JP5400001B2 - III-nitride semiconductor deep ultraviolet light emitting device structure - Google Patents

III-nitride semiconductor deep ultraviolet light emitting device structure Download PDF

Info

Publication number
JP5400001B2
JP5400001B2 JP2010186651A JP2010186651A JP5400001B2 JP 5400001 B2 JP5400001 B2 JP 5400001B2 JP 2010186651 A JP2010186651 A JP 2010186651A JP 2010186651 A JP2010186651 A JP 2010186651A JP 5400001 B2 JP5400001 B2 JP 5400001B2
Authority
JP
Japan
Prior art keywords
layer
algan
gan
ultraviolet light
deep ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010186651A
Other languages
Japanese (ja)
Other versions
JP2012044120A (en
Inventor
芳孝 谷保
誠 嘉数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010186651A priority Critical patent/JP5400001B2/en
Publication of JP2012044120A publication Critical patent/JP2012044120A/en
Application granted granted Critical
Publication of JP5400001B2 publication Critical patent/JP5400001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、深紫外発光素子構造に係り、より詳細には、III族窒化物半導体を使用した深紫外発光素子構造に関する。   The present invention relates to a deep ultraviolet light emitting element structure, and more particularly to a deep ultraviolet light emitting element structure using a group III nitride semiconductor.

III族窒化物半導体である窒化アルミニウムガリウム(AlGaN)系半導体を使用して深紫外発光素子を作製する際、活性層にはAlGaN井戸層とそれよりもAl組成が高いAlGaN障壁層からなるAlGaN多重量子井戸構造が利用されてきた。しかし、AlGaN多重量子井戸の深紫外発光素子では、AlGaN井戸層に多くの点欠陥や転位などの結晶欠陥が導入されやすい、Al組成の増加にともない成長表面として一般的に使用される(0001)面方向への発光が弱くなる、AlGaNの混晶組成ゆらぎに由来して発光波長が不均一になりやすい、AlGaN井戸層とAlGaN障壁層のバンドギャップ差が小さいため、発光効率は数%程度と低い、などの問題がある。   When fabricating a deep ultraviolet light emitting device using an aluminum gallium nitride (AlGaN) -based semiconductor, which is a group III nitride semiconductor, an AlGaN multiple layer comprising an AlGaN well layer and an AlGaN barrier layer having a higher Al composition as the active layer. Quantum well structures have been used. However, in AlGaN multiple quantum well deep ultraviolet light emitting devices, many crystal defects such as point defects and dislocations are likely to be introduced into the AlGaN well layer, and it is generally used as a growth surface as the Al composition increases (0001). Light emission in the surface direction is weak, the emission wavelength is likely to be non-uniform due to fluctuations in the mixed crystal composition of AlGaN, and the difference in band gap between the AlGaN well layer and the AlGaN barrier layer is small. There are problems such as low.

以下に、発光層にAlGaN多重量子井戸構造を使用した深紫外発光素子に関するA.Khan他の報告(非特許文献1参照。)について述べる。図1に、報告されているAlGaN多重量子井戸構造を使用した深紫外発光素子100の構造を示す。この報告例では、発光ダイオード(LED:Light−emitting diode)を有機金属気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法により作製している。基板にはAl23(0001)面101を使用している。まず、AlNバッファ層102、アンドープAlN/AlGaN超格子層103、n型AlGaN層104、発光層としてAlGaN多重量子井戸層105、p型AlGaN層106、p型GaN層107を成長した。ドライエッチングによりメサ構造を形成し、n型電極108をn型AlGaN層104上に、p型電極109をp型GaN層107上に形成している。波長280nm以下の深紫外領域での発光効率は1%以下と低い。 A deep ultraviolet light emitting device using an AlGaN multiple quantum well structure for the light emitting layer is described below. A report by Khan et al. (See Non-Patent Document 1) will be described. FIG. 1 shows the structure of a deep ultraviolet light emitting device 100 using a reported AlGaN multiple quantum well structure. In this report example, a light-emitting diode (LED) is manufactured by a metal organic chemical vapor deposition (MOCVD) method. An Al 2 O 3 (0001) surface 101 is used for the substrate. First, an AlN buffer layer 102, an undoped AlN / AlGaN superlattice layer 103, an n-type AlGaN layer 104, and an AlGaN multiple quantum well layer 105, a p-type AlGaN layer 106, and a p-type GaN layer 107 were grown as a light emitting layer. A mesa structure is formed by dry etching, and an n-type electrode 108 is formed on the n-type AlGaN layer 104 and a p-type electrode 109 is formed on the p-type GaN layer 107. The luminous efficiency in the deep ultraviolet region with a wavelength of 280 nm or less is as low as 1% or less.

また、H.Hirayama他 (非特許文献2参照。)から報告されているように、AlGaN多重量子井戸層105のAlGaN障壁層102はAlGaN井戸層104よりも、Al組成が15%程度しか高くないためバンドオフセットが小さく、キャリアを十分に閉じ込めることができないため発光効率が低い。また、AlGaN多重量子井戸構造105のAl組成が高くなるほど、つまり、発光波長が短くなるほど発光効率は低下する。このように、AlGaN多重量子井戸105を使用した従来構造では、発光効率が高く、波長の短い深紫外発光素子を作製することはできない。   H. As reported by Hirayama et al. (See Non-Patent Document 2), the AlGaN barrier layer 102 of the AlGaN multiple quantum well layer 105 has an Al composition that is only about 15% higher than the AlGaN well layer 104, and therefore has a band offset. Since it is small and carriers cannot be sufficiently confined, the light emission efficiency is low. Further, the higher the Al composition of the AlGaN multiple quantum well structure 105, that is, the shorter the emission wavelength, the lower the light emission efficiency. Thus, the conventional structure using the AlGaN multiple quantum well 105 has a high luminous efficiency and cannot produce a deep ultraviolet light emitting device with a short wavelength.

Asif Khan, et al., ‘‘Ultraviolet light-emitting diodes based on group three nitrides,’’ Nature Photonics, Vol. 2, pp.77-84 (2008).Asif Khan, et al., ‘‘ Ultraviolet light-emitting diodes based on group three nitrides, ’’ Nature Photonics, Vol. 2, pp. 77-84 (2008). Hideki Hirayama, et al., ‘‘231-261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire,’’ Appl. Phys. Lett. 91, 71901 (2007).Hideki Hirayama, et al., '' 231-261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire, '' Appl. Phys. Lett. 91, 71901 (2007) .

本発明は、高い発光効率を得ることができるIII族窒化物半導体の深紫外発光素子構造を提供することを目的とする。   An object of the present invention is to provide a group III nitride semiconductor deep ultraviolet light emitting element structure capable of obtaining high luminous efficiency.

上記課題を解決するために、本発明の請求項1に記載されたIII族窒化物半導体の深紫外発光素子構造は、AlGaN障壁層とGaN井戸層とからなるAlGaN/GaN短周期超格子層と、上記AlGaN/GaN短周期超格子層を上下に挟むように配置されるn型AlGaN層およびp型AlGaN層とを備えた発光波長が220−280nmであるIII族窒化物半導体の深紫外発光素子構造であって、上記AlGaN/GaN短周期超格子層の上記AlGaN障壁層のAl組成、上記n型AlGaN層のAl組成、上記p型AlGaN層のAl組成が70%以上であり、上記AlGaN/GaN短周期超格子層の上記GaN井戸層の膜厚が0.75nm以下であることを特徴とする。 In order to solve the above problems, a deep ultraviolet light emitting device structure of a group III nitride semiconductor according to claim 1 of the present invention includes an AlGaN / GaN short-period superlattice layer comprising an AlGaN barrier layer and a GaN well layer. A group III nitride semiconductor deep ultraviolet light emitting device having an emission wavelength of 220 to 280 nm, comprising an n-type AlGaN layer and a p-type AlGaN layer arranged so as to sandwich the AlGaN / GaN short period superlattice layer above and below The AlGaN / GaN short-period superlattice layer has an Al composition of the AlGaN barrier layer, an Al composition of the n-type AlGaN layer, and an Al composition of the p-type AlGaN layer of 70% or more. the thickness of the GaN well layer of GaN short period superlattice layer is characterized der Rukoto below 0.75 nm.

AlGaN障壁層とGaN井戸層からなるAlGaN/GaN短周期超格子層をn型AlGaN層およびp型AlGaN層で挟んだ深紫外発光素子構造は、発光層として働くGaN井戸層を大きなバンドオフセットを有するAlGaN障壁層により短周期超格子を形成している。このため、欠陥が少なく、(0001)面方向への発光が強く、混晶組成ゆらぎが発生しないGaN井戸層を発光層として使用することが可能となること、GaN井戸層とAlGaN障壁層の大きなバンドオフセットによりキャリアを強く閉じ込めることが可能となることにより、高い発光効率を有する波長220−280nmの深紫外半導体発光素子を作製することができるようになる。   A deep ultraviolet light-emitting device structure in which an AlGaN / GaN short-period superlattice layer composed of an AlGaN barrier layer and a GaN well layer is sandwiched between an n-type AlGaN layer and a p-type AlGaN layer has a large band offset in the GaN well layer serving as the light-emitting layer A short period superlattice is formed by the AlGaN barrier layer. For this reason, it is possible to use a GaN well layer with few defects, strong light emission in the (0001) plane direction and no mixed crystal composition fluctuation as a light emitting layer, and a large GaN well layer and AlGaN barrier layer. By making it possible to strongly confine carriers by the band offset, it becomes possible to manufacture a deep ultraviolet semiconductor light emitting element having a wavelength of 220 to 280 nm and having a high light emission efficiency.

以上のように、本発明のIII族窒化物半導体の深紫外発光素子構造は、AlGaN障壁層とGaN井戸層からなるAlGaN/GaN短周期超格子層をn型AlGaN層およびp型AlGaN層で挟んだ構成とすることにより、発光効率の高い、波長220−280nmの深紫外発光素子構造を作製することができるようになる。   As described above, the group III nitride semiconductor deep ultraviolet light emitting device structure of the present invention has an AlGaN / GaN short-period superlattice layer composed of an AlGaN barrier layer and a GaN well layer sandwiched between an n-type AlGaN layer and a p-type AlGaN layer. With this configuration, a deep ultraviolet light-emitting element structure with a wavelength of 220 to 280 nm with high luminous efficiency can be manufactured.

従来のAlGaN多重量子井戸層を使用した深紫外発光素子構造を示す構造図である。It is a structural diagram showing a deep ultraviolet light emitting element structure using a conventional AlGaN multiple quantum well layer. 本発明の実施例1に係るIII族窒化物半導体の深紫外発光素子構造の1例として、AlN/GaN短周期超格子層を使用した深紫外発光素子構造を示す構造図である。As an example of the group III nitride semiconductor of the deep ultraviolet light-emitting device structure according to a first embodiment of the present invention, it is a structural diagram showing a deep ultraviolet light-emitting device structure using AlN / GaN short periodic superlattice layer. 実施例1で比較のために作製したAlGaN多重量子井戸層を使用した深紫外発光素子構造を示す構造図である。FIG. 3 is a structural diagram showing a deep ultraviolet light emitting element structure using an AlGaN multiple quantum well layer produced for comparison in Example 1. (A)AlGaN多重量子井戸、(B)AlN/GaN短周期超格子のエネルギーバンドの概略図である。It is the schematic of the energy band of (A) AlGaN multiple quantum well and (B) AlN / GaN short period superlattice. 本発明の実施例2に係るIII族窒化物半導体の深紫外発光素子構造であるAlGaN/GaN短周期超格子層を使用した深紫外発光素子構造を示す構造図である。The deep ultraviolet light-emitting device structure using a deep ultraviolet emitting device structure is AlGaN / GaN short periodic superlattice layer of the group III nitride semiconductor according to the second embodiment of the present invention is a structural diagram showing. AlGaN障壁層、n型およびp型AlGaN層のAl組成と発光効率の関係を示す図である。It is a figure which shows the relationship between Al composition of a AlGaN barrier layer, an n-type, and a p-type AlGaN layer, and luminous efficiency. GaN井戸層の膜厚と深紫外発光素子の発光波長の関係を示す図である。It is a figure which shows the relationship between the film thickness of a GaN well layer, and the light emission wavelength of a deep ultraviolet light emitting element. GaN井戸層の膜厚と深紫外発光素子の発光効率の関係を示す図である。It is a figure which shows the relationship between the film thickness of a GaN well layer, and the luminous efficiency of a deep ultraviolet light emitting element.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<実施例1>
まず、本発明の実施例1について、図2乃至図4を参照して説明する。
図2は、本発明の実施例1に係るIII族窒化物半導体の深紫外発光素子構造の1例として、AlGaN/GaN短周期超格子204のAlGaN障壁層にAlN層202、n型AlGaN層にn型AlN層203、p型AlGaN層にp型AlN層205を使用した場合の構造図である。
<Example 1>
First, Embodiment 1 of the present invention will be described with reference to FIGS.
FIG. 2 shows an example of a group III nitride semiconductor deep ultraviolet light emitting device structure according to Example 1 of the present invention, in which an AlN barrier layer of an AlGaN / GaN short period superlattice 204 is formed with an AlN layer 202 and an n-type AlGaN layer. FIG. 6 is a structural diagram when a p-type AlN layer 205 is used for an n-type AlN layer 203 and a p-type AlGaN layer.

図2に示す、AlN/GaN短周期超格子を使用した深紫外発光素子200は、有機金属気相成長法(MOCVD法)により作製した。Al原料としてトリメチルアルミニウム(TMA)、Ga原料としてトリメチルガリウム(TMG)、N原料としてアンモニア(NH3)を使用した。不純物ドーピング用のシリコン(Si)原料としてシラン(SiH4)、Mg原料としてビスシクロペンタジエニルマグネシウム(Cp2Mg)を使用した。
まず、サファイア(0001)基板上201に、1300℃でアンドープAlNバッファ層(膜厚1μm)202、1200℃でn型SiドープAlN層(膜厚1μm、Si濃度1×1019cm-3)203、1000℃でAlN障壁層(膜厚1.8nm)とGaN井戸層(膜厚0.48nm)からなる30周期のAlN/GaN短周期超格子層204、1200℃でp型MgドープAlN層(膜厚20 nm、Mg濃度1×1019cm-3)205の順にエピタキシャル成長した。GaN井戸層204はAlN障壁層ならびにn型SiドープAlN層に対してコヒーレントにエピタキシャル成長しており、ミスフィット転位などの欠陥は発生せず、GaN井戸層には大きな圧縮歪が内在している。なお、n型SiドープAlN層203およびp型MgドープAlN層205では良好な電気伝導性を得るために、残留酸素濃度を5×1017cm-3以下に低減している。続いて、塩素ガスを使用したドライエッチングにより、メサ構造を形成する。メサ上部のp型MgドープAlN層205にNi/Au電極207を形成し、露出したn型SiドープAlN層203上にTi/Al/Ti/Au電極206を形成した。本素子の発光波長は256nmである。AlN/GaN短周期超格子では、発光波長はAlN障壁層とGaN井戸層の膜厚でのみ制御できる。
The deep ultraviolet light emitting element 200 using the AlN / GaN short period superlattice shown in FIG. 2 was produced by metal organic chemical vapor deposition (MOCVD). Trimethylaluminum (TMA) was used as the Al source, trimethylgallium (TMG) was used as the Ga source, and ammonia (NH 3 ) was used as the N source. Silane (SiH 4 ) was used as a silicon (Si) raw material for impurity doping, and biscyclopentadienyl magnesium (Cp 2 Mg) was used as an Mg raw material.
First, an undoped AlN buffer layer (film thickness 1 μm) 202 is formed on a sapphire (0001) substrate 201 at 1300 ° C. 202 and an n-type Si-doped AlN layer (film thickness 1 μm, Si concentration 1 × 10 19 cm −3 ) 203 at 1200 ° C. 203. , A 30-period AlN / GaN short-period superlattice layer 204 composed of an AlN barrier layer (film thickness 1.8 nm) and a GaN well layer (film thickness 0.48 nm) at 1000 ° C., and a p-type Mg-doped AlN layer at 1200 ° C. Epitaxial growth was performed in the order of film thickness 20 nm, Mg concentration 1 × 10 19 cm −3 ) 205. The GaN well layer 204 is epitaxially grown coherently with respect to the AlN barrier layer and the n-type Si-doped AlN layer, and defects such as misfit dislocations do not occur, and a large compressive strain is inherent in the GaN well layer. In the n-type Si-doped AlN layer 203 and the p-type Mg-doped AlN layer 205, the residual oxygen concentration is reduced to 5 × 10 17 cm −3 or less in order to obtain good electrical conductivity. Subsequently, a mesa structure is formed by dry etching using chlorine gas. A Ni / Au electrode 207 was formed on the p-type Mg-doped AlN layer 205 above the mesa, and a Ti / Al / Ti / Au electrode 206 was formed on the exposed n-type Si-doped AlN layer 203. The emission wavelength of this element is 256 nm. In the AlN / GaN short period superlattice, the emission wavelength can be controlled only by the film thickness of the AlN barrier layer and the GaN well layer.

また、比較のため、従来のAlGaN多重量子井戸を使用した波長256nm深紫外発光素子300を作製した。図3に作製した深紫外発光素子300の構造を示す。作製方法は、上記と同様である。まず、サファイア(0001)基板301上に、1300℃でアンドープAlNバッファ層(膜厚1μm)302、1200℃でn型SiドープAlGaN層(Al組成80%、膜厚1μm、Si濃度1×1019cm-3)303、1000℃でAlGaN障壁層(Al組成80%、膜厚2.5nm)とAlGaN井戸層(Al組成60%、膜厚1.5nm)からなる10周期のAlGaN多重量子井戸層304、1200℃でp型MgドープAlGaN層(Al組成80%、膜厚20nm、Mg濃度1×1019cm-3)305の順にエピタキシャル成長した。なお、n型SiドープAlGaN層303およびp型MgドープAlGaN層305では良好な電気伝導性を得るために、残留酸素濃度を5×1017cm-3以下に低減している。続いて、塩素ガスを使用したドライエッチングにより、メサ構造を形成する。メサ上部のp型MgドープAlGaN層305にNi/Au電極307を形成し、露出したn型SiドープAlGaN層上にTi/Al/Ti/Au電極306を形成した。なお、AlGaN多重量子井戸304の場合は、発光波長の制御はAlGaN障壁層のAl組成と膜厚、AlGaN井戸層のAl組成と膜厚と多くのパラメータを調整するため困難である。 For comparison, a deep ultraviolet light emitting device 300 having a wavelength of 256 nm using a conventional AlGaN multiple quantum well was fabricated. FIG. 3 shows the structure of the manufactured deep ultraviolet light emitting element 300. The manufacturing method is the same as described above. First, on an sapphire (0001) substrate 301, an undoped AlN buffer layer (film thickness 1 μm) 302 at 1300 ° C., and an n-type Si-doped AlGaN layer (Al composition 80%, film thickness 1 μm, Si concentration 1 × 10 19 at 1200 ° C.). cm −3 ) 303, 1000 ° C., AlGaN barrier layer (Al composition 80%, film thickness 2.5 nm) and AlGaN well layer (Al composition 60%, film thickness 1.5 nm) 10 periods AlGaN multiple quantum well layer At 304 and 1200 ° C., a p-type Mg-doped AlGaN layer (Al composition 80%, film thickness 20 nm, Mg concentration 1 × 10 19 cm −3 ) 305 was epitaxially grown in this order. In the n-type Si-doped AlGaN layer 303 and the p-type Mg-doped AlGaN layer 305, the residual oxygen concentration is reduced to 5 × 10 17 cm −3 or less in order to obtain good electrical conductivity. Subsequently, a mesa structure is formed by dry etching using chlorine gas. A Ni / Au electrode 307 was formed on the p-type Mg-doped AlGaN layer 305 above the mesa, and a Ti / Al / Ti / Au electrode 306 was formed on the exposed n-type Si-doped AlGaN layer. In the case of the AlGaN multiple quantum well 304, it is difficult to control the emission wavelength because the Al composition and film thickness of the AlGaN barrier layer and the Al composition and film thickness of the AlGaN well layer and many parameters are adjusted.

従来のAlGaN多重量子井戸よりも本発明のAlGaN/GaN短周期超格子を活性層として使用することにより、発光効率は約5倍増加した。なお、本実施例では基板にサファイア(0001)面を使用したが、AlN(0001)面やSiC(0001)面を使用した場合も同様に発光効率は増加する。   By using the AlGaN / GaN short-period superlattice of the present invention as an active layer compared to the conventional AlGaN multiple quantum well, the luminous efficiency is increased about 5 times. In this embodiment, the sapphire (0001) plane is used for the substrate, but the luminous efficiency is also increased when an AlN (0001) plane or SiC (0001) plane is used.

従来のAlGaN多重量子井戸よりも本発明のAlN/GaN短周期超格子を深紫外発光素子の活性層に使用することで、高い発光効率が得られる理由を説明する。図4に(A)AlGaN多重量子井戸、(B)AlN/GaN短周期超格子のエネルギーバンドの概略図を示す。(A)のAlGaN多重量子井戸の場合、AlGaN井戸層でキャリアである電子と正孔が輻射再結合することで発光する。AlGaNは、Al組成が高いほど、点欠陥や転位などの結晶欠陥が発生しやすい。これらの欠陥でキャリアは非輻射再結合するため、これらの欠陥が多いと発光効率は低下する。また、深紫外発光のために高いAl組成を必要とするAlGaN多重量子井戸では、Al組成が高いほど(0001)面方向への発光は弱くなる。さらに、AlGaN多重量子井戸では、伝導帯のバンドオフセットと価電子帯のバンドオフセットは小さいため、井戸層でのキャリア(電子と正孔)の閉じ込めが弱いため、キャリアは発光せずに井戸層の外へ逃げてしまう。例えば、本実施例のAlGaN多重量子井戸層の波長256nm深紫外発光素子では、伝導帯のバンドオフセットは0.3eV、価電子帯のバンドオフセットは0.1eVと小さい。   The reason why high luminous efficiency can be obtained by using the AlN / GaN short period superlattice of the present invention for the active layer of the deep ultraviolet light emitting device than the conventional AlGaN multiple quantum well will be described. FIG. 4 shows a schematic diagram of energy bands of (A) AlGaN multiple quantum well and (B) AlN / GaN short period superlattice. In the case of the AlGaN multiple quantum well (A), light is emitted by radiative recombination of electrons and holes which are carriers in the AlGaN well layer. In AlGaN, as the Al composition is higher, crystal defects such as point defects and dislocations are more likely to occur. Since these defects cause non-radiative recombination of carriers, the emission efficiency decreases if there are many of these defects. In addition, in an AlGaN multiple quantum well that requires a high Al composition for deep ultraviolet light emission, light emission in the (0001) plane direction becomes weaker as the Al composition becomes higher. Furthermore, in the AlGaN multiple quantum well, the band offset of the conduction band and the band offset of the valence band are small, so that the confinement of carriers (electrons and holes) in the well layer is weak, so the carriers do not emit light and the well layer does not emit light. Escape outside. For example, in the AlGaN multiple quantum well layer 256 nm deep ultraviolet light emitting device of this example, the band offset of the conduction band is as small as 0.3 eV and the band offset of the valence band is as small as 0.1 eV.

一方、(B)のAlN/GaN短周期超格子の場合、GaN井戸層でキャリアである電子と正孔が輻射再結合することで発光する。GaNは、Alを含んでいない二元材料であり、点欠陥や転位などの結晶欠陥が発生しにくい。また、GaNは、AlGaNと比べて、(0001)面方向への発光が強い。さらに、AlN/GaN短周期超格子では、バンドギャップが小さいGaNを井戸層に使用しているため、伝導帯のバンドオフセットは1.95eV、価電子帯のバンドオフセットは0.65eVと大きく、井戸層にキャリアが強く閉じ込められるため、効率的に発光する。このため、AlN/GaN短周期超格子を使用することにより、高い発光効率が得られる。以上、本発明により、発光効率の高い深紫外発光素子構造が実現する。   On the other hand, in the case of the AlN / GaN short-period superlattice (B), light is emitted by radiative recombination of electrons and holes which are carriers in the GaN well layer. GaN is a binary material that does not contain Al, and crystal defects such as point defects and dislocations are unlikely to occur. In addition, GaN emits more light in the (0001) plane direction than AlGaN. Furthermore, since the AlN / GaN short period superlattice uses GaN with a small band gap for the well layer, the band offset of the conduction band is 1.95 eV and the band offset of the valence band is as large as 0.65 eV. Since carriers are strongly confined in the layer, light is emitted efficiently. For this reason, high luminous efficiency can be obtained by using an AlN / GaN short period superlattice. As described above, according to the present invention, a deep ultraviolet light emitting element structure with high luminous efficiency is realized.

<実施例2>
次に、本発明の実施例2について、図5、図6を参照して説明する。
図5は、本発明の実施例2に係るIII族窒化物半導体の深紫外発光素子構造の1例として、AlGaN/GaN短周期超格子層504のAlGaN障壁層502、n型AlGaN層503、p型AlGaN層505のAl組成と発光特性の関係について説明する。作製した深紫外発光素子構造の構造図である。作製手順は、実施例1と同様である。
<Example 2>
Next, a second embodiment of the present invention will be described with reference to FIGS.
FIG. 5 shows an AlGaN barrier layer 502 of an AlGaN / GaN short-period superlattice layer 504, an n-type AlGaN layer 503, p, as an example of a group III nitride semiconductor deep ultraviolet light emitting device structure according to Example 2 of the invention. The relationship between the Al composition of the type AlGaN layer 505 and the light emission characteristics will be described. It is a structural diagram of the manufactured deep ultraviolet light emitting element structure. The manufacturing procedure is the same as that in the first embodiment.

図6に、AlGaN/GaN短周期超格子層504のAlGaN障壁層、n型AlGaN層503、p型AlGaN層505のAl組成と、深紫外光素子の発光効率との関係を示す。図6からわかるように、Al組成が増加するに従い、発光効率は増加する。これは、Al組成が高いほど、AlGaN/GaN短周期超格子領域でのキャリアの閉じ込めを強くできるからである。そして、AlGaN/GaN短周期超格子では、深紫外発光が得られる高いAl組成において、従来構造であるAlGaN多重量子井戸よりも高い発光効率が得られる。特に、それぞれのAl組成が70%以上の場合に、Al組成が100%の場合と同様の高い発光効率が得られる。なお、AlGaN障壁層502、n型AlGaN層503、p型AlGaN層505のAl組成がそれぞれ異なる場合でも、それぞれのAl組成が70%以上であれば、同様に高い発光効率が得られる。   FIG. 6 shows the relationship between the Al composition of the AlGaN barrier layer of the AlGaN / GaN short-period superlattice layer 504, the n-type AlGaN layer 503, and the p-type AlGaN layer 505, and the luminous efficiency of the deep ultraviolet light device. As can be seen from FIG. 6, the luminous efficiency increases as the Al composition increases. This is because the higher the Al composition, the stronger the carrier confinement in the AlGaN / GaN short period superlattice region. In the AlGaN / GaN short-period superlattice, higher light emission efficiency than that of the conventional AlGaN multiple quantum well can be obtained at a high Al composition that enables deep ultraviolet light emission. In particular, when each Al composition is 70% or more, the same high luminous efficiency as that when the Al composition is 100% can be obtained. Even when the AlGaN barrier layer 502, the n-type AlGaN layer 503, and the p-type AlGaN layer 505 have different Al compositions, high luminous efficiency can be obtained as long as the Al composition is 70% or more.

次に、AlGaN/GaN短周期超格子層504のAlGaN障壁層502、n型AlGaN層503、p型AlGaN層505のAl組成と発光波長を説明する。Al組成が70%以上の場合、発光波長はAl組成にほとんど依存しない。これは、Al組成が70%以上の場合、AlGaN障壁層とGaN井戸層のバンドオフセットが十分に大きいことにより、Al組成による量子準位の変化が小さいため、発光波長の変化が小さくなるためである。このように、AlGaN/GaN短周期超格子層504では、Al組成が変動したとしても発光波長の変化は小さく、発光波長の制御性は高い。一方、従来のAlGaN多重量子井戸105では、発光波長はAlGaN井戸層ならびに障壁層のAl組成に強く依存するので、Al組成が変動した場合に発光波長の変化は大きく、発光波長の制御が困難である。   Next, the Al composition and emission wavelength of the AlGaN barrier layer 502, the n-type AlGaN layer 503, and the p-type AlGaN layer 505 of the AlGaN / GaN short period superlattice layer 504 will be described. When the Al composition is 70% or more, the emission wavelength hardly depends on the Al composition. This is because when the Al composition is 70% or more, the band offset between the AlGaN barrier layer and the GaN well layer is sufficiently large, so that the change in the quantum level due to the Al composition is small and the change in the emission wavelength is small. is there. Thus, in the AlGaN / GaN short-period superlattice layer 504, even if the Al composition changes, the change in the emission wavelength is small and the controllability of the emission wavelength is high. On the other hand, in the conventional AlGaN multiple quantum well 105, the emission wavelength strongly depends on the Al composition of the AlGaN well layer and the barrier layer. Therefore, when the Al composition changes, the change of the emission wavelength is large and it is difficult to control the emission wavelength. is there.

<実施例3>
次に、本発明の実施例3について、図7、図8を参照して説明する。
まず、GaN井戸層の膜厚と深紫外発光素子の発光特性の関係について説明する。本実施例では図2に示したAlGaN/GaN短周期超格子層204のAlGaN障壁層としてAlN障壁層(Al組成100%)202、n型AlGaN層としてn型AlN層(Al組成100%)203、p型AlGaN層としてp型AlN層(Al組成100%)205の場合を例に説明する。作製手順は、実施例1と同様である。
<Example 3>
Next, Embodiment 3 of the present invention will be described with reference to FIGS.
First, the relationship between the film thickness of the GaN well layer and the light emission characteristics of the deep ultraviolet light emitting element will be described. In this embodiment, an AlN barrier layer (Al composition 100%) 202 is used as the AlGaN barrier layer of the AlGaN / GaN short-period superlattice layer 204 shown in FIG. 2, and an n-type AlN layer (Al composition 100%) 203 is used as the n-type AlGaN layer. The case of a p-type AlN layer (Al composition 100%) 205 as the p-type AlGaN layer will be described as an example. The manufacturing procedure is the same as that in the first embodiment.

図7に、AlN/GaN短周期超格子層のGaN井戸層の膜厚と深紫外発光素子の発光波長との関係を示す。図7からわかるように、GaN井戸層の膜厚が0.75nm以下の場合に、波長280nm以下の深紫外発光が得られる。GaN井戸層の膜厚が減少するにしたがい、発光波長は短波長化する。GaN井戸層の膜厚が0.15nmの時に波長220nmの深紫外発光が得られる。このように、AlN/GaN短周期超格子では、GaN井戸層の膜厚でのみ発光波長を調整することができるため、発光波長の制御性は高い。   FIG. 7 shows the relationship between the film thickness of the GaN well layer of the AlN / GaN short period superlattice layer and the emission wavelength of the deep ultraviolet light emitting element. As can be seen from FIG. 7, when the film thickness of the GaN well layer is 0.75 nm or less, deep ultraviolet light emission with a wavelength of 280 nm or less is obtained. As the thickness of the GaN well layer decreases, the emission wavelength decreases. When the film thickness of the GaN well layer is 0.15 nm, deep ultraviolet light emission with a wavelength of 220 nm is obtained. Thus, in the AlN / GaN short period superlattice, the emission wavelength can be adjusted only by the film thickness of the GaN well layer, and therefore the controllability of the emission wavelength is high.

図8に、AlN/GaN短周期超格子層のGaN井戸層の膜厚と、深紫外発光素子の発光効率との関係を示す。図8からわかるように、GaN井戸層の膜厚を1nm以下とすると従来構造よりも発光効率が高くなる。特に、GaN井戸層の膜厚が0.75nm以下の場合に高い発光効率が得られる。一方、GaN井戸層の膜厚が0.75nm以上の場合、GaN井戸層の膜厚が増加するとともに発光効率は急激に低下する。さらに、GaN井戸層の膜厚が0.75nm以上の場合、AlN/GaN短周期超格子層の量子準位間からの深紫外発光以外に、近紫外や可視の領域に欠陥に由来する発光が観測されるようになり、発光ピークの単色性が劣化した。このように、AlN/GaN短周期超格子層では、従来のAlGaN多重量子井戸で使用される井戸層の膜厚よりも薄くすることにより単色性の優れた発光が得られる。なお、AlGaN障壁層の膜厚が0.24nm以上において、キャリアをGaN井戸層に閉じ込めることができるため、高発光効率で単色性の良い深紫外発光が得られる。   FIG. 8 shows the relationship between the film thickness of the GaN well layer of the AlN / GaN short period superlattice layer and the luminous efficiency of the deep ultraviolet light emitting element. As can be seen from FIG. 8, when the film thickness of the GaN well layer is 1 nm or less, the luminous efficiency is higher than that of the conventional structure. In particular, high luminous efficiency can be obtained when the film thickness of the GaN well layer is 0.75 nm or less. On the other hand, when the film thickness of the GaN well layer is 0.75 nm or more, the light emission efficiency rapidly decreases as the film thickness of the GaN well layer increases. Furthermore, when the film thickness of the GaN well layer is 0.75 nm or more, in addition to deep ultraviolet light emission between the quantum levels of the AlN / GaN short period superlattice layer, light emission derived from defects occurs in the near ultraviolet or visible region. As a result, the monochromaticity of the emission peak deteriorated. Thus, in the AlN / GaN short-period superlattice layer, light emission with excellent monochromaticity can be obtained by making it thinner than the thickness of the well layer used in the conventional AlGaN multiple quantum well. In addition, since the carrier can be confined in the GaN well layer when the film thickness of the AlGaN barrier layer is 0.24 nm or more, deep ultraviolet light emission with high emission efficiency and good monochromaticity can be obtained.

X線回折測定より、GaN井戸層の膜厚が0.75nm以下の場合、GaN井戸層はAlN障壁層ならびにn型SiドープAlN層に対してコヒーレントにエピタキシャル成長しており、GaN井戸層には大きな圧縮歪が内在していることを確認した。また、光学顕微鏡観察より、成長表面は平坦であった。一方、GaN井戸層の膜厚が0.75nm以上の場合、ミスフィット転位などの欠陥が生成されることにより、GaN井戸層は格子緩和している。また、光学顕微鏡観察より、成長表面に3次元的な島が形成されており、平坦性が悪くなっていることがわかった。   From the X-ray diffraction measurement, when the thickness of the GaN well layer is 0.75 nm or less, the GaN well layer is epitaxially grown coherently with respect to the AlN barrier layer and the n-type Si-doped AlN layer, and the GaN well layer has a large thickness. It was confirmed that compression strain was inherent. Moreover, the growth surface was flat from the optical microscope observation. On the other hand, when the film thickness of the GaN well layer is 0.75 nm or more, defects such as misfit dislocations are generated, so that the GaN well layer is lattice-relaxed. Further, from observation with an optical microscope, it was found that a three-dimensional island was formed on the growth surface and the flatness was poor.

本実施例では、AlGaN/GaN短周期超格子のAlGaN障壁層のAl組成が100%(つまりAlN障壁層)の場合、n型AlGaN層のAl組成が100%(つまりn型AlN層)の場合、p型AlGaN層のAl組成が100%(つまりp型AlN層)の場合の深紫外発光素子構造を例に説明したが、AlGaN/GaN短周期超格子のAlGaN障壁層のAl組成、n型AlGaN層のAl組成、p型AlGaN層のAl組成が、それぞれ70%以上の場合には、同様の発光波長と発光効率が得られる。なお、AlGaN/GaN短周期超格子層のAlGaN障壁層、n型AlGaN層、p型AlGaN層のAl組成がそれぞれ異なった場合でも同様の発光波長と発光効率が得られる。   In this example, when the Al composition of the AlGaN barrier layer of the AlGaN / GaN short period superlattice is 100% (ie, AlN barrier layer), the Al composition of the n-type AlGaN layer is 100% (ie, n-type AlN layer). The deep ultraviolet light emitting device structure in the case where the Al composition of the p-type AlGaN layer is 100% (that is, the p-type AlN layer) has been described as an example, but the Al composition of the AlGaN barrier layer of the AlGaN / GaN short period superlattice, the n-type When the Al composition of the AlGaN layer and the Al composition of the p-type AlGaN layer are 70% or more, the same emission wavelength and emission efficiency can be obtained. Even when the AlGaN barrier layer, the n-type AlGaN layer, and the p-type AlGaN layer of the AlGaN / GaN short-period superlattice layer have different Al compositions, the same emission wavelength and emission efficiency can be obtained.

200,300,500 深紫外発光素子構造
201,301,501 サファイヤ(0001)基板
202,302,502 AlNバッファ層
203,303,503 n型AlN層
204,304,504 AlN/GaN短周期超格子層
205,305,505 p型AlN層
206,306,506 n型電極
207,307,507 p型電極
200, 300, 500 Deep ultraviolet light emitting device structure 201, 301, 501 Sapphire (0001) substrate 202, 302, 502 AlN buffer layer 203, 303, 503 n-type AlN layer 204, 304, 504 AlN / GaN short period superlattice layer 205,305,505 p-type AlN layer 206,306,506 n-type electrode 207,307,507 p-type electrode

Claims (1)

AlGaN障壁層とGaN井戸層とからなるAlGaN/GaN短周期超格子層と、
前記AlGaN/GaN短周期超格子層を上下に挟むように配置されるn型AlGaN層およびp型AlGaN層とを備えた発光波長が220−280nmであるIII族窒化物半導体の深紫外発光素子構造であって、
前記AlGaN/GaN短周期超格子層の前記AlGaN障壁層のAl組成、前記n型AlGaN層のAl組成、前記p型AlGaN層のAl組成が70%以上であり、
前記AlGaN/GaN短周期超格子層の前記GaN井戸層の膜厚が0.75nm以下であることを特徴とするIII族窒化物半導体の深紫外発光素子構造。
An AlGaN / GaN short period superlattice layer comprising an AlGaN barrier layer and a GaN well layer;
A deep ultraviolet light emitting element structure of a group III nitride semiconductor having an emission wavelength of 220 to 280 nm, comprising an n-type AlGaN layer and a p-type AlGaN layer disposed so as to sandwich the AlGaN / GaN short period superlattice layer vertically Because
Al composition of the AlGaN barrier layer of the AlGaN / GaN short period superlattice layer, Al composition of the n-type AlGaN layer, Al composition of the p-type AlGaN layer is 70% or more,
The AlGaN / GaN short period thickness of the GaN well layer of the superlattice layers of the group III nitride semiconductor, characterized in der Rukoto less 0.75nm deep-UV light emitting device structure.
JP2010186651A 2010-08-23 2010-08-23 III-nitride semiconductor deep ultraviolet light emitting device structure Active JP5400001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010186651A JP5400001B2 (en) 2010-08-23 2010-08-23 III-nitride semiconductor deep ultraviolet light emitting device structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010186651A JP5400001B2 (en) 2010-08-23 2010-08-23 III-nitride semiconductor deep ultraviolet light emitting device structure

Publications (2)

Publication Number Publication Date
JP2012044120A JP2012044120A (en) 2012-03-01
JP5400001B2 true JP5400001B2 (en) 2014-01-29

Family

ID=45900055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010186651A Active JP5400001B2 (en) 2010-08-23 2010-08-23 III-nitride semiconductor deep ultraviolet light emitting device structure

Country Status (1)

Country Link
JP (1) JP5400001B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252092B2 (en) * 2013-10-17 2017-12-27 日亜化学工業株式会社 Nitride semiconductor laminate and light emitting device using the same
JP6472093B2 (en) * 2014-03-31 2019-02-20 国立研究開発法人理化学研究所 Ultraviolet light emitting device and electrical equipment using the same
US11322643B2 (en) 2014-05-27 2022-05-03 Silanna UV Technologies Pte Ltd Optoelectronic device
KR102318317B1 (en) 2014-05-27 2021-10-28 실라나 유브이 테크놀로지스 피티이 리미티드 Advanced electronic device structures using semiconductor structures and superlattices
TW201717424A (en) * 2015-11-12 2017-05-16 Lextar Electronics Corp UV LED utilizes a progressive superlattice layer to enhance the epitaxial structure quality
JP6379265B1 (en) 2017-09-12 2018-08-22 日機装株式会社 Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP6917953B2 (en) * 2017-09-12 2021-08-11 日機装株式会社 Nitride semiconductor light emitting device
CN111373552B (en) * 2017-11-22 2023-09-05 日机装株式会社 Nitride semiconductor light-emitting element
CN108470793B (en) * 2018-02-26 2023-12-08 厦门大学 Ultraviolet-infrared dual-band integrated p-i-n type photoelectric detector
CN113178504B (en) * 2021-03-10 2022-05-10 厦门大学 Synchronous uplink and downlink light illumination communication single-chip device and manufacturing method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786481B2 (en) * 2006-09-08 2011-10-05 日本電信電話株式会社 Semiconductor device and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2012044120A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5400001B2 (en) III-nitride semiconductor deep ultraviolet light emitting device structure
JP5549338B2 (en) Nitrogen compound semiconductor LED for ultraviolet light radiation and method for producing the same
KR100784065B1 (en) Nitride semiconductor led and fabrication method thereof
US7915636B2 (en) III-nitride semiconductor light emitting device
TW201724560A (en) Nitride semiconductor light emitting element
TW201011952A (en) Group iii nitride based semiconductor light emitting element and epitaxial wafer
US20090121214A1 (en) Iii-nitride semiconductor light-emitting device and manufacturing method thereof
JP5279006B2 (en) Nitride semiconductor light emitting device
US20160064598A1 (en) Ultraviolet light-emitting device
TWI678815B (en) Semiconductor light emitting element and method for manufacturing semiconductor light emitting element
Mukai et al. Nitride light-emitting diodes
JP2008288397A (en) Semiconductor light-emitting apparatus
US20140264408A1 (en) Semiconductor structures having active regions comprising ingan, methods of forming such semiconductor structures, and light emitting devices formed from such semiconductor structures
TWI666790B (en) Method for manufacturing III-nitride semiconductor light-emitting element and III-nitride semiconductor light-emitting element
JP2016111131A (en) Nitride semiconductor light-emitting element with periodic gain active layer
JP2010232364A (en) Group-iii nitride laminate and method of manufacturing the same, and group-iii nitride semiconductor element
JP6486401B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2010258097A (en) Method of manufacturing nitride semiconductor layer, method of manufacturing nitride semiconductor light emitting device, and nitride semiconductor light emitting device
KR20090084583A (en) Nitride semiconductor light emitting device
JP2009224370A (en) Nitride semiconductor device
JP2010080741A (en) Semiconductor light-emitting element
KR100742989B1 (en) Method for Fabricating Gallium Nitride-Based Light Emitting Device
KR101337615B1 (en) GaN-BASED COMPOUND SEMICONDUCTOR AND THE FABRICATION METHOD THEREOF
CN110050330B (en) Group III nitride semiconductor
JP2019033284A (en) Semiconductor light-emitting device and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131024

R150 Certificate of patent or registration of utility model

Ref document number: 5400001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350