JP5400304B2 - Assembled battery - Google Patents
Assembled battery Download PDFInfo
- Publication number
- JP5400304B2 JP5400304B2 JP2008021788A JP2008021788A JP5400304B2 JP 5400304 B2 JP5400304 B2 JP 5400304B2 JP 2008021788 A JP2008021788 A JP 2008021788A JP 2008021788 A JP2008021788 A JP 2008021788A JP 5400304 B2 JP5400304 B2 JP 5400304B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- battery
- current collector
- negative electrode
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007787 solid Substances 0.000 claims description 38
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 25
- 229910001416 lithium ion Inorganic materials 0.000 claims description 25
- 239000011230 binding agent Substances 0.000 claims description 20
- 239000007784 solid electrolyte Substances 0.000 claims description 15
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 14
- 239000004917 carbon fiber Substances 0.000 claims description 14
- 239000007774 positive electrode material Substances 0.000 claims description 13
- 239000011800 void material Substances 0.000 claims description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 11
- 239000007773 negative electrode material Substances 0.000 claims description 11
- 239000000835 fiber Substances 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 239000002657 fibrous material Substances 0.000 description 12
- 229910052744 lithium Inorganic materials 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 11
- 239000002134 carbon nanofiber Substances 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000002002 slurry Substances 0.000 description 8
- 239000011149 active material Substances 0.000 description 7
- 239000002241 glass-ceramic Substances 0.000 description 7
- 230000017525 heat dissipation Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000000075 oxide glass Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000002270 dispersing agent Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000003365 glass fiber Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229920001940 conductive polymer Polymers 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- -1 phosphorus compound Chemical class 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910000314 transition metal oxide Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 229920005822 acrylic binder Polymers 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 239000002388 carbon-based active material Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000009694 cold isostatic pressing Methods 0.000 description 2
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000011267 electrode slurry Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000156 glass melt Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- 229910001386 lithium phosphate Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 1
- 229910011939 Li2.6 Co0.4 N Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015118 LiMO Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910012305 LiPON Inorganic materials 0.000 description 1
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910007943 SnB0.5 P0.5 O3 Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- QSNQXZYQEIKDPU-UHFFFAOYSA-N [Li].[Fe] Chemical compound [Li].[Fe] QSNQXZYQEIKDPU-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- UOUJSJZBMCDAEU-UHFFFAOYSA-N chromium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Cr+3].[Cr+3] UOUJSJZBMCDAEU-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- LHJOPRPDWDXEIY-UHFFFAOYSA-N indium lithium Chemical compound [Li].[In] LHJOPRPDWDXEIY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- VROAXDSNYPAOBJ-UHFFFAOYSA-N lithium;oxido(oxo)nickel Chemical compound [Li+].[O-][Ni]=O VROAXDSNYPAOBJ-UHFFFAOYSA-N 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- OCDVSJMWGCXRKO-UHFFFAOYSA-N titanium(4+);disulfide Chemical class [S-2].[S-2].[Ti+4] OCDVSJMWGCXRKO-UHFFFAOYSA-N 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、例えば全固体リチウムイオン二次電池等の、正負電極上に形成された集電体を備える固体電池、及び当該固体電池を用いた組電池に関する。 The present invention relates to a solid battery including a current collector formed on positive and negative electrodes, such as an all solid lithium ion secondary battery, and an assembled battery using the solid battery.
次世代においてリチウムイオン二次電池の応用が期待されている分野に、自動車や発電装置用の蓄電デバイス等があるが、これらの用途へ展開するためにはリチウムイオン二次電池の大型化が必須となる。 In the field where lithium-ion secondary batteries are expected to be applied in the next generation, there are power storage devices for automobiles and power generators. To expand into these applications, it is essential to increase the size of lithium-ion secondary batteries It becomes.
例えば、自動車用途に展開する場合、従来の非固体型のリチウムイオン二次電池では可燃性の有機溶媒系電解質を使うために、安全性の問題を根本的に解決することはできない。そこで、最近のリチウムイオン二次電池においては、上記安全性の問題を解消するために、有機溶媒を用いない固体のみからなる全固体リチウムイオン二次電池が知られている(特許文献1参照)。 For example, when deploying in automobile applications, a conventional non-solid type lithium ion secondary battery uses a flammable organic solvent-based electrolyte, and thus the safety problem cannot be fundamentally solved. Therefore, in recent lithium ion secondary batteries, in order to solve the above-mentioned safety problem, an all-solid lithium ion secondary battery made of only a solid that does not use an organic solvent is known (see Patent Document 1). .
一方、非固体型のリチウムイオン二次電池において、さらなる大幅な容量向上のためには、非炭素系活物質を用いるのが有効である。しかし、非炭素系活物質では、充放電の繰り返しにともない容量が低下する。これを防止するために、リチウム二次電池用負極にリチウムを吸蔵・放出する金属又は合金からなる活物質と、電気伝導性の高い炭素繊維等の導電助剤を用いたリチウムイオン二次電池が開示されている(特許文献2参照)。
特許文献1に記載されている全固体リチウムイオン二次電池は、電池を構成する材料の熱伝導率が低く、電池反応による発熱を均一に放熱することができない。反応による熱を均一に放熱できないことにより、大型化した全固体リチウムイオン二次電池の内部温度は電池表面温度と不均一になる。内部温度の不均一により、電池内部におけるリチウムイオンの移動の早さが高温の部分と低温の部分で異なる。このように部分的にリチウムイオンの移動が促進されることで電池の性能が劣化してしまう問題がある。 The all-solid-state lithium ion secondary battery described in Patent Document 1 has a low thermal conductivity of the material constituting the battery and cannot uniformly dissipate heat generated by the battery reaction. Since the heat due to the reaction cannot be dissipated uniformly, the internal temperature of the large-sized all-solid lithium ion secondary battery becomes nonuniform with the battery surface temperature. Due to the non-uniformity of the internal temperature, the speed of movement of lithium ions inside the battery differs between the high temperature part and the low temperature part. Thus, there is a problem that the performance of the battery is deteriorated by partially promoting the movement of lithium ions.
また、特許文献2のリチウム二次電池用負極に用いられる炭素繊維は、あくまで電極の導電助剤として用いられているものであり、上記のような放熱に関することは開示も示唆もされていない。 Moreover, the carbon fiber used for the negative electrode for lithium secondary batteries of patent document 2 is used as a conductive auxiliary agent of an electrode to the last, and it is neither disclosed nor suggested that it relates to the above heat dissipation.
本発明は、上記課題を解決するためになされたものであり、その目的は固体電池において、電池反応による発熱を均一に放熱することができ、電池を大型化した場合においても電池性能が劣化しない固体電池を提供することにある。 The present invention has been made to solve the above-described problems, and the object of the present invention is to uniformly dissipate heat generated by a battery reaction in a solid state battery, and the battery performance does not deteriorate even when the battery is enlarged. The object is to provide a solid state battery.
本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、正極及び負極の両極上に形成された集電体に、所定の空隙を有する層が形成させることにより上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下の物を提供する。 The inventors of the present invention have made extensive studies to solve the above problems. As a result, the inventors have found that the above problem can be solved by forming a layer having a predetermined void on the current collector formed on both the positive electrode and the negative electrode, and the present invention has been completed. More specifically, the present invention provides the following.
(1) 正極及び負極の両極上にそれぞれの集電体が形成され、少なくとも一方の前記集電体には、所定の空隙を有する層(以下、単に層ともいう)が形成されている固体電池。 (1) A solid battery in which current collectors are formed on both the positive electrode and the negative electrode, and at least one of the current collectors has a layer having a predetermined gap (hereinafter also simply referred to as a layer). .
(2) 前記層の空隙率は50vol%以上である(1)に記載の固体電池。 (2) The solid state battery according to (1), wherein the porosity of the layer is 50 vol% or more.
(3) 前記層は、繊維状材料を含む(1)又は(2)に記載の固体電池。 (3) The solid battery according to (1) or (2), wherein the layer includes a fibrous material.
(4) 前記繊維状材料はバインダーにより結着されている(3)に記載の固体電池。 (4) The solid battery according to (3), wherein the fibrous material is bound by a binder.
(5) 前記繊維状材料は炭素繊維、金属繊維、金属酸化物繊維、ガラス繊維から選ばれる少なくとも1種類以上である(3)又は(4)に記載の固体電池。 (5) The solid battery according to (3) or (4), wherein the fibrous material is at least one kind selected from carbon fiber, metal fiber, metal oxide fiber, and glass fiber.
(6) 前記層は導電性を有する(1)から(5)のいずれかに記載の固体電池。 (6) The solid battery according to any one of (1) to (5), wherein the layer has conductivity.
(7) 前記層の厚さが0.01mm以上2mm以下である(1)から(6)のいずれかに記載の固体電池。
(8) 前記集電体は、正極又は負極上に形成される面状の導電層上に、更に前記層が形成される(1)から(7)のいずれかに記載の固体電池。
(7) The solid state battery according to any one of (1) to (6), wherein the layer has a thickness of 0.01 mm to 2 mm.
(8) The said collector is a solid battery in any one of (1) to (7) in which the said layer is further formed on the planar conductive layer formed on a positive electrode or a negative electrode.
(9) 前記固体電池が、正極集電体層、正極活物質層、固体電解質層、負極活物質層、負極集電体層がこの順で積層されてなる全固体リチウムイオン二次電池である(1)から(8)のいずれかに記載の固体電池。 (9) The solid battery is an all solid lithium ion secondary battery in which a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer are laminated in this order. The solid battery according to any one of (1) to (8).
(10) (1)から(9)のいずれかに記載の固体電池を複数個積層してなる組電池。 (10) An assembled battery formed by laminating a plurality of solid batteries according to any one of (1) to (9).
(11) ガスと共に封入されている(10)に記載の組電池。 (11) The assembled battery as described in (10) enclosed with gas.
本発明によれば、固体電池において集電体に所定の空隙を有する層が形成されていることで、正極又は負極内で起こる電池反応による反応熱を均一に放熱することができる。このため、電池内部において温度が不均一になることを防ぎ電池性能の劣化を防ぐことができる。 According to the present invention, a layer having a predetermined gap is formed in a current collector in a solid battery, so that reaction heat due to a battery reaction that occurs in the positive electrode or the negative electrode can be uniformly dissipated. For this reason, it becomes possible to prevent the temperature from becoming non-uniform inside the battery and to prevent the battery performance from deteriorating.
以下、本発明の一実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, an embodiment of the present invention will be described in detail. However, the present invention is not limited to the following embodiment, and may be implemented with appropriate modifications within the scope of the object of the present invention. it can.
<固体電池>
固体電池は、通常、集電体/正極/固体電解質/負極/集電体で構成される。そして、本発明の固体電池は、集電体に所定の空隙を有する層が形成されていることが特徴である。以下、本発明の固体電池について、固体電解質、正極、負極、集電体の順に説明する。
<Solid battery>
The solid battery is usually composed of a current collector / positive electrode / solid electrolyte / negative electrode / current collector. The solid state battery of the present invention is characterized in that a layer having a predetermined gap is formed on the current collector. Hereinafter, the solid battery of the present invention will be described in the order of a solid electrolyte, a positive electrode, a negative electrode, and a current collector.
[固体電解質]
本発明に用いる固体電解質は特に限定されないが、無機固体電解質からなることが好ましい。本発明において用いることが可能な無機固体電解質としては、少なくともLi、P及びOを含むリン化合物が望ましい。例えばリン酸リチウム(Li3PO4)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[Solid electrolyte]
The solid electrolyte used in the present invention is not particularly limited, but is preferably composed of an inorganic solid electrolyte. As the inorganic solid electrolyte that can be used in the present invention, a phosphorus compound containing at least Li, P, and O is desirable. For example, lithium phosphate (Li 3 PO 4 ), LiPON obtained by substituting part of oxygen of lithium phosphate with nitrogen, LiPOD (D is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb) , Mo, Ru, Ag, Ta, W, Pt, Au, etc.). LiAON (A is at least one selected from Si, B, Ge, Al, C, Ga, etc.) and the like can also be preferably used. These may be used alone or in combination of two or more.
[正極]
正極は正極活物質を含むものであれば特に限定されない。正極活物質には、二次電池の活物質として知られている材料を、特に限定なく用いることができる。正極活物質としては、例えばリチウム含有遷移金属酸化物、バナジウム酸化物、クロム酸化物、チタン硫化物等が挙げられる。また、リチウム含有遷移金属酸化物としては、リチウムコバルト系酸化物(LiCoO2、LiCoPO4F)リチウムニッケル系酸化物(LiNiO2)、リチウムマンガン系酸化物(LiMnP04、LiMn2O4)、リチウム鉄系酸化物(LiFePO4、Li2FePO4F)、LiMO2(Mは、Ni、Co、Fe、Al、Mg、Mn等から選ばれた少なくとも2種)等が好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[Positive electrode]
The positive electrode is not particularly limited as long as it contains a positive electrode active material. As the positive electrode active material, a material known as an active material of a secondary battery can be used without any particular limitation. Examples of the positive electrode active material include lithium-containing transition metal oxides, vanadium oxides, chromium oxides, titanium sulfides, and the like. Examples of the lithium-containing transition metal oxide include lithium cobalt oxide (LiCoO 2 , LiCoPO 4 F), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMnP 0 4 , LiMn 2 O 4 ), lithium Iron-based oxides (LiFePO 4 , Li 2 FePO 4 F), LiMO 2 (M is at least two selected from Ni, Co, Fe, Al, Mg, Mn, etc.) are preferable. These may be used alone or in combination of two or more.
[負極]
負極は負極活物質を含むものであれば特に限定されない。負極活物質には、二次電池の活物質として知られている材料を、特に限定なく用いることができる。負極活物質としては、例えば金属もしくは半金属、酸化物、窒化物、酸窒化物、SiB3、Mg2Si、炭素、Cu2P、Fe2S、FeSb2等が挙げられる。また、金属もしくは半金属としては、リチウム、珪素、アモルファス珪素、アルミニウム、銀、錫、アンチモン等を用いることができ、酸化物としては、SiO、SnB0.5P0.5O3、SnBPO6、SnO2、Fe2O3、CoO、WO2、Li2SrTi6O14、MoO2、Li4Ti5O12、TiO2、Nb2O5、WO、Ta2O5等を用いることができ、窒化物としては、Li2.6Co0.4N、Li3FeN2、Li7MnN4等を用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[Negative electrode]
A negative electrode will not be specifically limited if a negative electrode active material is included. As the negative electrode active material, a material known as an active material of a secondary battery can be used without particular limitation. Examples of the negative electrode active material include metals or metalloids, oxides, nitrides, oxynitrides, SiB 3 , Mg 2 Si, carbon, Cu 2 P, Fe 2 S, and FeSb 2 . As the metal or semimetal, lithium, silicon, amorphous silicon, aluminum, silver, tin, antimony, or the like can be used. As the oxide, SiO, SnB 0.5 P 0.5 O 3 , SnBPO 6 , the use of SnO 2, Fe 2 O 3, CoO, WO 2, Li 2 SrTi 6 O 14, MoO 2, Li 4 Ti 5 O 12, TiO 2, Nb 2 O 5, WO, Ta 2 O 5 , etc. As the nitride, Li 2.6 Co 0.4 N, Li 3 FeN 2 , Li 7 MnN 4 or the like can be used. These may be used alone or in combination of two or more.
なお、上記の正極、固体電解質、負極は従来公知の方法により積層して電池化できる。積層方法は特に限定されないが、例えば、特開2007−134305号公報に記載されているようなグリーンシートを用いる方法等を適宜用いることができる。なお、「グリーンシート」とは、薄板状に成形したガラス粉末、結晶(セラミックス又はガラスセラミックス)粉末の未焼成体をさし、ガラス粉末、結晶(セラミックス又はガラスセラミックス)粉末と、有機結合剤、可塑剤、溶剤等の混合スラリーをドクターブレードやカレンダ法等により薄板状に成形したものをいう。すなわち、正極、固体電解質、負極のグリーンシートをそれぞれ作製し、これを積層プレスして緻密化し、その後に加熱してバインダーや分散剤等の有機物を除去した後、高温焼成して正極/固体電解質/負極の積層焼結体を得る。これにより、面積が広く、かつ薄い焼結体が得られる。 The above positive electrode, solid electrolyte, and negative electrode can be laminated by a conventionally known method to form a battery. Although the lamination method is not particularly limited, for example, a method using a green sheet as described in JP 2007-134305 A can be appropriately used. The “green sheet” refers to an unfired body of glass powder, crystal (ceramics or glass ceramic) powder formed into a thin plate, glass powder, crystal (ceramics or glass ceramic) powder, organic binder, A slurry obtained by molding a mixed slurry of a plasticizer, a solvent, etc. into a thin plate shape by a doctor blade, a calendar method or the like. That is, a positive electrode, a solid electrolyte, and a green sheet of a negative electrode were respectively prepared, laminated and pressed to be densified, and then heated to remove organic substances such as a binder and a dispersant, and then fired at a high temperature to be positive electrode / solid electrolyte / A negative electrode laminate sintered body is obtained. As a result, a thin sintered body having a large area can be obtained.
[集電体]
本発明の固体電池における集電体は、所定の空隙を有する層が形成されている。これにより、電池反応の反応熱を均一に放熱することが可能になり、特に固体電池内部の温度が表面に比べて高くなるのを効果的に防止できる。すなわち、電池内部の一部が高温になり、その高温部分でリチウムイオンの移動が促進され、その部分がより早く劣化することによる電池性能の低下を防ぐことができる。本発明のように、電池反応による反応熱が均一に放熱するのは、空隙内を熱が対流することによって、空隙間を反応熱が移動し、反応熱の外部への放熱を促進するためと考えられる。
[Current collector]
The current collector in the solid battery of the present invention has a layer having a predetermined gap. This makes it possible to uniformly dissipate the reaction heat of the battery reaction, and in particular, it is possible to effectively prevent the temperature inside the solid battery from becoming higher than the surface. That is, a part of the inside of the battery becomes high temperature, the movement of lithium ions is promoted at the high temperature part, and it is possible to prevent the battery performance from being deteriorated due to the deterioration of the part earlier. As in the present invention, the reaction heat due to the battery reaction is uniformly dissipated because the reaction heat moves through the air gap by convection of heat in the gap, and the heat release of the reaction heat is promoted to the outside. Conceivable.
本発明において「集電体に所定の空隙を有する層が形成されている」とは、所定の空隙を有する層が、集電体の表面に形成されていてもよく、集電体自体が所定の空隙を有する層である場合も含まれる。また、この層には集電機能すなわち導電性は必須ではない。すなわち、本発明にける集電体の態様としては、(a)通常の集電層+所定の空隙を有する層(導電性有)、(b)所定の空隙を有する集電層(導電性有)のみ、(c)通常の集電層+所定の空隙を有する層(導電性なし)、の3態様を全て含むものである。なお、(c)の態様は所定の空隙を有する層を絶縁層として利用するものであり、本発明においては、この態様においても絶縁層を含めた全体を集電体と定義する。 In the present invention, “a layer having a predetermined void is formed in the current collector” means that a layer having a predetermined void may be formed on the surface of the current collector, and the current collector itself is a predetermined layer. The case where the layer has a void is also included. In addition, a current collecting function, that is, conductivity is not essential for this layer. That is, the aspect of the current collector in the present invention includes (a) a normal current collecting layer + a layer having a predetermined void (conductivity), (b) a current collecting layer having a predetermined void (conductivity) ) Only, and (c) a normal current collecting layer + a layer having a predetermined gap (no conductivity). In the aspect (c), a layer having a predetermined gap is used as an insulating layer. In the present invention, the whole including the insulating layer is also defined as a current collector in this aspect.
「所定の空隙を有する層」とは、電極内で生じた電池反応による反応熱が、電極側から当該層へ移り、空隙内を熱が対流し、電池外へその熱を放熱するものであればよい。空隙の程度は適宜設定可能であるが、空隙率が50vol%以上、より好ましくは60vol%以上、更に好ましくは70vol%以上である。空隙率が50vol%以上であれば放熱が十分であるので好ましく、空隙率が80vol%以下であれば余分な空間を含むものの、電池全体の体積コンパクトに収めることができるので好ましい。ここで、空隙率とは、空隙層の体積中に占める空隙層を形成する材料、例えば繊維状材料やそれらと電極を接合するバインダーの体積から換算した値によって規定される数値である。 “A layer with a predetermined gap” means that heat of reaction caused by a battery reaction generated in an electrode is transferred from the electrode side to the layer, heat is convected in the gap, and the heat is dissipated outside the battery. That's fine. The degree of the void can be set as appropriate, but the void ratio is 50 vol% or more, more preferably 60 vol% or more, and still more preferably 70 vol% or more. If the porosity is 50 vol% or more, it is preferable because heat dissipation is sufficient, and if the porosity is 80 vol% or less, an extra space is included, but the entire battery can be contained in a compact volume. Here, the porosity is a numerical value defined by a value converted from the material forming the void layer in the volume of the void layer, for example, the fibrous material and the volume of the binder that joins them to the electrode.
所定の空隙を有する層の構成は、特に限定されず、格子状、メッシュ状、繊維状等を用いることができるが、なかでも繊維状であることが好ましく、繊維状材料及びバインダーにより形成されることが好ましい。この場合、繊維状材料が導電性であれば層の集電効果も併せて持ち、絶縁性であれば層の部分は絶縁層として機能することになる。そして、バインダーにより結着されることで、正極又は負極等の接合面での高い密着力が得られる。また、繊維状材料及びバインダーの種類と配合を適宜選択することで、繊維と繊維とをバインダーで繋ぎつつ、繊維と繊維との間に好ましい空隙を残すことが可能となる。この繊維状材料及びバインダーにより形成される層は、従来公知の方法、例えば繊維状材料及びバインダーを溶剤と混合してスラリー状とし、これを塗布乾燥することにより得られる。 The configuration of the layer having the predetermined void is not particularly limited, and a lattice shape, a mesh shape, a fiber shape, or the like can be used. Among these, a fibrous shape is preferable, and the layer is formed of a fibrous material and a binder. It is preferable. In this case, if the fibrous material is conductive, the layer also has a current collecting effect, and if it is insulating, the layer portion functions as an insulating layer. And the high adhesive force in joining surfaces, such as a positive electrode or a negative electrode, is obtained by being bound with a binder. Moreover, it becomes possible to leave a preferable space | gap between fibers, connecting a fiber and a fiber with a binder by selecting suitably the kind and mixing | blending of a fibrous material and a binder. The layer formed of the fibrous material and the binder can be obtained by a conventionally known method, for example, by mixing the fibrous material and the binder with a solvent to form a slurry, and applying and drying the slurry.
繊維状材料としては、炭素繊維、金属繊維、金属酸化物繊維、ガラス繊維が好ましいが、なかでも導電性を有し、熱伝導性を有する炭素繊維を用いることがより好ましい。 As the fibrous material, carbon fiber, metal fiber, metal oxide fiber, and glass fiber are preferable, and it is more preferable to use carbon fiber having conductivity and thermal conductivity.
炭素繊維は導電性及び熱伝導性が高いため、集電性を有しつつ電池反応による反応熱の放熱をより促進することができる。このため、固体電池内部の温度を均一にする効果が高まり、電池性能の劣化をより抑えることができる。 Since carbon fiber has high electrical conductivity and thermal conductivity, it is possible to further promote the release of reaction heat due to the battery reaction while having current collecting properties. For this reason, the effect which makes the temperature inside a solid battery uniform becomes high, and deterioration of battery performance can be suppressed more.
また、金属繊維も炭素繊維と同様に導電性及び熱伝導性が高いため、上記のように電池性能の劣化をより抑えることができる。加えて、金属繊維は材料選択に幅があるため好ましい。更に、集電体には通常はアルミニウムや銅等の金属が用いられているため、金属繊維を用いることで、集電体自体を所定の空隙を持つ本発明の層にする場合に好適である。 In addition, since the metal fiber has high conductivity and high thermal conductivity like the carbon fiber, the deterioration of the battery performance can be further suppressed as described above. In addition, metal fibers are preferred because of the wide selection of materials. Furthermore, since the current collector is usually made of a metal such as aluminum or copper, the use of metal fibers is suitable when the current collector itself is used as the layer of the present invention having a predetermined gap. .
金属酸化物繊維やガラス繊維を用いる場合には、所定の空隙を有する層を絶縁とする際に好適である。層構造を持つ電池内部は、ショートを防止するために層間を電気的に絶縁したい場合がある。このような場合に、上記金属酸化物繊維やガラス繊維を用いると電気は通さないが、電池反応による反応熱は放熱することができるので好ましい。 In the case of using metal oxide fiber or glass fiber, it is suitable for insulating a layer having a predetermined gap. In some cases, the inside of a battery having a layer structure is desired to be electrically insulated between layers in order to prevent a short circuit. In such a case, if the metal oxide fiber or glass fiber is used, electricity is not passed, but reaction heat due to the battery reaction can be dissipated, which is preferable.
本発明に用いることができる炭素繊維としては、気相法炭素繊維(例えば昭和電工株式会社製品のVGCF、登録商標)、カーボンナノチューブ等が挙げられる。カーボンナノチューブは気相法炭素繊維よりも電気抵抗が低いため好ましい。一方、気相法炭素繊維はカーボンナノチューブよりも長さが長く、空隙を形成しやすいので好ましい。また、気相法炭素繊維は、結晶性が高く熱伝導性、電気伝導性を有するので、導電性を有する炭素繊維の中で最も好ましい。なお、本発明に用いる導電性を有する炭素繊維は、グラファイト類やカーボンブラック等の粒子状や板状の炭素材料を含んでいてもよい。 Examples of carbon fibers that can be used in the present invention include vapor grown carbon fibers (for example, VGCF, registered trademark of Showa Denko KK), carbon nanotubes, and the like. Carbon nanotubes are preferred because they have lower electrical resistance than vapor grown carbon fibers. On the other hand, vapor grown carbon fibers are preferable because they are longer than carbon nanotubes and easily form voids. Vapor-grown carbon fiber is most preferable among carbon fibers having conductivity because it has high crystallinity and thermal conductivity and electrical conductivity. The conductive carbon fiber used in the present invention may contain a particulate or plate-like carbon material such as graphite or carbon black.
本発明に用いることができる金属繊維としては、チタン、ニッケル、銅等が挙げられ、これらの中でも、熱伝導度が高く放熱効果がより高いという理由で、特に銅を用いることが好ましい。 Examples of the metal fiber that can be used in the present invention include titanium, nickel, copper, and the like. Among these, copper is particularly preferably used because of its high thermal conductivity and higher heat dissipation effect.
本発明に用いることができる金属酸化物繊維としては、酸化チタン、酸化亜鉛、酸化ニッケル、酸化シリコン等が挙げられ、これらの中でも、絶縁性や資源量の豊富さという理由で、特に酸化シリコンが好ましい。また、電導性を持つ場合は酸化チタンや酸化亜鉛等を含むものが好ましい。また、ガラス繊維としては、従来公知のものを用いることができる。 Examples of the metal oxide fiber that can be used in the present invention include titanium oxide, zinc oxide, nickel oxide, and silicon oxide. Among these, silicon oxide is particularly preferable because of its insulating properties and abundant resources. preferable. Moreover, when it has electroconductivity, what contains a titanium oxide, a zinc oxide, etc. is preferable. Moreover, as a glass fiber, a conventionally well-known thing can be used.
バインダーは空隙を形成できるものであれば特に限定されないが、樹脂バインダーが好ましい。具体的には、フッ素樹脂系のバインダー、アクリル樹脂系のバインダー、ウレタン樹脂であることが好ましく、これらの中でも耐熱性という理由で、ポリフッ化ビニリデン(PVDF)やPTFEが特に好ましい。 The binder is not particularly limited as long as it can form voids, but a resin binder is preferable. Specifically, a fluorine resin binder, an acrylic resin binder, and a urethane resin are preferable, and among these, polyvinylidene fluoride (PVDF) and PTFE are particularly preferable because of heat resistance.
バインダーの使用量は必要な空隙に応じて適宜設定可能である。繊維状材料の種類にもよるが、本発明における、バインダーの使用量は導電性を有する繊維状材料100質量部に対して、1質量部〜50質量部であることが好ましい。より好ましくは2質量部〜40質量部、最も好ましくは3質量部〜30質量部である。バインダーを過剰に使用すると空隙をふさぐ恐れがあるが、バインダー樹脂の使用量が上記範囲内であれば、本発明において好ましい空隙が形成されやすくなる。 The usage-amount of a binder can be suitably set according to a required space | gap. Although it depends on the type of fibrous material, the amount of binder used in the present invention is preferably 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the fibrous material having conductivity. More preferably, they are 2 mass parts-40 mass parts, Most preferably, they are 3 mass parts-30 mass parts. If the binder is used excessively, the voids may be blocked. However, if the amount of the binder resin used is within the above range, preferable voids are easily formed in the present invention.
所定の空隙を有する層の厚さは、層に用いる材料に応じて適宜変更することが好ましいが、0.01mm〜2mmの範囲であることが好ましく、より好ましくは0.02mm〜1.8m、最も好ましくは0.05mm〜1.5mmである。0.01mm以上であれば熱の対流により、電池反応による反応熱が放熱されやすくなるために好ましい。また、2mm以下であれば電池全体の体積をコンパクトにできるので好ましい。 The thickness of the layer having a predetermined gap is preferably changed as appropriate according to the material used for the layer, but is preferably in the range of 0.01 mm to 2 mm, more preferably 0.02 mm to 1.8 m, Most preferably, it is 0.05 mm-1.5 mm. If it is 0.01 mm or more, it is preferable because reaction heat due to the battery reaction is easily dissipated by convection of heat. Moreover, if it is 2 mm or less, since the volume of the whole battery can be made compact, it is preferable.
本発明において、所定の空隙を有する層の位置は特に限定されず、本発明の層に用いる材料によって、その位置を適宜変更することが好ましい。例えば、集電体と正極又は負極との間は通常、電子がスムーズに伝導できることが好ましく、導電性の高い材料を本発明の層に用いるならば、本発明の層は正極又は負極上に直接形成してもよい。また、正極又は負極上に面状の導電層を形成した後に本発明の層を形成してもよい。この態様によれば、層が電極に直接接していないので、放熱の性能を備えた電気的絶縁層を形成することができ、空隙の少ないセラミックス等の絶縁材料を用いるより、電池のエネルギー密度を高く保持できるという効果が得られる。なお、面状の導電層とは、実質的に所定の一定厚みを有する層を意味し、蒸着やスパッタリング等の薄膜のみならず、箔やシート状のものも含む意味である。 In the present invention, the position of the layer having a predetermined void is not particularly limited, and it is preferable to appropriately change the position depending on the material used for the layer of the present invention. For example, it is usually preferable that electrons can conduct smoothly between the current collector and the positive electrode or the negative electrode, and if a highly conductive material is used for the layer of the present invention, the layer of the present invention is directly on the positive electrode or the negative electrode. It may be formed. Alternatively, the layer of the present invention may be formed after forming a planar conductive layer on the positive electrode or the negative electrode. According to this aspect, since the layer is not in direct contact with the electrode, it is possible to form an electrically insulating layer having heat dissipation performance, and to reduce the energy density of the battery compared to using an insulating material such as ceramics with less voids. The effect that it can hold high is acquired. The planar conductive layer means a layer having a substantially predetermined thickness, and includes not only thin films such as vapor deposition and sputtering but also foils and sheets.
また、本発明の固体電池を直列につないだ場合に、電池間に絶縁したい部分がある場合には、絶縁性の金属酸化物繊維等を用いた放熱層を一の電池の集電体とその電池の集電体と接する他の電池の集電体との間に放熱層を形成することが好ましい。この場合は、電気的な絶縁に加えて放熱することができるので好ましい。 In addition, when the solid batteries of the present invention are connected in series and there is a portion to be insulated between the batteries, a heat dissipation layer using an insulating metal oxide fiber or the like is used as a current collector of one battery and its It is preferable to form a heat dissipation layer between the current collector of the battery and the current collector of another battery in contact with the current collector of the battery. In this case, it is preferable because heat can be radiated in addition to electrical insulation.
<全固体リチウムイオン二次電池>
本発明の全固体リチウムイオン二次電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、負極集電体層がこの順で積層されてなる全固体リチウムイオン二次電池である。本発明の全固体リチウムイオン二次電池は、正極集電体及び/又は負極集電体に所定の空隙を有する層が形成されているか、又は、正極集電体や負極集電体自体が所定の空隙を有する層である。
<All-solid lithium ion secondary battery>
The all-solid-state lithium ion secondary battery of the present invention is an all-solid-state lithium ion secondary battery in which a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer are laminated in this order. Next battery. In the all-solid-state lithium ion secondary battery of the present invention, the positive electrode current collector and / or the negative electrode current collector is formed with a layer having a predetermined gap, or the positive electrode current collector and the negative electrode current collector itself are predetermined. It is a layer which has the space | gap.
正極集電体及び/又は負極集電体には上記固体電池における集電体をそのまま用いることができる。 As the positive electrode current collector and / or the negative electrode current collector, the current collector in the solid state battery can be used as it is.
固体電解質層は従来公知のものが使用でき特に限定されない。一例として、リチウムイオン伝導性の無機粉体を含むグリーンシートを焼成してなるものが挙げられる。リチウムイオン伝導性の無機粉体としては、上記の特開2007−134305号公報に記載されているようなリチウムイオン伝導性のガラスセラミックスを粉砕したものを使用することが好ましい。 A conventionally known solid electrolyte layer can be used and is not particularly limited. As an example, a green sheet containing a lithium ion conductive inorganic powder is fired. As the lithium ion conductive inorganic powder, it is preferable to use a pulverized lithium ion conductive glass ceramic as described in JP-A-2007-134305.
正極活物質層は従来公知のものが使用でき特に限定されない。一例として、正極活物質を含むグリーンシートを焼成してなるものが挙げられる。正極材料に使用する活物質としては、リチウムの吸蔵,放出が可能な遷移金属化合物を用いることができ、例えば、マンガン,コバルト,ニッケル,バナジウム,ニオブ、モリブデン、チタンから選ばれる少なくとも1種を含む遷移金属酸化物等を使用することができる。ほとんどの活物質材料は、電子伝導性及びイオン伝導性が乏しいため、電子伝導助剤として、導電性の炭素、黒鉛、炭素繊維、金属粉末、金属繊維、電子伝導性ポリマー等を添加するのが好ましい。また、イオン伝導助剤として、イオン伝導性のガラスセラミックス、イオン伝導性ポリマー等を添加するのが好ましい。これらの電子・イオン伝導助剤の添加量は、正極材料に対して、3〜35質量%の範囲であることが好ましく、4〜30質量%であることがより好ましく、5〜25質量%であることが最も好ましい。 A conventionally known positive electrode active material layer can be used and is not particularly limited. As an example, a material obtained by firing a green sheet containing a positive electrode active material can be given. As the active material used for the positive electrode material, a transition metal compound capable of occluding and releasing lithium can be used, and includes, for example, at least one selected from manganese, cobalt, nickel, vanadium, niobium, molybdenum, and titanium. Transition metal oxides and the like can be used. Since most active material materials have poor electron conductivity and ion conductivity, conductive carbon, graphite, carbon fiber, metal powder, metal fiber, electron conductive polymer, etc. should be added as an electron conduction aid. preferable. Moreover, it is preferable to add an ion conductive glass ceramic, an ion conductive polymer, etc. as an ion conductive support agent. The addition amount of these electron / ion conduction assistants is preferably in the range of 3 to 35% by mass, more preferably 4 to 30% by mass, and 5 to 25% by mass with respect to the positive electrode material. Most preferably it is.
負極活物質層は従来公知のものが使用でき特に限定されない。一例として、負極活物質を含むグリーンシートを焼成してなるものが挙げられる。負極材料に使用する活物質としては、金属リチウムやリチウム−アルミニウム合金、リチウム−インジウム合金等リチウムの吸蔵、放出が可能な合金、チタンやバナジウム等の遷移金属酸化物及び黒鉛等のカーボン系の材料を使用することが好ましい。活物質に電子伝導性が乏しい場合は、電子伝導助剤として、導電性の炭素、黒鉛、炭素繊維、金属粉末、金属繊維、電子伝導性ポリマー等を添加するのが好ましい。また、イオン導助剤として、イオン伝導性のガラスセラミックス、イオン伝導性ポリマー等を添加するのが好ましい。これらの電子・イオン伝導助剤の添加量は、正極材料に対して、合計で3〜35質量%の範囲であることが好ましく、4〜30質量%であることがより好ましく、5〜25質量%であることが最も好ましい。 A conventionally well-known thing can be used for a negative electrode active material layer, and it does not specifically limit. As an example, a green sheet containing a negative electrode active material is fired. The active material used for the negative electrode material includes metal lithium, lithium-aluminum alloy, lithium-indium alloy and other alloys capable of occluding and releasing lithium, transition metal oxides such as titanium and vanadium, and carbon-based materials such as graphite. Is preferably used. When the active material has poor electron conductivity, it is preferable to add conductive carbon, graphite, carbon fiber, metal powder, metal fiber, electron conductive polymer or the like as an electron conduction aid. Moreover, it is preferable to add ion-conductive glass ceramics, ion-conductive polymers, etc. as an ion-conducting aid. The total amount of these electron / ion conduction assistants added is preferably in the range of 3 to 35% by mass, more preferably 4 to 30% by mass, and more preferably 5 to 25% by mass with respect to the positive electrode material. % Is most preferred.
正極及び負極に添加するイオン伝導性ガラスセラミックスは、固体電解質に含有されるガラスセラミックスと同じものであることが好ましい。これらが同じものであると電解質と電極材に含まれるイオン移動機構が統一されるため、電解質−電極間のイオン移動がスムーズに行え、より高出力・高容量の電池が提供できる。 The ion conductive glass ceramic added to the positive electrode and the negative electrode is preferably the same as the glass ceramic contained in the solid electrolyte. If they are the same, the ion transfer mechanism contained in the electrolyte and the electrode material is unified, so that the ion transfer between the electrolyte and the electrode can be performed smoothly, and a battery with higher output and higher capacity can be provided.
なお、上記の正極活物質層、固体電解質層、負極活物質層は、上記の固体電池の場合と同様に、グリーンシートを用いる方法等で適宜積層し、積層焼結体を得ることができる。 In addition, the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer can be appropriately laminated by a method using a green sheet or the like, as in the case of the solid battery, to obtain a laminated sintered body.
<組電池>
上記の全固体リチウムイオン二次電池は、複数個積層した組電池として用いることにより大型化できる。この組電池では、積層体中央部により熱が溜まりやすいので、電池性能の劣化の問題はより大きい。したがって、本発明の固体電池は複数の固体電池を積層してなる大型電池に好ましく適用することができる。このとき、アルゴン、窒素等の不活性ガス等の気体を組電池内に封入することで、層から熱を吸収して、電池内を拡散する効果が高いという理由で放熱効率を更に向上させることができる。
<Battery assembly>
The all-solid-state lithium ion secondary battery can be increased in size by using it as an assembled battery in which a plurality of layers are stacked. In this assembled battery, heat is likely to accumulate in the central portion of the laminate, so the problem of deterioration in battery performance is greater. Therefore, the solid battery of the present invention can be preferably applied to a large battery formed by stacking a plurality of solid batteries. At this time, by enclosing a gas such as an inert gas such as argon or nitrogen in the assembled battery, the heat dissipation efficiency is further improved because the heat is absorbed from the layer and the effect of diffusing in the battery is high. Can do.
以下、実施例を用いて本発明を更に詳細に説明する。
<非晶質の酸化物ガラス粉末の作製>
原料としてH3PO4、Al(PO3)3、Li2CO3、SiO2、TiO2を使用し、これらを酸化物換算のmol%で、P2O5を35.0%、Al2O3を7.5%、Li2Oを15.0%、TiO2を38.0%、SiO2を4.5%といった組成になるように秤量して均一に混合した後に、白金ポットに入れ、電気炉中1500℃の温度で攪拌しながら3時間加熱・熔解してガラス融液を得た。その後、ガラス融液をポットに取り付けた白金製のパイプから加熱しながら室温の流水中に滴下させることにより急冷し、酸化物ガラスを得た。このガラスを1000℃の電気炉にて結晶化を行い、リチウムイオン伝導度の測定を行ったところ、室温にて1.3×10−3Scm−1であった。また、析出した結晶相は粉末X線回析法により、Li1+x+yAlxTi2−xSiyP3−yO12(0≦x≦0.4、0<y≦0.6)が主結晶相であることが確認された。酸化物ガラスをジェットミルにて粉砕後、エタノールを溶媒としたボールミルに入れ、湿式粉砕を行い、平均粒径0.7μm、最大粒径2μm、及び、平均粒径0.5μm、最大粒径1μmの2種類の酸化物ガラス粉末を得た。
Hereinafter, the present invention will be described in more detail with reference to examples.
<Preparation of amorphous oxide glass powder>
H 3 PO 4 , Al (PO 3 ) 3 , Li 2 CO 3 , SiO 2 , and TiO 2 are used as raw materials. These are mol% in terms of oxide, P 2 O 5 is 35.0%, Al 2 Weigh and mix evenly so that the composition of O 3 is 7.5%, Li 2 O is 15.0%, TiO 2 is 38.0%, and SiO 2 is 4.5%. The glass melt was obtained by heating and melting for 3 hours while stirring at a temperature of 1500 ° C. in an electric furnace. Then, the glass melt was rapidly cooled by dropping it into running water at room temperature while heating from a platinum pipe attached to the pot, to obtain an oxide glass. When this glass was crystallized in an electric furnace at 1000 ° C. and the lithium ion conductivity was measured, it was 1.3 × 10 −3 Scm −1 at room temperature. The precipitated crystal phase is mainly Li 1 + x + y Al x Ti 2 -x Si y P 3 -yO 12 (0 ≦ x ≦ 0.4, 0 <y ≦ 0.6) by powder X-ray diffraction. It was confirmed to be a crystalline phase. After pulverizing the oxide glass with a jet mill, it is placed in a ball mill using ethanol as a solvent, and wet pulverization is performed. The two types of oxide glass powders were obtained.
<電解質グリーンシートの作製>
平均粒径0.5μmの酸化物ガラスを、アクリル系のバインダー、分散剤、消泡剤と共に水を溶剤として、分散・混合して電解質スラリーを調製した。スラリーは減圧して泡抜きをした後、ドクターブレードを用いて成形、乾燥させて厚み30μmの電解質グリーンシートを作製した。
<Production of electrolyte green sheet>
An oxide slurry having an average particle size of 0.5 μm was prepared by dispersing and mixing an acrylic binder, a dispersant, and an antifoaming agent with water as a solvent. The slurry was decompressed to remove bubbles, and then shaped using a doctor blade and dried to prepare an electrolyte green sheet having a thickness of 30 μm.
<正極グリーンシートの作製>
正極活物質として、市販のマンガン酸リチウムを用いた。平均粒子径0.9μmに粉砕したマンガン酸リチウム粉末と平均粒径0.5μmの酸化物ガラスを75:25wt%の割合で秤量し、上記と同様のアクリル系のバインダー、分散剤と共に水を溶剤として、分散・混合して正極スラリーを調製した。スラリーは減圧して泡抜きをした後、ドクターブレードを用いて成形、乾燥させて厚み20μmの正極グリーンシートを作製した。
<Preparation of positive electrode green sheet>
Commercially available lithium manganate was used as the positive electrode active material. Lithium manganate powder pulverized to an average particle size of 0.9 μm and oxide glass having an average particle size of 0.5 μm are weighed in a ratio of 75:25 wt%, and water is solvent together with the same acrylic binder and dispersant as above. Then, a positive electrode slurry was prepared by dispersing and mixing. The slurry was decompressed to remove bubbles, and then shaped using a doctor blade and dried to produce a positive electrode green sheet having a thickness of 20 μm.
<負極グリーンシートの作製>
負極活物質として、市販のチタン酸リチウムを500℃にてアニールを行ってから用いた。平均粒径5μmのチタン酸リチウム粉末と平均粒径0.5μmの酸化物ガラスを80:20wt%の割合で秤量し、上記と同様のアクリル系のバインダー、分散剤と共に水を溶剤として、分散・混合して負極スラリーを調製した。スラリーは減圧して泡抜きをした後、連続式のロールコーターを用いて成形、乾燥させて厚み25μmの負極グリーンシートを作製した。
<Preparation of negative electrode green sheet>
As the negative electrode active material, commercially available lithium titanate was used after annealing at 500 ° C. A lithium titanate powder having an average particle size of 5 μm and an oxide glass having an average particle size of 0.5 μm are weighed at a ratio of 80:20 wt%, and dispersed with water as a solvent together with the same acrylic binder and dispersant as described above. The negative electrode slurry was prepared by mixing. The slurry was decompressed to remove bubbles, and then shaped and dried using a continuous roll coater to prepare a negative electrode green sheet having a thickness of 25 μm.
<電極・電解質積層体の作製>
前記で作製した正極グリーンシートを100mm角に切断、負極グリーンシートを130mm角に切断した。電解質グリーンシート2枚を重ね合わせ、加熱したロールプレスにて貼り合わせた後、正極グリーンシート/電解質グリーンシート/の順に貼り合わせたグリーンシート積層体を負極のサイズに合わせて130mm角に切断した。これらの切断した各グリーンシートを、CIP(冷間等方圧加圧)を用いて室温にてプレスし、緻密化させた。作製した積層体を、アルミナ製のセッターに挟み、電気炉内にて400℃に加熱し、積層体内のバインダーや分散剤等の有機物を除去した。その後、900℃に急昇温を行い、5分間保持し、冷却することにより、正極、電解質、負極の積層焼結体を作製した。
<Production of electrode / electrolyte laminate>
The positive electrode green sheet produced above was cut into 100 mm square, and the negative electrode green sheet was cut into 130 mm square. After stacking two electrolyte green sheets and bonding them with a heated roll press, the green sheet laminate bonded in the order of positive electrode green sheet / electrolyte green sheet / was cut into 130 mm squares according to the size of the negative electrode. Each of the cut green sheets was densified by pressing at room temperature using CIP (cold isostatic pressing). The produced laminate was sandwiched between alumina setters and heated to 400 ° C. in an electric furnace to remove organic substances such as binder and dispersant in the laminate. Thereafter, the temperature was rapidly raised to 900 ° C., held for 5 minutes, and cooled to prepare a laminated sintered body of the positive electrode, the electrolyte, and the negative electrode.
<全固体リチウムイオン二次電池の作製>
上記で作製した積層体の正極側に、蒸着法により厚さ90nmのアルミニウム集電体を形成した。また、負極側に、スパッタリング法により厚さ50nmの銅集電体を形成した。
<Preparation of all-solid lithium ion secondary battery>
An aluminum current collector having a thickness of 90 nm was formed by a vapor deposition method on the positive electrode side of the laminate produced above. Further, a 50 nm thick copper current collector was formed on the negative electrode side by sputtering.
次に、厚さ20μmのアルミニウム箔(正極用)、厚さ18μmの銅箔(負極用)の片側に、NMP(N−メチルピロリドン)溶媒に、VGCF(商品名VGCF)、PVDF、を90:10wt%の割合で混合したスラリーを塗り、それぞれの上にVGCF層を形成した(乾燥後厚さ55μm)。VGCF層の空隙率は88vol%であった。 Next, on one side of a 20 μm thick aluminum foil (for positive electrode) and a 18 μm thick copper foil (for negative electrode), NMP (N-methylpyrrolidone) solvent, VGCF (trade name VGCF), PVDF, 90: A slurry mixed at a rate of 10 wt% was applied, and a VGCF layer was formed on each of them (thickness after drying: 55 μm). The porosity of the VGCF layer was 88 vol%.
次に、VGCF層が積層体の電極側になるように設置して、本発明の集電体を形成し、電池セルを作製した。電池セルを、PTFEフィルムを介して10セル重ねてラミネートセルに封入した電池パックを作製した。 Next, the VGCF layer was placed on the electrode side of the laminate to form the current collector of the present invention, and a battery cell was produced. A battery pack in which 10 cells were stacked with a PTFE film and sealed in a laminate cell was produced.
<サイクル試験>
上記で作製した電池を25℃、1/6Cで50回充放電させた。50サイクル後の放電容量は初期放電容量の40%であった。
<Cycle test>
The battery prepared above was charged and discharged 50 times at 25 ° C. and 1 / 6C. The discharge capacity after 50 cycles was 40% of the initial discharge capacity.
<比較例>
実施例のVGCF層の配置と同様になるよう厚さ100μmのSUS304箔をセルの間に挟みこみ、実施例と同様に電池パックを作製した。作製した電池を25℃、1/6Cで50回充放電させた。50サイクル後の放電容量は初期容量の2%であった。
<Comparative example>
A SUS304 foil having a thickness of 100 μm was sandwiched between the cells so as to be the same as the arrangement of the VGCF layer in the example, and a battery pack was produced in the same manner as in the example. The produced battery was charged and discharged 50 times at 25 ° C. and 1 / 6C. The discharge capacity after 50 cycles was 2% of the initial capacity.
Claims (5)
前記正極集電体層、前記負極集電体層又はその両方には、0.05mm〜1.5mmの厚さの、炭素繊維を含む空隙率70vol%以上の空隙を有する層が形成されている、全固体リチウムイオン二次電池を複数個積層してなる組電池。 The positive electrode current collector layer, the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector layer are laminated in this order,
In the positive electrode current collector layer, the negative electrode current collector layer, or both, a layer having a void with a porosity of 70 vol% or more containing carbon fiber and having a thickness of 0.05 mm to 1.5 mm is formed. An assembled battery in which a plurality of all solid lithium ion secondary batteries are stacked.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008021788A JP5400304B2 (en) | 2008-01-31 | 2008-01-31 | Assembled battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008021788A JP5400304B2 (en) | 2008-01-31 | 2008-01-31 | Assembled battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009181905A JP2009181905A (en) | 2009-08-13 |
JP5400304B2 true JP5400304B2 (en) | 2014-01-29 |
Family
ID=41035691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008021788A Expired - Fee Related JP5400304B2 (en) | 2008-01-31 | 2008-01-31 | Assembled battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5400304B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017217769A1 (en) * | 2016-06-14 | 2017-12-21 | 주식회사 엘지화학 | Electrode for secondary battery, and lithium secondary battery comprising same |
US10873105B2 (en) | 2016-06-14 | 2020-12-22 | Lg Chem, Ltd. | Electrode for secondary battery and lithium secondary battery including same |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2965108B1 (en) * | 2010-09-22 | 2020-02-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | ELECTRODE CURRENT COLLECTOR FOR LITHIUM BATTERIES |
JP5775444B2 (en) * | 2011-12-26 | 2015-09-09 | 日本碍子株式会社 | Nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery |
KR101586251B1 (en) * | 2013-06-24 | 2016-01-18 | 주식회사 제낙스 | Current collector for rechargeable battery and electrode using the same |
KR101666699B1 (en) * | 2013-06-24 | 2016-10-14 | 주식회사 제낙스 | Current collector for rechargeable battery and electrode using the same |
JP6523892B2 (en) | 2015-09-16 | 2019-06-05 | 株式会社東芝 | Electrode, non-aqueous electrolyte battery, battery pack and car |
JP2018077988A (en) * | 2016-11-08 | 2018-05-17 | 凸版印刷株式会社 | Laminate green sheet, laminate sintered compact, and all-solid type secondary battery and manufacturing method thereof |
JP7568509B2 (en) | 2018-11-30 | 2024-10-16 | Tdk株式会社 | All-solid-state secondary battery |
JPWO2023058282A1 (en) * | 2021-10-06 | 2023-04-13 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH065277A (en) * | 1992-06-17 | 1994-01-14 | Honda Motor Co Ltd | Lithium secondary battery |
JPH09143510A (en) * | 1995-11-14 | 1997-06-03 | Kataoka Tokushu Kogyo Kk | Metallic fiber porous body for battery electrode substrate, battery electrode substrate and its production |
JP2001043893A (en) * | 1999-07-29 | 2001-02-16 | Kyocera Corp | Whole solid secondary battery and its manufacture |
JP2001102056A (en) * | 1999-07-29 | 2001-04-13 | Kyocera Corp | Lithium cell |
JP4589047B2 (en) * | 2003-08-28 | 2010-12-01 | パナソニック株式会社 | Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery |
JP2007095421A (en) * | 2005-09-28 | 2007-04-12 | Sharp Corp | Large lithium ion secondary battery and electric storage system |
JP2007294429A (en) * | 2006-03-30 | 2007-11-08 | Ohara Inc | Lithium ion conductive solid electrolyte and its manufacturing method |
JP5205713B2 (en) * | 2006-05-01 | 2013-06-05 | 日産自動車株式会社 | Bipolar secondary battery |
-
2008
- 2008-01-31 JP JP2008021788A patent/JP5400304B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017217769A1 (en) * | 2016-06-14 | 2017-12-21 | 주식회사 엘지화학 | Electrode for secondary battery, and lithium secondary battery comprising same |
US10873105B2 (en) | 2016-06-14 | 2020-12-22 | Lg Chem, Ltd. | Electrode for secondary battery and lithium secondary battery including same |
Also Published As
Publication number | Publication date |
---|---|
JP2009181905A (en) | 2009-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5400304B2 (en) | Assembled battery | |
JP6085370B2 (en) | All solid state battery, electrode for all solid state battery and method for producing the same | |
KR102165543B1 (en) | Ion-conducting batteries with solid state electrolyte materials | |
JP5288816B2 (en) | Solid battery | |
JP5484928B2 (en) | All solid battery | |
US9692041B2 (en) | Lithium battery and method of preparing cathode active material for the lithium battery | |
JP5144845B2 (en) | Solid battery | |
JP5198080B2 (en) | Solid battery | |
WO2017046915A1 (en) | Composite electrolyte for secondary batteries, secondary battery and battery pack | |
WO2012043566A1 (en) | Sintered body for use in battery, method for manufacturing sintered body for use in battery, and all-solid-state lithium battery | |
JP6704295B2 (en) | All-solid-state lithium secondary battery and manufacturing method thereof | |
JP6259704B2 (en) | Method for producing electrode for all solid state battery and method for producing all solid state battery | |
JP2011165410A (en) | All solid lithium ion secondary battery and method for manufacturing the same | |
WO2014170998A1 (en) | All-solid-state lithium-ion secondary battery | |
JP7042426B2 (en) | Solid electrolytes and batteries | |
JP7107389B2 (en) | solid state battery | |
WO2017046917A1 (en) | Composite electrolyte for secondary battery, secondary battery, and battery pack | |
JP2012164571A (en) | Negative electrode body and lithium ion battery | |
JP2021177448A (en) | All-solid-state secondary battery | |
CN111463437A (en) | All-solid-state battery | |
JP7188562B2 (en) | solid state battery | |
JP6578743B2 (en) | Electrode manufacturing method | |
JP2014049198A (en) | Sintered body for battery, all solid state lithium battery, and method for producing sintered body for battery | |
JP5644951B2 (en) | Non-sintered laminate for all solid state battery, all solid state battery and method for producing the same | |
JP2011154873A (en) | Solid battery module and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101015 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130716 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130917 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131022 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131025 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5400304 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |