JP5400411B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP5400411B2
JP5400411B2 JP2009033579A JP2009033579A JP5400411B2 JP 5400411 B2 JP5400411 B2 JP 5400411B2 JP 2009033579 A JP2009033579 A JP 2009033579A JP 2009033579 A JP2009033579 A JP 2009033579A JP 5400411 B2 JP5400411 B2 JP 5400411B2
Authority
JP
Japan
Prior art keywords
heat
refrigerator
air conditioning
heat collector
conditioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009033579A
Other languages
Japanese (ja)
Other versions
JP2010190460A (en
Inventor
博信 上田
慎一郎 川根
和彦 山口
純 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009033579A priority Critical patent/JP5400411B2/en
Publication of JP2010190460A publication Critical patent/JP2010190460A/en
Application granted granted Critical
Publication of JP5400411B2 publication Critical patent/JP5400411B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Description

本発明は、太陽熱を利用した空調システムに係り、効率の良い、安定した加熱を行ない得る空調システムに関する。   The present invention relates to an air conditioning system using solar heat, and relates to an air conditioning system capable of performing efficient and stable heating.

太陽熱を利用した集熱システムとして特許文献1と特許文献2に示す技術がある。特許文献1の技術では、太陽熱エネルギーを集熱し、この集熱した太陽エネルギーを熱媒体に与える太陽熱集熱装置と、太陽熱集熱装置での集熱により高温となった熱媒体と、給水タンクから移送される給水との熱交換を行なう第1の熱交換器と、この熱交換器での熱交換で高温となった給水と高温の作動媒体との熱交換を行い、当該作動媒体により給水を加熱してプロセス用の蒸気を発生させる第2の熱交換器とを備えている。   As a heat collection system using solar heat, there are technologies shown in Patent Document 1 and Patent Document 2. In the technique of Patent Document 1, a solar heat collector that collects solar heat energy and applies the collected solar energy to a heat medium, a heat medium that has become a high temperature due to heat collection by the solar heat collector, and a water supply tank Heat exchange is performed between the first heat exchanger that performs heat exchange with the feed water to be transferred, and the feed water that has become hot due to heat exchange in the heat exchanger and the hot working medium. And a second heat exchanger for generating steam for the process.

また、特許文献2の技術では、太陽熱を吸収液の加熱、濃縮に直接利用することによって、バーナ等の再生器を加熱する熱源を必要とせずに運転することができるとともに、天候の状況等により変化する太陽熱による吸収液の加熱状況を検知し、自動的に補助再生器を作動させることにより安定した空調効果と、小型化を図るため、希釈された吸収液を直接導入し加熱する太陽熱集熱管、該太陽熱集熱管で加熱された吸収液をフラッシングさせることにより濃縮するフラッシング再生器を有する吸収式冷暖房装置が示されている。   Moreover, in the technique of patent document 2, while using solar heat directly for heating and concentration of absorption liquid, it can drive | operate without requiring the heat source which heats regenerators, such as a burner, and according to the weather condition etc. A solar heat collector tube that directly introduces and heats diluted absorption liquid for stable air-conditioning effect and miniaturization by detecting the heating situation of the absorption liquid due to changing solar heat and automatically operating the auxiliary regenerator An absorption-type air conditioner having a flushing regenerator that concentrates by flushing an absorption liquid heated by the solar heat collecting tube is shown.

特開昭63−183346号公報JP-A 63-183346 特開2001−82823号公報JP 2001-82823 A

しかしながら、特許文献1では、熱媒体を介して集熱して熱交換器により伝熱しているために、加熱効率が悪いとともに、熱交換器が必要でコスト高となる。また、プロセス用の蒸気として過熱蒸気を作ってないため、二重効用吸収式冷凍機に適用できない。   However, in Patent Document 1, since heat is collected via a heat medium and is transferred by a heat exchanger, the heating efficiency is low, and a heat exchanger is required and the cost is high. Moreover, since superheated steam is not made as process steam, it cannot be applied to a double-effect absorption refrigerator.

特許文献2では、臭化リチウム等の吸収液を熱媒体として配管内を流して加熱するため、吸収液を多量に必要として取扱及び管理が面倒であり、コストが高くなる。また、加熱時に吸収液に沸騰が起こると圧力が異常に高まって逆流を起こすおそれがあり、温度管理が難しくなる。   In Patent Document 2, since an absorption liquid such as lithium bromide is used as a heat medium and heated in a pipe, a large amount of the absorption liquid is required, and handling and management are troublesome, resulting in high costs. Also, if boiling occurs in the absorbing solution during heating, the pressure may increase abnormally and cause a back flow, making temperature management difficult.

本発明は、上記従来の問題点に鑑み、低コストで集熱効率が良く、熱媒体の加熱時に安定して昇温を行える空調システムを提供することを目的とする。   In view of the above-described conventional problems, an object of the present invention is to provide an air conditioning system that is low in cost, has good heat collection efficiency, and can stably raise the temperature when heating a heat medium.

本発明は、上記課題を解決するため、内部に流通する低温の液状媒体を太陽熱で略沸点温度の液体に昇温する第1集熱器と、
第1集熱器で昇温された略沸点温度の液状媒体を太陽熱で略沸点温度の気体に昇温する第2集熱器と、
第2集熱器で昇温された蒸気を太陽熱で所定飽和蒸気圧の過熱蒸気に昇温する第3集熱器と、
上記第3集熱器からの過熱蒸気を作動源とする冷凍機と、
上記冷凍手段により得られる冷熱を作動源とする空調設備と、
上記集熱器間および上記冷凍機との間で液状媒体を循環させるポンプと、
上記各部の動作を制御する制御手段を備え、
上記制御手段は、日射量に応じて液状媒体の循環量を変えるように上記ポンプを制御するとともに、前記第1集熱器〜第3集熱器太陽光による加熱の際に、前記第1集熱器と第3集熱器では媒体を同一相の状態で加熱し、前記第2集熱器では媒体の相が変化するように加熱制御することを特徴とする。
In order to solve the above-mentioned problem, the present invention provides a first heat collector for heating a low-temperature liquid medium circulating inside to a liquid having a substantially boiling temperature by solar heat,
A second heat collector that raises the temperature of the liquid medium having a substantially boiling temperature raised by the first heat collector to a gas having a substantially boiling temperature by solar heat;
A third heat collector for heating the steam heated by the second heat collector to superheated steam having a predetermined saturated vapor pressure by solar heat;
A refrigerator that uses superheated steam from the third heat collector as an operating source;
Air-conditioning equipment using cold energy obtained by the refrigeration means as an operating source;
A pump for circulating a liquid medium between the collectors and the refrigerator;
Comprising control means for controlling the operation of each of the above-mentioned parts;
Said control means controls said pump to vary the amount of circulating liquid medium in accordance with the amount of solar radiation, when the heating by sunlight of the first heat collector through third heat collector, said first The heat collector and the third heat collector heat the medium in the same phase, and the second heat collector controls the heating so that the phase of the medium changes .

また、本発明は、上記に記載の空調システムにおいて、上記液状媒体として水を用いたことを特徴とする。   Further, the present invention is characterized in that in the air conditioning system described above, water is used as the liquid medium.

また、本発明は、上記に記載の空調システムにおいて、上記冷凍機として吸収式冷凍機またはターボ冷凍機を用いたことを特徴とする。   In the air conditioning system described above, the present invention is characterized in that an absorption refrigerator or a turbo refrigerator is used as the refrigerator.

また、本発明は、上記に記載の空調システムにおいて、上記冷凍機として吸収式冷凍機とターボ冷凍機の併用で用いたことを特徴とする。   Further, the present invention is characterized in that, in the air conditioning system described above, an absorption refrigerator and a turbo refrigerator are used as the refrigerator.

また、本発明は、上記に記載の空調システムにおいて、さらに、上記冷凍機により得られる冷熱を、蓄積する蓄熱器を備えたことを特徴とするム。   The present invention is the air conditioning system as described above, further comprising a heat accumulator for accumulating cold heat obtained by the refrigerator.

また、本発明は、上記に記載の空調システムにおいて、さらに、上記集熱器の間に介在して上記集熱器の液状媒体と蒸気を蓄えるタンクを備え、上記制御手段は上記第2集熱器と第3集熱器に残った蒸気を上記タンクに戻すように制御することを特徴とする。   In the air conditioning system described above, the present invention may further include a tank that is interposed between the heat collectors and stores a liquid medium and steam of the heat collectors, and the control means includes the second heat collector. The steam remaining in the heater and the third heat collector is controlled to be returned to the tank.

また、本発明は、上記に記載の空調システムにおいて、さらに、太陽発電機(太陽光発電機又は太陽熱発電機)を備え、この発電電力を上記ポンプ、上記冷凍機または上記空調設備に供給することを特徴とする。   The present invention further includes a solar power generator (solar power generator or solar power generator) in the air conditioning system described above, and supplies the generated power to the pump, the refrigerator, or the air conditioning equipment. It is characterized by.

また、本発明は、上記に記載の空調システムにおいて、さらに、過熱蒸気を作動源とする蒸気タービンを備え、上記蒸気タービンで発電された電力で上記冷凍機としてターボ冷凍機を駆動することを特徴とする。   In the air conditioning system described above, the present invention further includes a steam turbine that uses superheated steam as an operating source, and the turbo chiller is driven as the refrigerator by the electric power generated by the steam turbine. And

本発明によれば、集熱効率が良く、熱媒体の加熱時に安定して昇温を行え、空調システムを低コストで、安定して稼動させることができる。   According to the present invention, the heat collection efficiency is good, the temperature can be raised stably during heating of the heat medium, and the air conditioning system can be stably operated at low cost.

本発明の第1実施例の動作フロー図。The operation | movement flowchart of 1st Example of this invention. 本発明の第1実施例の各部の制御状態を示す説明図。Explanatory drawing which shows the control state of each part of 1st Example of this invention. 本発明の第2実施例に太陽発電機要素を付加した動作フロー図Operation flow diagram with solar generator element added to the second embodiment of the present invention 本発明の第3実施例の動作フロー図。The operation | movement flowchart of 3rd Example of this invention. 本発明の第4実施例の動作フロー図。The operation | movement flowchart of 4th Example of this invention. 本発明の第5実施例の動作フロー図。The operation | movement flowchart of 5th Example of this invention.

以下、図を用いて本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に、本発明の第1実施例の動作フローを示す。11は、内部に流通する液状媒体として低温の水を太陽熱でほぼ沸点温度(100℃)の湯(液体)に昇温する第1集熱器としての予熱器である。上記予熱器11で昇温された湯はバルブ1を通じてタンク1に一旦貯蔵される。12は、タンク1内のほぼ沸点温度の湯をポンプ2を通じて受け入れて、さらに太陽熱で加熱して、略沸点温度の蒸気(気体)に昇温する第2集熱器としての蒸気発生器である。蒸気発生器2の蒸気は上記タンク1の気層部分に戻される。13は、タンク1内の気層のほぼ沸点温度の蒸気を受け入れて、さらに太陽熱で加熱して、所定飽和蒸気圧の過熱蒸気に昇温する第3集熱器としての過熱蒸気発生器である。   FIG. 1 shows an operation flow of the first embodiment of the present invention. Reference numeral 11 denotes a preheater as a first heat collector that raises low-temperature water as hot liquid (liquid) having a boiling point (100 ° C.) by solar heat as a liquid medium circulating inside. The hot water heated by the preheater 11 is temporarily stored in the tank 1 through the valve 1. Reference numeral 12 denotes a steam generator as a second heat collector that receives hot water having a substantially boiling temperature in the tank 1 through the pump 2 and further heats it with solar heat to raise steam (gas) having a substantially boiling temperature. . The steam of the steam generator 2 is returned to the gas layer portion of the tank 1. Reference numeral 13 denotes a superheated steam generator as a third heat collector that receives steam having a substantially boiling temperature of the gas layer in the tank 1 and further heats it with solar heat to raise the temperature to superheated steam having a predetermined saturated vapor pressure. .

上記第1〜第3の集熱器は、太陽光を集める図示しない反射鏡と、集められた太陽光を受ける配管を備えており、配管を流れる媒体(液体、気体)を効率的に加熱する構成となっている。   The first to third heat collectors include a reflecting mirror (not shown) that collects sunlight and a pipe that receives the collected sunlight, and efficiently heats a medium (liquid, gas) flowing through the pipe. It has a configuration.

14は、上記過熱蒸気発生器13からの過熱蒸気を作動源とする冷凍機であり、例えば吸収式冷凍機からなる。冷凍機14からの冷熱は空調設備15に供給されて、設備15による空調が行なわれる。上記冷凍機14から戻される媒体は温度が低下した状態でタンク2に蓄えられ、ポンプ1によって前記予熱器11に戻される。   Reference numeral 14 denotes a refrigerator that uses the superheated steam from the superheated steam generator 13 as an operating source, for example, an absorption refrigerator. Cold heat from the refrigerator 14 is supplied to the air conditioning equipment 15 and air conditioning by the equipment 15 is performed. The medium returned from the refrigerator 14 is stored in the tank 2 with the temperature lowered, and is returned to the preheater 11 by the pump 1.

17は、上記冷凍機14で生じた余剰の冷熱を蓄えると共に、不足した冷熱を冷凍機14に戻す蓄熱器であり、16は、上記各部の動作を制御する制御手段である。   Reference numeral 17 denotes a heat accumulator that stores excess cold heat generated in the refrigerator 14 and returns the insufficient cold heat to the refrigerator 14, and 16 is a control means that controls the operation of each of the above parts.

上記第1〜第3の集熱器は太陽光による加熱の際に、異なる集熱器で相を変化させ、同一の集熱器内では媒体を同一相の状態で加熱しているため、安定した加熱がなされる。すなわち、上記予熱器11では媒体を液状のまま加熱していて、相(液体、気体)が変化しないので、温度を管理すれば加熱量(顕熱)が把握される。同様に蒸気発生器12では、湯から蒸気になるまでを加熱していて、蒸気圧が飽和するか否かを管理していれば加熱量(潜熱)を把握でき、過熱蒸気発生器13では、蒸気の状態のまま加熱していて、温度を管理していれば加熱量(顕熱)が把握される。例えば、加熱中に媒体が液体から気体に変わると急激に膨張して逆流の恐れがあるが、上記ではその恐れは無い。   When the first to third heat collectors are heated by sunlight, the phases are changed by different heat collectors, and the medium is heated in the same phase in the same heat collector. Heating is performed. That is, in the preheater 11, the medium is heated in a liquid state, and the phase (liquid or gas) does not change. Therefore, if the temperature is controlled, the heating amount (sensible heat) can be grasped. Similarly, in the steam generator 12, the amount of heating (latent heat) can be grasped if the steam is heated from hot water until it becomes steam and the steam pressure is saturated or not, and the superheated steam generator 13 If the steam is heated and the temperature is controlled, the heating amount (sensible heat) can be grasped. For example, if the medium changes from liquid to gas during heating, there is a risk of rapid expansion and backflow, but there is no such risk in the above.

次に、図2を用いて制御手段16による上記空調システムの動作を説明する。   Next, operation | movement of the said air conditioning system by the control means 16 is demonstrated using FIG.

制御手段16は、予熱器11及び近傍の図示しないセンサによる各種測定値に基いて、バルブ及びポンプを制御する。配管内の安定した液状媒体の温度上昇率で日射量(集熱量)を求めることでその時点の収率を求め、システム全体の制御の精度を高めることができる。例えば、予熱器11の出入口温度、流量により計算される集熱量より制御するか、予熱器11の集熱量と相関を持つ日射計の出力にて制御することができる。   The control means 16 controls the valve and the pump based on various measured values obtained by the preheater 11 and nearby sensors (not shown). By obtaining the amount of solar radiation (heat collection amount) with the temperature rise rate of the stable liquid medium in the pipe, the yield at that time can be obtained, and the control accuracy of the entire system can be improved. For example, it can be controlled by the amount of heat collected calculated from the inlet / outlet temperature and flow rate of the preheater 11 or can be controlled by the output of a pyranometer correlated with the amount of heat collected by the preheater 11.

制御手段16には、システムの立上げ時間は日の出の時間T1に設定されている。図2に示すように、時間T1の日の出と共に日射量が次第に増加し、時間T2で計画値の日射量まで立ち上がった場合を想定する。時間T1〜T2では、予熱器11が太陽光を集熱して媒体は徐々に加熱され、同時にバルブ1を次第に開いてバルブ2を全開から次第に閉じていく。従って、時間T1付近で全量がタンク2にバイパスされ、高温度に上昇するにつれてタンク2からタンク1に供給が切換っていく。これは、時間T1付近での低温の媒体がタンク1に供給されるのを防止している。   In the control means 16, the system startup time is set to the sunrise time T1. As shown in FIG. 2, it is assumed that the solar radiation amount gradually increases with the sunrise at time T1, and rises to the solar radiation amount of the planned value at time T2. From time T1 to T2, the preheater 11 collects sunlight and the medium is gradually heated, and at the same time, the valve 1 is gradually opened and the valve 2 is gradually closed from full opening. Accordingly, the entire amount is bypassed to the tank 2 near the time T1, and the supply is switched from the tank 2 to the tank 1 as the temperature rises. This prevents the low-temperature medium around time T1 from being supplied to the tank 1.

同時に、時間T1〜T2では、日射量の増加と共にポンプ1、2の水量を計画水量まで次第に増加させ、システムでの熱媒体の循環量が増加する。日射量の増加により液状媒体は、予熱器11内で太陽熱により略沸点温度まで加熱されてタンク1内に供給され、ポンプ2の運転によりこの略沸点温度の液状媒体が蒸気発生器12に供給される。蒸気発生器12では、この略沸点温度の液状媒体を太陽熱により略沸点温度の蒸気に昇温し、再度タンク1の気層に戻される。   At the same time, at times T1 to T2, the amount of water in the pumps 1 and 2 is gradually increased to the planned amount of water as the amount of solar radiation increases, and the amount of circulation of the heat medium in the system increases. Due to the increase in the amount of solar radiation, the liquid medium is heated to approximately the boiling point temperature by solar heat in the preheater 11 and supplied to the tank 1, and the liquid medium having the approximately boiling point temperature is supplied to the steam generator 12 by the operation of the pump 2. The In the steam generator 12, the liquid medium having a substantially boiling temperature is heated to a steam having a substantially boiling temperature by solar heat, and returned to the gas layer of the tank 1 again.

タンク1の気層部分からは、気層部分の飽和蒸気圧により略沸点温度の蒸気が過熱蒸気発生器13に供給され、過熱蒸気発生器13ではこの蒸気を太陽熱により過熱蒸気に昇温する。冷凍機14としてたとえば吸収式冷凍機は、この過熱蒸気を駆動源として駆動されて冷熱を発生する。ここで、時間T1〜T2では、計画値の日射量が得られるまで冷凍機14から出力される冷熱量が計画値にならないので、不足分を蓄熱器17から補填する。   From the gas layer portion of the tank 1, steam having a substantially boiling point temperature is supplied to the superheated steam generator 13 by the saturated vapor pressure of the gas layer portion, and the superheated steam generator 13 raises the temperature of the steam to superheated steam by solar heat. For example, an absorption refrigerator as the refrigerator 14 is driven using this superheated steam as a drive source to generate cold. Here, at time T1 to T2, since the amount of cold output from the refrigerator 14 does not become the planned value until the planned amount of solar radiation is obtained, the shortage is compensated from the heat accumulator 17.

時間T2〜T3では、計画値の日射量が得られており制御手段16により、各部が図2に示されるように制御される。この区間では冷凍機14から冷熱量の計画値が出力されるので、蓄熱器17からの冷熱の補填はない。   From time T2 to T3, the solar radiation amount of the planned value is obtained, and each part is controlled by the control means 16 as shown in FIG. In this section, since the planned value of the amount of cold is output from the refrigerator 14, there is no supply of cold from the regenerator 17.

時間T3〜T4では、計画値以上の日射量が得られており制御手段16により、各部が図2に示すように制御される。すなわち、ポンプ1,2の流量を計画流量以上に増加させて過熱蒸気を冷凍機14に供給し、冷凍機14から計画冷熱量以上の冷熱量を出力させ、過剰の冷熱量を蓄熱器17に蓄熱する。図2では、冷凍機14の冷熱量が計画値となっているが、これは蓄熱分を差し引いているためである。   At times T3 to T4, an amount of solar radiation greater than the planned value is obtained, and the respective units are controlled by the control means 16 as shown in FIG. That is, the flow rate of the pumps 1 and 2 is increased to a planned flow rate or higher to supply superheated steam to the refrigerator 14, and the refrigerator 14 outputs a cold heat amount that is greater than or equal to the planned cold heat amount, and the excessive cold heat amount is supplied to the regenerator 17. Stores heat. In FIG. 2, the amount of heat of the refrigerator 14 is a planned value because the amount of stored heat is subtracted.

時間T4〜T5では、計画値以下の日射量が得られており、制御手段16により各部が図2に示すように制御される。すなわち、ポンプ1,2の流量を計画流量以下に減少させて過熱蒸気を冷凍機14に供給し、冷凍機14から冷熱量を出力させる。この区間では、計画値の日射量が得られないので冷凍機14から出力される冷熱量が計画値にならない。従って時間T1〜T2の区間と同様に、不足分を蓄熱器17から補填された状態で、冷熱量が空調設備15に供給される。   From time T4 to T5, the amount of solar radiation below the planned value is obtained, and each part is controlled by the control means 16 as shown in FIG. That is, the flow rate of the pumps 1 and 2 is decreased to a planned flow rate or less, superheated steam is supplied to the refrigerator 14, and the amount of cold heat is output from the refrigerator 14. In this section, since the solar radiation amount of the planned value cannot be obtained, the amount of cold heat output from the refrigerator 14 does not become the planned value. Therefore, the amount of cold heat is supplied to the air conditioning equipment 15 in a state in which the shortage is compensated from the heat accumulator 17 as in the section of time T1 to T2.

T4〜T5区間は日没に近い時間帯であるが、日没後は集熱系統のラインの稼動が停止される。ライン停止直後は、蒸気発生器12、13の系統に略沸点の蒸気や過熱蒸気が残っているが、そのまま捨てるのは収率向上に反する。そこで、本実施例では蒸気発生器12、13の系統に残った蒸気を制御手段16の制御により、バルブ4を開いてタンク1に戻すように制御される。また、バブル3は過熱蒸気発生器13で蒸気が異常上昇の際に、外気に放出するためのものであるが、効率向上のため、バルブ4を開いてタンク1に戻すようにしても良い。   The section from T4 to T5 is a time zone close to sunset, but the operation of the heat collection system line is stopped after sunset. Immediately after the line is stopped, steam having substantially boiling point or superheated steam remains in the system of the steam generators 12 and 13, but throwing it away is contrary to the improvement in yield. Therefore, in this embodiment, the steam remaining in the system of the steam generators 12 and 13 is controlled by the control means 16 so that the valve 4 is opened and returned to the tank 1. In addition, the bubble 3 is for releasing the steam to the outside air when the superheated steam generator 13 abnormally rises, but the valve 4 may be opened and returned to the tank 1 for improving the efficiency.

図3に、本発明の第2実施例の動作フローを示し、図1と同一部分を同一符号で示す。本実施例では太陽発電機(太陽光発電機又は太陽熱発電機)20をさらに設け、この電力で冷凍機や空調設備の電力を賄い、余剰の電力は蓄電池21に蓄えるものである。また、冷凍機として吸収式冷凍機14aを用いている。   FIG. 3 shows an operation flow of the second embodiment of the present invention, and the same parts as those in FIG. In this embodiment, a solar power generator (solar power generator or solar power generator) 20 is further provided, and this power is used to cover the power of the refrigerator and air conditioning equipment, and surplus power is stored in the storage battery 21. Moreover, the absorption refrigerator 14a is used as a refrigerator.

図4に、本発明の第3実施例の動作フローを示し、図1と同一部分を同一符号で示す。本実施例では太陽発電機20を設けると共に、過熱蒸気発生器13から過熱蒸気を作動源とする復水蒸気タービン18と、冷凍機としてこのタービンの電力で駆動されるターボ冷凍機14bを設けたものである。太陽発電機20からの電力をターボ冷凍機14bに供給するようにしても良い。   FIG. 4 shows an operation flow of the third embodiment of the present invention, and the same parts as those in FIG. In this embodiment, a solar power generator 20 is provided, and a condensate steam turbine 18 using superheated steam from the superheated steam generator 13 as a working source, and a turbo refrigerator 14b driven by the power of the turbine as a refrigerator. It is. You may make it supply the electric power from the solar generator 20 to the turbo refrigerator 14b.

図5に、本発明の第4実施例の動作フローを示し、図4と同一部分を同一符号で示す。本実施例では太陽発電機20の他に、過熱蒸気発生器13からの過熱蒸気を作動源とする背圧蒸気タービン19と、冷凍機としてこのタービンの電力で駆動されるターボ冷凍機14bを設け、更に、過熱蒸気を作動源とする吸収式冷凍機14aを設けた、ハイブリッド型のものである。本実施例はターボ冷凍機14bと吸収式冷凍機14aの両者より同時に冷熱を得て、太陽エネルギーを最大限に利用することを基本とするが、過熱蒸気発生器13からの過熱蒸気の圧力の大小に応じて、ターボ冷凍機14bと吸収式冷凍機14aを運転効率の良い条件で切換えて運転することも可能である。また、吸収式冷凍機14aの作動源は、図中、過熱蒸気発生器13に接続された一点鎖線で示すように、過熱蒸気発生器13の過熱蒸気を直接利用することも可能である。   FIG. 5 shows an operation flow of the fourth embodiment of the present invention, and the same parts as those in FIG. In this embodiment, in addition to the solar generator 20, a back pressure steam turbine 19 using superheated steam from the superheated steam generator 13 as an operating source and a turbo refrigerator 14b driven by the power of this turbine as a refrigerator are provided. Furthermore, it is a hybrid type provided with an absorption refrigerator 14a using superheated steam as an operating source. Although the present embodiment is based on obtaining cold from both the turbo refrigerator 14b and the absorption refrigerator 14a at the same time and utilizing solar energy to the maximum, the pressure of the superheated steam from the superheated steam generator 13 is Depending on the size, the turbo chiller 14b and the absorption chiller 14a can be switched and operated under conditions of good operating efficiency. Further, the operating source of the absorption chiller 14a can directly use the superheated steam of the superheated steam generator 13 as shown by a one-dot chain line connected to the superheated steam generator 13 in the figure.

図6に、本発明の第5実施例の動作フローを示し、図5と同一部分を同一符号で示す。本実施例では太陽発電機20の他に、この発電機20の電力で駆動されるターボ冷凍機14bと過熱蒸気発生器13からの過熱蒸気を作動源とする吸収式冷凍機14aを設けた、ハイブリッド型のものである。本実施例はターボ冷凍機14bと吸収式冷凍機14aの両者より同時に冷熱を得て、太陽エネルギーを最大限に利用することを基本とするが、日射量のある時間帯では吸収式冷凍機14aを稼動させると共に、太陽発電機20で蓄電器21を充電し、日没後は蓄電器21によってターボ冷凍機14bを稼動することにより、長い時間空調設備を運転することもできる。また、本実施例では、日射量が計画値まで達しない場合に、蓄電器21によってターボ冷凍機14bを稼動することにより、空調設備を運転するようにしても良い。   FIG. 6 shows an operation flow of the fifth embodiment of the present invention, and the same parts as those in FIG. In this embodiment, in addition to the solar power generator 20, a turbo chiller 14b driven by the power of the power generator 20 and an absorption refrigeration machine 14a using superheated steam from the superheated steam generator 13 as operating sources are provided. It is a hybrid type. The present embodiment is basically based on obtaining cold energy from both the centrifugal chiller 14b and the absorption chiller 14a at the same time and maximizing the use of solar energy. However, the absorption chiller 14a is used in a solar radiation time zone. In addition, the air conditioner can be operated for a long time by charging the capacitor 21 with the solar generator 20 and operating the turbo refrigerator 14b with the capacitor 21 after sunset. Further, in this embodiment, when the amount of solar radiation does not reach the planned value, the air conditioner may be operated by operating the turbo refrigerator 14b with the battery 21.

なお、実施例2〜6に記述した太陽発電機20は太陽熱発電機を用いることも可能である。   In addition, the solar generator 20 described in Examples 2-6 can also use a solar thermal generator.

11…第1集熱器(予熱器)、12…第2集熱器(蒸気発生器)、13…第3集熱器(過熱蒸気発生器)、14…冷凍機、15…空調設備、16…制御手段、17…蓄熱器、18…復水蒸気タービン、19…背圧蒸気タービン、20…太陽発電機、21…蓄電器、タンク1…タンク。   DESCRIPTION OF SYMBOLS 11 ... 1st collector (preheater), 12 ... 2nd collector (steam generator), 13 ... 3rd collector (superheated steam generator), 14 ... refrigerator, 15 ... air conditioning equipment, 16 DESCRIPTION OF SYMBOLS ... Control means, 17 ... Regenerator, 18 ... Condensed steam turbine, 19 ... Back pressure steam turbine, 20 ... Solar generator, 21 ... Electric storage device, Tank 1 ... Tank.

Claims (8)

内部に流通する低温の液状媒体を太陽熱で略沸点温度の液体に昇温する第1集熱器と、
第1集熱器で昇温された略沸点温度の液状媒体を太陽熱で略沸点温度の気体に昇温する第2集熱器と、
第2集熱器で昇温された蒸気を太陽熱で所定飽和蒸気圧の過熱蒸気に昇温する第3集熱器と、
上記第3集熱器からの過熱蒸気を作動源とする冷凍機と、
上記冷凍手段により得られる冷熱を作動源とする空調設備と、
上記集熱器間および上記冷凍機との間で液状媒体を循環させるポンプと、
上記各部の動作を制御する制御手段を備え、
上記制御手段は、日射量に応じて液状媒体の循環量を変えるように上記ポンプを制御するとともに、前記第1集熱器〜第3集熱器太陽光による加熱の際に、前記第1集熱器と第3集熱器では媒体を同一相の状態で加熱し、前記第2集熱器では媒体の相が変化するように加熱制御することを特徴とする空調システム。
A first heat collector for heating a low-temperature liquid medium circulating inside to a liquid having a substantially boiling temperature by solar heat;
A second heat collector that raises the temperature of the liquid medium having a substantially boiling temperature raised by the first heat collector to a gas having a substantially boiling temperature by solar heat;
A third heat collector for heating the steam heated by the second heat collector to superheated steam having a predetermined saturated vapor pressure by solar heat;
A refrigerator that uses superheated steam from the third heat collector as an operating source;
Air-conditioning equipment using cold energy obtained by the refrigeration means as an operating source;
A pump for circulating a liquid medium between the collectors and the refrigerator;
Comprising control means for controlling the operation of each of the above-mentioned parts;
Said control means controls said pump to vary the amount of circulating liquid medium in accordance with the amount of solar radiation, when the heating by sunlight of the first heat collector through third heat collector, said first An air conditioning system characterized in that the heat collector and the third heat collector heat the medium in the same phase, and the second heat collector controls the heating so that the phase of the medium changes .
請求項1記載の空調システムにおいて、上記液状媒体として水を用いたことを特徴とする空調システム。   2. The air conditioning system according to claim 1, wherein water is used as the liquid medium. 請求項1記載の空調システムにおいて、上記冷凍機として吸収式冷凍機またはターボ冷凍機を用いたことを特徴とする空調システム。   2. The air conditioning system according to claim 1, wherein an absorption refrigerator or a turbo refrigerator is used as the refrigerator. 請求項1記載の空調システムにおいて、上記冷凍機として吸収式冷凍機とターボ冷凍機
を併用したことを特徴とする空調システム。
2. The air conditioning system according to claim 1, wherein an absorption refrigerator and a turbo refrigerator are used in combination as the refrigerator.
請求項1記載の空調システムにおいて、さらに、上記冷凍機により得られる冷熱を、蓄
積する蓄熱器を備えたことを特徴とする空調システム。
2. The air conditioning system according to claim 1, further comprising a heat accumulator for accumulating cold heat obtained by the refrigerator.
請求項1記載の空調システムにおいて、さらに、上記集熱器の間に介在して上記集熱器
の液状媒体と蒸気を蓄えるタンクを備え、上記制御手段は上記第2集熱器と第3集熱器に
残った蒸気を上記タンクに戻すように制御することを特徴とする空調システム。
2. The air conditioning system according to claim 1, further comprising a tank that is interposed between the heat collectors and stores a liquid medium and steam of the heat collectors, and the control means includes the second heat collector and the third heat collector. An air conditioning system that controls to return the steam remaining in the heater to the tank.
請求項1記載の空調システムにおいて、さらに、太陽発電機(太陽光発電機又は太陽熱
発電機)を備え、この発電電力を上記ポンプ、上記冷凍機または上記空調設備に供給する
ことを特徴とする空調システム。
The air conditioning system according to claim 1, further comprising a solar generator (solar generator or solar thermal generator), and supplying the generated power to the pump, the refrigerator, or the air conditioning equipment. system.
請求項1記載の空調システムにおいて、さらに、過熱蒸気を作動源とする蒸気タービン
を備え、上記蒸気タービンで発電された電力で上記冷凍機としてターボ冷凍機を駆動する
ことを特徴とする空調システム。
2. The air conditioning system according to claim 1, further comprising a steam turbine using superheated steam as an operating source, wherein the turbo chiller is driven as the refrigerator by the electric power generated by the steam turbine.
JP2009033579A 2009-02-17 2009-02-17 Air conditioning system Expired - Fee Related JP5400411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009033579A JP5400411B2 (en) 2009-02-17 2009-02-17 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009033579A JP5400411B2 (en) 2009-02-17 2009-02-17 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2010190460A JP2010190460A (en) 2010-09-02
JP5400411B2 true JP5400411B2 (en) 2014-01-29

Family

ID=42816698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009033579A Expired - Fee Related JP5400411B2 (en) 2009-02-17 2009-02-17 Air conditioning system

Country Status (1)

Country Link
JP (1) JP5400411B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9389002B2 (en) 2010-09-30 2016-07-12 Dow Global Technologies Llc Process for producing superheated steam from a concentrating solar power plant
US9192877B2 (en) 2010-12-10 2015-11-24 Angus Chemical Company Apparatus and process for using a nitroalkane as an entrainer for azeotropic removal of water from aqueous acid solution
JP5693197B2 (en) * 2010-12-15 2015-04-01 株式会社日立製作所 Solar heat utilization system and control method of solar heat utilization system
EP2685101B1 (en) * 2011-03-07 2015-09-16 Mitsubishi Hitachi Power Systems, Ltd. Solar heat steam cycle system
JP5685485B2 (en) * 2011-05-13 2015-03-18 日立アプライアンス株式会社 Solar heat-utilized steam absorption refrigerator and solar heat utilization system
JP2015014379A (en) * 2013-07-03 2015-01-22 株式会社日立製作所 Air conditioning system
WO2017127919A1 (en) 2016-01-25 2017-08-03 Smardt Chiller Group Inc. Solar integrated chiller method and system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184866A (en) * 1981-05-08 1982-11-13 Hitachi Ltd Rankine engine driving refrigerator
JPS5820165U (en) * 1981-07-30 1983-02-07 ダイキン工業株式会社 solar heat collector

Also Published As

Publication number Publication date
JP2010190460A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP5400411B2 (en) Air conditioning system
US9816491B2 (en) Solar power system and method therefor
JP6375294B2 (en) Solar energy system and thermal energy transfer method
CN104364582B (en) Solar energy system
US20130139807A1 (en) Thermal energy generation system
KR101850002B1 (en) District Heating System Including Heat Pump Using District Heat and Control Method thereof
CN109114804A (en) Photovoltaic-alternating current joint driving photovoltaic and photothermal integral double-source heat pump water heating system and its operation method
US20140026602A1 (en) Method and Apparatus for Generating Chilled Water for Air-Conditioning
CN106288490A (en) Light collecting photovoltaic/photothermal integrated heat-transformation/electricity/cold supply system
KR101579004B1 (en) The power generation system using solar energy
CN102242698A (en) Distributed-type heat and power cogeneration set capable of accumulating energy and heat
CN101968042B (en) Multistage full-effect solar heat power generation method
US10883390B2 (en) Cogeneration system for integration into solar water heating systems
JP2012127566A (en) Cooling system
CN203809224U (en) Solar photothermal power generation comprehensive utilizing system
CN110886629A (en) System and method for realizing thermoelectric decoupling by using photo-thermal
CN108825458A (en) Solar light-heat power-generation equipment
CN210035683U (en) Combined cooling, heating and power device using solar energy
JP7022487B2 (en) Solar power generation hot water supply system
CN107976095A (en) A kind of heat energy utilization system, method and device
CN105986954B (en) A kind of power and refrigeration cogeneration system
CN105247208B (en) Solar thermal collector factory with storage heater
JP2012098003A (en) Thermoelectric-generation cogeneration system
CN206399259U (en) A kind of heat energy utilization system
KR101363492B1 (en) High efficiency hybrid cooling/heating water apparatus with absorption type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

R150 Certificate of patent or registration of utility model

Ref document number: 5400411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees