JP5397768B2 - Laser processing apparatus and laser processing method - Google Patents

Laser processing apparatus and laser processing method Download PDF

Info

Publication number
JP5397768B2
JP5397768B2 JP2009281061A JP2009281061A JP5397768B2 JP 5397768 B2 JP5397768 B2 JP 5397768B2 JP 2009281061 A JP2009281061 A JP 2009281061A JP 2009281061 A JP2009281061 A JP 2009281061A JP 5397768 B2 JP5397768 B2 JP 5397768B2
Authority
JP
Japan
Prior art keywords
laser
laser beam
group
workpiece
trajectory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009281061A
Other languages
Japanese (ja)
Other versions
JP2011121094A (en
Inventor
正訓 高橋
哲 日向野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009281061A priority Critical patent/JP5397768B2/en
Priority to CN201010545734.XA priority patent/CN102091863B/en
Publication of JP2011121094A publication Critical patent/JP2011121094A/en
Application granted granted Critical
Publication of JP5397768B2 publication Critical patent/JP5397768B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は、焼結ダイヤモンドやcBNを用いた工具等の加工に好適なレーザ加工装置およびレーザ加工方法に関する。   The present invention relates to a laser processing apparatus and a laser processing method suitable for processing a tool or the like using sintered diamond or cBN.

通常、焼結ダイヤモンド、cBN(立方晶窒化ホウ素)を用いた部材・工具、または気相合成などで作製されるダイヤモンド、DLC(ダイヤモンドライクカーボン)などの炭素膜で表面を被覆された部材・工具などは、表面の凹凸を研削などの力学的な加工方法によって整形していた。
しかしながら、焼結ダイヤモンドまたはcBNなどの工具やダイヤモンドなどの炭素膜などは、力学的に強固であり、加工ごとに変形する砥石などではミクロンオーダーの精密な加工、特に面加工を施すことが困難であった。
Usually, members / tools using sintered diamond, cBN (cubic boron nitride), or diamond / DLC (diamond-like carbon) produced by vapor phase synthesis, etc. For example, surface irregularities were shaped by a mechanical processing method such as grinding.
However, tools such as sintered diamond or cBN and carbon films such as diamond are mechanically strong, and it is difficult to perform micron-order precision processing, especially surface processing, with a grindstone that deforms with each processing. there were.

このため、上記のような工具や炭素膜などにレーザ光を照射して加工する方法が検討されている。例えば、特許文献1には、ダイヤモンドの表面にレーザ光を照射し走査して凸部を除去するダイヤモンドのレーザ研磨方法が提案されている。また、特許文献2には、CVD法で基板表面に合成したダイヤモンド膜にレーザ光を特定の角度で照射して平滑化する方法が提案されている。さらに、特許文献3には、ダイヤモンドまたはcBNからなる硬質焼結体を有する切削工具にチップブレーカを形成する方法であって、硬質焼結体表面にフェムト秒パルスレーザを照射し、そのビームスポットを高速で公転させながら移動させて表面に三次元形状のチップブレーカパターンを形成する方法が提案されている。   For this reason, a method of processing by irradiating a laser beam on the above-described tool or carbon film has been studied. For example, Patent Document 1 proposes a diamond laser polishing method in which the surface of diamond is irradiated with laser light and scanned to remove convex portions. Patent Document 2 proposes a method of smoothing a diamond film synthesized on the substrate surface by a CVD method by irradiating laser light at a specific angle. Further, Patent Document 3 discloses a method of forming a chip breaker on a cutting tool having a hard sintered body made of diamond or cBN, wherein the surface of the hard sintered body is irradiated with a femtosecond pulse laser, and the beam spot is formed. A method of forming a chip breaker pattern having a three-dimensional shape on the surface by revolving at high speed has been proposed.

特許第3096943号公報Japanese Patent No. 3096943 特開2008−207223号公報JP 2008-207223 A 特開2007−216327号公報JP 2007-216327 A

上記従来の技術には、以下の課題が残されている。
すなわち、上記従来のレーザ加工技術では、工具や炭素膜に対してレーザ光を照射しながら走査しているが、単に一定方向に走査しつつ軌跡の一部を重ねて加工するか、公転させながら走査して渦巻き状の軌跡を描いて加工を行っているため、必然的にレーザ光照射に粗密が生じて加工痕にムラが生じ、高い面精度を得ることが困難であった。また、特許文献1では、レーザビームの線長さ当たりの照射量を均一化するように移動速度を均一にしたりパルス幅を調整したりしているが、隙間無く加工を行うために軌跡同士をある程度重ねて加工を行う必要があり、この場合もやはりレーザ光照射に粗密が生じて高い面精度を得ることが難しい。
The following problems remain in the conventional technology.
In other words, in the above conventional laser processing technology, scanning is performed while irradiating the laser beam to the tool or carbon film. However, while scanning in a certain direction, a part of the locus is overlapped or processed while revolving. Since the scanning is performed while drawing a spiral trajectory, the laser beam irradiation inevitably becomes dense and uneven, resulting in unevenness in the processing marks, and it is difficult to obtain high surface accuracy. Further, in Patent Document 1, the movement speed is made uniform and the pulse width is adjusted so that the irradiation amount per line length of the laser beam is made uniform. It is necessary to carry out processing to some extent, and again in this case, it is difficult to obtain high surface accuracy due to the density of the laser light irradiation.

本発明は、前述の課題に鑑みてなされたもので、より高い面精度を得ることができるレーザ加工装置およびレーザ加工方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a laser processing apparatus and a laser processing method capable of obtaining higher surface accuracy.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明のレーザ加工装置は、被加工対象物にレーザ光を照射して加工する装置であって、レーザ光を発振して前記被加工対象物に一定の繰り返し周波数で照射すると共に走査可能なレーザ照射機構と、前記被加工対象物を保持して移動可能な移動機構と、前記レーザ照射機構を制御してレーザ光を一定速度の円運動で走査すると共に前記移動機構を制御して前記被加工対象物を一定の移動速度で特定の方向に移動させる加工を行い、その際のレーザ光の軌跡群の位置を設定する制御部と、を備え、該制御部が、レーザ光の軌跡群をずらして前記加工を複数回行うと共に、互いに一部が重なるレーザ光の軌跡群のうち一方の軌跡群におけるレーザ光の照射が疎な部分と他方の軌跡群におけるレーザ光の照射が密な部分とを重ねる設定を行うことを特徴とする。   The present invention employs the following configuration in order to solve the above problems. In other words, the laser processing apparatus of the present invention is an apparatus for irradiating a workpiece with a laser beam and processing the laser beam, oscillating the laser beam to irradiate the workpiece with a constant repetition frequency and allowing scanning. A laser irradiation mechanism, a moving mechanism capable of holding and moving the workpiece, and controlling the laser irradiation mechanism to scan a laser beam with a circular motion at a constant speed and controlling the moving mechanism to A control unit that performs processing for moving the workpiece in a specific direction at a constant moving speed, and sets the position of the laser beam trajectory group at that time, and the control unit includes the laser beam trajectory group The processing is performed a plurality of times while shifting, and a portion of the laser beam trajectory group that is partially overlapped with each other has a sparsely irradiated laser beam portion and a densely irradiated laser beam portion on the other trajectory group Setting to overlap with And performing.

本発明のレーザ加工方法は、被加工対象物にレーザ光を照射して加工する方法であって、レーザ照射機構により、レーザ光を発振して前記被加工対象物に一定の繰り返し周波数で照射する工程と、移動機構により、前記被加工対象物を保持して移動させる工程と、制御部により、前記レーザ照射機構を制御してレーザ光を一定速度の円運動で走査すると共に前記移動機構を制御して前記被加工対象物を一定の移動速度で特定の方向に移動させる加工を行い、その際のレーザ光の軌跡群の位置を設定する工程と、を有し、該制御部が、レーザ光の軌跡群をずらして前記加工を複数回行うと共に、互いに一部が重なるレーザ光の軌跡群のうち一方の軌跡群におけるレーザ光の照射が疎な部分と他方の軌跡群におけるレーザ光の照射が密な部分とを重ねる設定を行うことを特徴とする。   The laser processing method of the present invention is a method of processing by irradiating a workpiece with a laser beam, and oscillates the laser beam by a laser irradiation mechanism and irradiates the workpiece with a constant repetition frequency. A step of holding and moving the workpiece by a moving mechanism, a step of controlling the laser irradiation mechanism by a controller, and scanning the laser beam by a circular motion at a constant speed and controlling the moving mechanism. And performing a process of moving the object to be processed in a specific direction at a constant moving speed, and setting a position of a locus group of the laser beam at that time, and the control unit includes the laser beam The above-mentioned processing is performed a plurality of times while shifting the locus group of the laser beam, and among the laser beam locus groups that partially overlap each other, the laser beam irradiation in one locus group and the laser beam irradiation in the other locus group are performed. The dense part And performing sleeping settings.

これらレーザ加工装置およびレーザ加工方法では、制御部が、レーザ光の軌跡群をずらして前記加工を複数回行うと共に、互いに一部が重なるレーザ光の軌跡群のうち一方の軌跡群におけるレーザ光の照射が疎な部分と他方の軌跡群におけるレーザ光の照射が密な部分とを重ねるように設定するので、軌跡群同士が照射の密な部分と疎な部分とで互いに補償し合い、全体が均一な照射粗密状態で面を加工することができ、高い面精度を得ることができる。
なお、本発明では、レーザ光を一定速度の円運動で走査すると共に被加工対象物を一定の移動速度で特定の方向に移動させる1回の加工におけるレーザ光の軌跡を、1回(1本分)の軌跡群としている。
In these laser processing apparatuses and laser processing methods, the controller performs the processing a plurality of times by shifting the laser beam trajectory group, and the laser beam in one trajectory group among the laser beam trajectory groups that partially overlap each other. Since the setting is made so that the irradiated part overlaps with the dense part of the other locus group, the locus groups compensate each other in the dense and sparse part, and the whole The surface can be processed in a uniform irradiation density state, and high surface accuracy can be obtained.
In the present invention, the locus of the laser beam in one process of scanning the laser beam with a circular motion at a constant speed and moving the object to be processed in a specific direction at a constant movement speed is one (one). Min)).

また、本発明のレーザ加工装置は、前記制御部が、互いに一部が重なるレーザ光の軌跡群を該軌跡群の幅の0.1〜0.8倍分だけ重ねる設定を行うことが好ましい。
すなわち、このレーザ加工装置では、制御部が、互いに一部が重なるレーザ光の軌跡群を該軌跡群の幅の0.1〜0.8倍分だけ重ねるように設定するので、レーザ光のスポット密度を考慮した良好な加工が可能になる。
軌跡群の重ねる幅を上記範囲に設定した理由は、軌跡群を重ねる幅が0.1倍未満の場合または0.8倍を超えた場合、被加工対象物に照射される面積当たりのレーザ光のスポット密度が軌跡群の幅方向の両端領域で高いため、スポット密度の高い上記両端領域が重なることで加工面の凹凸がより強調されてしまい、高い面精度が得にくくなるためである。なお、軌跡群を重ねる幅が0.8倍を超えると、加工される面積が小さくなるため、加工スループットを高めるメリットが得られないというデメリットもある。
In the laser processing apparatus of the present invention, it is preferable that the control unit performs setting so that a group of traces of laser beams partially overlapping each other is overlapped by 0.1 to 0.8 times the width of the trace group.
That is, in this laser processing apparatus, the control unit sets the laser beam trajectory groups that partially overlap each other by 0.1 to 0.8 times the width of the trajectory group. Good processing considering density is possible.
The reason why the overlapping width of the trajectory group is set in the above range is that the laser light per area irradiated on the workpiece when the overlapping width of the trajectory group is less than 0.1 times or exceeds 0.8 times. This is because the spot density is high in both end regions in the width direction of the trajectory group, and the both end regions having a high spot density are overlapped, so that the unevenness of the processed surface is further emphasized and high surface accuracy is difficult to obtain. Note that if the width of the trajectory group overlap exceeds 0.8 times, the area to be processed becomes small, and there is a demerit that the advantage of increasing the processing throughput cannot be obtained.

また、本発明のレーザ加工装置は、前記レーザ照射機構が、波長190〜550nmのレーザ光を照射可能であることを特徴とする。
すなわち、このレーザ加工装置では、レーザ照射機構が、波長190〜550nmのレーザ光を照射可能であるので、短波長でエネルギーの高いレーザ光により焼結ダイヤモンド、cBNまたはダイヤモンド膜等に対して炭化や加熱による影響を抑制して高精度な加工が可能になる。
なお、レーザ光の波長を上記範囲に設定した理由は、波長190nm未満であると、真空紫外領域で空気中を伝播し難いことで加工効率が悪く、波長550nmを超えると、ダイヤモンド、cBN、アルミナなどで吸収率が低下し、熱影響があるため、加工精度が出ないためである。
The laser processing apparatus of the present invention is characterized in that the laser irradiation mechanism can irradiate laser light having a wavelength of 190 to 550 nm.
That is, in this laser processing apparatus, the laser irradiation mechanism can irradiate laser light with a wavelength of 190 to 550 nm, so that the sintered diamond, cBN, diamond film or the like is carbonized with high-energy laser light with a short wavelength. High-precision processing is possible by suppressing the effects of heating.
The reason why the wavelength of the laser beam is set in the above range is that if the wavelength is less than 190 nm, it is difficult to propagate in the air in the vacuum ultraviolet region, and the processing efficiency is poor. If the wavelength exceeds 550 nm, diamond, cBN, alumina This is because, for example, the absorption rate is lowered and there is a thermal effect, so that the processing accuracy cannot be obtained.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係るレーザ加工装置およびレーザ加工方法によれば、制御部が、レーザ光の軌跡群をずらして加工を複数回行うと共に、互いに一部が重なるレーザ光の軌跡群のうち一方の軌跡群におけるレーザ光の照射が疎な部分と他方の軌跡群におけるレーザ光の照射が密な部分とを重ねるように設定するので、軌跡群同士が照射の密な部分と疎な部分とで互いに補償し合い、全体が均一な照射粗密状態で面を加工することができ、高い面精度を得ることができる。
したがって、本発明のレーザ加工装置およびレーザ加工方法を用いれば、切削工具や金型などの加工において、面粗さRaが0.2μm以下の高い面精度で表面性状の仕上げが可能になる。
The present invention has the following effects.
That is, according to the laser processing apparatus and the laser processing method of the present invention, the control unit performs the processing a plurality of times by shifting the laser beam trajectory group, and one of the laser beam trajectory groups partially overlapping each other. Since the setting is made so that the portion where the laser beam irradiation in the trajectory group is sparse and the portion where the laser beam irradiation in the other trajectory group is dense are overlapped with each other, Compensating each other, the surface can be processed in a uniform irradiation density state as a whole, and high surface accuracy can be obtained.
Therefore, by using the laser processing apparatus and the laser processing method of the present invention, it is possible to finish the surface texture with high surface accuracy with a surface roughness Ra of 0.2 μm or less in processing of a cutting tool or a mold.

本発明に係るレーザ加工装置およびレーザ加工方法の一実施形態において、レーザ加工装置を示す全体の構成図である。1 is an overall configuration diagram showing a laser processing apparatus in an embodiment of a laser processing apparatus and a laser processing method according to the present invention. 本実施形態において、1つの軌跡群の場合と3つの軌跡群を重ねた場合とでレーザ光のスポット位置を示す模式図である。In this embodiment, it is a schematic diagram which shows the spot position of a laser beam by the case where one locus | trajectory group and the case where three locus | trajectory groups are overlapped. 本実施形態において、1つの軌跡群の場合と3つの軌跡群を重ねた場合とでレーザ光の照射密度を濃淡で示す模式図である。In this embodiment, it is a schematic diagram which shows the irradiation density of a laser beam with the lightness and darkness in the case of one locus group, and the case where three locus groups are overlapped. 本実施形態において、重ねた3つの軌跡群を示す図である。In this embodiment, it is a figure which shows the three locus | trajectory groups piled up. 本実施形態において、重ねた3つの軌跡群におけるレーザ光のスポット位置を示す図である。In this embodiment, it is a figure which shows the spot position of the laser beam in three superimposed locus | trajectory groups. 本実施形態において、重ねた3つの軌跡群と各軌跡群におけるレーザ光のスポット位置とを合成して示す図である。In this embodiment, it is a figure which synthesize | combines and shows the three locus | trajectory groups which overlapped, and the spot position of the laser beam in each locus | trajectory group.

以下、本発明に係るレーザ加工装置およびレーザ加工方法の一実施形態を、図1から図6を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために縮尺を適宜変更している。   Hereinafter, an embodiment of a laser processing apparatus and a laser processing method according to the present invention will be described with reference to FIGS. In each drawing used for the following description, the scale is appropriately changed in order to make each member recognizable or easily recognizable.

本実施形態のレーザ加工装置1は、図1に示すように、被加工対象物Iにレーザ光Lを照射して加工する装置であって、レーザ光Lを発振して被加工対象物Iに一定の繰り返し周波数で照射すると共に走査可能なレーザ照射機構2と、被加工対象物Iを保持して移動可能な移動機構3と、レーザ照射機構2を制御してレーザ光Lを一定速度の円運動で走査すると共に移動機構3を制御して被加工対象物Iを一定の移動速度で特定の方向に移動させる加工を行い、その際のレーザ光Lの軌跡群の位置を設定する制御部4と、を備えている。   As shown in FIG. 1, the laser processing apparatus 1 according to this embodiment is an apparatus that processes a workpiece I by irradiating the workpiece I with laser light L, and oscillates the laser beam L to the workpiece I. A laser irradiation mechanism 2 that can irradiate and scan at a constant repetition frequency, a moving mechanism 3 that can move while holding the workpiece I, and a laser irradiation mechanism 2 that controls the laser irradiation mechanism 2 to emit laser light L at a constant speed. The controller 4 that scans by movement and controls the moving mechanism 3 to move the workpiece I in a specific direction at a constant moving speed, and sets the position of the locus group of the laser light L at that time. And.

上記被加工対象物Iとしては、例えば、切削工具や金型であり、加工される表面が焼結ダイヤモンド、cBN、気相合成によって成膜されたダイヤモンド膜などで構成されているものである。   The workpiece I is, for example, a cutting tool or a mold, and the surface to be processed is composed of sintered diamond, cBN, a diamond film formed by vapor phase synthesis, or the like.

上記移動機構3は、水平面に平行なX方向に移動可能なX軸ステージ部3xと、該X軸ステージ部3x上に設けられX方向に対して垂直なかつ水平面に平行なY方向に移動方向なY軸ステージ部3yと、該Y軸ステージ部3y上に設けられ被加工対象物Iを保持可能であると共に水平面に対して垂直方向に移動可能なZ軸ステージ部3zと、で構成されている。   The moving mechanism 3 includes an X-axis stage portion 3x that can move in the X direction parallel to the horizontal plane, and a moving direction in the Y direction that is provided on the X-axis stage portion 3x and that is perpendicular to the X direction and parallel to the horizontal plane. A Y-axis stage unit 3y, and a Z-axis stage unit 3z provided on the Y-axis stage unit 3y and capable of holding the workpiece I and movable in a direction perpendicular to the horizontal plane. .

上記レーザ照射機構2は、Qスイッチのトリガー信号によりレーザ光Lを発振すると共にスポット状に集光させる光学系も有するレーザ光源5と、照射するレーザ光Lを走査させるガルバノスキャナ6と、保持された被加工対象物Iを加工位置を確認するために撮像するCCDカメラ7と、を備えている。
上記レーザ光源5は、波長190〜550nmのレーザ光が照射可能であり、例えば本実施形態では、波長262nmのレーザ光Lを発振して出射可能である。
上記ガルバノスキャナ6は、移動機構3の直上に配置されている。また、上記CCDカメラ7は、ガルバノスキャナ6に隣接して設置されている。
The laser irradiation mechanism 2 is held by a laser light source 5 that also has an optical system that oscillates laser light L by a trigger signal of a Q switch and collects it in a spot shape, and a galvano scanner 6 that scans the irradiated laser light L. And a CCD camera 7 that captures an image of the workpiece I for confirming the machining position.
The laser light source 5 can irradiate laser light having a wavelength of 190 to 550 nm. For example, in this embodiment, the laser light source 5 can oscillate and emit laser light L having a wavelength of 262 nm.
The galvano scanner 6 is disposed immediately above the moving mechanism 3. The CCD camera 7 is installed adjacent to the galvano scanner 6.

上記制御部4は、レーザ光Lの軌跡群をずらして前記加工を複数回行うと共に、互いに一部が重なるレーザ光Lの軌跡群のうち一方の軌跡群におけるレーザ光Lの照射が疎な部分と他方の軌跡群におけるレーザ光Lの照射が密な部分とを重ねる設定を行う。
また、この制御部4は、互いに一部が重なるレーザ光Lの軌跡群を該軌跡群の幅の0.1〜0.8倍分だけ重ねる設定を行うことが好ましい。
The control unit 4 shifts the locus group of the laser beam L to perform the processing a plurality of times, and the portion of the locus group of the laser beam L that partially overlaps with each other has a sparse irradiation with the laser beam L. And a portion where the irradiation of the laser beam L in the other locus group is densely overlapped.
Moreover, it is preferable that this control part 4 performs the setting which overlaps the locus | trajectory group of the laser beam L which a part overlaps by 0.1 to 0.8 times the width | variety of this locus | trajectory group.

上記制御部4は、以下の定義式:
レーザ光Lの単位照射時間(t)=1/レーザ光Lの繰り返し周波数(Hz)、
被加工対象物Iの水平方向移動距離(Xh)=単位照射時間(t)×移動速度(Vx)、
に基づいて、
以下の計算式:
レーザ光Lの軌跡のX座標(X)=回転半径(R)×cos(単位照射時間当たりの移動角度(ω)×単位照射時間(t))+水平方向移動距離(Xh)、
レーザ光Lの軌跡のY座標(Y)=回転半径(R)×sin(単位照射時間当たりの移動角度(ω)×単位照射時間(t))
で計算される軌跡のX座標およびY座標に基づいてレーザ照射機構2および移動機構3を制御する。
The control unit 4 has the following definition formula:
Unit irradiation time (t) of laser light L = 1 / repetition frequency (Hz) of laser light L,
The horizontal movement distance (Xh) of the workpiece I = unit irradiation time (t) x movement speed (Vx),
On the basis of the,
The following formula:
X coordinate (X) of locus of laser light L = rotation radius (R) × cos (movement angle per unit irradiation time (ω) × unit irradiation time (t)) + horizontal movement distance (Xh),
Y coordinate (Y) of locus of laser light L = rotation radius (R) × sin (movement angle per unit irradiation time (ω) × unit irradiation time (t))
The laser irradiation mechanism 2 and the moving mechanism 3 are controlled based on the X coordinate and Y coordinate of the trajectory calculated in (1).

次に、本実施形態のレーザ加工装置1を用いたレーザ加工方法について、図2から図7を参照して説明する。   Next, a laser processing method using the laser processing apparatus 1 of the present embodiment will be described with reference to FIGS.

本実施形態のレーザ加工方法では、例えば被加工対象物Iの表面加工したい面に対して、制御部4が、レーザ照射機構2により、波長190〜550nmのレーザ光Lを直径0.08mm以下のスポット径に集光し、周速10〜5000mm/sの円運動で走査させながら、さらに移動機構3により、被加工対象物Iを一定速度で移動させる。このとき、制御部4は、上記計算式で得られる軌跡のX座標およびY座標に基づいたレーザビームの軌跡群で加工を行う。また、走査するレーザビームのピークパワー密度は、0.8MW/cm〜1.5MW/cmとする。なお、レーザ光Lの繰り返し周波数は、例えば1〜200kHzで使用される。 In the laser processing method of the present embodiment, for example, the control unit 4 applies laser light L having a wavelength of 190 to 550 nm to a surface of the workpiece I to be processed by the laser irradiation mechanism 2 with a diameter of 0.08 mm or less. The workpiece I is moved at a constant speed by the moving mechanism 3 while condensing on the spot diameter and scanning with a circular motion at a peripheral speed of 10 to 5000 mm / s. At this time, the control unit 4 performs processing using a locus group of laser beams based on the X and Y coordinates of the locus obtained by the above calculation formula. The peak power density of the laser beam to be scanned is 0.8 MW / cm 2 to 1.5 MW / cm 2 . Note that the repetition frequency of the laser light L is, for example, 1 to 200 kHz.

その際、レーザビームの円運動の周速と被加工対象物Iの移動速度とには、
移動速度=周速/(8〜15)
という関係がある。
さらに、上述したように、この軌跡群で加工対象範囲を塗り潰す操作を行う。すなわち、レーザ光Lの軌跡群をずらして上記加工を複数回行うと共に、互いに一部が重なるレーザ光Lの軌跡群のうち一方の軌跡群におけるレーザ光Lの照射が疎な部分と他方の軌跡群におけるレーザ光Lの照射が密な部分とを重ねる。その際、隣合う軌跡群との重なりを軌跡群の幅の0.1〜0.8倍分だけ重ねる。
At that time, the peripheral speed of the circular motion of the laser beam and the moving speed of the workpiece I are:
Movement speed = peripheral speed / (8-15)
There is a relationship.
Further, as described above, an operation of filling the processing target range with this locus group is performed. That is, the above-described processing is performed a plurality of times while shifting the locus group of the laser beam L, and among the locus groups of the laser beam L that partially overlap each other, the portion where the irradiation of the laser beam L in one locus group is sparse and the other locus A portion where the irradiation with the laser light L in the group is dense is overlapped. In that case, the overlap with the adjacent locus group is overlapped by 0.1 to 0.8 times the width of the locus group.

例えば、図2の(a)および図3の(a)に示すように、1つの軌跡群におけるレーザ光Lのスポット位置は、軌跡群の幅内でレーザ光Lの照射密度が高い部分L1(照射が密な部分)と低い部分L2(照射が疎な部分)とが生じる。すなわち、軌跡群の幅方向における縁側領域に照射密度が高い部分L1が生じ、その間の内側領域に照射密度が低い部分L2が生じる。このため、1本目の軌跡群に対して2本目および3本目の軌跡群を、図2の(b)および図3の(b)に示すように、隣接する軌跡群におけるレーザ光Lの照射が疎な部分に密な部分を重ね合わせることにより、幅方向における照射密度の粗密が低減されて均一化され、平坦加工が可能になる。なお、図2において、黒丸部分がレーザ光のスポットであり、曲線がレーザ光の軌跡である。   For example, as shown in FIGS. 2A and 3A, the spot position of the laser light L in one locus group is a portion L1 (where the irradiation density of the laser light L is high within the width of the locus group. A portion where irradiation is dense) and a low portion L2 (portion where irradiation is sparse) occur. That is, a portion L1 having a high irradiation density is generated in the edge region in the width direction of the trajectory group, and a portion L2 having a low irradiation density is generated in the inner region therebetween. For this reason, the second and third trajectory groups with respect to the first trajectory group are irradiated with the laser light L in the adjacent trajectory groups as shown in FIGS. 2 (b) and 3 (b). By superimposing a dense part on a sparse part, the density of irradiation density in the width direction is reduced and uniformed, and flat processing becomes possible. In FIG. 2, black circles are laser beam spots, and curved lines are laser beam trajectories.

このとき、上記円運動と上記移動速度とレーザ光Lのパルス条件とを変量することで、軌跡群に生じる粗密状態が変わるため、その際の粗密状態に対応させて制御部4が上記方法で軌跡群同士を重ね合わせる。
なお、図4から図6に、より詳細に図示した、重ねた3つの軌跡群、重ねた3つの軌跡群におけるレーザ光のスポット位置、および重ねた3つの軌跡群と各軌跡群におけるレーザ光のスポット位置とを合成した図を示す。
At this time, by varying the circular motion, the moving speed, and the pulse condition of the laser beam L, the density state generated in the trajectory group is changed. Therefore, the control unit 4 performs the above-described method according to the density state at that time. Overlapping trajectory groups.
4 to 6, which are illustrated in more detail in FIG. 4 to FIG. 6, the three superimposed trajectory groups, the spot positions of the laser beams in the three superimposed trajectory groups, and the three superimposed trajectory groups and the laser beam in each trajectory group. The figure which combined the spot position is shown.

このように本実施形態のレーザ加工装置1では、制御部4が、互いに一部が重なるレーザ光Lの軌跡群のうち一方の軌跡群におけるレーザ光Lの照射が疎な部分L2と他方の軌跡群におけるレーザ光Lの照射が密な部分L1とを重ねるように設定するので、軌跡群同士が照射の密な部分と疎な部分とで互いに補償し合い、全体が均一な照射粗密状態で面を加工することができ、高い面精度を得ることができる。   As described above, in the laser processing apparatus 1 according to the present embodiment, the control unit 4 includes the portion L2 in which the irradiation of the laser light L is sparse in one locus group and the other locus in the locus group of the laser beams L that partially overlap each other. Since the laser beam L irradiation in the group is set so as to overlap the dense part L1, the locus groups compensate for each other in the irradiation dense part and the sparse part, and the entire surface is in a uniform irradiation density state. Can be processed, and high surface accuracy can be obtained.

また、制御部4が、互いに一部が重なるレーザ光Lの軌跡群を該軌跡群の幅の0.1〜0.8倍分だけ重ねるように設定するので、レーザ光Lのスポット密度を考慮した良好な加工が可能になる。
さらに、レーザ照射機構2が、波長190〜550nmのレーザ光Lを照射可能であるので、短波長でエネルギーの高いレーザ光Lにより焼結ダイヤモンド、cBNまたはダイヤモンド膜等に対して炭化や加熱による影響を抑制して高精度な加工が可能になる。
In addition, since the control unit 4 sets the locus groups of the laser beams L that partially overlap each other by 0.1 to 0.8 times the width of the locus groups, the spot density of the laser beam L is taken into consideration. Good processing becomes possible.
Further, since the laser irradiation mechanism 2 can irradiate laser light L having a wavelength of 190 to 550 nm, the influence of carbonization or heating on the sintered diamond, cBN, diamond film or the like by the laser light L having a short wavelength and high energy. This makes it possible to process with high accuracy.

次に、上記実施形態のレーザ加工装置を用いて実際に加工した実施例について説明する。
なお、被加工対象物として、CVD法によって成膜された表面粗さRa:8μmのダイヤモンド膜を採用した。
Next, examples actually processed using the laser processing apparatus of the above embodiment will be described.
Note that a diamond film having a surface roughness Ra of 8 μm formed by a CVD method was employed as an object to be processed.

このダイヤモンド膜に対して、スポット内のパワー密度がガウシアン分布の波長262nmのレーザ光を、ピークパワー密度0.8MW/cmに設定し、レーザー光を直径80μmの円運動(すなわち、軌跡群の幅)で走査させながら、被加工対象物を420mm/sの速度で加工面に対して平行に移動させて加工を行った。その際、レーザビームの円運動の周速は4200mm/sとした。この条件で、制御部により上述した方法でレーザ光の軌跡群が互いに部分的に重なるようにし、複数の軌跡群で加工対象範囲を塗り潰す操作を行った。なお、その際、隣合う軌跡群との重なりを40μmとした。このレーザ加工によって、ダイヤモンド膜の表面粗さが、Ra0.2μmとなる高い面精度の加工が得られた。 With respect to this diamond film, a laser beam having a wavelength of 262 nm with a Gaussian distribution in the spot is set to a peak power density of 0.8 MW / cm 2 , and the laser beam is moved in a circular motion having a diameter of 80 μm (that is, a locus group). Processing was performed by moving the object to be processed in parallel to the processing surface at a speed of 420 mm / s while scanning at a width). At that time, the peripheral speed of the circular motion of the laser beam was 4200 mm / s. Under this condition, the control unit performed the operation of filling the processing target range with a plurality of trajectory groups so that the trajectory groups of the laser beams partially overlap each other by the method described above. At that time, the overlap with adjacent locus groups was set to 40 μm. By this laser processing, high surface precision processing was obtained in which the surface roughness of the diamond film was Ra 0.2 μm.

なお、本発明の技術範囲は上記実施形態および実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention.

本発明のレーザ加工装置およびレーザ加工方法は、特に切削工具や金型などの加工において表面性状の仕上げ等に好適なものである。   The laser processing apparatus and the laser processing method of the present invention are particularly suitable for finishing the surface properties and the like in processing of a cutting tool, a mold, and the like.

1…レーザ加工装置、2…レーザ照射機構、3…移動機構、4…制御部、6…ガルバノスキャナ、I…被加工対象物、L…レーザ光   DESCRIPTION OF SYMBOLS 1 ... Laser processing apparatus, 2 ... Laser irradiation mechanism, 3 ... Movement mechanism, 4 ... Control part, 6 ... Galvano scanner, I ... Work object, L ... Laser beam

Claims (4)

被加工対象物にレーザ光を照射して加工する装置であって、
レーザ光を発振して前記被加工対象物に一定の繰り返し周波数で照射すると共に走査可能なレーザ照射機構と、
前記被加工対象物を保持して移動可能な移動機構と、
前記レーザ照射機構を制御してレーザ光を一定速度の円運動で走査すると共に前記移動機構を制御して前記被加工対象物を一定の移動速度で特定の方向に移動させる加工を行い、その際のレーザ光の軌跡群の位置を設定する制御部と、を備え、
該制御部が、レーザ光の軌跡群をずらして前記加工を複数回行うと共に、互いに一部が重なるレーザ光の軌跡群のうち一方の軌跡群におけるレーザ光の照射が疎な部分と他方の軌跡群におけるレーザ光の照射が密な部分とを重ねる設定を行うことを特徴とするレーザ加工装置。
An apparatus for irradiating a workpiece with laser light and processing the workpiece,
A laser irradiation mechanism capable of oscillating a laser beam to irradiate the workpiece with a constant repetition frequency and capable of scanning;
A moving mechanism capable of holding and moving the workpiece,
The laser irradiation mechanism is controlled to scan the laser beam with a circular motion at a constant speed, and the moving mechanism is controlled to move the workpiece in a specific direction at a constant movement speed. A control unit for setting the position of a locus group of the laser beam of
The control unit shifts the laser beam trajectory group to perform the processing a plurality of times, and among the laser beam trajectory groups that partially overlap each other, the portion of the one trajectory group in which the laser light irradiation is sparse and the other trajectory are performed. A laser processing apparatus characterized in that a setting is made to overlap a dense portion of laser light irradiation in a group.
請求項1に記載のレーザ加工装置において、
前記制御部が、互いに一部が重なるレーザ光の軌跡群を該軌跡群の幅の0.1〜0.8倍分だけ重ねる設定を行うことを特徴とするレーザ加工装置。
In the laser processing apparatus of Claim 1,
The laser processing apparatus, wherein the control unit performs setting so that a locus group of laser beams partially overlapping each other is overlapped by 0.1 to 0.8 times a width of the locus group.
請求項1または2に記載のレーザ加工装置において、
前記レーザ照射機構が、波長190〜550nmのレーザ光を照射可能であることを特徴とするレーザ加工装置。
In the laser processing apparatus according to claim 1 or 2,
The laser processing apparatus, wherein the laser irradiation mechanism can irradiate laser light having a wavelength of 190 to 550 nm.
被加工対象物にレーザ光を照射して加工する方法であって、
レーザ照射機構により、レーザ光を発振して前記被加工対象物に一定の繰り返し周波数で照射する工程と、
移動機構により、前記被加工対象物を保持して移動させる工程と、
制御部により、前記レーザ照射機構を制御してレーザ光を一定速度の円運動で走査すると共に前記移動機構を制御して前記被加工対象物を一定の移動速度で特定の方向に移動させる加工を行い、その際のレーザ光の軌跡群の位置を設定する工程と、を有し、
該制御部が、レーザ光の軌跡群をずらして前記加工を複数回行うと共に、互いに一部が重なるレーザ光の軌跡群のうち一方の軌跡群におけるレーザ光の照射が疎な部分と他方の軌跡群におけるレーザ光の照射が密な部分とを重ねる設定を行うことを特徴とするレーザ加工方法。
A method of processing by irradiating a workpiece with laser light,
Oscillating laser light by a laser irradiation mechanism to irradiate the workpiece with a constant repetition frequency; and
Holding and moving the workpiece by a moving mechanism;
The control unit controls the laser irradiation mechanism to scan the laser beam with a circular motion at a constant speed and controls the moving mechanism to move the workpiece to be moved in a specific direction at a constant movement speed. And setting the position of the locus group of the laser beam at that time,
The control unit shifts the laser beam trajectory group to perform the processing a plurality of times, and among the laser beam trajectory groups that partially overlap each other, the portion of the one trajectory group in which the laser light irradiation is sparse and the other trajectory are performed. A laser processing method characterized in that setting is made to overlap a dense portion of laser light irradiation in a group.
JP2009281061A 2009-12-10 2009-12-10 Laser processing apparatus and laser processing method Expired - Fee Related JP5397768B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009281061A JP5397768B2 (en) 2009-12-10 2009-12-10 Laser processing apparatus and laser processing method
CN201010545734.XA CN102091863B (en) 2009-12-10 2010-11-11 Laser processing device and laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009281061A JP5397768B2 (en) 2009-12-10 2009-12-10 Laser processing apparatus and laser processing method

Publications (2)

Publication Number Publication Date
JP2011121094A JP2011121094A (en) 2011-06-23
JP5397768B2 true JP5397768B2 (en) 2014-01-22

Family

ID=44125231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009281061A Expired - Fee Related JP5397768B2 (en) 2009-12-10 2009-12-10 Laser processing apparatus and laser processing method

Country Status (2)

Country Link
JP (1) JP5397768B2 (en)
CN (1) CN102091863B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026701A1 (en) * 2018-07-31 2020-02-06 株式会社アマダホールディングス Laser machining device and laser machining method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6369887B2 (en) 2011-12-27 2018-08-08 東レ・ダウコーニング株式会社 Novel co-modified organopolysiloxane, treatment agent containing the same, and external preparation
WO2018147959A1 (en) * 2017-02-09 2018-08-16 Us Synthetic Corporation Energy machined polycrystalline diamond compacts and related methods
CN108393578A (en) * 2018-05-21 2018-08-14 世特科汽车工程产品(常州)有限公司 A kind of Laser marker automatic focusing mechanism
CN112571282B (en) * 2020-11-25 2021-11-12 湖南科技大学 Laser trimming device and method for superhard abrasive material forming grinding wheel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2737466B2 (en) * 1991-08-06 1998-04-08 日本電気株式会社 Bold character marking method
JP2690466B2 (en) * 1995-01-11 1997-12-10 住友電気工業株式会社 Laser beam spinner
JP2003025118A (en) * 2001-07-13 2003-01-29 Allied Material Corp Diamond tool for cutting
EP1802421A2 (en) * 2004-10-07 2007-07-04 Powerlase Limited An apparatus for processing hard material
DE102005039833A1 (en) * 2005-08-22 2007-03-01 Rowiak Gmbh Device and method for material separation with laser pulses
JP2007216327A (en) * 2006-02-15 2007-08-30 Aisin Seiki Co Ltd Forming method of chip breaker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026701A1 (en) * 2018-07-31 2020-02-06 株式会社アマダホールディングス Laser machining device and laser machining method
US11780032B2 (en) 2018-07-31 2023-10-10 Amada Co., Ltd. Laser machining apparatus and laser machining method

Also Published As

Publication number Publication date
CN102091863B (en) 2015-03-11
CN102091863A (en) 2011-06-15
JP2011121094A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP5397768B2 (en) Laser processing apparatus and laser processing method
JP5985834B2 (en) Laser processing apparatus and laser processing method having switchable laser system
CA2713817C (en) Method for producing a surface structure for a metallic press plate, endless belt or embossing roller
JP6137767B2 (en) Laser processing apparatus and method for forming surface of semi-finished product
JP4976576B2 (en) Cutting tool, manufacturing method thereof and manufacturing apparatus
US20110220625A1 (en) Laser machining apparatus and method for the manufacture of a rotationally symmetrical tool
JP2012016735A (en) Laser beam machining device and laser beam machining method
JP5201424B2 (en) Carbon film coated cutting tool and method for manufacturing the same
JP5394172B2 (en) Processing method
JP7149013B2 (en) Planning-polishing apparatus and method using femtosecond pulsed laser
JP5899904B2 (en) Carbon film coated end mill and method for producing the same
JP2011189362A (en) Apparatus and method of laser machining
CN116786899A (en) High-precision sawtooth relief angle processing technology
JP5416445B2 (en) Laser scribing equipment
JP2012045581A (en) Laser processing method
KR102570759B1 (en) Laser processing apparatus and method thereof
JP2015085336A (en) Laser processing method, and processing apparatus
KR100664573B1 (en) Laser Processing Apparatus and Method thereof
JP2011125867A (en) Laser beam machining method
EP4043142A1 (en) Method for batch processing of 3d objects using laser treatment and a system implementing the method
JP2008200761A (en) Apparatus for machining die
JP6984978B2 (en) Laser processing method and laser processing equipment
JP2022032620A (en) Laser processing method and laser processing device
JP2012135828A (en) Carbon film-coated insert tip, and method of manufacturing the same
KR102461737B1 (en) Hybrid Laser-polishing machine and Laser-polishing method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131010

R150 Certificate of patent or registration of utility model

Ref document number: 5397768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees