JP5396582B2 - Electromagnetically driven MEMS micro structure drive control method and control apparatus - Google Patents

Electromagnetically driven MEMS micro structure drive control method and control apparatus Download PDF

Info

Publication number
JP5396582B2
JP5396582B2 JP2008176668A JP2008176668A JP5396582B2 JP 5396582 B2 JP5396582 B2 JP 5396582B2 JP 2008176668 A JP2008176668 A JP 2008176668A JP 2008176668 A JP2008176668 A JP 2008176668A JP 5396582 B2 JP5396582 B2 JP 5396582B2
Authority
JP
Japan
Prior art keywords
microstructure
frequency
resonance
wave
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008176668A
Other languages
Japanese (ja)
Other versions
JP2010012579A (en
Inventor
歸山敏之
Original Assignee
歸山 敏之
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歸山 敏之 filed Critical 歸山 敏之
Priority to JP2008176668A priority Critical patent/JP5396582B2/en
Publication of JP2010012579A publication Critical patent/JP2010012579A/en
Application granted granted Critical
Publication of JP5396582B2 publication Critical patent/JP5396582B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

この発明は電磁気力で駆動するMEMS微小構造体において固有の機械共振特性を持つ構造体の駆動時の運動から機械共振による応答を除去する制御方法と制御装置に関するものである。   The present invention relates to a control method and a control device for removing a response due to mechanical resonance from a motion during driving of a structure having inherent mechanical resonance characteristics in a MEMS microstructure driven by electromagnetic force.

MEMS電磁気駆動型構造体駆動において駆動信号から構造体の機械共振周波数領域の応答特性をフィルタリング技術により減衰させ構造体の共振を抑制している。   In the MEMS electromagnetic driving type structure driving, the response characteristic in the mechanical resonance frequency region of the structure is attenuated from the driving signal by a filtering technique to suppress the resonance of the structure.

ベッセルフィルタは周波数に対して位相回転が比例関係を保つように設計されておりオーバーシュートやリンギング等波形の変形はできるだけ抑えることができる。   The Bessel filter is designed so that the phase rotation is proportional to the frequency, and waveform deformation such as overshoot and ringing can be suppressed as much as possible.

しかし、駆動信号がアンプやフィルタなどの電子回路を通過する際に必ず時間遅れまたは位相回転を生じるため駆動信号波形が鈍り、さらにノイズ成分が増加する。   However, when the drive signal passes through an electronic circuit such as an amplifier or a filter, a time delay or phase rotation always occurs, so that the drive signal waveform becomes dull and noise components increase.

MEMS(Micro Electro Mechanical System)、又はMOEMS(Micro Opto−Electro Mechanical
System)応用装置はMEMS、又はMOEMS素子の電気機械光学効果をその機能の基とし構成される。
MEMS (Micro Electro Mechanical System) or MOEMS (Micro Opto-Electro Mechanical)
The system application device is configured based on the electromechanical optical effect of the MEMS or MOEMS element.

MEMS、又はMOEMS素子の機能単位の大きさは数ミクロンから数ミリの範囲にわたる。電磁力で駆動する微小な構造体はその質量、形状、構造に起因する固有の機械共振特性を有する。   The size of the functional unit of the MEMS or MOEMS element ranges from several microns to several millimeters. A minute structure driven by electromagnetic force has inherent mechanical resonance characteristics due to its mass, shape, and structure.

微小な構造体の機械共振特性を利用すれば少ないエネルギーで大きな機械振動運動が可能であり、機械共振現象を積極的に利用する応用では好都合である。   By utilizing the mechanical resonance characteristics of a minute structure, a large mechanical vibration motion is possible with a small amount of energy, which is advantageous for applications that actively utilize the mechanical resonance phenomenon.

しかし機械共振現象を回避しなければならない応用では僅かのエネルギーで機械共振現象が誘起され応用上の不具合を生じる。   However, in applications where the mechanical resonance phenomenon must be avoided, the mechanical resonance phenomenon is induced with a small amount of energy, resulting in an application failure.

微小構造体に機械共振が誘起されるとその構造体の運動は駆動信号により制御されるべき運動から外れその位置を正確に定めることができなくなる。   When mechanical resonance is induced in the microstructure, the motion of the structure deviates from the motion to be controlled by the drive signal, and the position cannot be determined accurately.

固有の機械共振特性をもつ微小構造体の駆動波を構成する周波数スペクトルをその微小構造体の機械共振スペクトルの逆特性で重み付け処理し、該駆動波で微小構造体を駆動する。   The frequency spectrum constituting the drive wave of the microstructure having the inherent mechanical resonance characteristic is weighted with the inverse characteristic of the mechanical resonance spectrum of the microstructure, and the microstructure is driven with the drive wave.

且つ、微小構造体の実動作から実動作信号を検出し、実動作信号から機械共振信号成分を同定・抽出し、前述の該駆動波信号へ帰還し新たな駆動波とし微小構造体を駆動することにより残留する機械共振にリアルタイムに制動をかけ微小構造体に対し駆動特性を制御する。   In addition, an actual operation signal is detected from the actual operation of the microstructure, and a mechanical resonance signal component is identified and extracted from the actual operation signal, and is fed back to the drive wave signal to drive the microstructure as a new drive wave. As a result, the remaining mechanical resonance is braked in real time to control the drive characteristics of the microstructure.

固有の機械共振特性をもつ微小構造体の駆動波を構成する周波数スペクトルをその微小構造体の機械共振スペクトルの逆特性で重み付ける処理において該構造体の駆動波を構成する各周波数スペクトル成分の振幅・位相は各々独立に設定する。   The amplitude of each frequency spectrum component constituting the driving wave of the structure in the process of weighting the frequency spectrum constituting the driving wave of the microstructure having the inherent mechanical resonance characteristic by the inverse characteristic of the mechanical resonance spectrum of the microstructure.・ Set each phase independently.

駆動信号がアンプやフィルタなどの電子回路を通過する際に生じる時間遅れまたは位相回転の結果生じる駆動信号波形の鈍り、ノイズ成分の増加の問題を回避できる。   It is possible to avoid problems such as time delay occurring when the drive signal passes through an electronic circuit such as an amplifier or a filter, or dullness of the drive signal waveform resulting from phase rotation, and an increase in noise components.

該駆動信号により微小構造体を駆動した時無視できない共振運動が微小構造体の実動作に残存する場合に、時々刻々変化する微小構造体の実動作信号から残留共振応答による成分を同定・抽出し該成分を駆動信号に負帰還し得られる新たな駆動信号により微小構造体を駆動しリアルタイムに残留共振応答に制動をかけ該応答を常に最小化できる。 When resonance motion that cannot be ignored when the microstructure is driven by the drive signal remains in the actual operation of the microstructure, the component due to the residual resonance response is identified and extracted from the actual operation signal of the microstructure that changes from moment to moment The microstructure can be driven by a new drive signal that can be negatively fed back to the drive signal, and the residual resonance response can be braked in real time to always minimize the response.

図1MEMS電磁気駆動型微小構造体の実施例を示す。板状の微小構造体1の周囲に電流を流すコイル2を形成し、該構造体を薄く軟らかいヒンジ4a4bにより支持柱3a3bの間に吊り、コイルの支持軸に対し直角の方向から平行磁界5を印加する。 FIG. 1 shows an embodiment of a MEMS electromagnetically driven microstructure. A coil 2 for passing an electric current is formed around a plate-like microstructure 1, the structure 1 is suspended between support pillars 3 a and 3 b by thin and soft hinges 4 a and 4 b, and a direction perpendicular to the support axis of the coil A parallel magnetic field 5 is applied.

微小構造体1のコイル2に電流6を流すとフレミングの左手の法則から電流と磁界の両者に対して垂直の方向に力7a7bが作用し該構造体1はこの力による回転力とヒンジの捩れによる復元力8a8bが釣り合う角度9に傾斜する。 Force 7a in a direction perpendicular to the current and the magnetic field both from the Fleming's left hand rule and the coil 2 flow a current 6 of the microstructure 1, 7b acts, the structure 1 and the rotational force by the force The restoring forces 8a and 8b due to the twisting of the hinge are inclined at an angle 9 where the restoring forces 8a and 8b are balanced.

図2に微小構造体1のコイル2に電流6を流し該微小構造体1を駆動する波形の実施例として繰り返し周波数f(周期f分の1秒)ののこぎり波10aと該のこぎり波10aをフーリエ級数展開して得られる周波数特性スペクトル10bを示す。 2, current flows 6 to the coil 2 of the microstructure 1, sawtooth wave 10a and the sawtooth wave 10a of the fine small repeating structures 1 as an example of the waveform of the driving frequency f (1-second period f min) Is a frequency characteristic spectrum 10b obtained by Fourier series expansion.

のこぎり波10aをフーリエ級数展開して得られる周波数特性スペクトル10bは振幅A1、周波数fのサイン波、振幅A2、周波数2fのサイン波、・・・振幅An、周波数nfのサイン波、・・・と基本周波数fのサイン波から始まり離散的サイン波成分が周波数間隔fで高周波数側に分布し構成される。 A frequency characteristic spectrum 10b obtained by expanding the sawtooth wave 10a by Fourier series has an amplitude A1, a sine wave of frequency f, an amplitude A2, a sine wave of frequency 2f, ... an amplitude An, a sine wave of frequency nf, ... Starting from a sine wave having a fundamental frequency f, discrete sine wave components are distributed and configured on the high frequency side at a frequency interval f.

図3にのこぎり波10aをフーリエ級数展開して得られる周波数特性スペクトル10bと同じ離散的サイン波スペクトルでサンプリング表示される機械共振周波数特性11aをもつ該微小構造体1をのこぎり波10aで駆動した結果の周波数特性スペクトル12aと、機械共振による過度の振動が時間軸上の応答特性12bに現れる例を示す。 In FIG. 3, the microstructure 1 having a mechanical resonance frequency characteristic 11a sampled and displayed with the same discrete sine wave spectrum as the frequency characteristic spectrum 10b obtained by Fourier series expansion of the sawtooth wave 10a is driven by the sawtooth wave 10a. The resulting frequency characteristic spectrum 12a and an example in which excessive vibration due to mechanical resonance appears in the response characteristic 12b on the time axis are shown.

このような機械共振による過度の振動を打ち消す駆動方法を以下に説明する。   A driving method for canceling such excessive vibration due to mechanical resonance will be described below.

図4に、微小構造体1の駆動動作を繰り返し周波数fののこぎり波10aを実施例とし、のこぎり波10aをフーリエ級数展開して得られる周波数特性スペクトル10bと同じ離散的サイン波スペクトルでサンプリングした該構造体1の機械共振周波数特性11aの逆特性13で該のこぎり波の周波数特性スペクトル10bに重み付け処理を施した周波数特性14bの時間軸上での波形14aで該構造体1を駆動することによりその機械共振特性を打ち消し該構造体1に対し共振による過度の振動応答のない時間軸上での駆動動作特性10eとその周波数軸上での駆動動作特性10fを得る第一の本発明内容を示す。 In FIG. 4, the driving operation of the microstructure 1 is repeated with the sawtooth wave 10a having the frequency f as an example, and the sawtooth wave 10a sampled with the same discrete sine wave spectrum as the frequency characteristic spectrum 10b obtained by Fourier series expansion. By driving the structure 1 with the waveform 14a on the time axis of the frequency characteristic 14b obtained by weighting the frequency characteristic spectrum 10b of the sawtooth wave with the inverse characteristic 13 of the mechanical resonance frequency characteristic 11a of the structure 1 cancel the mechanical resonance characteristics, showing a first aspect of the present invention the content of obtaining the driving operation characteristics 10f on the driving operation characteristics 10e and its frequency axis on the free time axis undue vibration response due to resonance with respect to the structure 1 .

微小構造体1への繰り返し駆動を直線成分で構成されるのこぎり波を例にとり説明しているが曲線成分も含む任意の繰り返し駆動波形について本発明内容は適応される。   The repetitive drive to the microstructure 1 has been described by taking a sawtooth wave composed of linear components as an example, but the present invention is applicable to any repetitive drive waveform including a curved component.

微小構造体の機械共振周波数特性11aの中に1次機械共振周波数スペクトル11bと2次機械共振周波数スペクトル11cが存在する例を示したが、該共振周波数スペクトル帯域幅は通常狭くこの帯域に含まれる離散的サイン波成分は数個の程度である。 Although an example in which the primary mechanical resonance frequency spectrum 11b and the secondary mechanical resonance frequency spectrum 11c exist in the mechanical resonance frequency characteristic 11a of the microstructure 1 has been shown, the resonance frequency spectrum bandwidth is usually narrow and included in this band. There are several discrete sine wave components.

微小構造体固有の共振周波数特性を駆動波の周波数間隔で飛び飛びに存在する数個のサイン波でサンプリングする際にサンプリング誤差が入り込む。   Sampling errors are introduced when sampling the resonance frequency characteristics unique to the microstructure with several sine waves that are scattered at the frequency interval of the driving wave.

一方、微小構造体製造時の不均一性により微小構造体の共振特性にばらつきを生じる、温度、湿度等の動作環境条件により該共振特性は影響を受ける、また構造体の材料特性の経時変化によっても該共振特性が変動する等は典型的共振特性からのずれを引き起こす要因となる。   On the other hand, the resonance characteristics of the microstructure vary due to non-uniformity during the manufacture of the microstructure. The resonance characteristics are affected by operating environment conditions such as temperature and humidity, and the material characteristics of the structure change over time. However, the fluctuation of the resonance characteristic causes a deviation from the typical resonance characteristic.

よって固有の機械共振特性をもつ微小構造体の駆動波を構成する周波数スペクトルをその微小構造体の機械共振スペクトルの逆特性で一義的に重み付け処理した駆動波で過度の共振を打ち消す駆動を行った後にも、微小構造体の実動作の中に残留共振成分が存在することとなる。 Therefore, the frequency spectrum composing the driving wave of the microstructure with the inherent mechanical resonance characteristic was driven to cancel the excessive resonance with the driving wave that was uniquely weighted with the inverse characteristic of the mechanical resonance spectrum of the microstructure. Later, a residual resonance component exists in the actual operation of the microstructure.

この残留共振成分を減衰させるため微小構造体の実動作から得られる信号から該残留共振成分を同定・抽出し該残留共振成分を駆動信号に負帰還しこの残留共振をリアルタイムに制動する方法は効果的であり該方法を以下に説明する。 In order to attenuate this residual resonance component, it is effective to identify and extract the residual resonance component from the signal obtained from the actual operation of the microstructure, negatively feed back the residual resonance component to the drive signal, and brake this residual resonance in real time. a, the describing method are shown below.

図1の微小構造体実施例では駆動電流6を流した長方形コイルを平等磁界中に置くとフレミング左手の法則によりコイルと磁界の間に作用する力により長方形コイルは回転運動し、同時にコイルと鎖交する磁束が変化することによりフレミング右手の法則によりコイル導体には磁束変化を妨げるよう逆起電力10c、10dを発生する。   In the embodiment of the microstructure shown in FIG. 1, when a rectangular coil carrying a driving current 6 is placed in an equal magnetic field, the rectangular coil rotates by a force acting between the coil and the magnetic field according to Fleming's left-hand rule. When the magnetic flux to be changed changes, counter electromotive force 10c, 10d is generated in the coil conductor to prevent the magnetic flux change according to the Fleming right-hand rule.

微小構造体の実動作からこの逆起電力10c、10dを検出し実動作信号とすることができる。その他にも応力変化、容量変化、光偏向角変化等から実動作信号を検出する手段は存在するがその詳細を述べることは本発明の範囲ではない。   The counter electromotive forces 10c and 10d can be detected from the actual operation of the microstructure and used as an actual operation signal. There are other means for detecting an actual operation signal from stress change, capacitance change, light deflection angle change, etc., but it is not within the scope of the present invention to describe the details.

図5に時々刻々変化する微小構造体の実動作信号と源駆動波信号から残留共振応答による成分を同定・抽出し該成分を駆動信号に負帰還し得られる新たな駆動信号により微小構造体を駆動しリアルタイムに残留共振応答に制動をかける第二の本発明内容を示す。 5, the minute structure by the real operation signal and identification of components due to the residual resonant response from the source driving wave signal and extracting with new drive signal obtained by the negative feedback the components to a driving signal for a microstructure changes every moment The contents of the second aspect of the present invention for driving the residual resonance response in real time are shown.

システムのタイミングは同期信号15を基とし、源駆動波またはその情報生成器16から源駆動波またはその情報17を機械共振周波数特性の逆特性重み付け駆動波生成器18に供給し該駆動波生成器18は機械共振周波数特性の逆特性重み付け駆動波19を生成する。 The timing of the system is based on the synchronization signal 15, and the source drive wave or its information 17 is supplied from the source drive wave or its information generator 16 to the inverse weighted drive wave generator 18 of the mechanical resonance frequency characteristic . 18 generates an inverse characteristic weighting drive wave 19 of the mechanical resonance frequency characteristic .

機械共振周波数特性の逆特性重み付け駆動波19は減算器20で後述の残留共振成分27の負帰還を合成し微小構造体駆動信号28を生成し、該駆動信号は電力増幅器定電流ドライバ21で電流電力を増幅し微小構造体22を駆動する。 The inverse weighted drive wave 19 of the mechanical resonance frequency characteristic is combined with a negative feedback of a residual resonance component 27 (to be described later) by a subtractor 20 to generate a microstructure drive signal 28, and the drive signal is converted into a current by a power amplifier constant current driver 21. The power is amplified to drive the microstructure 22.

微小構造体22の実動作をプローブ23で検知し実動作信号検出器24で実動作信号を検出し、該検出器24は実動作信号25を生成し、該信号25を残留共振成分抽出器26に送る。   The actual operation of the microstructure 22 is detected by the probe 23, and the actual operation signal is detected by the actual operation signal detector 24. The detector 24 generates an actual operation signal 25, and the signal 25 is extracted from the residual resonance component extractor 26. Send to.

残留共振成分抽出器25は源駆動波またはその情報17と実動作信号25から残留共振成分を同定・抽出し残留共振信号27を生成し、該信号27を減算器20に送り機械共振周波数特性の逆特性重み付け駆動波19に負帰還合成し微小構造体駆動信号28を生成する。 The residual resonance component extractor 25 identifies and extracts a residual resonance component from the source drive wave or its information 17 and the actual operation signal 25, generates a residual resonance signal 27, sends the signal 27 to the subtractor 20, and transmits the machine resonance frequency characteristic. The microstructure driving signal 28 is generated by performing negative feedback synthesis with the inverse characteristic weighting driving wave 19.

図6に実動作信号から残留共振成分を同定・抽出する方法を示す。 FIG. 6 shows a method for identifying and extracting the residual resonance component from the actual operation signal.

残留共振信号を含む実動作信号25を残留共振成分抽出器26に送り、第一時間微分器29で時間微分処理を施し信号30を出力し、さらに該信号30は第二時間微分器31で二回目の時間微分処理を施し信号32を出力する。   The actual operation signal 25 including the residual resonance signal is sent to the residual resonance component extractor 26, subjected to time differentiation processing by the first time differentiator 29, and a signal 30 is output. A second time differentiation process is performed and a signal 32 is output.

サイン波を二回時間微分すると元のサイン波にその角周波数の二乗に負号をつけた結果33となるので、残留共振成分は残留共振信号を含む実動作信号25を二回時間微分し同定することができる。   If the sine wave is time-differentiated twice, the result is that the original sine wave is given a negative sign to the square of its angular frequency. Therefore, the residual resonance component is identified by differentiating the actual operation signal 25 including the residual resonance signal twice. can do.

周波数fの源駆動波を緩やかな曲線成分を持って構成する場合や駆動波と微小構造体の実動作との間や微小構造体の実動作と実動作信号25との間に非線形性が存在する場合には、実動作信号25の二回時間微分結果はゼロにはならずこれ等残留共振成分以外からの寄与も二回時間微分結果に含まれてくる。   Non-linearity exists when the source drive wave of frequency f is configured with a gentle curve component, between the drive wave and the actual operation of the microstructure, or between the actual operation of the microstructure and the actual operation signal 25. In this case, the second time differential result of the actual operation signal 25 does not become zero, and contributions other than these residual resonance components are included in the second time differential result.

しかし、これ等残留共振成分以外の成分周波数は一般的には残留共振周波数の数分の一以下であり、二回時間微分の後では残留共振成分以外からの成分寄与は残留共振成分による寄与の数十分の一レベルに減少する。   However, the component frequency other than these residual resonance components is generally less than a fraction of the residual resonance frequency, and after the second time differentiation, the component contribution from the components other than the residual resonance component is the contribution of the residual resonance component. Decrease to a few tenths of a level.

微分処理により増幅される不要高周波雑音は位相補償等の回路技術により高周波利得を下げその影響を低減する。   Unnecessary high-frequency noise amplified by the differential processing lowers the high-frequency gain and reduces its influence by circuit technology such as phase compensation.

よって実動作信号25を二回時間微分する処理により残留共振成分は効果的に同定・抽出することができる。   Therefore, the residual resonance component can be effectively identified and extracted by the process of differentiating the actual operation signal 25 twice in time.

二回時間微分後の信号32を出力制御器34に送りその振幅、位相を調整し、高周波雑音を除去し、出力ゲートタイミングを制御し残留共振信号27を出力する。   The signal 32 after the time differentiation is sent to the output controller 34, the amplitude and phase thereof are adjusted, high frequency noise is removed, the output gate timing is controlled, and the residual resonance signal 27 is output.

一連の処理に於いて各処理ブロックの駆動波17、19、25、27、28、30、32上の時間進行タイミング(位相)は同期信号15を基準としずれが生じないようシステムを構築する。   In a series of processing, the system is constructed so that the time progress timing (phase) on the driving waves 17, 19, 25, 27, 28, 30, and 32 of each processing block does not occur with reference to the synchronization signal 15.

図7に微小構造体の共振を制御し駆動する手段の具体的実施例1を示す。 7 shows a specific example 1 of the means for driving and controlling the resonance of the microstructure.

繰り返し周波数fの源駆動波に対し微小構造体の機械共振周波数スペクトル帯域に含まれる離散的サイン波成分に対し機械共振周波数特性の逆特性で重み付けを行ない新たな駆動信号を生成する。 A discrete sine wave component included in the mechanical resonance frequency spectrum band of the microstructure is weighted with the inverse characteristic of the mechanical resonance frequency characteristic with respect to the source drive wave having the repetition frequency f , and a new drive signal is generated.

同期信号発生器35から同期信号15を参照し駆動波生成器36から微小構造体を駆動する繰り返し周波数f、振幅A、位相Pの駆動波10aを出力する。   The synchronization signal generator 35 refers to the synchronization signal 15 and the drive wave generator 36 outputs a drive wave 10a having a repetition frequency f, an amplitude A, and a phase P that drives the microstructure.

微小構造体を駆動する繰り返し周波数f、振幅A、位相Pの駆動波10aの周波数スペクトルは一義的に定まり、また微小構造体の機械共振周波数スペクトルは微小構造体固有のものであるから、機械共振周波数特性の逆特性で重み付けられた周波数特性14bを実現するための機械共振打ち消し離散的サイン波の周波数、振幅、位相データは事前に計算しメモリ37に書き込む。 Repetition frequency f, amplitude A for driving the microstructure, the frequency spectrum of the drive wave 10a of the phase P is uniquely determined, and because the mechanical resonance frequency spectrum of the microstructure is unique microstructure, mechanical resonance The frequency, amplitude, and phase data of the discrete sine wave for canceling the mechanical resonance for realizing the frequency characteristic 14b weighted by the inverse characteristic of the frequency characteristic are calculated in advance and written in the memory 37.

例えば機械共振打ち消し離散的サイン波を3波とした場合、それらの周波数、振幅、位相データをメモリ37からサイン波生成器コントローラ38に読み込み、該コントローラ38は機械共振打ち消しサイン波生成器39、41、43を各々周波数(N−1)f・振幅AN−1・位相P、周波数Nf・振幅AN・位相P、周波数(N+1)f・振幅AN+1・位相P(N:整数)に設定し、該生成器39、41、43から周波数、振幅、位相の制御されたサイン波40、42、44を出力する。 For example , when the machine resonance canceling discrete sine wave is three waves, the frequency, amplitude, and phase data thereof are read from the memory 37 to the sine wave generator controller 38, and the controller 38 cancels the mechanical resonance canceling sine wave generator 39, 41 and 43 are set to frequency (N−1) f · amplitude AN−1 · phase P, frequency Nf · amplitude AN · phase P, frequency (N + 1) f · amplitude AN + 1 · phase P (N: integer), The generators 39, 41, 43 output sine waves 40, 42, 44 with controlled frequency, amplitude, and phase.

該サイン波40、42、44は加算器47で加算し機械共振打ち消し補正信号48を生成し該補正信号48を減算器49に入力し駆動波信号10aから引き算され新たな駆動信号14aを生成する。   The sine waves 40, 42, and 44 are added by an adder 47 to generate a mechanical resonance cancellation correction signal 48. The correction signal 48 is input to a subtractor 49 and subtracted from the drive wave signal 10a to generate a new drive signal 14a. .

該駆動信号14aを電力増幅器定電流ドライバ21で増幅し磁界5の中に置いた微小構造体1の周囲に形成したコイル2に流し、フレミングの左手の法則から電流と磁界の両者に対し垂直の方向に力を作用させ該微小構造体1を駆動する。 To flow the drive signal 14a to the coil 2 formed around the fine structure 1 placed in a magnetic field 5 is amplified by the power amplifier constant-current driver 21, perpendicular to both the current and the magnetic field from the Fleming's left The micro structure 1 is driven by applying a force in the direction of.

図8に微小構造体の共振を制御し駆動する手段の具体的実施例2を示す。 Figure 8 shows a specific example 2 of the means for driving and controlling the resonance of the microstructure.

繰り返し周波数fの源駆動波に対し微小構造体の機械共振周波数特性の逆特性で重み付けを行なった周波数特性の周波数fの駆動波をm個のサイン波から合成し新たな駆動信号を生成する。 A new driving signal is generated by synthesizing the driving wave having the frequency f of the frequency characteristic obtained by weighting the source driving wave having the repetition frequency f with the inverse characteristic of the mechanical resonance frequency characteristic of the microstructure from the m sine waves.

微小構造体の駆動波14aを実現するm個の離散的サイン波の周波数、振幅、位相データを事前に計算しメモリ37に書き込み、サイン波生成器コントローラ38でサイン波生成器50、52、54、・・・60、・・・70の周波数、振幅、位相を設定する。 The frequency, amplitude, and phase data of m discrete sine waves that realize the drive wave 14a of the microstructure are calculated in advance and written in the memory 37. The sine wave generator controller 38 uses the sine wave generators 50, 52, and 54. , ... 60, the frequency of the ... 70, to set the amplitude, phase.

同期信号発生器35から同期信号15をm個のサイン波生成器50、52、54、・・・60、・・・70に送り、各サイン波生成器は駆動波周波数スペクトル14bを構成する周波数、振幅、位相の制御された離散的サイン波成分51、53、55、・・・61、・・・71を生成し、該離散的サイン波成分51、53、55、・・・61、・・・71を加算演算器72に送りすべて加算し周波数fの駆動波14aを生成する。 Synchronizing signal generator 35 a synchronization signal 15 of m sine wave generator 50, 52, 54 ... 60, sent to ... 70, each sine wave generator frequency constituting a driving wave frequency spectrum 14b , the amplitude, controlled discrete sine wave component of the phase 51, 53, 55, ... 61, to generate a ... 71, the discrete sine wave component 51, 53 and 55, ... 61, - .. 71 is sent to the addition calculator 72 and all are added to generate the drive wave 14a of frequency f.

周波数fの駆動波14aを電力増幅器定電流ドライバ21で増幅し磁界5の中に置いた微小構造体1の周囲に形成したコイル2に流しフレミングの左手の法則から電流と磁界に対し垂直の方向に力を作用させ微小構造体1を駆動する。   The driving wave 14a having the frequency f is amplified by the power amplifier constant current driver 21 and is passed through the coil 2 formed around the microstructure 1 placed in the magnetic field 5. From the left hand rule of Fleming, the direction perpendicular to the current and the magnetic field is obtained. A force is applied to drive the microstructure 1.

図9に微小構造体の共振を制御し駆動する手段の具体的実施例3を示す。 Figure 9 illustrates a specific example 3 of the means for driving and controlling the resonance of the microstructure.

繰り返し周波数fの源駆動波の周波数特性に対し微小構造体の機械共振周波数特性の逆特性で重み付けを行ない得た周波数特性を構成するすべてのサイン波スペクトルの振幅を位相、または時間軸上で加算合成した結果を時系列に並ぶデジタルデータとしてメモリに蓄積し、該デジタルデータを逐次メモリから読み出しデジタルからアナログに変換し微小構造体駆動波を直接生成する。 The frequency characteristics of the source drive wave with the repetition frequency f are weighted with the inverse characteristics of the mechanical resonance frequency characteristics of the microstructure , and the amplitudes of all the sine wave spectra constituting the frequency characteristics are added on the phase or time axis. The synthesized result is stored in a memory as digital data arranged in time series, and the digital data is sequentially read from the memory and converted from digital to analog to directly generate a microstructure driving wave.

事前に微小構造体の機械共振周波数特性の逆特性13で重み付けを行なった周波数特性14bの周波数fの駆動波14aの時間軸上の逐次変化をアナログ量からデジタル量にAD変換しメモリ37に書き込む。 A sequential change on the time axis of the driving wave 14a of the frequency f of the frequency characteristic 14b weighted by the inverse characteristic 13 of the mechanical resonance frequency characteristic of the microstructure in advance is AD-converted from an analog amount to a digital amount and written to the memory 37. .

同期信号発生器35から同期信号15をコントローラ73に送り、コントローラ73はメモリ37とDA変換器74をコントロールし、メモリ37から読み出したデータをDA変換器74に送りDA変換し周波数fの駆動波14aを出力する。   The synchronization signal 15 is sent from the synchronization signal generator 35 to the controller 73. The controller 73 controls the memory 37 and the DA converter 74, and the data read from the memory 37 is sent to the DA converter 74 for DA conversion to drive the wave f of frequency f. 14a is output.

周波数fの駆動波14aを電力増幅器定電流ドライバ21で増幅し磁界5の中に置いた微小構造体1の周囲に形成したコイル2に流し、フレミングの左手の法則から電流と磁界に対し垂直の方向に力を作用させ微小構造体1を駆動する。   The drive wave 14a having the frequency f is amplified by the power amplifier constant current driver 21 and is passed through the coil 2 formed around the microstructure 1 placed in the magnetic field 5, and is perpendicular to the current and the magnetic field from Fleming's left-hand rule. A force is applied in the direction to drive the microstructure 1.

図10に微小構造体の共振を制御しかつ時々刻々変化する残留共振をリアルタイムに制動し微小構造体を駆動する手段の具体的実施例4を示す。 10 shows a specific example 4 of means for driving the brake the controlling and changes every moment remaining resonating the resonance of a micro structure in real time microstructure.

繰り返し周波数fの源駆動波に対し微小構造体の機械共振周波数スペクトル帯域に含まれる離散的サイン波成分に対し機械共振周波数特性の逆特性で重み付けを行ない、該重み付けた駆動信号に減算器20で構造体の実動作信号から抽出した残留共振信号を負帰還し微小構造体を駆動する。 A discrete sine wave component included in the mechanical resonance frequency spectrum band of the microstructure is weighted with respect to the source drive wave of the repetition frequency f by the inverse characteristic of the mechanical resonance frequency characteristic, and the weighted drive signal is subtracted by the subtractor 20. The residual resonance signal extracted from the actual operation signal of the structure is negatively fed back to drive the microstructure.

図11に微小構造体の共振を制御しかつリアルタイムに共振を制動し微小構造体を駆動する手段の具体的実施例5を示す。 11 shows a specific example 5 means for driving the brake the controlling and resonate in real time resonance of microstructure microstructure.

繰り返し周波数fの源駆動波に対し微小構造体の機械共振周波数特性の逆特性で重み付けを行なった周波数fの駆動波をm個のサイン波から合成し、重み付けた駆動信号に構造体の実動作信号から抽出した残留共振信号を減算器20で負帰還し微小構造体を駆動する。 The driving wave of frequency f obtained by weighting the source driving wave of repetition frequency f with the inverse characteristic of the mechanical resonance frequency characteristic of the microstructure is synthesized from m sine waves, and the actual operation of the structure is performed on the weighted driving signal. The subtractor 20 negatively feeds back the residual resonance signal extracted from the signal to drive the microstructure.

図12に微小構造体の共振を制御しかつリアルタイムに共振を制動し微小構造体を駆動する手段の具体的実施例6を示す。 Figure 12 shows a specific example 6 of means for driving the microstructure to brake the controlling resonance of the microstructure and resonance in real time.

繰り返し周波数fの源駆動波の周波数特性に対し微小構造体の機械共振周波数特性の逆特性で重み付けを行ない得た周波数特性を構成するすべてのサイン波スペクトルの振幅を位相または時間軸上で加算合成した結果を時系列に並ぶデジタルデータとしてメモリに蓄積し、該デジタルデータを逐次メモリから読み出しデジタルからアナログに変換し、該駆動信号に構造体の実動作信号から抽出した残留共振信号を減算器20で負帰還し微小構造体を駆動する。 The frequency characteristics of the source drive wave with the repetition frequency f are weighted with the inverse characteristics of the mechanical resonance frequency characteristics of the microstructure , and the amplitudes of all the sine wave spectra constituting the frequency characteristics are added and synthesized on the phase or time axis. The result is stored in the memory as digital data arranged in time series, the digital data is sequentially read from the memory, converted from digital to analog, and the residual resonance signal extracted from the actual operation signal of the structure is used as the drive signal. Negative feedback to drive the microstructure.

電磁気駆動型MEMS微小構造体に光を反射するミラー特性を与えて構成し、微小構造体から共振振動を取り除く本発明の駆動制御方法を適用する装置は、プロジェクションディスプレイ機器、画像センサ機器、通信機器を始めとした光応用産業機器に利用される。   An apparatus that applies a drive control method of the present invention, which is configured by giving a mirror characteristic to reflect light to an electromagnetically driven MEMS microstructure and removes resonance vibration from the microstructure, includes a projection display device, an image sensor device, and a communication device. It is used for optical application industrial equipment such as

MEMS電磁気駆動型微小構造体の実施例Example of MEMS electromagnetically driven microstructure 電磁気力で駆動する微小構造体の駆動波とその周波数特性スペクトルの例Example of driving wave and its frequency characteristic spectrum of a microstructure driven by electromagnetic force 電磁気力で駆動する微小構造体共振特性の駆動特性への影響Effect of resonance characteristics of microstructure driven by electromagnetic force on driving characteristics 電磁気力で駆動する微小構造体の共振特性を制御し該構造体を駆動する発明1Invention 1 for controlling resonance characteristics of a microstructure driven by electromagnetic force and driving the structure 電磁気力で駆動する微小構造体の残留共振成分を抽出し共振にリアルタイムに制動をかける発明2Invention 2 for extracting the residual resonance component of the microstructure driven by electromagnetic force and braking the resonance in real time 電磁気力で駆動する微小構造体の実動作信号から残留共振成分を同定・抽出する方法A method for identifying and extracting residual resonance components from actual operation signals of microstructures driven by electromagnetic force 電磁気力で駆動する微小構造体の機械共振を制御し駆動する手段の具体的実施例1Specific Example 1 of Means for Controlling and Driving Mechanical Resonance of Microstructure Driven by Electromagnetic Force 1 電磁気力で駆動する微小構造体の機械共振を制御し駆動する手段の具体的実施例2Specific Example 2 of Means for Controlling and Driving Mechanical Resonance of Microstructure Driven by Electromagnetic Force 2 電磁気力で駆動する微小構造体の機械共振を制御し駆動する手段の具体的実施例3Specific Example 3 of Means for Controlling and Driving Mechanical Resonance of Microstructure Driven by Electromagnetic Force 3 電磁気力で駆動する微小構造体の機械共振を制御しかつリアルタイムに共振を制動し駆動する手段の具体的実施例4Specific Example 4 of Means for Controlling Mechanical Resonance of Microstructure Driven by Electromagnetic Force and Braking and Driving Resonance in Real Time 電磁気力で駆動する微小構造体の機械共振を制御しかつリアルタイムに共振を制動し駆動する手段の具体的実施例5Specific Example 5 of Means for Controlling Mechanical Resonance of Microstructure Driven by Electromagnetic Force and Braking and Driving Resonance in Real Time 電磁気力で駆動する微小構造体の機械共振を制御しかつリアルタイムに共振を制動し駆動する手段の具体的実施例6Specific Example 6 of Means for Controlling Mechanical Resonance of Microstructure Driven by Electromagnetic Force and Braking and Driving Resonance in Real Time 6

1 板状の微小構造体
2 板状の微小構造体の周囲に形成されたコイル
3a 微小構造体を吊る支持柱
3b 微小構造体を吊る支持柱
4a 微小構造体を吊るヒンジ
4b 微小構造体を吊るヒンジ
5 微小構造体に印加する平行磁界
6 コイルに流す駆動電流
7a 電流と磁界に対し垂直の方向に働く力
7b 電流と磁界に対し垂直の方向に働く力
8a ヒンジの捩れによる復元力
8b ヒンジの捩れによる復元力
9 微小構造体と平行磁界のなす角度
10a 繰り返し周波数fののこぎり波
10b 繰り返し周波数fののこぎり波の周波数特性スペクトル
10c コイル導体に磁束変化を妨げるよう発生する逆起電力
10d コイル導体に磁束変化を妨げるよう発生する逆起電力
10e 時間軸上での駆動動作特性
10f 周波数軸上での駆動動作特性
11a 微小構造体の機械共振周波数特性
11b 微小構造体の一次機械共振周波数スペクトル
11c 微小構造体の二次機械共振周波数スペクトル
12a 機械共振特性を有する微小構造体をのこぎり波で駆動した場合の周波数特性スペクトル
12b 機械共振による過度の振動が現れる時間軸上の応答特性
13 微小構造体の機械共振周波数特性の逆特性
14a 微小構造体の機械共振周波数特性の逆特性で重み付けたのこぎり波の時間軸の特性
14b 微小構造体の機械共振周波数特性の逆特性で重み付けたのこぎり波の周波数特性
15 同期信号
16 源駆動波またはその情報生成器
17 源駆動波またはその情報
18 機械共振周波数特性の逆特性重み付け駆動波生成器
19 機械共振周波数特性の逆特性重み付け駆動波
20 減算器
21 電力増幅器定電流ドライバ
22 微小構造体
23 プローブ
24 実動作信号検出器
25 実動作信号
26 残留共振成分抽出器
27 残留共振成分
28 微小構造体駆動信号
29 第一時間微分器
30 一回時間微分処理を施した信号
31 第二時間微分器
32 二回時間微分処理を施した信号
33 サイン波の二回時間微分結果
34 出力制御器
35 同期信号発生器
36 駆動波生成器
37 メモリ
38 サイン波生成器コントローラ
39 サイン波生成器
40 周波数、振幅、位相の制御されたサイン波
41 サイン波生成器
42 周波数、振幅、位相の制御されたサイン波
43 サイン波生成器
44 周波数、振幅、位相の制御されたサイン波
47 加算器
48 機械共振打ち消し補正信号
49 減算器
50 サイン波生成器
51 周波数、振幅、位相の制御された離散的サイン波成分
52 サイン波生成器
53 周波数、振幅、位相の制御された離散的サイン波成分
54 サイン波生成器
55 周波数、振幅、位相の制御された離散的サイン波成分
60 サイン波生成器
61 周波数、振幅、位相の制御された離散的サイン波成分
70 サイン波生成器
71 周波数、振幅、位相の制御された離散的サイン波成分
72 加算演算器
73 コントローラ
74 DA変換器
DESCRIPTION OF SYMBOLS 1 Plate-like microstructure 2 Coil 3a formed around the plate-like microstructure 3a support column 3b for hanging the microstructure A support column 4a for hanging the microstructure 4b hinge 4b for hanging the microstructure Hinge 5 Parallel magnetic field 6 applied to the microstructure 6 Driving current 7a flowing in the coil Force 7b acting in the direction perpendicular to the current and the magnetic field Force 8b acting in the direction perpendicular to the current and the magnetic field 8a Restoring force 8b due to the twist of the hinge the back EMF 10d coil conductors generated to prevent the magnetic flux change in the frequency characteristic spectrum 10c coil conductor sawtooth saw tooth 10b repetition frequency f of the angle 10a repetition frequency f parallel to the restoring force 9 microstructure magnetic field due to the torsion driving operation characteristics 11a fine structure of the driving operation characteristics 10f frequency axis in the counter-electromotive force 10e on the time axis generated to prevent the magnetic flux change Mechanical resonance frequency characteristic of body 11b Primary mechanical resonance frequency spectrum of microstructure 11c Secondary mechanical resonance frequency spectrum of microstructure 12a Frequency characteristic spectrum when a microstructure having mechanical resonance characteristics is driven by a sawtooth wave 12b Mechanical resonance Response characteristics on the time axis in which excessive vibration appears due to the time 13 Inverse characteristics 14a of the mechanical resonance frequency characteristics of the microstructure The characteristics 14b of the time axis of the sawtooth weighted by the inverse characteristics of the mechanical resonance frequency characteristics of the microstructure Frequency characteristic 15 of sawtooth wave weighted by inverse characteristic of machine resonance frequency characteristic of source 15 synchronization signal 16 source drive wave or information generator 17 source drive wave or information thereof 18 machine resonance frequency characteristic inverse characteristic weighted drive wave generator 19 machine Resonance frequency characteristics inverse characteristic weighting drive wave 20 subtractor 21 power amplifier constant current driver 2 2 Microstructure 23 Probe 24 Actual operation signal detector 25 Actual operation signal 26 Residual resonance component extractor 27 Residual resonance component 28 Microstructure drive signal 29 First time differentiator 30 Signal 31 subjected to one time differentiation process Two-time differentiator 32 Two-time differential processing signal 33 Sine wave second-time differential result 34 Output controller 35 Synchronization signal generator 36 Drive wave generator 37 Memory 38 Sine wave generator controller 39 Sine wave generator 40 Sine wave with controlled frequency, amplitude and phase 41 Sine wave generator 42 Sine wave with controlled frequency, amplitude and phase 43 Sine wave generator 44 Sine wave with controlled frequency, amplitude and phase 47 Adder 48 Mechanical resonance canceling correction signal 49 Subtractor 50 Sine wave generator 51 Discrete sine wave component 52 with controlled frequency, amplitude and phase 52 Sine wave Generator 53 Discrete sine wave component 54 with controlled frequency, amplitude, and phase 54 Sine wave generator 55 Discrete sine wave component with controlled frequency, amplitude, and phase 60 Sine wave generator 61 Control of frequency, amplitude, and phase Discrete sine wave component 70 Sine wave generator 71 Discrete sine wave component 72 with controlled frequency, amplitude, and phase 72 Addition calculator 73 Controller 74 DA converter

特開平 8−249678号公報JP-A-8-249678

Claims (2)

MEMS微小構造体の実動作から検出した実動作信号を二回時間微分して得られる成分を前記MEMS微小構造体の機械共振周波数特性の逆特性で重み付けた駆動波にリアルタイムに負帰還することを特徴とするMEMS微小構造体の駆動制御方法。 That negatively it fed back to the real time component obtained the actual operation signal detected from the actual operation of the MEMS microstructure by differentiating twice the time to drive wave was weighted inverse characteristic of the mechanical resonance frequency characteristics of the MEMS microstructure A drive control method for a MEMS microstructure, which is characterized . MEMS微小構造体の実動作から検出した実動作信号を二回時間微分して得られる成分を前記MEMS微小構造体の機械共振周波数特性の逆特性で重み付けた駆動波にリアルタイムに負帰還する負帰還回路を有することを特徴とするMEMS微小構造体の駆動制御装置。
Negative feedback that in real time negatively feeds back to the driving wave weighted by the inverse characteristic of the mechanical resonance frequency characteristic of the MEMS microstructure, the component obtained by differentiating the actual operation signal detected from the actual operation of the MEMS microstructure twice in time. A drive control apparatus for a MEMS microstructure, comprising a circuit .
JP2008176668A 2008-07-07 2008-07-07 Electromagnetically driven MEMS micro structure drive control method and control apparatus Expired - Fee Related JP5396582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008176668A JP5396582B2 (en) 2008-07-07 2008-07-07 Electromagnetically driven MEMS micro structure drive control method and control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176668A JP5396582B2 (en) 2008-07-07 2008-07-07 Electromagnetically driven MEMS micro structure drive control method and control apparatus

Publications (2)

Publication Number Publication Date
JP2010012579A JP2010012579A (en) 2010-01-21
JP5396582B2 true JP5396582B2 (en) 2014-01-22

Family

ID=41699192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176668A Expired - Fee Related JP5396582B2 (en) 2008-07-07 2008-07-07 Electromagnetically driven MEMS micro structure drive control method and control apparatus

Country Status (1)

Country Link
JP (1) JP5396582B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422789B2 (en) * 2008-10-27 2014-02-19 歸山 敏之 MEMS microstructure drive control method and control apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08249678A (en) * 1995-03-15 1996-09-27 Canon Inc Optical data-recording/reproducing apparatus
JP2005169553A (en) * 2003-12-10 2005-06-30 Canon Inc Micro-actuator

Also Published As

Publication number Publication date
JP2010012579A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
US10890973B2 (en) Electronic device including multi-phase driven linear haptic actuator and related methods
Fleming et al. Integrated strain and force feedback for high-performance control of piezoelectric actuators
JP5524535B2 (en) Actuator drive
JP5458462B2 (en) Vibration type inertial force detection sensor
JP2009265608A (en) Method of driving mems mirror scanner, method of driving mems actuator scanner and method of controlling rotation angle of mems actuator
JP5769941B2 (en) Actuator drive
Hanson et al. Self-sensing applications for electromagnetic actuators
JP2017022943A (en) Controller of vibration type actuator, control method of the same, drive unit, imaging apparatus, and automatic stage
US9496481B2 (en) Controlling device for vibration type actuator
JP5396582B2 (en) Electromagnetically driven MEMS micro structure drive control method and control apparatus
JP2013226032A (en) Unwanted vibration detection device for vibration type actuator and drive control device
JP5422789B2 (en) MEMS microstructure drive control method and control apparatus
CN116209636A (en) Optical scanning device, driving method thereof, and image drawing system
JP2008233075A (en) Vibration-testing apparatus
JP4516053B2 (en) Control device
KR101732185B1 (en) Micro movable structure driving control method of micro electro mechanical system and control apparatus thereof
JP6408564B2 (en) Active vibration damping device and design method
JP2002101632A (en) Actuator drive device
JP2007134823A (en) Filter device and feedback controller using the same
JP4329438B2 (en) Electric motor control device
JP3182205B2 (en) Magnetic bearing device
WO2009024987A2 (en) A scanning mirror apparatus and methods of designing and fabrication
JP2008289218A (en) Motor controller and control method thereof
KR102213528B1 (en) Seismic acceleration sensor with leaf spring modulus control depending on temperature/humidity effect
JP7046720B2 (en) Speed detection device and speed detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110304

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120816

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120829

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees