる。   The rolling element that rolls or slides along the sliding portion 80a (engagement surface 81) of the stay member 80 is preferably a sphere 78, but is not limited to the sphere 78, and the stay member 80 is not limited thereto. A non-spherical body may be used as long as it rolls or slides while making point contact with the sliding portion 80a (engagement surface 81) of the two. As shown in FIG. 6, a disc member 82 is fixed to the other end portion along the axial direction of the valve shaft 52 via a hole portion, and the disc member 82 supports the support hole of the inner tube 34. The valve shaft 52 is prevented from coming off.

この場合、図6に示されるように、弁軸52の環状溝74に係止されるねじりコイルばね46の固定側アーム46bと、弁軸52に固定されるステー部材80の固定部80bとの間には、Cクリップ76が介装され、前記Cクリップ76が隔壁として機能することにより、ステー部材80の固定部80bとねじりコイルばね46の固定側アーム46bとの非接触状態が好適に保持される。この結果、ねじりコイルばね46の固定側アーム46が弁軸52の環状溝74によって係止された場合であっても、弁軸52と一体的に回動するステー部材80の円滑な回動動作を確保することができる。   In this case, as shown in FIG. 6, a fixed side arm 46 b of the torsion coil spring 46 that is locked in the annular groove 74 of the valve shaft 52 and a fixed portion 80 b of the stay member 80 that is fixed to the valve shaft 52. A C clip 76 is interposed therebetween, and the C clip 76 functions as a partition wall, so that the non-contact state between the fixing portion 80b of the stay member 80 and the fixing side arm 46b of the torsion coil spring 46 is preferably maintained. Is done. As a result, even if the stationary arm 46 of the torsion coil spring 46 is locked by the annular groove 74 of the valve shaft 52, the smooth rotation operation of the stay member 80 that rotates integrally with the valve shaft 52 is achieved. Can be secured.

また、このCクリップ76は、弁軸52の環状溝74に係止されたねじりコイルばね46の固定側アーム46bが弁軸52の軸方向に沿ってステー部材80側へ移動することを阻止するストッパ機能を併有する。さらに、弁軸52に固定されるステー部材80の固定部80bと軸受部材64との間には、環状のフランジ部52bが介在されることにより、ステー部材80と前記ステー部材80に近接する内管34の側壁とを非接触状態とし、ステー部材80の円滑な回動動作を確保することができる。   The C clip 76 prevents the stationary arm 46 b of the torsion coil spring 46 locked in the annular groove 74 of the valve shaft 52 from moving toward the stay member 80 along the axial direction of the valve shaft 52. It also has a stopper function. Further, an annular flange portion 52b is interposed between the fixed portion 80b of the stay member 80 fixed to the valve shaft 52 and the bearing member 64, so that the stay member 80 and the inner portion adjacent to the stay member 80 are disposed. The side wall of the pipe 34 is brought into a non-contact state, and the smooth rotation operation of the stay member 80 can be ensured.

ねじりコイルばね46の固定側アーム46bは、直線状に延在して弁軸52に形成された環状溝74の下部側に係合し、前記ねじりコイルばね46の固定側アーム46bがそのばね力によって上方に向って変位しようとするのを好適に阻止する。   The fixed side arm 46b of the torsion coil spring 46 extends linearly and engages the lower side of the annular groove 74 formed in the valve shaft 52, and the fixed side arm 46b of the torsion coil spring 46 has its spring force. To prevent displacement upward.

本実施形態に係る排気流量制御弁30が組み込まれた排気系10は、基本的に以上のように構成されるものであり、次にその作用効果について説明する。
図7は、本実施形態に係る排気流量制御弁の動作説明図であって、図7(a)は、弁体の弁閉状態を示し、図7(b)及び図7(c)は、弁体の弁開状態を示している。
The exhaust system 10 in which the exhaust flow control valve 30 according to the present embodiment is incorporated is basically configured as described above. Next, the function and effect will be described.
FIG. 7 is an explanatory view of the operation of the exhaust flow control valve according to the present embodiment. FIG. 7 (a) shows the valve closed state of the valve body, and FIG. 7 (b) and FIG. The valve state of the valve body is shown.

図示しないエンジンが駆動(運転)されることにより、前記エンジンから排出される排気ガスは、排気系10に導入される。この排気ガスは、第1消音器12及び排気流量制御弁30を経て排気ガスの流量が制御された後、下流側の第2消音器14a、14b及び第3消音器16a、16bによって排気音が順次消音されて外部に排出される。   When an engine (not shown) is driven (operated), exhaust gas discharged from the engine is introduced into the exhaust system 10. After the exhaust gas flow rate is controlled through the first silencer 12 and the exhaust flow rate control valve 30, the exhaust gas is exhausted by the second silencer 14a, 14b and the third silencer 16a, 16b on the downstream side. The sound is muted and discharged to the outside.

その際、例えば、アイドリング運転や始動運転を含むエンジン回転速度が低速度領域にある場合には、エンジン(燃焼室)の燃焼圧力が低く、前記エンジンから排出される排気ガスの排気圧力も低下しているため、排気系10に導入される排気ガスの排気圧力も低くなっている。   At this time, for example, when the engine rotation speed including idling operation and start operation is in a low speed region, the combustion pressure of the engine (combustion chamber) is low, and the exhaust pressure of the exhaust gas discharged from the engine also decreases. Therefore, the exhaust pressure of the exhaust gas introduced into the exhaust system 10 is also low.

このため、排気流量制御弁30は、図7(a)に示されるように、ねじりコイルばね46の付勢力(ばね力)によって弁体42がストッパ部材60に当接した弁閉状態に保持されており、内管34の内壁と弁体42の外面との間隙67(図2(b)参照)によって形成される排気ガス通路面積が最も絞られた状態(最小面積)となる。この結果、排気流量制御弁30は、第1消音器12の出力側から排出される排気ガスの排気エネルギを減少させて、第2消音器14a、14bの手前にて排気騒音を予備的に消音させると共に、エンジンの充填効率が高められる。   Therefore, as shown in FIG. 7A, the exhaust flow control valve 30 is held in the valve closed state in which the valve element 42 abuts against the stopper member 60 by the urging force (spring force) of the torsion coil spring 46. Therefore, the exhaust gas passage area formed by the gap 67 (see FIG. 2B) between the inner wall of the inner pipe 34 and the outer surface of the valve body 42 is the most constricted state (minimum area). As a result, the exhaust flow control valve 30 reduces the exhaust energy of the exhaust gas exhausted from the output side of the first silencer 12 and preliminarily silences the exhaust noise before the second silencers 14a and 14b. And the filling efficiency of the engine is increased.

換言すると、本実施形態に係る排気流量制御弁30では、ねじりコイルばね46の付勢力によって弁体42が閉じ側に付勢された弁閉状態であっても、内管34の排気通路が弁体42によって完全に封鎖されることがなく、内管34の内壁と弁体42の外面との間で形成された間隙67を通じて絞られた流量の排気ガスが流通するように構成されている。   In other words, in the exhaust flow control valve 30 according to the present embodiment, even if the valve body 42 is biased to the closing side by the biasing force of the torsion coil spring 46, the exhaust passage of the inner pipe 34 is the valve. The exhaust gas having a reduced flow rate flows through a gap 67 formed between the inner wall of the inner pipe 34 and the outer surface of the valve body 42 without being completely sealed by the body 42.

一方、エンジンの燃焼状態が完爆状態となって、エンジン回転速度が高速度領域に到達すると、エンジン(燃焼室)の燃焼圧力が高くなり、前記エンジンから排出される排気ガスの排気圧力も高くなる。従って、排気系10においてインレットポート32aから排気流量制御弁30内に導入される排気ガス動圧も高くなり、ねじりコイルばね46の付勢力に抗して弁体42を押圧する力が強くなる。この結果、弁体42を押圧する力がねじりコイルばね46の付勢力に打ち勝つことにより、弁体42が弁軸52を回動支点として反時計回り方向へ所定角度だけ回動し(図7(b)参照)、弁体42がストッパ部材60に当接した弁閉状態から、弁体42がストッパ部材60から離間する方向に所定角度だけ傾動した弁開状態へ切り換えられる。   On the other hand, when the combustion state of the engine becomes a complete explosion state and the engine rotation speed reaches the high speed region, the combustion pressure of the engine (combustion chamber) increases and the exhaust pressure of the exhaust gas discharged from the engine also increases. Become. Therefore, the exhaust gas dynamic pressure introduced into the exhaust flow control valve 30 from the inlet port 32a in the exhaust system 10 also increases, and the force that presses the valve element 42 against the biasing force of the torsion coil spring 46 increases. As a result, the force that presses the valve body 42 overcomes the urging force of the torsion coil spring 46, whereby the valve body 42 rotates counterclockwise by a predetermined angle with the valve shaft 52 as a rotation fulcrum (FIG. 7 ( b), the valve body 42 is switched from the valve closed state in which the valve body 42 is in contact with the stopper member 60 to the valve open state in which the valve body 42 is tilted by a predetermined angle in a direction away from the stopper member 60.

すなわち、内管34のインレットポート32aから導入された排気ガス動圧の押圧力によって弁体42が押圧されると、前記弁体42が弁軸52を支点として矢印A方向(反時計回り方向)に回動し、前記弁軸52に固定されたステー部材80が弁軸52を支点として矢印A方向(反時計回り方向)に一体的に回動する。この場合、ねじりコイルばね46の可動側アーム46cの折曲部46dに軸支された球体78は、図7(b)に示されるように、ステー部材80の摺動部80aに沿って2点で接触し且つ転動しながら移動する。なお、ねじりコイルばね46の固定側アーム46bは、弁軸52の環状溝74に係止された状態に保持される。   That is, when the valve body 42 is pressed by the pressing force of the exhaust gas dynamic pressure introduced from the inlet port 32a of the inner pipe 34, the valve body 42 is in the direction of arrow A (counterclockwise direction) with the valve shaft 52 as a fulcrum. The stay member 80 fixed to the valve shaft 52 integrally rotates in the direction of arrow A (counterclockwise direction) with the valve shaft 52 as a fulcrum. In this case, the sphere 78 pivotally supported by the bent portion 46d of the movable arm 46c of the torsion coil spring 46 has two points along the sliding portion 80a of the stay member 80, as shown in FIG. Move while touching and rolling. The fixed arm 46 b of the torsion coil spring 46 is held in a state of being locked in the annular groove 74 of the valve shaft 52.

弁体42が弁閉状態から弁開状態へと切り換わり、内管34内を流通する排気ガスの排気ガス通路面積が徐々に大きくなり、図7(c)に示されるように、弁体42が全開状態となったときに排気ガス通路面積が最大面積となる。よって、エンジン回転速度が高速度領域となったときの排気圧力損失は、排気流量制御弁30によって排気ガスの流量が適宜制御されることによって低減される。   The valve body 42 is switched from the valve closed state to the valve open state, and the exhaust gas passage area of the exhaust gas flowing through the inner pipe 34 gradually increases. As shown in FIG. When is fully opened, the exhaust gas passage area becomes the maximum area. Therefore, the exhaust pressure loss when the engine speed is in the high speed region is reduced by appropriately controlling the exhaust gas flow rate by the exhaust flow rate control valve 30.

図8(a)〜(d)は、本実施形態及び変形例に係る摺動部と球体との接触状態を示した要部断面図であり、各分図における向って左図は、通常の接触状態を示したものであり、各分図における向って右図は、接触角度が変化したときの接触状態を示したものである。また、図9は、本実施形態に係る摺動部に形成され、球体と点接触する係合面の説明図、図10(a)は、比較例に係る摺動部とコロとの接触状態を示す要部断面図、図10(b)は、比較例に係る摺動部とコロとの接触角度が変化ときの接触状態を示す要部断面図である。   8 (a) to 8 (d) are main part cross-sectional views showing the contact state between the sliding part and the sphere according to the present embodiment and the modified example, and the left figure in each part view is a normal one. The contact state is shown, and the right diagram in each drawing shows the contact state when the contact angle changes. Moreover, FIG. 9 is explanatory drawing of the engagement surface which is formed in the sliding part which concerns on this embodiment, and is a point contact with a spherical body, FIG.10 (a) is a contact state of the sliding part which concerns on a comparative example, and a roller. FIG. 10B is a main part sectional view showing a contact state when the contact angle between the sliding part and the roller according to the comparative example changes.

図8(a)に示されるように、本実施形態では、ステー部材80の一端部側に球体78が転動乃至摺動自在な摺動部80aが設けられ、前記球体78は、前記摺動部80aと2箇所(接触点C1、C2)でそれぞれ点接触するように設けられる。この場合、図9に示されるように、ステー部材80の摺動部80aには、球体78の半径R1よりも大きく且つ同一の曲率半径R2(R1<R2)からなる2つの円弧面ARC1及び円弧面ARC2を含む係合面81が形成され、球体78は、この2つの円弧面ARC1及び円弧面ARC2に対してそれぞれ点接触している。   As shown in FIG. 8A, in the present embodiment, a slidable portion 80a is provided on one end of the stay member 80 so that the sphere 78 can roll or slide. It is provided so as to make point contact with the part 80a at two locations (contact points C1, C2). In this case, as shown in FIG. 9, the sliding portion 80a of the stay member 80 has two arcuate surfaces ARC1 and arcs that are larger than the radius R1 of the sphere 78 and have the same radius of curvature R2 (R1 <R2). An engagement surface 81 including a surface ARC2 is formed, and the sphere 78 is in point contact with the two arcuate surfaces ARC1 and ARC2.

なお、図8(a)〜8(d)における摺動部80aの断面形状は、図5のVIII−VIII線に沿った横断面であり、前記2つの円弧面ARC1及び円弧面ARC2は、球体78の転動方向(摺動部80aの軸方向)に沿って延在するように形成されている。   8A to 8D is a cross section taken along the line VIII-VIII in FIG. 5, and the two arcuate surfaces ARC1 and ARC2 are spherical bodies. It is formed so as to extend along the rolling direction 78 (the axial direction of the sliding portion 80a).

図8(a)の右図に示されるように、前記球体78と前記係合面81との接触角度が変化した場合であっても(球体78を軸着する折曲部46dが軸線T1から軸線T2に変化したとき)、前記球体78は、前記ステー部材80の摺動部80aの係合面81(2つの円弧面ARC1及び円弧面ARC2)に対し、2箇所(接触点C1、C2)でそれぞれ点接触するように設けられる。   As shown in the right figure of FIG. 8A, even when the contact angle between the sphere 78 and the engagement surface 81 is changed (the bent portion 46d for axially attaching the sphere 78 is removed from the axis T1). When changing to the axis T2), the spherical body 78 has two locations (contact points C1, C2) with respect to the engagement surface 81 (two arc surfaces ARC1 and ARC2) of the sliding portion 80a of the stay member 80. Are provided so as to be in point contact with each other.

本実施形態では、例えば、ねじりコイルばね46、摺動部80aを有するステー部材80、球体78の部品精度(寸法精度)や、排気ガスで荷重(負荷)が付与されることによるねじりコイルばね46の折曲部46dの折曲角度の変形等に起因して、可動側アーム46cの折曲部46dに軸着された球体78と摺動部80aの係合面81との接触角度が変化した場合であっても、球体78の外表面と摺動部80a(係合面81)との接触点C1、C2に対して均一に荷重が付与され、安定した点接触状態が得られる。   In this embodiment, for example, the torsion coil spring 46, the stay member 80 having the sliding portion 80a, the component accuracy (dimensional accuracy) of the sphere 78, and the torsion coil spring 46 by applying a load (load) with exhaust gas. The contact angle between the spherical body 78 pivotally attached to the bent portion 46d of the movable arm 46c and the engagement surface 81 of the sliding portion 80a has changed due to the deformation of the bent angle of the bent portion 46d. Even in this case, a load is uniformly applied to the contact points C1 and C2 between the outer surface of the sphere 78 and the sliding portion 80a (engagement surface 81), and a stable point contact state is obtained.

従って、本実施形態では、従来技術において摺動面に沿って転動する円筒状のコロの外周面の一部に偏磨耗が発生したり、摺動面とコロとの間における相対移動の円滑さが失われることを好適に回避することができ、摺動部80aの係合面81に沿って球体78を円滑に転動させることより、弁体42の安定した開閉動作を確保することができる。   Therefore, in this embodiment, uneven wear occurs on a part of the outer peripheral surface of the cylindrical roller that rolls along the sliding surface in the prior art, or the relative movement between the sliding surface and the roller is smooth. Loss can be suitably avoided, and the spherical body 78 smoothly rolls along the engagement surface 81 of the sliding portion 80a, thereby ensuring a stable opening / closing operation of the valve body 42. it can.

この結果、本実施形態では、転動子として機能する球体78の偏磨耗を防止して、球体78の耐久性を向上させることができると共に、寸法誤差等によって発生する偏荷重を低減させることができる。   As a result, in the present embodiment, it is possible to prevent uneven wear of the sphere 78 functioning as a rolling element, improve the durability of the sphere 78, and reduce the uneven load caused by a dimensional error or the like. it can.

これに対し、比較例に係る摺動部は、図10に示されるように、ねじりコイルばねのフック部に転動自在に装着された円筒状のコロを有し、前記円筒状のコロがバルブプレートに形成された平坦な摺動面に沿って移動するように構成されている。この場合、比較例では、通常状態において、図10(a)に示されるように、コロの外周面と摺動面とが線接触した状態でねじりコイルばねのばね力をバルブプレートに対して円滑に伝達することができるが、図10(b)に示されるように、例えば、ねじりコイルばねやコロの寸法精度(製品精度)等に起因してコロと摺動面との接触角度が変化したとき(コロの軸線がT1からT2に偏位したとき)、偏荷重が摺動面に付与される。この結果、比較例では、コロの外周面の一部が偏磨耗してバルブプレートに連続する図示しない弁体の開閉動作が不安定になるおそれがある。   On the other hand, as shown in FIG. 10, the sliding portion according to the comparative example has a cylindrical roller that is rotatably mounted on a hook portion of a torsion coil spring, and the cylindrical roller is a valve. It is comprised so that it may move along the flat sliding surface formed in the plate. In this case, in the comparative example, in the normal state, as shown in FIG. 10A, the spring force of the torsion coil spring is smoothly applied to the valve plate in a state where the outer peripheral surface of the roller and the sliding surface are in line contact. As shown in FIG. 10B, for example, the contact angle between the roller and the sliding surface has changed due to the dimensional accuracy (product accuracy) of the torsion coil spring or the roller. (When the roller axis is displaced from T1 to T2), an unbalanced load is applied to the sliding surface. As a result, in the comparative example, a part of the outer peripheral surface of the roller may be partially worn, and the opening / closing operation of a valve body (not shown) continuing to the valve plate may be unstable.

次に、図8(b)〜(d)に基づいて、本実施形態の変形例について、以下説明する。
図8(b)は、摺動部80aの第1変形例を示したものであり(図中では、変形例1と記載)、曲率半径R2が同一の2つの円弧面ARC1、ARC2を含む係合面81が形成された本実施形態に対し、隣接する一対の平坦な傾斜面81aを断面略くの字状に結合して係合面81を構成している点で異なっている。第1変形例では、係合面81を簡便に製造することができる利点がある。
Next, based on FIGS. 8B to 8D, a modification of the present embodiment will be described below.
FIG. 8B shows a first modification of the sliding portion 80a (described as modification 1 in the figure), and includes two arc surfaces ARC1 and ARC2 having the same curvature radius R2. This embodiment is different from the present embodiment in which the mating surface 81 is formed in that the engaging surface 81 is configured by connecting a pair of adjacent flat inclined surfaces 81a in a substantially U-shaped cross section. The first modified example has an advantage that the engaging surface 81 can be easily manufactured.

図8(c)は、摺動部80aの第2変形例を示したものであり(図中では、変形例2と記載)、前記第1変形例に対して、球体78を軸支する折曲部46dに一対の軸受部83を設けている点で相違している。この一対の軸受部83を設けることにより、球体78が折曲部46dを回転中心として転動するときの転がり抵抗を軽減することができる。   FIG. 8C shows a second modified example of the sliding portion 80a (denoted as modified example 2 in the drawing), and is a folding support for supporting the sphere 78 with respect to the first modified example. The difference is that a pair of bearing portions 83 is provided in the curved portion 46d. By providing the pair of bearing portions 83, it is possible to reduce rolling resistance when the sphere 78 rolls with the bent portion 46d as the rotation center.

図8(d)は、摺動部80aの第3変形例を示したものであり(図中では、変形例3と記載)、球体78と点接触する一対の傾斜面81aとの間に平坦面81bを介在させて係合面81が構成されている点で第1変形例と異なっている。第3変形例では、球体78との接触点との間に平坦面81bを介在させることにより、接触点C1、C2間の離間距離を大きく設定することが可能となり、球体78をより一層安定させて2点支持することができる。   FIG. 8D shows a third modification of the sliding portion 80a (described as modification 3 in the figure), and is flat between a pair of inclined surfaces 81a that are in point contact with the sphere 78. This is different from the first modification in that the engagement surface 81 is configured with the surface 81b interposed. In the third modified example, by interposing the flat surface 81b between the contact point with the sphere 78, the separation distance between the contact points C1 and C2 can be set large, and the sphere 78 is further stabilized. 2 points can be supported.

10 排気系
30 排気流量制御弁
34 内管(弁ボディ)
42 弁体
46 ねじりコイルばね
46a 可動側アーム(可動端)
52 弁軸
78 球体(転動子)
80 ステー部材
80a 摺動部
81 係合面
ARC1、ARC2 円弧面
10 Exhaust system 30 Exhaust flow control valve 34 Inner pipe (valve body)
42 Valve body 46 Torsion coil spring 46a Movable arm (movable end)
52 Valve shaft 78 Sphere (roller)
80 Stay member 80a Sliding part 81 Engaging surface ARC1, ARC2 Arc surface

Claims (2)

内燃機関から排出される排気ガスを外部に排出する排気系に設けられ、弁体が開閉動作することによって排気通路を流通する排気ガスの流量を制御する排気流量制御弁の摺動部構造において、
弁ボディと、
前記弁ボディの内部に配設された前記弁体を弁閉状態に付勢するねじりコイルばねと、
前記弁ボディに回動自在に軸支され、前記弁体に連結されて前記弁体と一体的に回動する弁軸と、
前記ねじりコイルばねの可動端に転動自在に軸着される転動子と、
一端部側に前記転動子が転動乃至摺動する摺動部を有し、他端部が前記弁軸に固定されて前記弁軸と一体的に回動するステー部材と、
を備え、
前記転動子は、前記ステー部材の前記摺動部に対し、2箇所でそれぞれ点接触するように設けられることを特徴とする排気流量制御弁の摺動部構造。
In a sliding part structure of an exhaust flow control valve that is provided in an exhaust system that exhausts exhaust gas discharged from an internal combustion engine to the outside and controls the flow rate of exhaust gas that flows through the exhaust passage by opening and closing the valve body,
A valve body;
A torsion coil spring that biases the valve body disposed inside the valve body to a valve closed state;
A valve shaft pivotally supported by the valve body, connected to the valve body and rotated integrally with the valve body;
A rolling element rotatably mounted on the movable end of the torsion coil spring;
A stay member that has a sliding portion on which the rolling element rolls or slides on one end side, and the other end portion of which is fixed to the valve shaft and rotates integrally with the valve shaft;
With
The sliding part structure of an exhaust flow control valve, wherein the rolling element is provided so as to make point contact with the sliding part of the stay member at two locations.
請求項1記載の排気流量制御弁において、
前記転動子は、球体であり、前記摺動部には、前記球体の半径よりも大きく且つ同一の曲率半径からなる2つの円弧面を含む係合面が形成されることを特徴とする排気流量制御弁の摺動部構造。
The exhaust flow control valve according to claim 1,
The rolling element is a sphere, and the sliding portion is formed with an engagement surface including two arc surfaces that are larger than the radius of the sphere and have the same radius of curvature. The sliding part structure of the flow control valve.
JP2010076614A 2010-03-30 2010-03-30 Exhaust flow control valve sliding part structure Expired - Fee Related JP5400682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010076614A JP5400682B2 (en) 2010-03-30 2010-03-30 Exhaust flow control valve sliding part structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010076614A JP5400682B2 (en) 2010-03-30 2010-03-30 Exhaust flow control valve sliding part structure

Publications (2)

Publication Number Publication Date
JP2011208566A JP2011208566A (en) 2011-10-20
JP5400682B2 true JP5400682B2 (en) 2014-01-29

Family

ID=44939870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010076614A Expired - Fee Related JP5400682B2 (en) 2010-03-30 2010-03-30 Exhaust flow control valve sliding part structure

Country Status (1)

Country Link
JP (1) JP5400682B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087677A (en) * 2011-10-17 2013-05-13 Toyota Motor Corp Variable valve mechanism

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4200407B2 (en) * 1999-03-15 2008-12-24 豊田合成株式会社 Air intake duct
JP4141601B2 (en) * 1999-09-24 2008-08-27 カルソニックカンセイ株式会社 Control silencer for automobile
JP2005287147A (en) * 2004-03-29 2005-10-13 Nsk Ltd Worm gear motor apparatus
JP2007205180A (en) * 2006-01-31 2007-08-16 Honda Motor Co Ltd Exhaust flow control valve

Also Published As

Publication number Publication date
JP2011208566A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
US9447715B2 (en) Valve device for exhaust gas flow path
JP4502880B2 (en) Exhaust flow control valve
US9464559B2 (en) Passive exhaust valve assembly and forming method
JP5179069B2 (en) Throttle configuration and exhaust system having the same
JP2001317597A (en) Link plate
JP2016079807A (en) Valve structure
JP6211901B2 (en) Exhaust flow path valve device
JP5400682B2 (en) Exhaust flow control valve sliding part structure
JP2011069251A (en) Exhaust system valve
JP5570272B2 (en) Exhaust flow control valve
WO2017126127A1 (en) Muffler
JP5616661B2 (en) Exhaust flow control valve
JP4141601B2 (en) Control silencer for automobile
KR20140137779A (en) Variable valve
JP2010065530A (en) Exhaust flow control valve
JP7311542B2 (en) exhaust parts
JP4719777B2 (en) Engine exhaust control valve
JP2010223208A (en) Exhaust valve
JP2019019787A (en) Exhaust valve device
JP2007205180A (en) Exhaust flow control valve
JP5689837B2 (en) Engine exhaust flow control valve
JP2016160828A (en) Valve device
JP4935615B2 (en) Valve unit for silencer
JP2006316765A (en) Muffler for internal combustion engine
WO2019017437A1 (en) Exhaust valve device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

R150 Certificate of patent or registration of utility model

Ref document number: 5400682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees