JP5400273B2 - Dye-sensitized solar cell and composite device including the same - Google Patents

Dye-sensitized solar cell and composite device including the same Download PDF

Info

Publication number
JP5400273B2
JP5400273B2 JP2007060547A JP2007060547A JP5400273B2 JP 5400273 B2 JP5400273 B2 JP 5400273B2 JP 2007060547 A JP2007060547 A JP 2007060547A JP 2007060547 A JP2007060547 A JP 2007060547A JP 5400273 B2 JP5400273 B2 JP 5400273B2
Authority
JP
Japan
Prior art keywords
dye
sensitized solar
solar cell
positive electrode
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007060547A
Other languages
Japanese (ja)
Other versions
JP2008226554A (en
Inventor
弘実 中澤
聡 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geomatec Co Ltd
Original Assignee
Geomatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geomatec Co Ltd filed Critical Geomatec Co Ltd
Priority to JP2007060547A priority Critical patent/JP5400273B2/en
Publication of JP2008226554A publication Critical patent/JP2008226554A/en
Application granted granted Critical
Publication of JP5400273B2 publication Critical patent/JP5400273B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

本発明は、色素増感太陽電池及びこれを備えた複合型機器に係り、特に、複数の電極を直列接続した色素増感太陽電池及びこれを備えた複合型機器に関する。   The present invention relates to a dye-sensitized solar cell and a composite device including the same, and more particularly to a dye-sensitized solar cell in which a plurality of electrodes are connected in series and a composite device including the same.

従来、太陽電池としては、主にSi系の太陽電池が用いられている。その理由としては、半導体などで技術が確立したSiのP−N接合を利用するので、安定して作製できるという点が挙げられる。一方、宇宙用途の人工衛星などでは、GaAsなどの化合物半導体が用いられる。これは、Siより光電変換効率が高く、また、放射線耐性が高いためである。   Conventionally, Si solar cells are mainly used as solar cells. The reason for this is that the Si PN junction, which is well-established with semiconductors and the like, is used so that it can be manufactured stably. On the other hand, compound satellites such as GaAs are used in artificial satellites for space applications. This is because the photoelectric conversion efficiency is higher than that of Si and the radiation resistance is higher.

しかしながら、上記の半導体系の太陽電池には、高品質なP−N接合を作る必要があり、その作製のためには、高品質の単結晶と高価な成膜装置を用いて、時間をかけて多くの行程をこなさなければならず、生産コスト、作製時間がかかるという問題がある。   However, it is necessary to make a high-quality PN junction for the above-mentioned semiconductor-based solar cell, and it takes time to make a high-quality single crystal and an expensive film-forming apparatus. There is a problem that it takes a lot of processes and requires production cost and production time.

これらの半導体系の太陽電池に代わり、最近、色素増感太陽電池の研究開発が活発になされている。色素増感太陽電池は、1990年代の初めにスイスのグレツェルによって開発された太陽電池で、光電変換効率が理論上Si系太陽電池よりも大きいことや、作製が簡便であることなどから、現在、次の世代の太陽電池として期待され、研究開発が盛んに行われている。   In recent years, research and development of dye-sensitized solar cells have been actively conducted in place of these semiconductor solar cells. The dye-sensitized solar cell is a solar cell developed by Gretzell in Switzerland at the beginning of the 1990s, and its photoelectric conversion efficiency is theoretically larger than that of Si-based solar cells, and is easy to manufacture. It is expected to be the next generation solar cell, and research and development are actively conducted.

色素増感太陽電池の起電力は、通常1セルあたり約0.6V程度であり、実際にそれを用いて機器を駆動させるためには、複数個を直列に接続して、機器が駆動する電圧にする必要がある。その直列接続の方法としては、導線を使った接続方法やセル間の隔壁を利用して接続する方法がある。   The electromotive force of a dye-sensitized solar cell is normally about 0.6 V per cell. In order to actually drive a device using this, a plurality of devices are connected in series, and the voltage that the device drives It is necessary to. As a method for the series connection, there are a connection method using a conductive wire and a connection method using a partition wall between cells.

導線を使った接続方法について図12を参照して説明する。図12は従来の色素増感太陽電池の平面図である。この図に示すように、色素増感太陽電池S0は、基板101と基板110の間に複数の色素増感太陽電池セル112,112・・・が並列に配列されている。そして、それぞれの色素増感太陽電池セル112の透明導電膜102の一端から導線113を引き出し、基板の表面側を通じて隣接する色素増感太陽電池セル112の正電極膜106の一端に接続する。これにより、色素増感太陽電池セル112が直列に接続される。   A connection method using a conducting wire will be described with reference to FIG. FIG. 12 is a plan view of a conventional dye-sensitized solar cell. As shown in this figure, the dye-sensitized solar cell S0 has a plurality of dye-sensitized solar cells 112, 112,... Arranged in parallel between a substrate 101 and a substrate 110. And the conducting wire 113 is pulled out from one end of the transparent conductive film 102 of each dye-sensitized solar cell 112 and connected to one end of the positive electrode film 106 of the adjacent dye-sensitized solar cell 112 through the surface side of the substrate. Thereby, the dye-sensitized solar cell 112 is connected in series.

この接続方法は、隣り合うセルの正極、負極を導線などを用いて接続すれば良いので、最も単純で確実な方法である。しかしながら、接続作業に手間がかかると同時に、セル外部に導線が延びているため、使用時に導線に触れて切断するなどの安全性の問題や、見た目が良好でないという不都合がある。また、基板の表面の電極端子から裏面の電極端子に導線をつなぐため、導線に屈曲部が生じる。このため、電極端子と導線との接合部に破断などが生じやすく、この点からも安全性に問題があった。   This connection method is the simplest and most reliable method because it is sufficient to connect the positive and negative electrodes of adjacent cells using a conductive wire or the like. However, the connection work takes time and at the same time, since the lead wire extends outside the cell, there are safety problems such as touching and cutting the lead wire during use, and inconvenience that the appearance is not good. Moreover, since a conducting wire is connected from the electrode terminal on the front surface of the substrate to the electrode terminal on the back surface, a bent portion is generated in the conducting wire. For this reason, breakage or the like is likely to occur at the joint between the electrode terminal and the conductive wire, and there is a problem in safety from this point.

一方、セル間の隔壁を利用して接続する方法としては、下の特許文献1〜3に示すようにW型やZ型と呼ばれる接続方法がある。   On the other hand, as a method of connection using the partition walls between cells, there are connection methods called W-type and Z-type as shown in Patent Documents 1 to 3 below.

このうちW型は、隣り合うセルの正極、負極を交互に反転させ、その隣り合うセルの集電電極を2つずつ共通のものとして、正極基板と負極基板の間に隔壁を設けて電解液を注入して封止することで、各セルを自動的に直列に接続する方法である。
この方法は、比較的簡単に作成できるという長所を持っている。しかしながら、この接続方法では正極と負極が交互に反転しているので、発電に必要な光を取り込める透明な負極側のセルの面積は、どちらの側も全体のセル面積の半分となる。このため、基板のいずれの側から光を取り込んでも半分のセルしか受光できず、全体のセルのうち半分しか機能しない。したがって、全体の光電変換効率が実質的に半分になり、セルの出力電圧が約半分になるという問題があった。
また、W型では、隣り合うセルの正負が交互に反転しているため、機能しないセルが一つおきに存在する。このため、すべてのセルが機能するように配列されたZ型などと比べると、全体の出力電流が低下するという問題もある。
このように、W型の色素増感太陽電池では、正極、負極が交互に配列されているため、出力電圧が半減するとともに出力電流も低下し、発電特性が低下するという問題があった。
Among these, the W type is configured such that the positive electrode and the negative electrode of adjacent cells are alternately inverted, and two current collecting electrodes of the adjacent cells are shared, and a partition is provided between the positive electrode substrate and the negative electrode substrate. This is a method of automatically connecting each cell in series by injecting and sealing.
This method has the advantage of being relatively easy to create. However, in this connection method, since the positive electrode and the negative electrode are alternately inverted, the area of the cell on the transparent negative electrode side capable of taking in the light necessary for power generation is half of the entire cell area on either side. For this reason, only half of the cells can be received even if light is taken from either side of the substrate, and only half of the total cells function. Therefore, there is a problem that the overall photoelectric conversion efficiency is substantially halved and the cell output voltage is approximately halved.
In the W type, since the positive and negative of adjacent cells are alternately inverted, every other cell does not function. For this reason, there is also a problem that the overall output current is reduced as compared with a Z-type array in which all the cells function.
As described above, in the W-type dye-sensitized solar cell, since the positive electrode and the negative electrode are alternately arranged, there is a problem that the output voltage is reduced by half, the output current is also decreased, and the power generation characteristics are deteriorated.

一方、Z型は、いずれのセルの正極、負極もそれぞれ一方の基板の側に共通に配置されており、セル間の隔壁を通じて配線を形成して隣接するセルの端部どうしを接続する方法である。この方法では、一方の基板には負極のみが配置されているため、負極側から光を取り込めば、すべてのセルで受光でき、配列されたすべてのセルが機能する。このためZ型では、W型のように光電変換効率が落ちることがなく、良好な発電特性を示す。   On the other hand, in the Z type, the positive electrode and negative electrode of each cell are arranged in common on one substrate side, and a wiring is formed through a partition wall between cells to connect end portions of adjacent cells. is there. In this method, since only the negative electrode is arranged on one substrate, if light is taken in from the negative electrode side, it can be received by all the cells, and all the arranged cells function. For this reason, in the Z type, the photoelectric conversion efficiency does not decrease unlike the W type, and good power generation characteristics are exhibited.

特開平8−306399号公報JP-A-8-306399 特開2007−12377号公報JP 2007-12377 A 特開2007−18862号公報JP 2007-18862 A

Z型の色素増感太陽電池では、隔壁を通じて隣り合う正極と負極の電極を接続するので、隔壁の内部に導通部を形成させ、かつその導通部が腐食性の高い電解液から保護されている必要がある。しかしながら、このような隔壁の作製は技術的に困難であり、また液洩れや短絡を防ぐための精密な封止技術が必要となり、技術的な難易度が高く、したがってZ型は決して簡単な作成方法ではなかった。特に、セルが微細化された場合、より高度な隔壁の微細加工技術とより精密な封止技術が必要となり、高価な設備を導入し、時間と労力をかけて作製することが必要であった。また、直列接続セルが作製できても、構造上、完全に電解液の洩れを封止したり短絡を避けたりすることは難しく、歩留まりが低下したり、太陽電池特性にばらつきが生じることが多かった。   In the Z-type dye-sensitized solar cell, the positive and negative electrodes adjacent to each other are connected through the partition wall, so that a conductive part is formed inside the partition wall, and the conductive part is protected from a highly corrosive electrolyte. There is a need. However, it is technically difficult to manufacture such a partition wall, and a precise sealing technique for preventing liquid leakage and short circuit is necessary, which is technically difficult. It wasn't the way. In particular, when the cell is miniaturized, more advanced microfabrication technology for partition walls and more precise sealing technology are required, and it is necessary to introduce expensive equipment and take time and effort to manufacture the cell. . Even if series-connected cells can be fabricated, it is difficult to completely seal electrolyte leakage and avoid short circuiting due to the structure, resulting in a decrease in yield and variations in solar cell characteristics. It was.

加えて、Z型では、対向する基板を一旦接合させたあとで隔壁内の配線に短絡などが生じた場合には、これを修復するために接合した基板を剥がして内部の配線構造を露出させ、修復後に再び基板を接合させる必要があった。このようにZ型では、配線の修復が非常に困難になるという不都合もあった。   In addition, in the Z type, when a short circuit or the like occurs in the wiring in the partition after the opposing substrates are once bonded, the bonded substrate is peeled off to expose the internal wiring structure in order to repair it. After repair, it was necessary to bond the substrates again. As described above, the Z type has a disadvantage that the repair of the wiring becomes very difficult.

本発明の目的は、基板の一方に正極、他方に負極を形成した複数のセルからなる色素増感太陽電池において、簡単な構成により安定した特性を得ることが可能な色素増感太陽電池を提供することにある。
さらに、本発明の他の目的は、配線の切断や短絡が生じにくく、安定した駆動が可能な複合型機器を提供することにある。
An object of the present invention is to provide a dye-sensitized solar cell that can obtain stable characteristics with a simple configuration in a dye-sensitized solar cell including a plurality of cells in which a positive electrode is formed on one side and a negative electrode on the other side. There is to do.
Furthermore, another object of the present invention is to provide a composite device that is less likely to be disconnected or short-circuited and can be driven stably.

前記課題は、本発明の色素増感太陽電池によれば、対向して配設され、少なくとも一方が透光性を有する一対の基板と、該基板の間に並列に配列された複数の色素増感太陽電池セルと、該複数の色素増感太陽電池セルの外周部を区画する仕切部と、を備え、各々の前記色素増感太陽電池セルは、前記透光性を有する基板に形成された透明導電膜からなる負極と、該負極に対向するよう前記一対の基板の他方側に形成された電極からなる正極と、前記負極と前記正極との間に形成された光電変換層と、から構成され、前記正極及び前記負極は、長手方向の両端部が前記仕切部の外部に延出しており、前記両端部の延出した領域のそれぞれが、隣接する前記色素増感太陽電池セルの反対電極と電気的に接続されることにより、複数の前記色素増感太陽電池セルが直列に接続されていることにより解決される。 According to the dye-sensitized solar cell of the present invention, the problem is that a plurality of dye-sensitized solar cells arranged opposite to each other and having at least one light-transmitting property and arranged in parallel between the substrates are provided. Each of the dye-sensitized solar cells is formed on the translucent substrate. A negative electrode made of a transparent conductive film, a positive electrode made of an electrode formed on the other side of the pair of substrates so as to face the negative electrode, and a photoelectric conversion layer formed between the negative electrode and the positive electrode In the positive electrode and the negative electrode, both end portions in the longitudinal direction extend to the outside of the partition portion, and each of the extended regions of the both end portions is an opposite electrode of the adjacent dye-sensitized solar cell. A plurality of the dye sensitizers by being electrically connected to It is solved by positive battery cells are connected in series.

このように、両端部の延出した領域のそれぞれが、隣接する色素増感太陽電池セルの反対電極と電気的に接続されることにより、複数の色素増感太陽電池セルが直列に接続されているため、隣り合った電極を、基板の外部を通る導線で接続したり、セル間の仕切部を貫通する配線により接続したりする必要がない。このため、配線構造が簡単で、しかも断線等の少ない安定した電池特性を有する色素増感太陽電池を提供することができる。
また、正極及び負極は、長手方向の両端部が仕切部の外部に延出しており、両端部の延出した領域のそれぞれが、隣接する色素増感太陽電池セルの反対電極と電気的に接続されるため、正極や負極の両端側で反対電極と導通することができる。正極や負極の抵抗は、電極の長さに比例するため、正極や負極の一端側で反対電極と導通する場合と比較して、両端側で導通することで抵抗値が半分となり、正極や負極の抵抗に起因する内部損失が少なく、電池特性の高い太陽電池とすることができる。
In this way, each of the extended regions at both ends is electrically connected to the opposite electrode of the adjacent dye-sensitized solar cell, so that a plurality of dye-sensitized solar cells are connected in series. Therefore, it is not necessary to connect the adjacent electrodes with a conducting wire that passes outside the substrate, or with a wiring that penetrates the partition between the cells. Therefore, it is possible to provide a dye-sensitized solar cell having a simple wiring structure and stable battery characteristics with few disconnections.
Moreover, the positive electrode and the negative electrode have both ends in the longitudinal direction extending to the outside of the partition, and each of the extended regions of both ends is electrically connected to the opposite electrode of the adjacent dye-sensitized solar cell. Therefore, it is possible to conduct with the opposite electrode at both ends of the positive electrode and the negative electrode. Since the resistance of the positive electrode and the negative electrode is proportional to the length of the electrode, the resistance value is halved by conducting at both ends compared to the case of conducting with the opposite electrode at one end of the positive and negative electrodes. Thus, a solar cell with low battery loss and high battery characteristics can be obtained.

また、前記正極及び前記負極の一対の電極は、前記延出した領域に、電気的に接続される他方の電極に向けて突出する突出部を備え、前記基板の正面側から垂直方向に前記突出部を見たときに、該突出部の一部が、前記他方の電極の前記延出した領域の一部と重なっており、該重なり部で、前記他方の電極と接続されていることが好ましい。 Further, the pair of electrodes of the positive electrode and the negative electrode includes a protruding portion that protrudes toward the other electrode that is electrically connected to the extended region, and the protrusion protrudes vertically from the front side of the substrate. when part viewed, a portion of the projecting portion overlaps with a portion of said issued the extension of the other electrode regions, in polymerization it becomes part, preferably and have been connected to the other electrode .

このように、突出部を備えることで、正極の端部と、隣接する色素増感太陽電池セルの負極の端部との距離が小さくなり、両者の間に電気的接続を形成しやすくなる。したがって、簡単な構成で安定した特性を有する色素増感太陽電池を提供することが可能となる。
また、突出部の一部が、他方の電極の延出した領域の一部と重なっているため、この重なる部分を接続することで、突出部と反対電極の端部との間を最短距離で導通することができる。このようにすることで配線部を短くすることが可能となり、配線部が長くなることによる断線などが生じにくくなる。したがって、配線構造がより簡単になるとともに、断線等が生じにくい安定した電池特性を備えた色素増感太陽電池を提供することができる。
Thus, by providing a protrusion part, the distance of the edge part of a positive electrode and the edge part of the negative electrode of an adjacent dye-sensitized solar cell becomes small, and it becomes easy to form electrical connection between both. Therefore, it is possible to provide a dye-sensitized solar cell having a stable characteristic with a simple configuration.
In addition, since a part of the protruding part overlaps with a part of the extended region of the other electrode, by connecting this overlapping part, the distance between the protruding part and the end of the opposite electrode is the shortest distance. Can conduct. By doing so, the wiring portion can be shortened, and disconnection due to the length of the wiring portion is less likely to occur. Therefore, it is possible to provide a dye-sensitized solar cell having a simpler wiring structure and having stable battery characteristics in which disconnection or the like is unlikely to occur.

この場合、前記正極は、前記仕切り部の一端側の前記延出した領域に、前記突出部を有し、前記負極は、前記仕切り部の他端側の前記延出した領域に、前記突出部を有していると好適である。 In this case, the positive electrode has the protruding portion in the extended region on one end side of the partition portion, and the negative electrode has the protruding portion in the extended region on the other end side of the partition portion. When that has a suitable.

このように構成しているため、突出部を正極と負極の両方の端部に設けることとなり、電極の両端側で反対電極と導通する。このため、一方側でのみ導通する場合と比較して電極部の電極抵抗が半分となる。したがって、電極の電気抵抗による内部損失が少なく、電池特性の高い色素増感太陽電池を提供することができる。 Since it comprises in this way , a protrusion part will be provided in the edge part of both a positive electrode and a negative electrode, and it will conduct | electrically_connect with an opposite electrode in the both ends side of an electrode. For this reason, the electrode resistance of an electrode part becomes a half compared with the case where it conducts only on one side. Therefore, it is possible to provide a dye-sensitized solar cell with less battery loss due to electrical resistance of the electrode and high battery characteristics.

また、前記透明導電膜は、酸化インジウムにスズをドープしたITO膜の上に、酸化スズにアンチモンをドープしたATO膜を積層させた積層透明導電膜であることが好ましい。   The transparent conductive film is preferably a laminated transparent conductive film in which an ATO film in which tin oxide is doped with antimony is laminated on an ITO film in which tin is doped into indium oxide.

このような積層透明導電膜は、電気抵抗が低く、温度による電気抵抗などの変化が少ないため、光電変換効率の高い色素増感太陽電池を作製することが可能となる。   Such a laminated transparent conductive film has a low electric resistance and a small change in the electric resistance due to temperature, and therefore, a dye-sensitized solar cell with high photoelectric conversion efficiency can be produced.

また、前記透明導電膜は、スパッタリング法により形成されていることが好ましい。   The transparent conductive film is preferably formed by a sputtering method.

このように、透明導電膜をスパッタリング法により形成することで、透明導電膜の膜厚や光学特性を所望のものに調整することができるため、色素増感太陽電池の特性を任意に設定することができる。   In this way, by forming the transparent conductive film by the sputtering method, the film thickness and optical characteristics of the transparent conductive film can be adjusted to desired ones, so the characteristics of the dye-sensitized solar cell can be set arbitrarily. Can do.

また、色素増感太陽電池と、該色素増感太陽電池に接続されるデバイスとから構成される複合型機器であって、前記色素増感太陽電池は、上記いずれかに記載の色素増感太陽電池であることが好ましい。   The dye-sensitized solar cell is a composite device composed of a dye-sensitized solar cell and a device connected to the dye-sensitized solar cell. A battery is preferred.

このような構成とすることで、簡単な構造を有し、かつ安定した特性を有する色素増感太陽電池を電源装置として備えた複合型機器を提供することができる。   By setting it as such a structure, the composite apparatus provided with the dye-sensitized solar cell which has a simple structure and has the stable characteristic as a power supply device can be provided.

本発明の色素増感太陽電池によれば、それぞれのセルは隣接する色素増感太陽電池セル
の反対電極と端部で接続されているため、簡単な構成で安定した特性を備えた色素増感太
陽電池を提供することができる。
また、両端部の延出した領域のそれぞれが、隣接する色素増感太陽電池セルの反対電極と電気的に接続されることにより、複数の色素増感太陽電池セルが直列に接続されているため、隣り合った電極を、基板の外部を通る導線で接続したり、セル間の仕切部を貫通する配線により接続したりする必要がない。このため、配線構造が簡単で、しかも断線等の少ない安定した電池特性を有する色素増感太陽電池を提供することができる。
また、正極及び負極は、長手方向の両端部が仕切部の外部に延出しており、両端部の延出した領域のそれぞれが、隣接する色素増感太陽電池セルの反対電極と電気的に接続されるため、正極や負極の両端側で反対電極と導通することができる。正極や負極の抵抗は、電極の長さに比例するため、正極や負極の一端側で反対電極と導通する場合と比較して、両端側で導通することで抵抗値が半分となり、正極や負極の抵抗に起因する内部損失が少なく、電池特性の高い太陽電池とすることができる。
According to the dye-sensitized solar cell of the present invention, each cell is connected to the opposite electrode of the adjacent dye-sensitized solar cell at the end, so that the dye-sensitized with stable characteristics with a simple configuration A solar cell can be provided.
In addition, since each of the extended regions at both ends is electrically connected to the opposite electrode of the adjacent dye-sensitized solar cell, a plurality of dye-sensitized solar cells are connected in series. Adjacent electrodes need not be connected by a conductive wire passing outside the substrate or connected by wiring penetrating the partition between cells. Therefore, it is possible to provide a dye-sensitized solar cell having a simple wiring structure and stable battery characteristics with few disconnections.
Moreover, the positive electrode and the negative electrode have both ends in the longitudinal direction extending to the outside of the partition, and each of the extended regions of both ends is electrically connected to the opposite electrode of the adjacent dye-sensitized solar cell. Therefore, it is possible to conduct with the opposite electrode at both ends of the positive electrode and the negative electrode. Since the resistance of the positive electrode and the negative electrode is proportional to the length of the electrode, the resistance value is halved by conducting at both ends compared to the case of conducting with the opposite electrode at one end of the positive and negative electrodes. Thus, a solar cell with low battery loss and high battery characteristics can be obtained.

以下、本発明の実施形態を図面に基づいて説明する。なお、以下に説明する部材、配置、構成等は、本発明を限定するものでなく、本発明の趣旨の範囲内で種々改変することができる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the members, arrangement, configuration, and the like described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.

図1〜図11は本発明の一実施形態に係る色素増感太陽電池について説明するための図であり、図1は第1の実施形態に係る色素増感太陽電池の平面図、図2は図1の色素増感太陽電池セルの断面図、図3は第1の実施形態に係る色素増感太陽電池の正極基板側及び負極基板側の電極パターン図、図4は図1の色素増感太陽電池のa−a断面図及びb−b断面図、図5は図1の色素増感太陽電池のc−c断面図及びd−d断面図、図6は第2の実施形態に係る色素増感太陽電池の平面図、図7は第3の実施形態に係る色素増感太陽電池の平面図、図8は第3の実施形態に係る色素増感太陽電池の正極基板及び負極基板の電極パターン図、図9は図7の色素増感太陽電池のe−e断面図、図10は第4の実施形態に係る色素増感太陽電池の平面図、図11は図10の色素増感太陽電池のf−f断面図である。   1-11 is a figure for demonstrating the dye-sensitized solar cell which concerns on one Embodiment of this invention, FIG. 1 is a top view of the dye-sensitized solar cell which concerns on 1st Embodiment, FIG. 1 is a cross-sectional view of the dye-sensitized solar cell of FIG. 1, FIG. 3 is an electrode pattern diagram of the positive electrode substrate side and the negative electrode substrate side of the dye-sensitized solar cell according to the first embodiment, and FIG. FIG. 5 is a cross-sectional view taken along a line cc and a cross-sectional view taken along a line dd of the dye-sensitized solar cell of FIG. 1, and FIG. 6 is a dye according to the second embodiment. FIG. 7 is a plan view of a dye-sensitized solar cell according to the third embodiment, and FIG. 8 is an electrode of a positive electrode substrate and a negative electrode substrate of the dye-sensitized solar cell according to the third embodiment. FIG. 9 is an ee sectional view of the dye-sensitized solar cell of FIG. 7, and FIG. 10 is a plan view of the dye-sensitized solar cell according to the fourth embodiment. FIG. 11 is a f-f sectional view of a dye-sensitized solar cell of FIG. 10.

図1に示すように、直列接続型の色素増感太陽電池S1は、基板1とこれに対向して配置された基板10とを備えている。基板1と基板10の間には、各々が帯状をした色素増感太陽電池セル12が複数個並列して配設されている。そして、これらの色素増感太陽電池セル12が直列に接続された構成を備えている。
この図において、本来は視認できない位置にある透明導電膜2の下側の端部を「端部2b」として示してある。同様に、色素増感太陽電池セル12の端部を「端部12a」として示している。
As shown in FIG. 1, the serial connection type dye-sensitized solar cell S <b> 1 includes a substrate 1 and a substrate 10 disposed to face the substrate 1. Between the substrate 1 and the substrate 10, a plurality of dye-sensitized solar cells 12 each having a band shape are arranged in parallel. The dye-sensitized solar cells 12 are connected in series.
In this figure, the lower end portion of the transparent conductive film 2 which is originally invisible cannot be seen as “end portion 2b”. Similarly, the edge part of the dye-sensitized solar cell 12 is shown as "edge part 12a".

図2に示すように、それぞれの色素増感太陽電池セル12は、透明導電膜2、酸化チタン層3、酸化チタン層3に吸着された色素4、電解液層5、正電極膜6、仕切部7を主要構成要素としている。酸化チタン層3、色素4、電解液層5は、本発明の光電変換層に相当する。
また、基板1には図3(a)に示す負極電極パターンが、基板10には図3(b)に示す正極電極パターンが形成されている。
As shown in FIG. 2, each dye-sensitized solar cell 12 includes a transparent conductive film 2, a titanium oxide layer 3, a dye 4 adsorbed on the titanium oxide layer 3, an electrolyte layer 5, a positive electrode film 6, and a partition. Part 7 is a main component. The titanium oxide layer 3, the dye 4, and the electrolyte layer 5 correspond to the photoelectric conversion layer of the present invention.
Further, the substrate 1 is formed with the negative electrode pattern shown in FIG. 3A, and the substrate 10 is formed with the positive electrode pattern shown in FIG.

基板1は、表面に透明導電膜2が形成された板状の部材である。基板1の材料としては、表面に透明導電膜2を形成させることができ、かつ透明導電膜2で光を受光させる程度に透明性を有する適宜の材料から選択される。このような材料としては、例えば、ガラス基板、石英基板、樹脂基板、光学結晶基板などの光を所定量透過させることが可能なものが用いられる。特に好ましくは、Naなどのアルカリ元素を含まないノンアルカリガラスや耐熱性の高い石英基板などである。また、透明性を増したり、Naなどのアルカリ元素の拡散を防止したり、耐熱性を増したり、ガスバリア性を持たせるなどの付加特性を持たせるために、表面にSiO、TiOなどの薄膜がスパッタリング法により形成された基板であっても良い。 The substrate 1 is a plate-like member having a transparent conductive film 2 formed on the surface. The material of the substrate 1 is selected from appropriate materials that can form the transparent conductive film 2 on the surface and have transparency to the extent that light is received by the transparent conductive film 2. As such a material, for example, a material capable of transmitting a predetermined amount of light, such as a glass substrate, a quartz substrate, a resin substrate, or an optical crystal substrate, is used. Particularly preferred is a non-alkali glass not containing an alkali element such as Na or a quartz substrate having high heat resistance. Further, in order to provide additional properties such as increasing transparency, preventing diffusion of alkali elements such as Na, increasing heat resistance, and providing gas barrier properties, the surface is made of SiO 2 , TiO 2, etc. The thin film may be a substrate formed by a sputtering method.

基板1の光透過率としては、色素増感太陽電池セル12の内部に光を透過できるものであれば特に限定されないが、通常は波長400以上900nm以下の範囲での平均透過率が10%以上99%以下の範囲内であり、特に60%以上99%以下の範囲内が好ましく、より好適には80%以上99%以下の範囲である。
基板1の厚さとしては、特に限定されないが、通常100μm以上5mm以下の範囲内であり、特に500μm以上2mm以下の範囲内が好ましい。
The light transmittance of the substrate 1 is not particularly limited as long as it can transmit light into the inside of the dye-sensitized solar cell 12, but normally the average transmittance in the wavelength range of 400 to 900 nm is 10% or more. It is in the range of 99% or less, particularly in the range of 60% or more and 99% or less, and more preferably in the range of 80% or more and 99% or less.
Although it does not specifically limit as thickness of the board | substrate 1, Usually, it exists in the range of 100 micrometers or more and 5 mm or less, and especially the inside of the range of 500 micrometers or more and 2 mm or less is preferable.

透明導電膜2は、光の透過性があり、かつ導電性を有する膜である。透明導電膜2は、色素増感太陽電池S1の負極を構成している。
透明導電膜2の光透過率も上述した基板1と同様に、通常は波長400nm以上900nm以下の範囲での平均透過率が10%以上99%以下の範囲内であり、特に60%以上99%以下の範囲が好ましく、より好適には80%以上99%以下の範囲内である。
透明導電膜2には、例えば、酸化インジウム(In)、酸化スズ(SnO)、酸化亜鉛(ZnO)等の透明導電膜や、これらの透明導電膜に不純物を添加した透明導電膜を用いることができる。
The transparent conductive film 2 is a film having light permeability and conductivity. The transparent conductive film 2 constitutes the negative electrode of the dye-sensitized solar cell S1.
Similarly to the substrate 1 described above, the light transmittance of the transparent conductive film 2 is usually in the range of 10% to 99% of the average transmittance in the wavelength range of 400 nm to 900 nm, particularly 60% to 99%. The following range is preferable, and more preferably in the range of 80% to 99%.
Examples of the transparent conductive film 2 include transparent conductive films such as indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), and zinc oxide (ZnO), and transparent conductive films obtained by adding impurities to these transparent conductive films. Can be used.

不純物を添加した透明導電膜としては、酸化インジウムにスズを添加したITO、酸化スズにアンチモンを添加したATO、酸化スズにフッ素をドープしたFTO、酸化亜鉛にアルミニウムを添加したAZO、酸化亜鉛にガリウムを添加したGZO等を用いることができる。   The transparent conductive film to which impurities are added includes ITO in which tin is added to indium oxide, ATO in which antimony is added to tin oxide, FTO in which tin oxide is doped with fluorine, AZO in which aluminum is added to zinc oxide, and gallium in zinc oxide. GZO or the like to which is added can be used.

なお、透明導電膜2上に酸化チタン層3を形成する工程では、透明導電膜2上に酸化チタンペーストを塗布して、望ましい温度として400〜500℃で焼成する。したがって、透明導電膜2は、この焼成工程により透過率が減少せず、かつ抵抗も増加しない材料を用いることが好ましい。   In the step of forming the titanium oxide layer 3 on the transparent conductive film 2, a titanium oxide paste is applied on the transparent conductive film 2 and baked at 400 to 500 ° C. as a desirable temperature. Therefore, the transparent conductive film 2 is preferably made of a material whose transmittance is not reduced by this firing step and whose resistance is not increased.

このような条件を満たすものとしては、FTO、ATO、ITOの上にATO又はFTOをコートした積層透明導電膜などがあり、太陽電池特性を向上させるためには、透明導電膜2としてこれらの透明導電膜を用いるのが好ましい。   In order to satisfy such conditions, there is a laminated transparent conductive film coated with ATO or FTO on FTO, ATO, ITO, etc. In order to improve the solar cell characteristics, these transparent conductive films 2 are transparent. It is preferable to use a conductive film.

図3(a)に示すように、本実施形態の透明導電膜2は、個々の形状が帯状(長方形状)の電極が並列に複数配列された構造となっている。これらの透明導電膜2は、このような帯状の負極電極パターンになるよう、帯状の開口が複数形成されたマスクなどを用いて形成される。なお、透明導電膜2を基板1の表面に形成する方法としては、スパッタリング法、真空蒸着法、イオンプレーティング法など、公知の成膜技術を用いることができる。   As shown in FIG. 3A, the transparent conductive film 2 of the present embodiment has a structure in which a plurality of electrodes each having a strip shape (rectangular shape) are arranged in parallel. These transparent conductive films 2 are formed using a mask or the like in which a plurality of strip-shaped openings are formed so as to form such a strip-shaped negative electrode pattern. In addition, as a method for forming the transparent conductive film 2 on the surface of the substrate 1, a known film forming technique such as a sputtering method, a vacuum evaporation method, an ion plating method, or the like can be used.

基板10は、表面に正電極膜6が形成される板状の部材である。基板10の材料としては、基板1で述べたような透明材料から選択することが可能である。
なお、基板1とは異なり基板10は、光を取り込む側ではないので、必ずしも透明材料で形成される必要はなく、光透過性の乏しい材料で形成してもよい。このような材料としては、例えば酸化物系セラミックスや窒化物系セラミックスなどの各種セラミックスが挙げられる。
基板10の厚さも、特に限定されないが、通常100μm以上5mm以下の範囲内であり、特に500μm以上2mm以下の範囲内が好ましい。
The substrate 10 is a plate-like member on which the positive electrode film 6 is formed. The material of the substrate 10 can be selected from the transparent materials as described for the substrate 1.
Note that, unlike the substrate 1, the substrate 10 is not necessarily a light-acquisition side, so it is not necessarily formed of a transparent material, and may be formed of a material with poor light transmission. Examples of such materials include various ceramics such as oxide ceramics and nitride ceramics.
The thickness of the substrate 10 is not particularly limited, but is usually in the range of 100 μm to 5 mm, and particularly preferably in the range of 500 μm to 2 mm.

正電極膜6は、導電性を有する材料で膜状に形成された電極である。正電極膜6は、導電性を有する金属膜や、透明導電膜2で説明した材料と同じ材料などが用いられる。正電極膜6が光を透過させる必要がある部位に用いられる場合には、透明導電膜が用いられる。
光電変換効率を上げるため、正電極膜6には、触媒作用があり、かつ、電解液層5の電解液に対する耐性に優れるPt、Pd、Au等を用いることが好ましい。正電極膜6には、外部負荷に接続するための正極引出線8が接続されている。このように、正電極膜6が触媒機能と集電電極としての機能を兼ね備えているため、集電電極を別途設ける必要が無く、電池の構成を簡略化することができる。
なお、正電極膜6としては、上述した触媒作用を示さず単に集電電極として機能するものでもよい。このような正電極膜6の材料としては、アルミニウムなどが挙げられる。
The positive electrode film 6 is an electrode formed in a film shape with a conductive material. For the positive electrode film 6, a conductive metal film, the same material as that described for the transparent conductive film 2, or the like is used. In the case where the positive electrode film 6 is used in a portion where light needs to be transmitted, a transparent conductive film is used.
In order to increase the photoelectric conversion efficiency, the positive electrode film 6 is preferably made of Pt, Pd, Au or the like that has a catalytic action and is excellent in the resistance of the electrolytic solution layer 5 to the electrolytic solution. Connected to the positive electrode film 6 is a positive lead wire 8 for connection to an external load. Thus, since the positive electrode film 6 has both a catalytic function and a function as a collecting electrode, it is not necessary to separately provide a collecting electrode, and the configuration of the battery can be simplified.
In addition, as the positive electrode film | membrane 6, what does not show the catalytic action mentioned above but may function simply as a current collecting electrode. Examples of the material for the positive electrode film 6 include aluminum.

図3(b)に示すように、本実施形態の正電極膜6は、個々の形状が帯状の電極が並列に複数配列された構造となっている。正電極膜6の長手方向の両端部は、それぞれ仕切部7の外部に延出している。正電極膜6の一方の端部には幅狭部が形成され、更に幅狭部から隣接する色素増感太陽電池セル12に向けて垂直方向に突出する突出部6aが形成されている。
なお、本実施形態では、複数の帯状の正電極膜6のすべてにおいて同一の側(図1の上側)の端部にのみ突出部6aが形成されている。このように、端部のうち一方側のみに突出部6aを設けることで、両側に突出部を形成する場合と比較して、正電極膜6のサイズを小さくすることができる。
As shown in FIG. 3B, the positive electrode film 6 of this embodiment has a structure in which a plurality of electrodes each having a strip shape are arranged in parallel. Both ends of the positive electrode film 6 in the longitudinal direction extend to the outside of the partition part 7. A narrow portion is formed at one end of the positive electrode film 6, and a protruding portion 6 a that protrudes in the vertical direction from the narrow portion toward the adjacent dye-sensitized solar cell 12 is formed.
In the present embodiment, the protrusion 6a is formed only at the end on the same side (upper side in FIG. 1) in all of the plurality of strip-like positive electrode films 6. Thus, by providing the protruding portion 6a only on one side of the end portions, the size of the positive electrode film 6 can be reduced as compared with the case where the protruding portions are formed on both sides.

正電極膜6は、このようなL字型の正極電極パターンになるよう、L字型の開口が複数形成されたマスクなどを用いて形成される。なお、正電極膜6を基板10の表面に形成する方法としては、スパッタリング法、真空蒸着法、イオンプレーティング法など、公知の成膜技術を用いることができる。   The positive electrode film 6 is formed using a mask or the like in which a plurality of L-shaped openings are formed so as to have such an L-shaped positive electrode pattern. In addition, as a method of forming the positive electrode film 6 on the surface of the substrate 10, a known film forming technique such as a sputtering method, a vacuum evaporation method, an ion plating method, or the like can be used.

基板1と基板10は、透明導電膜2と正電極膜6が向かい合うように対向して配設される。図1に示すように、基板1の平面視において、透明導電膜2と正電極膜6がそれぞれの長手方向(図1の上下方向)に沿って互いにずれるように配設される。すなわち、透明導電膜2の一方の端部(図1の上側の端部)が正電極膜6の上側の端部よりも上側に位置し、正電極膜6の他方の端部(図1の下側の端部)が透明導電膜2の下側の端部(図中の2bで示す。)よりも下側に突出している。   The substrate 1 and the substrate 10 are disposed to face each other so that the transparent conductive film 2 and the positive electrode film 6 face each other. As shown in FIG. 1, in a plan view of the substrate 1, the transparent conductive film 2 and the positive electrode film 6 are disposed so as to be shifted from each other along the respective longitudinal directions (vertical direction in FIG. 1). That is, one end (the upper end in FIG. 1) of the transparent conductive film 2 is located above the upper end of the positive electrode film 6, and the other end of the positive electrode film 6 (in FIG. 1). The lower end portion protrudes below the lower end portion (indicated by 2b in the figure) of the transparent conductive film 2.

以上、図3(a)、(b)に示した基板1と基板10により、図1に示すように、すべての色素増感太陽電池セル12が直列接続となるよう、基板1と基板10との間に複数個の色素増感太陽電池セル12が形成される。それぞれの色素増感太陽電池セル12の構成は図2に示す単一の色素増感太陽電池セル12と全く同じ構成なので、以下に単一セルについての構成のみ説明する。   As described above, with the substrate 1 and the substrate 10 shown in FIGS. 3A and 3B, as shown in FIG. 1, the substrate 1 and the substrate 10 are all connected so that all the dye-sensitized solar cells 12 are connected in series. A plurality of dye-sensitized solar cells 12 are formed between the two. Since the configuration of each dye-sensitized solar cell 12 is exactly the same as that of the single dye-sensitized solar cell 12 shown in FIG. 2, only the configuration of the single cell will be described below.

図2に示すように、透明導電膜2の表面側には酸化チタン層3が形成される。酸化チタン層3は、バインダーに酸化チタン粉末を混合してペースト状にし、この焼成ペーストを透明導電膜2上に塗布し、焼成することにより形成される。焼成温度は100℃以上であれば良いが、酸化チタン粒子間の焼結性を良くして光電変換効率を高めるためには400℃以上で焼成するのが好ましい。   As shown in FIG. 2, a titanium oxide layer 3 is formed on the surface side of the transparent conductive film 2. The titanium oxide layer 3 is formed by mixing a titanium oxide powder with a binder to form a paste, applying the fired paste onto the transparent conductive film 2, and firing it. The firing temperature may be 100 ° C. or higher, but it is preferably fired at 400 ° C. or higher in order to improve the sinterability between the titanium oxide particles and increase the photoelectric conversion efficiency.

焼成ペーストのバインダーとしては、有機系の溶媒、酸性溶液等を用いることができる。また、酸化チタン層3の結晶構造はアナターゼ型であることが好ましい。また、良好な太陽電池特性を有するためには、酸化チタン層3は小さな穴を多く含む細孔構造をとっていることが好ましい。   As the binder of the baked paste, an organic solvent, an acidic solution, or the like can be used. The crystal structure of the titanium oxide layer 3 is preferably an anatase type. Moreover, in order to have a favorable solar cell characteristic, it is preferable that the titanium oxide layer 3 has a pore structure including many small holes.

酸化チタン層3の一部には色素4が吸着されている。色素4には、太陽光を効率よく吸収できる色素、すなわち可視域を中心に近紫外域から近赤外域にかけて収吸帯を持つものが用いられる。色素4は、アルコール等の溶媒に溶かし、この中に酸化チタン層3まで形成された基板1を漬けることにより、酸化チタン層3の細孔部に吸着される。   The dye 4 is adsorbed on a part of the titanium oxide layer 3. As the dye 4, a dye that can efficiently absorb sunlight, that is, a dye having an absorption band from the near ultraviolet region to the near infrared region centering on the visible region is used. The dye 4 is dissolved in a solvent such as alcohol, and the substrate 1 formed up to the titanium oxide layer 3 is immersed in the dye 4 to be adsorbed on the pores of the titanium oxide layer 3.

光電変換効率を上げるためには、色素4には、光で励起された際、効率良く酸化チタン層3に電子を移動させることができるRu錯体[RuL(NSC)](ここで、L=4,4´−dicarboxy−2,2´−bypyridine)等を使用するのが好ましい。 In order to increase the photoelectric conversion efficiency, the dye 4 includes a Ru complex [RuL 2 (NSC) 2 ] (here, L L that can efficiently move electrons to the titanium oxide layer 3 when excited by light). = 4,4'-dicboxy-2,2'-bypyridine) or the like is preferably used.

色素4の表面側には電解液層5が設けられている。電解液層5の材料には、色素4に電子を供給し、また、正極部(正電極膜6)で電子を受け取ることができるものが用いられる。このような材料の具体例としては、例えば、ポリエチレングリコールにヨウ化リチウムと金属ヨウ素を溶かした電解液、アセトニトリルとエチレンカーボネートを混合した電解液等を用いることができる。   An electrolyte layer 5 is provided on the surface side of the dye 4. As the material for the electrolyte layer 5, a material that can supply electrons to the dye 4 and receive electrons at the positive electrode portion (positive electrode film 6) is used. Specific examples of such materials include an electrolytic solution in which lithium iodide and metallic iodine are dissolved in polyethylene glycol, and an electrolytic solution in which acetonitrile and ethylene carbonate are mixed.

基板1と基板10の間には、それぞれの色素増感太陽電池セル12を仕切るための仕切部7が形成されている。仕切部7は、複数の色素増感太陽電池セル12の外周部全体を区画するための部材であり、また、それぞれの色素増感太陽電池セル12間を区切る部材でもある。この仕切部7によって仕切られた空間内に、色素4を吸着させた酸化チタン層3と正電極膜6の間に、電解液層5の電解液が封入された状態に保持されている。
仕切部7の材料としては樹脂やガラスなどを用いることができる。樹脂の具体例としては、例えばエポキシ樹脂、ウレタン樹脂などが挙げられる。
Between the substrate 1 and the substrate 10, partition portions 7 for partitioning the respective dye-sensitized solar cells 12 are formed. The partition part 7 is a member for partitioning the entire outer peripheral part of the plurality of dye-sensitized solar cells 12, and is also a member that separates the respective dye-sensitized solar cells 12. In the space partitioned by the partitioning portion 7, the electrolytic solution of the electrolytic solution layer 5 is held between the titanium oxide layer 3 on which the dye 4 is adsorbed and the positive electrode film 6.
Resin, glass, etc. can be used as the material of the partition part 7. Specific examples of the resin include an epoxy resin and a urethane resin.

正電極膜6の突出部6aの先端側と透明導電膜2の端部との間には、導電性ペースト11が配設されている。本実施形態の導電性ペースト11は、銅などの導電性金属の粉末が配合された導電性接合剤が有機系のバインダーに含有された、粘性を有する材料で形成されている。このため、透明導電膜2と正電極膜6との間を電気的に導通させるとともに、粘性が高いため他の電極と導通してショートが生じにくくなっている。   A conductive paste 11 is disposed between the front end side of the protrusion 6 a of the positive electrode film 6 and the end of the transparent conductive film 2. The conductive paste 11 of the present embodiment is formed of a viscous material in which a conductive bonding agent containing a conductive metal powder such as copper is contained in an organic binder. For this reason, the transparent conductive film 2 and the positive electrode film 6 are electrically connected to each other, and since the viscosity is high, the conductive film is electrically connected to other electrodes, so that a short circuit is hardly generated.

次に、図4と図5を参照して、本実施形態に係る色素増感太陽電池S1の構造について詳細に説明する。
図4、図5は図1の色素増感太陽電池S1のa−a〜d−d断面図であり、図4(a)はa−a断面図、図4(b)はb−b断面図、図5(c)はc−c断面図、図5(d)はd−d断面図を示している。
Next, with reference to FIG. 4 and FIG. 5, the structure of the dye-sensitized solar cell S1 according to the present embodiment will be described in detail.
4 and 5 are aa to dd sectional views of the dye-sensitized solar cell S1 of FIG. 1, FIG. 4 (a) is an aa sectional view, and FIG. 4 (b) is a bb sectional view. FIG. 5C is a sectional view taken along line cc, and FIG. 5D is a sectional view taken along line dd.

図4(a)に示すように、正電極膜6の突出部6aの先端側(図中の各先端部6aにおいてそれぞれの右側の領域)と透明導電膜2の一部とが上下に対向した位置となっている。導電性ペースト11は、この対向した部分に上下方向に沿って塗り込まれている。すなわち、導電性ペースト11は、突出部6aの一部と透明導電膜2の一部とが最短距離で連結している。このように、導電性ペースト11が透明導電膜2と正電極膜6との間を最短距離で連結することで、導電性ペースト11で構成される接続部を狭くすることが可能となる。これにより、接続部が広がることによる他の電極とのショートが生じにくくなり、配線構造が簡単になるとともに安定した電池特性を備えたものとなる。   As shown in FIG. 4 (a), the tip side of the protruding portion 6a of the positive electrode film 6 (the region on the right side of each tip portion 6a in the figure) and a part of the transparent conductive film 2 face each other vertically. Is in position. The conductive paste 11 is applied along the up and down direction on the facing portion. That is, in the conductive paste 11, a part of the protruding part 6a and a part of the transparent conductive film 2 are connected with the shortest distance. As described above, the conductive paste 11 connects the transparent conductive film 2 and the positive electrode film 6 with the shortest distance, so that the connection portion formed of the conductive paste 11 can be narrowed. As a result, a short circuit with other electrodes due to the expansion of the connection portion is less likely to occur, the wiring structure is simplified, and stable battery characteristics are provided.

図4(b)に示すように、仕切部7により封止された領域は、透明導電膜2と正電極膜6とが配線されておらず、両者の間に仕切部7が設けられている。図5(c)に示すように、色素増感太陽電池S1の中央部は、色素増感太陽電池セル12が設けられている。図5(d)に示すように、仕切部7の外部であって導電性ペースト11が設けられていない領域では、透明導電膜2と正電極膜6との間には何も配設されていない。   As shown in FIG. 4B, the transparent conductive film 2 and the positive electrode film 6 are not wired in the region sealed by the partition portion 7, and the partition portion 7 is provided between them. . As shown in FIG.5 (c), the dye-sensitized solar cell 12 is provided in the center part of dye-sensitized solar cell S1. As shown in FIG. 5 (d), nothing is disposed between the transparent conductive film 2 and the positive electrode film 6 in the region outside the partition portion 7 where the conductive paste 11 is not provided. Absent.

次に、色素増感太陽電池S1の製造方法について説明する。
まず、スパッタリング法などの公知の成膜方法により、基板1の表面に透明導電膜2を形成する。次に、酸化チタン粉末を含む焼成ペーストを透明導電膜2の表面に塗布、焼成して酸化チタン層3を形成する。続いて、色素4を含む溶液中に酸化チタン層3の表面を浸漬させて酸化チタン層3の表面に色素4を吸着させる。
一方、基板1と同様にスパッタリング法などにより基板10の表面に正電極膜6を形成する。
Next, the manufacturing method of dye-sensitized solar cell S1 is demonstrated.
First, the transparent conductive film 2 is formed on the surface of the substrate 1 by a known film formation method such as a sputtering method. Next, a titanium oxide layer 3 is formed by applying and baking a baking paste containing titanium oxide powder on the surface of the transparent conductive film 2. Subsequently, the surface of the titanium oxide layer 3 is immersed in a solution containing the dye 4 to adsorb the dye 4 to the surface of the titanium oxide layer 3.
On the other hand, the positive electrode film 6 is formed on the surface of the substrate 10 by the sputtering method or the like in the same manner as the substrate 1.

次に、基板1と基板10の間に仕切部7を形成し、電解液を注入した後、貼り合わせる。その際、図1に示すように各々のパターンの端部が数mm程度露出するよう、パターンを長手方向に沿って少しずらして貼り合わせる。
最後に、正電極膜6の突出部6aの先端側と透明導電膜2の端部との間に、導電性ペースト11を塗り込む。これによって、導線なしで直列接続にすることができる。
Next, the partition part 7 is formed between the board | substrate 1 and the board | substrate 10, after inject | pouring electrolyte solution, it bonds together. At that time, as shown in FIG. 1, the patterns are bonded to each other with a slight shift along the longitudinal direction so that the end of each pattern is exposed by about several millimeters.
Finally, the conductive paste 11 is applied between the front end side of the protrusion 6 a of the positive electrode film 6 and the end of the transparent conductive film 2. Thereby, it can be connected in series without conducting wire.

次に、第2の実施形態に係る色素増感太陽電池S2について説明する。
上述した第1の実施形態では、正電極膜6に突出部6aを設けて透明導電膜2には突出部を設けていないが、本実施形態では透明導電膜2に突出部2aを設けて正電極膜6に突出部を設けない構成としている。
Next, the dye-sensitized solar cell S2 according to the second embodiment will be described.
In the first embodiment described above, the positive electrode film 6 is provided with the protruding portion 6a and the transparent conductive film 2 is not provided with the protruding portion. However, in the present embodiment, the transparent conductive film 2 is provided with the protruding portion 2a and the positive electrode film 6 is provided with the positive portion. The electrode film 6 is not provided with a protruding portion.

図6に示すように、透明導電膜2と正電極膜6は長手方向に沿って互いにずれた位置にあり、透明導電膜2の一方の端部には隣接する正電極膜6の端部に向けて突出する突出部2aが形成されている。突出部2aの先端部は、基板1の正面側から垂直方向に見たときに、隣接する色素増感太陽電池セル12の正電極膜6の端部の一部と重なっている。そして、突出部2aの先端部と正電極膜6の端部との間に導電性ペースト11が塗り込まれ、両者が導通している。このように、透明導電膜2の端部に突出部を設けても、色素増感太陽電池セル12を直列に接続することができる。   As shown in FIG. 6, the transparent conductive film 2 and the positive electrode film 6 are in positions shifted from each other along the longitudinal direction, and one end of the transparent conductive film 2 is at the end of the adjacent positive electrode film 6. A protruding portion 2a that protrudes toward is formed. When viewed from the front side of the substrate 1 in the vertical direction, the tip end portion of the protruding portion 2 a overlaps with a part of the end portion of the positive electrode film 6 of the adjacent dye-sensitized solar cell 12. Then, the conductive paste 11 is applied between the front end portion of the protruding portion 2a and the end portion of the positive electrode film 6, and both are conducted. Thus, even if a protrusion is provided at the end of the transparent conductive film 2, the dye-sensitized solar cells 12 can be connected in series.

次に、第3の実施形態に係る色素増感太陽電池S3について説明する。
上述の第1、第2の実施形態では、透明導電膜2と正電極膜6のいずれか一方のみに突出部が形成されていたが、本実施形態では両方に突出部を設けるようにしている。
Next, the dye-sensitized solar cell S3 according to the third embodiment will be described.
In the first and second embodiments described above, the protruding portion is formed only on one of the transparent conductive film 2 and the positive electrode film 6, but in this embodiment, the protruding portion is provided on both. .

図7に示すように、透明導電膜2の一端(図7の下側の端部)には、隣接する色素増感太陽電池セル12に向けて突出する突出部2aが形成されている。また、正電極膜6の一端(図7の上側の端部)には、反対側に隣接する色素増感太陽電池セル12に向けて突出する突出部6aが形成されている。
図8(a)に示すように、基板1には複数の透明導電膜2が形成されている。透明導電膜2の一端(図8(a)の下側の端部)には、隣接する色素増感太陽電池セル12に向けて突出する突出部2aが形成されている。
一方、図8(b)に示すように、基板10には複数の正電極膜6が形成されている。正電極膜6の一端(図8(b)の上側の端部)には、隣接する色素増感太陽電池セル12に向けて突出する突出部6aが形成されている。
As shown in FIG. 7, a protruding portion 2 a that protrudes toward the adjacent dye-sensitized solar cell 12 is formed at one end (the lower end portion of FIG. 7) of the transparent conductive film 2. In addition, a protruding portion 6 a that protrudes toward the dye-sensitized solar cell 12 adjacent to the opposite side is formed at one end of the positive electrode film 6 (the upper end portion in FIG. 7).
As shown in FIG. 8A, a plurality of transparent conductive films 2 are formed on the substrate 1. At one end of the transparent conductive film 2 (the lower end in FIG. 8A), a protruding portion 2a that protrudes toward the adjacent dye-sensitized solar cell 12 is formed.
On the other hand, as shown in FIG. 8B, a plurality of positive electrode films 6 are formed on the substrate 10. At one end of the positive electrode film 6 (the upper end in FIG. 8B), a protruding portion 6a that protrudes toward the adjacent dye-sensitized solar cell 12 is formed.

図9は図7のe−e断面図である。図9に示すように、透明導電膜2の突出部2aと、これに隣接する色素増感太陽電池セル12の正電極膜6の端部との間には、導電性ペースト11が塗り込まれている。これにより、透明導電膜2と正電極膜6との間が導通している。
このように、透明導電膜2と正電極膜6のそれぞれに突出部を備えることで、透明導電膜2や正電極膜6の両端側で反対電極と導通する。ここで、透明導電膜2や正電極膜6の抵抗は、電極の長さに比例する。このため、実施例1や実施例2のように透明導電膜2や正電極膜6の一端側で反対電極と導通する場合と比較して、両端側で導通することで抵抗値が半分となる。これにより、透明導電膜2や正電極膜6の抵抗に起因する内部損失が少なく、電池特性の高い太陽電池とすることができる。
FIG. 9 is a cross-sectional view taken along the line ee of FIG. As shown in FIG. 9, the conductive paste 11 is applied between the protruding portion 2a of the transparent conductive film 2 and the end portion of the positive electrode film 6 of the dye-sensitized solar cell 12 adjacent thereto. ing. Thereby, the transparent conductive film 2 and the positive electrode film 6 are electrically connected.
In this way, by providing the transparent conductive film 2 and the positive electrode film 6 with the protruding portions, the transparent conductive film 2 and the positive electrode film 6 are electrically connected to the opposite electrodes on both ends. Here, the resistance of the transparent conductive film 2 and the positive electrode film 6 is proportional to the length of the electrode. For this reason, compared with the case where it conducts with the opposite electrode at one end side of the transparent conductive film 2 and the positive electrode film 6 as in the first and second embodiments, the resistance value is halved by conducting at both ends. . Thereby, the internal cell resulting from resistance of the transparent conductive film 2 or the positive electrode film 6 is few, and it can be set as a solar cell with a high battery characteristic.

次に、第4の実施形態に係る色素増感太陽電池S4について説明する。
上述した第1〜第3の実施形態はいずれも、基板1の正面側から垂直方向に見たときに、一方の電極の突出部の先端部が隣接する色素増感太陽電池セル12における反対電極の端部の一部と重なるように配設され、この重なる領域に導電性ペースト11が配設される構造となっている。しかしながら、正極と負極の間の導通が確保できれば、上述のように必ずしも突出部と反対電極の端部とが重なる必要はない。
Next, the dye-sensitized solar cell S4 according to the fourth embodiment will be described.
In any of the first to third embodiments described above, when viewed from the front side of the substrate 1 in the vertical direction, the opposite electrode in the dye-sensitized solar cell 12 in which the tip of the protruding portion of one of the electrodes is adjacent. In this structure, the conductive paste 11 is disposed in the overlapping region. However, as long as conduction between the positive electrode and the negative electrode can be ensured, the protruding portion and the end portion of the opposite electrode do not necessarily overlap as described above.

図10に示すように、本実施形態の色素増感太陽電池S4は、基板1の正面側から垂直方向に見たときに、正電極膜6の突出部6aと隣接する色素増感太陽電池セル12における透明導電膜2の端部の一部とが重なっておらず、突出部6aの先端と透明導電膜2の端部側の側部との間に所定の隙間が空いている。   As shown in FIG. 10, the dye-sensitized solar cell S4 of this embodiment is a dye-sensitized solar cell adjacent to the protruding portion 6a of the positive electrode film 6 when viewed in the vertical direction from the front side of the substrate 1. 12 does not overlap with a part of the end of the transparent conductive film 2, and a predetermined gap is left between the tip of the protruding portion 6 a and the side of the end of the transparent conductive film 2.

図11に示すように、突出部6aと透明導電膜2の端部との間には導電性ペースト11が斜め方向に沿って配設され、透明導電膜2と正電極膜6との間の導通が確保されている。この導電性ペースト11は、隣接する色素増感太陽電池セル12の反対電極とのみ接着し、他の電極と接着しない程度に粘度の高い材料からなることが好ましい。   As shown in FIG. 11, the conductive paste 11 is disposed along the oblique direction between the protrusion 6 a and the end of the transparent conductive film 2, and between the transparent conductive film 2 and the positive electrode film 6. Continuity is ensured. The conductive paste 11 is preferably made of a material having a viscosity high enough to adhere only to the opposite electrode of the adjacent dye-sensitized solar cell 12 and not to other electrodes.

このように、本発明の色素増感太陽電池S4は、上述したように電極の突出部の一部と反対電極の端部の一部とが必ずしも重なっている必要がないが、このように重ならない電極間に導電性ペースト11を配設することで導電性ペースト11が重力の影響で液垂れし、反対電極以外の他の電極とショートする可能性がある。このため、第1〜第3の実施形態のように、一方の電極の突出部と反対電極の端部とが重なるほうが、導電性ペーストにより電極間を最短距離で接続することができるため、導電性ペースト11の液垂れによるショートなどが生じにくく好ましい。
なお、上記各実施形態では、突出部は電極の本体から横方向に垂直に突出した形状をしているが、このように垂直方向に突出したものに限定されず、隣接する色素増感太陽電池セル12に向けて突出する形状であれば、どのようなものでもよい。例えば、平面視形状がC字型やS字型など、曲線形状であってもよい。
また、上記各実施形態では、透明導電膜2や正電極膜6の形状は帯状としていたが、これに限定されず、円形、正方形、三角形など、どのような形状でもよい。
Thus, in the dye-sensitized solar cell S4 of the present invention, as described above, a part of the protruding part of the electrode does not necessarily overlap with a part of the end part of the opposite electrode. By disposing the conductive paste 11 between the electrodes that do not become conductive, the conductive paste 11 may drip under the influence of gravity and may short-circuit with other electrodes other than the opposite electrode. For this reason, as in the first to third embodiments, it is possible to connect the electrodes at the shortest distance by the conductive paste when the protruding portion of one electrode and the end of the opposite electrode overlap each other. It is preferable that a short circuit due to dripping of the conductive paste 11 does not occur.
In each of the above-described embodiments, the protruding portion has a shape protruding vertically from the main body of the electrode. However, the protruding portion is not limited to the protrusion protruding in the vertical direction, and is adjacent to the dye-sensitized solar cell. Any shape that projects toward the cell 12 may be used. For example, the shape in plan view may be a curved shape such as a C shape or an S shape.
Moreover, in each said embodiment, although the shape of the transparent conductive film 2 and the positive electrode film 6 was made into strip | belt shape, it is not limited to this, What kind of shape, such as a circle, a square, a triangle, may be sufficient.

次に、図面を参照して、本発明の実施例について説明する。
(実施例1)
図1に示す色素増感太陽電池S1を作製した実施例について説明する。
まず、縦100mm、横100mm、厚さ1mmのソーダライムガラスで形成された基板10に、正極となる正電極膜6を形成した。正電極膜6は、プラチナ(Pt)ターゲットを用いて、DCマグネトロンスパッタリング法で行った。0.6kWのDCパワー、無加熱で成膜を行い、0.3μmのPt薄膜を形成した。
Next, embodiments of the present invention will be described with reference to the drawings.
Example 1
The Example which produced dye-sensitized solar cell S1 shown in FIG. 1 is demonstrated.
First, a positive electrode film 6 serving as a positive electrode was formed on a substrate 10 made of soda lime glass having a length of 100 mm, a width of 100 mm, and a thickness of 1 mm. The positive electrode film 6 was formed by a DC magnetron sputtering method using a platinum (Pt) target. Film formation was performed with a DC power of 0.6 kW and no heating to form a 0.3 μm Pt thin film.

Pt膜の成膜においては、所定の形状のマスクを用いて、図3(b)に示すL字型の端部を有するパターンになるようPt膜を基板10上に形成した。6個のPt膜のパターンは、互いに絶縁されるよう所定の間隔(約5mm)だけ離して形成した。6個のPt膜のパターンを形成するのは、各Pt膜に対応して、基板1上に6個の色素増感太陽電池セル12を作製し、これらを直列接続して起電力を増加させるためである。   In the formation of the Pt film, the Pt film was formed on the substrate 10 using a mask having a predetermined shape so as to have a pattern having an L-shaped end as shown in FIG. The patterns of the six Pt films were formed at a predetermined interval (about 5 mm) so as to be insulated from each other. The pattern of the six Pt films is formed by producing six dye-sensitized solar cells 12 on the substrate 1 corresponding to each Pt film and connecting them in series to increase the electromotive force. Because.

負極側の基板1は、正極側と同様に、縦100mm、横100mm、厚さ1mmのソーダライムガラスを用いた。後で述べるように、この後の工程で、500℃で基板1の焼成を行うので、その際ガラスに含まれるアルカリ元素などの不純物や酸素の拡散を防止したり、ガラスの耐熱性を向上させたりするために、透明導電膜2を形成する前に、まずガラス製の基板1の上に酸化シリコン(SiO)薄膜を形成した。SiO膜の成膜は、Si半導体ターゲットを用い、RFマグネトロンスパッタリング法により酸素ガスを導入して行った。RFパワーは1KWとし、無加熱で成膜した。これにより、0.05μmのSiO薄膜を形成した。 The substrate 1 on the negative electrode side was made of soda lime glass having a length of 100 mm, a width of 100 mm, and a thickness of 1 mm, similarly to the positive electrode side. As will be described later, since the substrate 1 is baked at 500 ° C. in the subsequent steps, impurities such as alkali elements and oxygen contained in the glass are prevented from diffusing and the heat resistance of the glass is improved. Before the transparent conductive film 2 is formed, a silicon oxide (SiO 2 ) thin film is first formed on the glass substrate 1. The SiO 2 film was formed by introducing an oxygen gas by an RF magnetron sputtering method using a Si semiconductor target. The RF power was 1 KW, and the film was formed without heating. This formed a 0.05 .mu.m SiO 2 thin film.

次に、SiO薄膜が形成された基板1上に、スズがドープされた酸化インジウム(ITO)膜とアンチモンがドープされた酸化スズ(ATO)膜を、この順に成膜することにより透明導電膜2を形成した。
成膜の際にそれぞれITO、ATOの焼結ターゲットを用い、DCマグネトロンスパッタリング法により、1.0kWのDCパワー、300℃の成膜温度で成膜を行った。形成したITO薄膜,ATO薄膜の膜厚は、それぞれ0.3μm、0.1μmである。その積層透明導電膜の抵抗値は4.5Ω/□となった。
Next, a transparent conductive film is formed by forming an indium oxide (ITO) film doped with tin and a tin oxide (ATO) film doped with antimony in this order on the substrate 1 on which the SiO 2 thin film is formed. 2 was formed.
During the film formation, ITO and ATO sintered targets were used, respectively, and the film was formed by a DC magnetron sputtering method with a DC power of 1.0 kW and a film formation temperature of 300 ° C. The film thicknesses of the formed ITO thin film and ATO thin film are 0.3 μm and 0.1 μm, respectively. The laminated transparent conductive film had a resistance value of 4.5Ω / □.

なお、ATO膜をITO膜の上に形成したのは、次に述べる酸化チタン(TiO)の焼成工程の際、透明導電膜2の抵抗の上昇を押さえるためである。
ITO膜とATO膜の成膜の際、所定の形状のマスクを用いて、図3(a)に示すパターンのように6本の帯状の透明導電膜2(ITO/ATO膜)を形成した。
The reason why the ATO film is formed on the ITO film is to suppress an increase in the resistance of the transparent conductive film 2 during the titanium oxide (TiO 2 ) baking process described below.
When forming the ITO film and the ATO film, six strip-shaped transparent conductive films 2 (ITO / ATO films) were formed as shown in FIG. 3A using a mask having a predetermined shape.

次に6本の帯状の透明導電膜2の上に、酸化チタンの粉を酸性溶液に溶かしてペースト状にした粘性のある液体をスキージ法により塗布し、乾燥させた後、電気炉に入れて500℃で1時間焼成を行った。これにより、透明導電膜2の表面に酸化チタン層3を形成した。   Next, a viscous liquid in which titanium oxide powder is dissolved in an acidic solution and applied in paste form is applied onto the six strip-shaped transparent conductive films 2 by the squeegee method, dried, and then placed in an electric furnace. Firing was performed at 500 ° C. for 1 hour. Thereby, the titanium oxide layer 3 was formed on the surface of the transparent conductive film 2.

次に、酸化チタン層3に色素4を吸着させる工程を行った。まず、シャーレでRu錯体を含む色素4をアルコールで溶かした。続いて、焼成後の基板1を電気炉から取り出し、色素が溶けたシャーレに基板1を一晩浸漬させて、酸化チタン層3の表面に色素4を吸着させた。
翌日、基板1をシャーレから取り出し、酸化チタン層3以外の部分の色素4をきれいに拭き取った。その基板1の周辺部と6本の帯状の色素増感太陽電池セル12の間に、接着剤を付け、仕切部7を形成した。本例では、仕切部7は、エポキシ樹脂によって形成した。
Next, a step of adsorbing the dye 4 to the titanium oxide layer 3 was performed. First, the dye 4 containing the Ru complex was dissolved with alcohol in a petri dish. Subsequently, the baked substrate 1 was taken out from the electric furnace, and the substrate 1 was immersed in a petri dish in which the dye was dissolved overnight, so that the dye 4 was adsorbed on the surface of the titanium oxide layer 3.
The next day, the substrate 1 was taken out of the petri dish, and the pigment 4 other than the titanium oxide layer 3 was wiped clean. An adhesive was applied between the peripheral part of the substrate 1 and the six strip-shaped dye-sensitized solar cells 12 to form the partition part 7. In this example, the partition part 7 was formed with the epoxy resin.

次に、電解液層5として、ポリエチレングリコールにヨウ化リチウムと金属ヨウ素を溶かしてヨウ素溶液を作製し、このヨウ素溶液を仕切部7で6つに仕切られた各セル内に垂らした。その後、6個のPt正電極膜6とITO/ATO透明導電膜2のそれぞれの端部が図1のように数mm露出するように基板1と基板10とを重ねて、互いに押し付けて貼り合わせた。これにより、仕切部7によって電解液層5の電解液を基板1と基板10の間に封入した。   Next, as an electrolytic solution layer 5, lithium iodide and metallic iodine were dissolved in polyethylene glycol to prepare an iodine solution, and this iodine solution was suspended in each cell partitioned into six by the partition portion 7. Thereafter, the substrate 1 and the substrate 10 are overlapped so that the ends of the six Pt positive electrode films 6 and the ITO / ATO transparent conductive film 2 are exposed by several mm as shown in FIG. It was. Thereby, the electrolyte solution of the electrolyte solution layer 5 was sealed between the substrate 1 and the substrate 10 by the partition portion 7.

最後に、図4(a)に示すように、隣り合う露出したL字型の正電極膜6の端部と透明導電膜2の端部との隙に導電性ペーストを塗り込んで直列接続させた。また、図4(a)、(b)に示すように、左右の色素増感太陽電池セル12の露出した正電極膜6と透明導電膜2のそれぞれに、導電性ペースト11で固めて導線を固定することで、正極引出線8と負極引出線9を引き出した。   Finally, as shown in FIG. 4A, a conductive paste is applied in the gap between the end of the adjacent exposed L-shaped positive electrode film 6 and the end of the transparent conductive film 2 to connect them in series. It was. Further, as shown in FIGS. 4A and 4B, conductive wires 11 are fixed to the exposed positive electrode film 6 and transparent conductive film 2 of the left and right dye-sensitized solar cells 12 with a conductive paste 11, respectively. By fixing, the positive electrode lead wire 8 and the negative electrode lead wire 9 were drawn out.

以上のようにして、6個の色素増感太陽電池セル12を配線なしで直列接続した色素増感太陽電池S1を作製した。その太陽電池の発電特性を、光源としてソーラーシミュレーター、電流電圧測定装置としてI−Vカーブトレーサーを用いて測定した。比較例として、6個の色素増感太陽電池セル12が直列接続されておらず、それぞれが単独で構成されている例についても同様の方法で発電特性を調べた。   As described above, a dye-sensitized solar cell S1 in which six dye-sensitized solar cells 12 were connected in series without wiring was produced. The power generation characteristics of the solar cell were measured using a solar simulator as a light source and an IV curve tracer as a current-voltage measuring device. As a comparative example, the power generation characteristics were examined by the same method for an example in which the six dye-sensitized solar cells 12 were not connected in series and each was configured independently.

その結果、色素増感太陽電池セル12が直列接続されていない色素増感太陽電池(比較例)では、平均値として開放電圧0.68V、短絡電流12.48mA/cm2、光電変換効率約5.6%であった。
一方、色素増感太陽電池セル12が直列接続された色素増感太陽電池(実施例)では、太陽電池全体の開放電圧3.8V、短絡電流12.21mA、光電変換効率約5.5%であった。
As a result, in the dye-sensitized solar cell (comparative example) in which the dye-sensitized solar cells 12 are not connected in series, the open circuit voltage is 0.68 V, the short-circuit current is 12.48 mA / cm 2, and the photoelectric conversion efficiency is about 5. It was 6%.
On the other hand, in the dye-sensitized solar cell (Example) in which the dye-sensitized solar cells 12 are connected in series, the open-circuit voltage of the entire solar cell is 3.8 V, the short-circuit current is 12.21 mA, and the photoelectric conversion efficiency is about 5.5%. there were.

実際に、太陽電池として機能することを確かめるために、電卓につなげて光を照射したところ、電卓が機能することを確認した。このため、本実施例の色素増感太陽電池S1がデバイスを作動させるのに十分な起電力を有していることがわかった。   In order to confirm that it actually functions as a solar cell, when it was connected to a calculator and irradiated with light, it was confirmed that the calculator worked. For this reason, it turned out that the dye-sensitized solar cell S1 of a present Example has sufficient electromotive force to operate a device.

以上のように、本実施例の色素増感太陽電池S1は、簡便に作製でき、しかも電源として十分に機能することが確認された。   As described above, it was confirmed that the dye-sensitized solar cell S1 of this example can be easily manufactured and sufficiently functions as a power source.

第1の実施形態に係る色素増感太陽電池の平面図である。It is a top view of the dye-sensitized solar cell which concerns on 1st Embodiment. 図1の色素増感太陽電池セルの断面図である。It is sectional drawing of the dye-sensitized solar cell of FIG. 第1の実施形態に係る色素増感太陽電池の正極基板側及び負極基板側の電極パターン図である。It is an electrode pattern figure of the positive electrode substrate side and negative electrode substrate side of the dye-sensitized solar cell which concerns on 1st Embodiment. 図1の色素増感太陽電池のa−a断面図及びb−b断面図である。It is aa sectional drawing and bb sectional drawing of the dye-sensitized solar cell of FIG. 図1の色素増感太陽電池のc−c断面図及びd−d断面図である。It is cc sectional drawing and dd sectional drawing of the dye-sensitized solar cell of FIG. 第2の実施形態に係る色素増感太陽電池の平面図である。It is a top view of the dye-sensitized solar cell which concerns on 2nd Embodiment. 第3の実施形態に係る色素増感太陽電池の平面図である。It is a top view of the dye-sensitized solar cell which concerns on 3rd Embodiment. 第3の実施形態に係る色素増感太陽電池の正極基板側及び負極基板側の電極パターン図である。It is an electrode pattern figure of the positive electrode substrate side and negative electrode substrate side of the dye-sensitized solar cell which concerns on 3rd Embodiment. 図7の色素増感太陽電池のe−e断面図である。It is ee sectional drawing of the dye-sensitized solar cell of FIG. 第4の実施形態に係る色素増感太陽電池の平面図である。It is a top view of the dye-sensitized solar cell which concerns on 4th Embodiment. 図10の色素増感太陽電池のf−f断面図である。It is ff sectional drawing of the dye-sensitized solar cell of FIG. 従来の色素増感太陽電池の平面図である。It is a top view of the conventional dye-sensitized solar cell.

符号の説明Explanation of symbols

1 基板
2 透明導電膜(負極)
2a 突出部
2b 端部
3 酸化チタン層(光電変換層)
4 色素(光電変換層)
5 電解液層(光電変換層)
6 正電極膜(正極)
6a 突出部
7 仕切部
8 正極引出線
9 負極引出線
10 基板
11 導電性ペースト
12 色素増感太陽電池セル
12a 端部
101 基板
102 透明導電膜
106 正電極膜
110 基板
112 色素増感太陽電池セル
113 導線
S0 従来の色素増感太陽電池
S1〜S4 色素増感太陽電池
1 Substrate 2 Transparent conductive film (negative electrode)
2a Projection 2b End 3 Titanium oxide layer (photoelectric conversion layer)
4 Dye (photoelectric conversion layer)
5 Electrolyte layer (photoelectric conversion layer)
6 Positive electrode film (positive electrode)
6a Protrusion 7 Partition 8 Positive electrode lead 9 Negative electrode lead 10 Substrate 11 Conductive paste 12 Dye-sensitized solar cell 12a End 101 Substrate 102 Transparent conductive film 106 Positive electrode film 110 Substrate 112 Dye-sensitized solar cell 113 Conductor S0 Conventional dye-sensitized solar cell S1 to S4 Dye-sensitized solar cell

Claims (6)

対向して配設され、少なくとも一方が透光性を有する一対の基板と、
該基板の間に並列に配列された複数の色素増感太陽電池セルと、
該複数の色素増感太陽電池セルの外周部を区画する仕切部と、を備え、
各々の前記色素増感太陽電池セルは、
前記透光性を有する基板に形成された透明導電膜からなる負極と、
該負極に対向するよう前記一対の基板の他方側に形成された正極と、
前記負極と前記正極との間に形成された光電変換層と、から構成され、
前記正極及び前記負極は、長手方向の両端部が前記仕切部の外部に延出しており、
前記両端部の延出した領域のそれぞれが、隣接する前記色素増感太陽電池セルの反対電極と電気的に接続されることにより、複数の前記色素増感太陽電池セルが直列に接続されていることを特徴とする色素増感太陽電池。
A pair of substrates disposed opposite to each other, at least one of which has translucency;
A plurality of dye-sensitized solar cells arranged in parallel between the substrates;
A partition that partitions the outer periphery of the plurality of dye-sensitized solar cells,
Each of the dye-sensitized solar cells is
A negative electrode composed of a transparent conductive film formed on the light-transmitting substrate;
A positive electrode formed on the other side of the pair of substrates to face the negative electrode;
A photoelectric conversion layer formed between the negative electrode and the positive electrode,
The positive electrode and the negative electrode have both ends in the longitudinal direction extending to the outside of the partition part,
Each of the extended regions of the both ends is electrically connected to the opposite electrode of the adjacent dye-sensitized solar cell, so that the plurality of dye-sensitized solar cells are connected in series. The dye-sensitized solar cell characterized by the above-mentioned.
前記正極及び前記負極の一対の電極は、前記延出した領域に、電気的に接続される他方の電極に向けて突出する突出部を備え、
前記基板の正面側から垂直方向に前記突出部を見たときに、該突出部の一部が、前記他方の電極の前記延出した領域の一部と重なっており、該重なり部で、前記他方の電極と接続されていることを特徴とする請求項1に記載の色素増感太陽電池。
The pair of electrodes of the positive electrode and the negative electrode includes a protruding portion that protrudes toward the other electrode that is electrically connected to the extended region,
When the protrusion is viewed from the front side of the substrate in the vertical direction, a part of the protrusion overlaps with a part of the extended region of the other electrode, and the overlap part The dye-sensitized solar cell according to claim 1, wherein the dye-sensitized solar cell is connected to the other electrode.
前記正極は、前記仕切り部の一端側の前記延出した領域に、前記突出部を有し、
前記負極は、前記仕切り部の他端側の前記延出した領域に、前記突出部を有していることを特徴とする請求項2に記載の色素増感太陽電池。
The positive electrode has the protruding portion in the extended region on one end side of the partition portion,
The dye-sensitized solar cell according to claim 2, wherein the negative electrode has the protruding portion in the extended region on the other end side of the partition portion.
前記透明導電膜は、酸化インジウムにスズをドープしたITO膜の上に、酸化スズにアンチモンをドープしたATO膜を積層させた積層透明導電膜であることを特徴とする請求項1〜3のいずれか1項に記載の色素増感太陽電池。   The transparent transparent conductive film is a laminated transparent conductive film in which an ATO film in which tin oxide is doped with antimony is laminated on an ITO film in which tin is doped with indium oxide. 2. The dye-sensitized solar cell according to item 1. 前記透明導電膜は、スパッタリング法により形成されていることを特徴とする請求項1〜3のいずれか1項に記載の色素増感太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 3, wherein the transparent conductive film is formed by a sputtering method. 色素増感太陽電池と、該色素増感太陽電池に接続されるデバイスとから構成される複合型機器であって、
前記色素増感太陽電池は、請求項1〜3のいずれか1項に記載の色素増感太陽電池であることを特徴とする複合型機器。
A composite-type device composed of a dye-sensitized solar cell and a device connected to the dye-sensitized solar cell,
The said dye-sensitized solar cell is a dye-sensitized solar cell of any one of Claims 1-3, The composite type apparatus characterized by the above-mentioned.
JP2007060547A 2007-03-09 2007-03-09 Dye-sensitized solar cell and composite device including the same Expired - Fee Related JP5400273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007060547A JP5400273B2 (en) 2007-03-09 2007-03-09 Dye-sensitized solar cell and composite device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007060547A JP5400273B2 (en) 2007-03-09 2007-03-09 Dye-sensitized solar cell and composite device including the same

Publications (2)

Publication Number Publication Date
JP2008226554A JP2008226554A (en) 2008-09-25
JP5400273B2 true JP5400273B2 (en) 2014-01-29

Family

ID=39844929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007060547A Expired - Fee Related JP5400273B2 (en) 2007-03-09 2007-03-09 Dye-sensitized solar cell and composite device including the same

Country Status (1)

Country Link
JP (1) JP5400273B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160093793A (en) * 2015-01-29 2016-08-09 주식회사 상보 A serial type Dye-Sensitized Solar Cell module and Method for manufacturing thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585070B2 (en) * 2009-12-18 2014-09-10 アイシン精機株式会社 Dye-sensitized solar cell
JP2011216189A (en) * 2010-03-31 2011-10-27 Sony Corp Photoelectric conversion device and photoelectric conversion device module
EP2683020B1 (en) * 2011-03-02 2019-07-24 Fujikura Ltd. Dye-sensitized solar cell module
JP5631242B2 (en) * 2011-03-02 2014-11-26 株式会社フジクラ Dye-sensitized solar cell module
JP5699374B2 (en) * 2011-04-07 2015-04-08 大日本印刷株式会社 Method for producing organic solar cell module
EP2843754A4 (en) * 2012-04-23 2015-12-30 Sharp Kk Photoelectric conversion element module and method for manufacturing same
JP5382827B1 (en) * 2012-09-01 2014-01-08 株式会社フジクラ Dye-sensitized solar cell module
JP5991092B2 (en) * 2012-09-04 2016-09-14 大日本印刷株式会社 Method for producing organic solar cell module
JP6000808B2 (en) * 2012-11-06 2016-10-05 日本写真印刷株式会社 Dye-sensitized solar cell module
TW201507183A (en) * 2013-03-29 2015-02-16 Nippon Steel & Sumikin Chem Co Solar cell and manufacturing method for dye-sensitized solar cell
JP5920282B2 (en) * 2013-05-08 2016-05-18 大日本印刷株式会社 Dye-sensitized solar cell module
JP7415383B2 (en) 2019-09-05 2024-01-17 日本ゼオン株式会社 Solar cell module, electrode substrate for solar cell, and method for manufacturing solar cell module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4277639B2 (en) * 2003-09-26 2009-06-10 パナソニック電工株式会社 Photoelectric conversion element module
JP2006294423A (en) * 2005-04-11 2006-10-26 Ngk Spark Plug Co Ltd Dye-sensitized solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160093793A (en) * 2015-01-29 2016-08-09 주식회사 상보 A serial type Dye-Sensitized Solar Cell module and Method for manufacturing thereof
KR101663079B1 (en) * 2015-01-29 2016-10-17 주식회사 상보 A serial type Dye-Sensitized Solar Cell module and Method for manufacturing thereof

Also Published As

Publication number Publication date
JP2008226554A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP5400273B2 (en) Dye-sensitized solar cell and composite device including the same
US8957307B2 (en) Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
EP2683020B1 (en) Dye-sensitized solar cell module
KR20090100649A (en) Dye-sensitized solar cell and method for preparing the same
US20110114165A1 (en) Photoelectric conversion device
KR20080072425A (en) Dye-sensitized solar cell and method for preparing the same
JP2006324090A (en) Photoelectric conversion module and photovoltaic generator using it
KR100384893B1 (en) Nano-particle oxide solar cells and fabrication method of the same and solar cell modules and transparent electric window using the same
JP2007018909A (en) Manufacturing method for photoelectric conversion device
JP5128118B2 (en) Wet solar cell and manufacturing method thereof
US8742248B2 (en) Photoelectric conversion module and method of manufacturing the same
EP2407986A1 (en) Photoelectric conversion module and method of manufacturing the same
JP5160045B2 (en) Photoelectric conversion element
US20150357123A1 (en) Series/parallel mixed module structure of dye-sensitized solar cell and method of manufacturing the same
JP6333343B2 (en) Photoelectric conversion element
KR100993847B1 (en) Dye-sensitized solar cell molule and manufacturing method thereof
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP2007299709A (en) Photoelectric conversion device and photovoltaic generator
JP2006210229A (en) Dye-sensitized solar battery and manufacturing method of the same
JP2011204522A (en) Dye-sensitized solar cell module and manufacturing method thereof
CN101697326B (en) Internal series-connection method of dye-sensitized solar cell
JP6598757B2 (en) Photoelectric conversion element
US20130104955A1 (en) Photoelectric conversion module
KR101206040B1 (en) Dye-sensitized solar cell sub-module having structure prone to be changed its outer electrodes polarity
JP2014175195A (en) Dye-sensitized solar cell, manufacturing method of the same and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130325

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

R150 Certificate of patent or registration of utility model

Ref document number: 5400273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees