JP5395942B2 - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
JP5395942B2
JP5395942B2 JP2012227684A JP2012227684A JP5395942B2 JP 5395942 B2 JP5395942 B2 JP 5395942B2 JP 2012227684 A JP2012227684 A JP 2012227684A JP 2012227684 A JP2012227684 A JP 2012227684A JP 5395942 B2 JP5395942 B2 JP 5395942B2
Authority
JP
Japan
Prior art keywords
light emitting
light
diffractive optical
organic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012227684A
Other languages
Japanese (ja)
Other versions
JP2013048102A (en
Inventor
和幸 山江
健一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2012227684A priority Critical patent/JP5395942B2/en
Publication of JP2013048102A publication Critical patent/JP2013048102A/en
Application granted granted Critical
Publication of JP5395942B2 publication Critical patent/JP5395942B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、平面発光体などに用いられる有機エレクトロルミネッセンス素子(以下、有機EL素子という)を用いた発光素子に関するものである。   The present invention relates to a light emitting element using an organic electroluminescence element (hereinafter referred to as an organic EL element) used for a planar light emitter and the like.

従来から、陽極層と陰極層との間に有機発光層を挟んだ有機EL素子が知られている。このような有機EL素子は、大面積に形成するのが比較的容易で、低消費電力で発光することが可能などの特徴があり照明用途などの発光素子として各所で研究開発が行われている。   Conventionally, an organic EL element in which an organic light emitting layer is sandwiched between an anode layer and a cathode layer is known. Such an organic EL element is relatively easy to form in a large area and has features that can emit light with low power consumption, and research and development are being conducted in various places as a light emitting element for lighting applications. .

この種の発光素子として、例えば、ガラス材料からなる透光性の基板の一表面側に、透光性導電膜からなる陽極層と、有機発光層と、陰極層が順次形成され、前記有機発光層が、赤色の光(R)、緑色の光(G)および青色の光(B)がそれぞれ発光可能なように3層の発光層で形成されたものがある。前記陽極層と前記陰極層との間に電圧を印加させると、前記有機発光層から前記基板を介して光R、G、Bが放出され、白色の光を得ることができる。   As this type of light-emitting element, for example, an anode layer made of a light-transmitting conductive film, an organic light-emitting layer, and a cathode layer are sequentially formed on one surface side of a light-transmitting substrate made of a glass material. Some layers are formed of three light emitting layers so that red light (R), green light (G), and blue light (B) can each emit light. When a voltage is applied between the anode layer and the cathode layer, light R, G, and B is emitted from the organic light emitting layer through the substrate, and white light can be obtained.

しかしながら、この種の発光素子では、前記有機発光層から放射された主発光波長が異なる光R,G,Bは、媒体に対する屈折率が異なるので、通常、図7に示すように例えば、ガラス材料からなる前記基板中で同じ光路を辿った光R,G,Bであってもスネルの法則に従って、ガラスから空気中へ屈折方向が分かれることになる。   However, in this type of light-emitting element, the light R, G, and B emitted from the organic light-emitting layer and having different main emission wavelengths have different refractive indices with respect to the medium. Therefore, as shown in FIG. Even in the case of light R, G, and B that have followed the same optical path in the substrate, the direction of refraction is divided from the glass into the air according to Snell's law.

そのため、前記発光素子から放出される光に色収差が発生することになり、前記発光素子から放射された光の被照射面においては、色むらとして観測されることになる。人間の目は、白色の光の色収差に対して敏感であり、少しの違いでも大きな色の違いとして認識する。そのため、前記発光素子の構成では、均一な白色となる良質の光が求められる照明用途に用いるには十分ではない。   Therefore, chromatic aberration occurs in the light emitted from the light emitting element, and color unevenness is observed on the surface irradiated with the light emitted from the light emitting element. The human eye is sensitive to the chromatic aberration of white light, and even small differences are perceived as large color differences. For this reason, the configuration of the light emitting element is not sufficient for use in lighting applications that require high quality light with uniform white color.

他方、照明用途においては、光源からの光を狭角配光させて所望の方向に光を取り出すニーズがある。そのため、前記有機EL素子の光出射面側に、配光レンズを配置し所望の配光を得る発光素子とすることも考えられる。しかしながら、照明系の光学設計では、通常、光線追跡法を用いた幾何学光学設計を行っているのが一般的であるが、幾何学光学設計では、屈折率が変化する界面での屈折率により光の進行方向を制御することを前提としており、狭角配光させるためには前記配光レンズの厚み寸法を大きくする必要がある。そのため、前記配光レンズによる光の進行方向の制御範囲にも限界があり、光路長が長くなることによる色収差も大きくなるという問題もある。   On the other hand, in illumination applications, there is a need to extract light in a desired direction by distributing light from a light source at a narrow angle. Therefore, it is also conceivable to arrange a light distribution lens on the light emitting surface side of the organic EL element to obtain a light emitting element that obtains a desired light distribution. However, in the optical design of the illumination system, the geometric optical design using the ray tracing method is generally performed. However, in the geometric optical design, the refractive index at the interface where the refractive index changes depends on the refractive index. It is premised on controlling the traveling direction of light, and it is necessary to increase the thickness dimension of the light distribution lens in order to achieve narrow-angle light distribution. Therefore, there is a limit to the control range of the light traveling direction by the light distribution lens, and there is a problem that chromatic aberration increases due to an increase in the optical path length.

また、従来から、配光レンズの代わりに回折光学素子を用いた発光素子も提案されている。この種の発光素子としては、例えば、図8に示すように、ガラス材料からなる透光性の基板5の一表面側(図の下側)に、透光性導電膜からなる陽極層1、有機発光層3’、陰極層2が順に形成された有機EL素子10’と、該有機EL素子10’の光出射面側に回折光学素子4’が形成されたものが知られている(例えば、特許文献1。)。   Conventionally, a light emitting element using a diffractive optical element instead of a light distribution lens has been proposed. As this type of light-emitting element, for example, as shown in FIG. 8, an anode layer 1 made of a translucent conductive film is formed on one surface side (lower side of the figure) of a translucent substrate 5 made of a glass material, An organic EL element 10 ′ in which an organic light emitting layer 3 ′ and a cathode layer 2 are formed in order, and a diffractive optical element 4 ′ formed on the light emitting surface side of the organic EL element 10 ′ are known (for example, Patent Document 1).

この発光素子20’は、有機EL素子10’の陽極層1と陰極層2との間に電圧を印加されると、有機発光層3’から基板5を介して赤色の光(R)、緑色の光(G)および青色の光(B)が放出され、有機EL素子10’の光出射面側に設けられた回折光学素子4’によって光取り出し効率の向上が図られた白色の光を得ることができる。   When a voltage is applied between the anode layer 1 and the cathode layer 2 of the organic EL element 10 ′, the light emitting element 20 ′ receives red light (R), green from the organic light emitting layer 3 ′ via the substrate 5. Light (G) and blue light (B) are emitted to obtain white light whose light extraction efficiency is improved by the diffractive optical element 4 ′ provided on the light emitting surface side of the organic EL element 10 ′. be able to.

また、この発光素子20’は、有機EL素子10’から放出される光R,G,Bの発光強度の強い領域と発光強度の弱い領域との発光強度の差を大きくし、分光分布を変化させ、白色の光を発光させたときにおいて、回折光学素子4’の作用によって光出射面に観測される虹色の発光現象を抑制させている。   Further, the light emitting element 20 ′ increases the difference in light emission intensity between the light emission intensity regions of the light R, G, and B emitted from the organic EL element 10 ′ and the light emission intensity region, thereby changing the spectral distribution. Thus, when white light is emitted, the action of the diffractive optical element 4 ′ suppresses the iridescent light emission phenomenon observed on the light exit surface.

特開2004−119286号公報JP 2004-119286 A

しかしながら、発光素子20’が放射した光R,G,Bは、光出射面で白色の光として観測されるものの、上記分光分布の変化にともない放射された混色光の演色性が低くなる。そのため、発光素子20’の構成でも、均一な白色となる良質の光が求められる照明用途に用いるには十分ではない。   However, although the light R, G, B emitted from the light emitting element 20 ′ is observed as white light on the light exit surface, the color rendering properties of the mixed color light emitted with the change in the spectral distribution is lowered. For this reason, the configuration of the light emitting element 20 ′ is not sufficient for use in lighting applications that require high quality light with uniform white color.

本発明は上記事由に鑑みてなされたものであり、その目的は、より色収差が少なく、光出力の向上が可能であり照明用途にも利用可能な発光素子を提供することにある。   The present invention has been made in view of the above reasons, and an object of the present invention is to provide a light-emitting element that has less chromatic aberration, can improve light output, and can be used for illumination purposes.

本発明の発光素子は、陽極層と陰極層との間に少なくとも有機発光層が設けられた有機エレクトロルミネッセンス素子と、該有機エレクトロルミネッセンス素子の光出射面側に設けられた透光性である支持体とを備えており、該支持体は、前記光出射面側に第一の凹凸構造を有し前記光出射面と反対側に平坦面を有する第一の基板と、前記第一の凹凸構造の前記光出射面側に形成され前記第一の基板とは別の材料よりなり、前記光出射面側に第二の凹凸構造を有し前記第一の基板と屈折率差を有する第二の基板とを備え、前記第一の凹凸構造における凹凸の間隔と前記第二の凹凸構造における凹凸の間隔とが異なることを特徴とする。 The light emitting device of the present invention includes an organic electroluminescent device in which at least an organic light emitting layer is provided between an anode layer and a cathode layer, and a translucent support provided on the light emitting surface side of the organic electroluminescent device. and a body, the support, the light-emitting surface has a first concavo-convex structure on the light emitting surface side and the first substrate that having a flat surface on the opposite side, the first The first substrate is formed on the light exit surface side of the concavo-convex structure and is made of a material different from that of the first substrate, has a second concavo-convex structure on the light exit surface side, and has a refractive index difference from the first substrate. e Bei a second substrate, said a first concave-convex of the concavo-convex structure interval and the second interval of the concavo-convex of the concavo-convex structure are different.

この発光素子において、前記第一の凹凸構造および前記第二の凹凸構造それぞれは、前記有機エレクトロルミネッセンス素子の前記支持体における厚み方向の断面視形状において、階段構造を有していることが好ましい。   In this light-emitting element, each of the first uneven structure and the second uneven structure preferably has a step structure in a sectional view in the thickness direction of the support of the organic electroluminescence element.

この発光素子において、前記第一の凹凸構造および前記第二の凹凸構造それぞれは、前記有機エレクトロルミネッセンス素子の前記支持体における前記光出射面の平面形状において、同心円状に形状を変えて形成させてなることが好ましい。   In this light emitting device, each of the first concavo-convex structure and the second concavo-convex structure is formed by changing the shape of the light emitting surface of the support of the organic electroluminescence element in a concentric shape. It is preferable to become.

本発明の発光素子は、光出射面側に第一の凹凸構造を有する第一の基板と、第一の凹凸構造の光出射面側に形成され第一の基板とは別の材料よりなり、第二の凹凸構造を有する第二の基板とを備えることにより、より色収差が少なく、光出力の向上が可能になるという効果がある。   The light emitting device of the present invention is made of a material different from the first substrate having the first uneven structure on the light emitting surface side and the first substrate formed on the light emitting surface side of the first uneven structure, By providing the second substrate having the second concavo-convex structure, there is an effect that the chromatic aberration is reduced and the light output can be improved.

実施形態1の発光素子を示し、(a)は概略断面図、(b)は他の構成例の概略断面図である。The light emitting element of Embodiment 1 is shown, (a) is a schematic sectional drawing, (b) is a schematic sectional drawing of the other structural example. 同上の回折光学素子の設計方法の説明図である。It is explanatory drawing of the design method of a diffractive optical element same as the above. 同上の他の構成例の要部概略断面図である。It is a principal part schematic sectional drawing of the other structural example same as the above. 同上の他の構成例の製造方法を説明するための主要工程概略断面図である。It is a main process schematic sectional drawing for demonstrating the manufacturing method of the other structural example same as the above. 実施形態2の発光素子を示し、(a)は概略断面図、(b)は他の構成例の概略断面図である。The light emitting element of Embodiment 2 is shown, (a) is a schematic sectional drawing, (b) is a schematic sectional drawing of the other structural example. 同上の製造方法を説明するための要部概略断面図である。It is a principal part schematic sectional drawing for demonstrating the manufacturing method same as the above. 従来例における色むらの発生原因の説明図である。It is explanatory drawing of the generation | occurrence | production cause of the color nonuniformity in a prior art example. 従来の発光素子を示す要部概略断面図である。It is a principal part schematic sectional drawing which shows the conventional light emitting element.

(実施形態1)
以下、本実施形態の発光素子について、図1(a)を用いて説明する。
(Embodiment 1)
Hereinafter, the light emitting device of this embodiment will be described with reference to FIG.

本実施形態の発光素子20は、図1(a)に、基板5の一表面側(図面の下側)に陽極層1と、該陽極層1上に正孔注入層6、正孔輸送層7を介して形成された有機発光層3と、該有機発光層3上に電子輸送層8を介して形成された陰極層2とを備えた有機EL素子10と、該有機EL素子10の光出射面側に設けられた回折光学素子4とを有している。ここで、有機EL素子10の有機発光層3は、2層の発光層3y,3bで形成され、有機発光層3における基板5側の発光層(以下、黄色発光層という)3yからの黄色の光Y、有機発光層3における基板5側とは反対面側の発光層(以下、青色発光層という)3bから青色の光Bが発光可能に形成してある。また、回折光学素子4は、有機発光層3から放出される異なる主発光波長の光(ここでは、黄色の光Yと青色の光Bに相当)に対応して、それぞれ回折により有機EL素子10の色収差を低減するように光の進行方向を変える第一の回折光学部4aと第二の回折光学部4bとを備えている。   The light emitting element 20 of the present embodiment includes an anode layer 1 on one surface side (lower side of the drawing) of FIG. 1A, a hole injection layer 6 and a hole transport layer on the anode layer 1 in FIG. An organic light emitting layer 3 formed through the organic light emitting layer 3, and a cathode layer 2 formed on the organic light emitting layer 3 through the electron transport layer 8, and the light emitted from the organic EL device 10. And a diffractive optical element 4 provided on the exit surface side. Here, the organic light emitting layer 3 of the organic EL element 10 is formed of two light emitting layers 3y and 3b, and the yellow light emitted from the light emitting layer (hereinafter referred to as yellow light emitting layer) 3y on the substrate 5 side in the organic light emitting layer 3. The light Y is formed so that blue light B can be emitted from a light emitting layer (hereinafter referred to as a blue light emitting layer) 3b on the side opposite to the substrate 5 side in the organic light emitting layer 3. The diffractive optical element 4 corresponds to light of different main emission wavelengths emitted from the organic light emitting layer 3 (here, corresponding to yellow light Y and blue light B), and diffracts the organic EL element 10 by diffraction. Are provided with a first diffractive optical part 4a and a second diffractive optical part 4b that change the traveling direction of light so as to reduce the chromatic aberration.

以下、本実施形態の発光素子20に用いられる各構成について、詳述する。   Hereinafter, each component used for the light emitting element 20 of this embodiment is explained in full detail.

本実施形態の有機EL素子10には、陽極層1、有機発光層3や陰極層2を形成するために基板5が用いられ、基板5は、陽極層1、有機発光層3や陰極層2などが支持可能であり成膜方法によっては耐熱性が要求される場合がある。また、有機発光層3からの光を基板5から取り出す場合は、透光性を有することが好ましく、基板5の材料は、例えば、ホウ珪酸クラウン光学ガラスなどのガラス材料や透光性プラスチック材料を用いることができる。   In the organic EL element 10 of this embodiment, a substrate 5 is used to form the anode layer 1, the organic light emitting layer 3, and the cathode layer 2, and the substrate 5 is the anode layer 1, the organic light emitting layer 3, and the cathode layer 2. May be supported, and heat resistance may be required depending on the film formation method. Moreover, when taking out the light from the organic light emitting layer 3 from the board | substrate 5, it is preferable to have translucency, and the material of the board | substrate 5 is glass materials and translucent plastic materials, such as a borosilicate crown optical glass, for example. Can be used.

有機EL素子10の陽極層1は、有機発光層3に正孔を効率よく注入させるものが好ましい。また、有機発光層3に対し陽極層1を光出射面側に配置する場合には、有機発光層3が放射した光の波長に対して透光性が高いものが好ましい。本実施形態においては、有機EL素子10を白色光源として利用しているため、陽極層1の材料としては、インジウム・スズ酸化物(ITO)を好適に利用することができる。その他、陽極層1の材料として、例えば、ニッケル、金、銀、白金、パラジウムやこれらの合金、インジウム・亜鉛酸化物(IZO)やアンチモン・スズ酸化物などの透光性導電膜を用いることができる。   The anode layer 1 of the organic EL element 10 is preferably one that efficiently injects holes into the organic light emitting layer 3. Further, when the anode layer 1 is disposed on the light emitting surface side with respect to the organic light emitting layer 3, it is preferable that the organic light emitting layer 3 has a high translucency with respect to the wavelength of light emitted. In this embodiment, since the organic EL element 10 is used as a white light source, indium tin oxide (ITO) can be preferably used as the material of the anode layer 1. In addition, as the material of the anode layer 1, for example, a light-transmitting conductive film such as nickel, gold, silver, platinum, palladium, alloys thereof, indium / zinc oxide (IZO), antimony / tin oxide, or the like is used. it can.

有機EL素子10の陰極層2は、有機発光層3に正孔と再結合するための電子を効率よく注入可能なものが好ましい。また、有機発光層3に対し陽極層1側だけを光出射面側とする場合は、有機発光層3を介して陽極層1と対向面側に配置された陰極層2は、有機発光層3で発光した光を効率よく反射するものが好ましい。本実施形態においては、有機EL素子10を白色光源として利用しているため、陰極層2の材料としては、可視光域の波長に対して反射率が高いアルミニウムやマグネシウム銀合金などを好適に用いることができる。その他の陰極層2の材料として、例えば、マグネシウム、マグネシウムインジウム合金、マグネシウムアルミニウム合金やアルミニウムリチウム合金などを用いてもよい。   The cathode layer 2 of the organic EL element 10 is preferably one that can efficiently inject electrons for recombination with holes into the organic light emitting layer 3. When only the anode layer 1 side is the light emitting surface side with respect to the organic light emitting layer 3, the cathode layer 2 disposed on the surface facing the anode layer 1 through the organic light emitting layer 3 is the organic light emitting layer 3. Those that efficiently reflect the light emitted in step 1 are preferred. In this embodiment, since the organic EL element 10 is used as a white light source, aluminum, magnesium silver alloy, or the like having high reflectivity with respect to the wavelength in the visible light region is preferably used as the material of the cathode layer 2. be able to. As other materials for the cathode layer 2, for example, magnesium, a magnesium indium alloy, a magnesium aluminum alloy, an aluminum lithium alloy, or the like may be used.

有機EL素子10に用いられる有機発光層3としては、主発光波長が異なる2層以上の発光層が積層されるものであり、例えば、照明用途の白色光源とさせるため、補色関係となる黄色の光Yが発光可能な黄色発光層3yと、青色の光Bが発光可能な青色発光層3bを用いる場合は、黄色発光層3yとして、トリフェニルジアミン誘導体にテトラセン誘導体をドープした層を、青色発光層3bとして、ビス(2−メチル−8−キノリトラト、パラ−フェニルフェノラト)アルミニウム(BAlq3)にペニレンをドープした層をそれぞれ積層させたものを用いることができる。   The organic light emitting layer 3 used in the organic EL element 10 is formed by laminating two or more light emitting layers having different main light emission wavelengths. For example, in order to make a white light source for illumination use, a yellow color having a complementary color relationship is used. When the yellow light-emitting layer 3y capable of emitting light Y and the blue light-emitting layer 3b capable of emitting blue light B are used, a layer obtained by doping a tetraphenyl derivative into a triphenyldiamine derivative is used as the yellow light-emitting layer 3y. As the layer 3b, a layer obtained by laminating bis (2-methyl-8-quinolitrato, para-phenylphenolato) aluminum (BAlq3) with layers doped with penylene can be used.

同様に、図1(b)に示すように赤色の光Rが発光可能な発光層(以下、赤色発光層という)3r、緑色の光Gが発光可能な発光層(以下、緑色発光層という)3g、青色の光Bが発光可能な青色発光層3bにより白色の光を得る場合は、赤色発光層3rとして、トリス(8−ヒドロキシキナリナト)アルミニウム(以下、Alq3という)に[2−[2−[4−(ジメチルアミノ)フェニル]エチニル]−6−メチル−4H−イリデン]−プロパネプロパンジニトリル(DCM色素)をドープさせた層を、緑色発光層3gとして、Alq3からなる層を、青色発光層3bとして、ビス(2−メチル−8−キノリトラト、パラ−フェニルフェノラト)アルミニウム(BAlq3)にペニレンをドープした層をそれぞれ積層させたものを用いることもできる。   Similarly, as shown in FIG. 1B, a light emitting layer capable of emitting red light R (hereinafter referred to as a red light emitting layer) 3r and a light emitting layer capable of emitting green light G (hereinafter referred to as a green light emitting layer). When white light is obtained by the blue light emitting layer 3b capable of emitting 3g of blue light B, tris (8-hydroxyquinalinato) aluminum (hereinafter referred to as Alq3) [2- [2] is used as the red light emitting layer 3r. A layer doped with-[4- (dimethylamino) phenyl] ethynyl] -6-methyl-4H-ylidene] -propanepropanedinitrile (DCM dye) is used as a green light emitting layer 3g, and a layer made of Alq3 is used. As the blue light emitting layer 3b, a layer in which bis (2-methyl-8-quinolitrato, para-phenylphenolato) aluminum (BAlq3) is doped with penylene may be used. That.

有機発光層3は、主発光波長が異なる2以上の発光層が積層される場合、より光出射面に近い有機発光層3側に、より長波長が発光可能な発光層を積層させることで、光取り出し効率を向上させることができ、例えば、光出射面側となる基板5上に透光性導電膜からなる陽極層1を介して有機発光層3として黄色発光層3y、青色発光層3bを順に積層させ、有機発光層3上に陰極層2を形成させることができる。これにより効率よく基板5側より有機発光層3からの光Y,Bを取り出すことができる。   When two or more light emitting layers having different main emission wavelengths are stacked, the organic light emitting layer 3 is formed by stacking a light emitting layer capable of emitting a longer wavelength on the organic light emitting layer 3 side closer to the light emitting surface. The light extraction efficiency can be improved. For example, the yellow light emitting layer 3y and the blue light emitting layer 3b are formed as the organic light emitting layer 3 on the substrate 5 on the light emitting surface side through the anode layer 1 made of a light transmitting conductive film. The cathode layer 2 can be formed on the organic light emitting layer 3 by laminating in order. Thereby, the lights Y and B from the organic light emitting layer 3 can be efficiently extracted from the substrate 5 side.

有機EL素子10に好適に用いられる正孔注入層6としては、正孔注入のエネルギー障壁を低減させるものであって、正孔注入層6の材料として、例えば、ポリチオフェン誘導体などを用いることができる。   The hole injection layer 6 preferably used for the organic EL element 10 is to reduce the energy barrier for hole injection. As the material of the hole injection layer 6, for example, a polythiophene derivative or the like can be used. .

有機EL素子10に好適に用いられる正孔輸送層7としては、正孔を効率よく有機発光層3に輸送し有機EL素子10の駆動電圧を低減させるため、適度なイオン化ポテンシャルと正孔移動度が高いものが好ましく、有機発光層3からの過剰の電子が漏れでないようにするため電子親和力が小さいことが好ましい。このような正孔輸送層7の材料としては、例えば、ビス[N−(1−ナフキブ)−N−フェニル]ベンジジン(以下、α−NDPという)やN,N−ジフェニル−N,N−ビス(3−メチルフェニル)1,1’−ビフェニル−4,4’−ジアミン(以下、TPDという)などを用いることができる。   As the hole transport layer 7 suitably used for the organic EL element 10, in order to efficiently transport holes to the organic light emitting layer 3 and reduce the driving voltage of the organic EL element 10, an appropriate ionization potential and hole mobility are obtained. In order to prevent excessive electrons from the organic light emitting layer 3 from leaking, it is preferable that the electron affinity is small. Examples of the material for the hole transport layer 7 include bis [N- (1-naphthkib) -N-phenyl] benzidine (hereinafter referred to as α-NDP) and N, N-diphenyl-N, N-bis. (3-Methylphenyl) 1,1′-biphenyl-4,4′-diamine (hereinafter referred to as TPD) can be used.

有機EL素子10に好適に用いられる電子輸送層8としては、電子を効率よく有機発光層3に輸送可能で有機発光層3からの正孔が流れ込むのを抑制可能なものが好ましい。このような電子輸送層8の材料は、例えば、フッ化リチウム(LiF)などを用いることができる。   As the electron transport layer 8 suitably used for the organic EL element 10, a material that can efficiently transport electrons to the organic light emitting layer 3 and can suppress the flow of holes from the organic light emitting layer 3 is preferable. For example, lithium fluoride (LiF) can be used as the material of the electron transport layer 8.

このような陽極層1、有機発光層3や陰極層2は、基板5上に真空蒸着法などを用いてそれぞれ積層させて形成することができ、正孔注入層6、正孔輸送層7や電子輸送層8は必ずしも設ける必要はない。   The anode layer 1, the organic light emitting layer 3 and the cathode layer 2 can be formed by laminating them on the substrate 5 by using a vacuum vapor deposition method or the like. The hole injection layer 6, the hole transport layer 7, The electron transport layer 8 is not necessarily provided.

次に、回折光学素子4について説明する。本実施形態の回折光学素子4は、有機EL素子10の光出射面側に二種類の回折光学部4a,4bを備えた回折光学素子4(Diffractive Optical Element:DOE)を配置し、有機発光層3からの主発光波長が異なる光Y,Bに対応して、第一の回折光学部4aと第二の回折光学部4bを色収差を低減する形状とすることで、光の波動性を利用して色消し(光の波長依存性の打ち消し)を行うものである。   Next, the diffractive optical element 4 will be described. In the diffractive optical element 4 of the present embodiment, a diffractive optical element 4 (Diffractive Optical Element: DOE) including two types of diffractive optical parts 4a and 4b is disposed on the light emitting surface side of the organic EL element 10, and an organic light emitting layer The first diffractive optical part 4a and the second diffractive optical part 4b are shaped to reduce chromatic aberration in response to lights Y and B having different main emission wavelengths from 3, thereby utilizing the wave nature of light. In this way, achromatization (cancellation of wavelength dependency of light) is performed.

このような回折光学素子4の材料としては、主としてガラス材料、代表的なものとして合成石英ガラス(波長550nm付近の屈折率n=1.46)やホウケイ酸クラウン光学ガラス(波長550nm付近の屈折率n=1.52)が挙げられるが、回折光学部4a,4bの形状に応じて種々選択することができる。例えば、二つの異なる主発光波長の光における色収差を低減させるためには、有機EL素子10の光出射面上に、第一および第二の回折光学部4a,4bを備えた回折光学素子4を配置する。回折光学素子4は、各回折光学部4a,4bの形状を最適化することにより、各発光層3y,3bから出た光Y,Bの空間的な位相分布を均一に近づけて、色収差を低減することが可能となる。   The material of such a diffractive optical element 4 is mainly a glass material, typically, synthetic quartz glass (refractive index n = 1.46 near wavelength 550 nm) or borosilicate crown optical glass (refractive index near wavelength 550 nm). n = 1.52), but various selections can be made according to the shapes of the diffractive optical parts 4a and 4b. For example, in order to reduce chromatic aberration in light having two different main emission wavelengths, the diffractive optical element 4 including the first and second diffractive optical parts 4a and 4b on the light emitting surface of the organic EL element 10 is provided. Deploy. The diffractive optical element 4 reduces the chromatic aberration by optimizing the shape of the diffractive optical parts 4a and 4b, thereby making the spatial phase distribution of the light Y and B emitted from the light emitting layers 3y and 3b uniform. It becomes possible to do.

同様に、図1(b)に示す発光素子20のように主に3つの波長を制御する場合は、回折光学素子4の回折光学部4a,4b,4cを3重にすることで色収差の低減することができる。理想的には、各発光層3r,3g,3bから発した光RGBが同じ方向に向かって出射され、発光素子20から色むらがない白色光源を実現することが可能である。以上のようなことを実現する回折光学素子4の形状は、参考文献1〔Yoel Arieli,et al,「Designof diffractive optical elements for multiple wavelengths」,APPLIED OPTICS / Vol. 37, No. 26 / 10September 1998, p.6174-6177〕に記載されている。   Similarly, when mainly controlling three wavelengths as in the light emitting element 20 shown in FIG. 1B, the diffractive optical portions 4a, 4b, and 4c of the diffractive optical element 4 are tripled to reduce chromatic aberration. can do. Ideally, the light RGB emitted from each of the light emitting layers 3r, 3g, 3b is emitted in the same direction, and a white light source having no color unevenness can be realized from the light emitting element 20. The shape of the diffractive optical element 4 that realizes the above is shown in Reference Document 1 [Yoel Arieli, et al, “Design of diffractive optical elements for multiple wavelengths”, APPLIED OPTICS / Vol. 37, No. 26/10 September 1998, p.6174-6177].

ここで、参考文献1には、一例として、図2に示すように本実施形態の回折光学部4a,4bに相当するものとして、2つの回折光学素子41,42を重ね合わせる場合(図2には各回折光学素子41,42それぞれについて、1ピクセルのみ図示してある)を示している。第一の回折光学素子41に関して、光源からの光の主発光波長がλ,λ、それぞれの光に対する屈折率をそれぞれn(λ)、n(λ)として、第二の回折光学素子42に関して、光源からの光の主発光波長がλ,λ、それぞれの光に対する屈折率をそれぞれn(λ),n(λ)として、第一の回折光学素子41と第二の回折光学素子42との間に介在する媒質に対して主発光波長がλ,λ、それぞれの光に対する屈折率をそれぞれn(λ),n(λ)とし、主発光波長λ,λそれぞれの光が、第一の回折光学素子41と第二の回折光学素子42とを伝播することによる位相遅延をそれぞれφ,φ、任意の整数をm、m、第一の回折光学素子41および第二の回折光学素子42それぞれの凹部43,44の深さをd,dとすると、光の波動性を利用して色消(光の波長依存性による色収差の低減)を図るためには、凹部43,44の深さd,dを下記の式に基づいて設定すればよいことが記載されている。 Here, in Reference Document 1, as an example, the case where two diffractive optical elements 41 and 42 are overlapped as shown in FIG. 2 is assumed to correspond to the diffractive optical parts 4a and 4b of this embodiment (see FIG. 2). Shows only one pixel for each of the diffractive optical elements 41 and 42). With respect to the first diffractive optical element 41, the main emission wavelengths of light from the light source are λ 1 and λ 2 , and the refractive indexes for the respective lights are n 11 ) and n 12 ), respectively. With respect to the diffractive optical element 42, the first diffractive optical element is assumed in which the main emission wavelengths of light from the light source are λ 1 and λ 2 , and the refractive indexes of the respective lights are n 21 ) and n 22 ), respectively. 41 and the second diffractive optical element 42, the main emission wavelengths are λ 1 and λ 2 , and the refractive indexes for the respective lights are ng1 ) and ng2 ), respectively. And the phase delay due to the propagation of the light of the main emission wavelengths λ 1 and λ 2 through the first diffractive optical element 41 and the second diffractive optical element 42 are φ 1 and φ 2 , respectively, and an arbitrary integer is m 1 , m 2 , first diffractive optical element 41 and second diffractive optical When the depths of the concave portions 43 and 44 of the element 42 are d 1 and d 2 , in order to achieve achromaticity (reduction of chromatic aberration due to the wavelength dependence of light) using the wave nature of the light, the concave portions 43, It is described that the depths d 1 and d 2 of 44 may be set based on the following formula.

Figure 0005395942
Figure 0005395942

Figure 0005395942
Figure 0005395942

ここにおいて、参考文献1には、主発光波長が3以上の場合、回折光学素子が3つ以上の場合についての各回折光学素子の設計方法についても記載されているので、参考文献1に開示された数式をベースとして市販の光学シミュレータソフト、例えば、汎用の反復フーリエ変換アルゴリズム(Iterative Fourier Transform Algorithm : IFTA)法を用いた電磁光学解析ソフトを利用して数値計算を行うことにより、各回折光学素子41,42の凹部43,44の深さd,dを決定することができる。また、1ピクセル当たりの横方向の長さの設計指針に関して、凹部43,44の横方向のサイズは、1ピクセル当たりの周期をΛ,レベル(階段の階調数)をN、光源からの光の主発光波長をλ、1次回折光の回折角度をθとすれば、Λ/N=λsinθとなるので、各凹部43,44の横方向のサイズは、発光層3y,3bからの異なる主発光波長の光に応じてそれぞれ設計すればよい。なお、汎用のIFTA法を用いたソフトで設計する場合には、階調数N,θ、λを入力することにより、Λを計算することができる。さらに、説明すれば、(1)フィールド設定、(2)入力光源、理想的な出力などの決定を行い、上記光学シミュレータソフトによる計算を行う。 Here, Reference Document 1 also describes the design method of each diffractive optical element when the main emission wavelength is 3 or more and the number of diffractive optical elements is 3 or more, and is therefore disclosed in Reference Document 1. Each diffractive optical element is obtained by performing numerical calculation using commercially available optical simulator software, for example, electromagnetic optical analysis software using a general-purpose iterative Fourier transform algorithm (IFTA) method. The depths d 1 and d 2 of the recesses 43 and 44 of 41 and 42 can be determined. Regarding the design guideline for the horizontal length per pixel, the horizontal size of the recesses 43 and 44 is Λ for the period per pixel, N for the level (number of steps), and light from the light source. the main light-emitting wavelength lambda, if the diffraction angle of first-order diffracted light theta 1 and of, since the Λ / N = λsinθ 1, the size in the horizontal direction of the respective recesses 43 and 44, light emitting layer 3y, different from 3b What is necessary is just to design each according to the light of the main light emission wavelength. When designing with software using a general-purpose IFTA method, Λ can be calculated by inputting the number of gradations N, θ 1 , and λ. More specifically, (1) field setting, (2) input light source, ideal output, etc. are determined, and the calculation by the optical simulator software is performed.

本実施形態においては、複数の回折光学素子41,42の代わりに、複数の回折光学部4a,4bを有する回折光学素子4を用いているが、上記と同様にして設計することができる。すなわち、(1)フィールド設定では、光源となる有機EL素子10の各発光層3y,3bから第一の回折光学部4aまでの距離、各発光層3y,3bから第2の回折光学部4bまでの距離、サンプリング周期(Λと連動)を、(2)入力光源、理想的な出力などの決定では、各発光層3y,3bから放出される光Y,Bの主発光波長、各発光層3y,3bの光強度(位相)分布、第一の回折光学部4aおよび第二の回折光学部4bの大きさ(多数の凹部が形成されている領域の大きさ)、階調数N、材料(屈折率)、出力サイズ(照射エリアのサイズ)、出力位置(照射エリアの位置)、色収差の少ない出力強度(位相)分布などを適宜設定して上記光学シミュレータソフトを実行することで、ITFA法に基づく最適化が行われ、第一および第二の回折光学部4a,4bの凹部の深さプロファイル、回折効率、照射エリアの色分布を得ることができる。また、回折光学素子4と空気界面の全反射による光取り出しロスを低減させ、発光素子20の光取り出し効率を向上させることも可能である。   In the present embodiment, the diffractive optical element 4 having a plurality of diffractive optical parts 4a and 4b is used in place of the plurality of diffractive optical elements 41 and 42, but it can be designed in the same manner as described above. That is, in (1) field setting, the distance from each light emitting layer 3y, 3b of the organic EL element 10 serving as a light source to the first diffractive optical part 4a, and from each light emitting layer 3y, 3b to the second diffractive optical part 4b. (2) In determining the input light source, ideal output, etc., the main light emission wavelengths of the light Y and B emitted from the light emitting layers 3y and 3b and the light emitting layers 3y , 3b light intensity (phase) distribution, the size of the first diffractive optical part 4a and the second diffractive optical part 4b (size of a region where a large number of recesses are formed), the number of gradations N, the material ( By appropriately setting the refractive index), output size (irradiation area size), output position (irradiation area position), output intensity (phase) distribution with little chromatic aberration, etc., and executing the optical simulator software, the ITFA method can be used. Based on the first optimization Beauty second diffractive optical portion 4a, 4b depth profile of the recess of the diffraction efficiency, it is possible to obtain color distributions of the illumination area. In addition, it is possible to reduce light extraction loss due to total reflection between the diffractive optical element 4 and the air interface, and to improve the light extraction efficiency of the light emitting element 20.

また、さらに、回折光学素子4における回折光学部4a,4bは、それぞれ図3に示す断面鋸歯状の回折光学素子41のように、16レベルの階段構造にすることで1次の回折効率を高めることが考えられる。このような16レベルの階段構造を有する回折光学素子41では、1ピクセルの周期をΛ、深さをL、有機発光層3から放出される光の主発光波長をλ、回折光学素子41の材料の屈折率をnとすると、深さLは、下記の式で求められる。 Further, the diffractive optical portions 4a and 4b in the diffractive optical element 4 are each formed in a 16-level step structure as in the diffractive optical element 41 having a sawtooth cross section shown in FIG. It is possible. In the diffractive optical element 41 having such a 16-level step structure, the period of one pixel is Λ, the depth is L, the main emission wavelength of the light emitted from the organic light emitting layer 3 is λ, and the material of the diffractive optical element 41 When the refractive index of n is n 1 , the depth L is obtained by the following equation.

Figure 0005395942
Figure 0005395942

ここにおいて、上記ピッチΛは、レベル(階段の階調数:通常は2となる)をN、回折角度をθとして、おおよそ下記数式で導かれる。 Here, the pitch Λ is approximately expressed by the following equation, where N is the level (the number of gradations of the staircase: usually 2 n ) and the diffraction angle is θ 1 .

Figure 0005395942
Figure 0005395942

回折の効果を得るためにはΛ>>λであることが望ましいため、必然的にN×sinθ>>1であることが必要となる。ただし、N=∞とみなせるような連続形状の場合は、図3の構造で得られる現象と異なってくるので、必ずしも上記の数式があてはまらなくなる。また、フォトリソグラフィ技術とエッチング技術とを利用して回折光学素子41を形成させる場合は、レベルNの値が大きくなる(つまり階調が大きくなる)につれて、プロセス数が増大するためNの値を4,8,16程度に設定するのが好ましい。なお、IFTA法を用いた上記光学シミュレータソフトで設計する場合は、階調数N、θ、λを入力することにより、ピッチΛを求めることができる。 In order to obtain the effect of diffraction, it is desirable that Λ >> λ. Therefore, N × sin θ 1 >> 1 is necessarily required. However, in the case of a continuous shape that can be regarded as N = ∞, the phenomenon is different from that obtained by the structure of FIG. Further, when the diffractive optical element 41 is formed by utilizing the photolithography technique and the etching technique, the number of processes increases as the value of the level N becomes larger (that is, the gradation becomes larger). It is preferable to set to about 4,8,16. When designing with the optical simulator software using the IFTA method, the pitch Λ can be obtained by inputting the number of gradations N, θ 1 , and λ.

ところで、図3で示したような回折効率が比較的高い16レベルの回折光学素子41を本実施形態の回折光学素子4として有機EL素子10の光出射面側に形成する方法に、フォトリソグラフィ技術とエッチング技術とを繰り返すことで利用することができるが、この場合、露光・現像・エッチングを繰り返す回数が多くなり回折光学素子4のパターン形成コストが高くなるだけでなく高精度化が難しい。これに対して、回折効率の高い回折光学素子4を高精度且つ安価に形成する方法としては、ナノインプリント法を適用することができる。   Incidentally, a photolithography technique is used in the method of forming the 16-level diffractive optical element 41 having relatively high diffraction efficiency as shown in FIG. 3 as the diffractive optical element 4 of this embodiment on the light emitting surface side of the organic EL element 10. However, in this case, the number of times of repeating exposure / development / etching is increased and the pattern formation cost of the diffractive optical element 4 is increased, and it is difficult to improve the accuracy. On the other hand, as a method of forming the diffractive optical element 4 having high diffraction efficiency with high accuracy and low cost, a nanoimprint method can be applied.

以下、有機EL素子10の光出射面側に第一の回折光学部4aの回折パターンをナノインプリント法により形成する方法について図4に基づいて説明する。   Hereinafter, a method of forming the diffraction pattern of the first diffractive optical part 4a on the light emitting surface side of the organic EL element 10 by the nanoimprint method will be described with reference to FIG.

まず、有機EL素子10の光出射面側となる基板5に転写層60を形成する転写層形成工程を行ってから、第一の回折光学部4aの形状に応じてパターン設計した凹凸パターン71を形成したモールド70を転写層60に対向させ(図4(a))、その後、モールド70を有機EL素子10に形成された転写層60に押圧保持(図4(b))した後、モールド70を有機EL素子10から分離することにより、モールド70の凹凸パターン71を転写層60に転写する転写工程を行ことができる(図4(c))。転写層形成工程では、有機EL素子10の光出射面側に、例えば、熱可塑性樹脂(例えば、PMMAなど)をスピンコート法により転写層60を形成する。転写工程では、モールド70を転写層60に対向させて位置合わせを行ってから、転写層60を加熱して軟化させた状態でモールド70を転写層60に接触させモールド70を所定圧力で加圧することで図4(b)に示すように転写層60を変形させ、転写層60を冷却してから、モールド70を転写層60から分離することで、有機EL素子10の基板5に回折パターンとなる凹凸構造を形成することができる。   First, after performing a transfer layer forming step of forming the transfer layer 60 on the substrate 5 on the light emitting surface side of the organic EL element 10, an uneven pattern 71 having a pattern designed according to the shape of the first diffractive optical part 4a is formed. The formed mold 70 is opposed to the transfer layer 60 (FIG. 4A), and then the mold 70 is pressed and held on the transfer layer 60 formed on the organic EL element 10 (FIG. 4B). Is separated from the organic EL element 10, a transfer step of transferring the uneven pattern 71 of the mold 70 to the transfer layer 60 can be performed (FIG. 4C). In the transfer layer forming step, the transfer layer 60 is formed on the light emission surface side of the organic EL element 10 by spin coating, for example, with a thermoplastic resin (for example, PMMA). In the transfer step, the mold 70 is positioned so as to face the transfer layer 60, and then the mold 70 is brought into contact with the transfer layer 60 in a state where the transfer layer 60 is heated and softened, and the mold 70 is pressurized with a predetermined pressure. 4B, the transfer layer 60 is deformed, the transfer layer 60 is cooled, and then the mold 70 is separated from the transfer layer 60, whereby the diffraction pattern and the substrate 5 of the organic EL element 10 are formed. An uneven structure can be formed.

転写層形成工程では、転写層60の加熱冷却を行っているが、転写層60ではなく、モールド70の加熱冷却を制御してもよい。また、ナノインプリント法としては、上述のように熱可塑性樹脂を転写層60の材料として用いる熱ナノインプリント法に限らず、転写層60の材料として光硬化性樹脂を用いる光ナノインプリント法を採用してもよく、この場合には、粘度の低い光硬化性樹脂層からなる転写層60をモールド70により変形させて、その後に有機EL素子10に悪影響を与えない程度で紫外線を照射し光硬化性樹脂を硬化させ、モールド70を転写層60から分離すればよい。   In the transfer layer forming step, the transfer layer 60 is heated and cooled. However, the heating and cooling of the mold 70 instead of the transfer layer 60 may be controlled. Further, the nanoimprint method is not limited to the thermal nanoimprint method using a thermoplastic resin as the material of the transfer layer 60 as described above, and may employ an optical nanoimprint method using a photocurable resin as the material of the transfer layer 60. In this case, the transfer layer 60 made of a low-viscosity photo-curing resin layer is deformed by the mold 70, and then the photo-curing resin is cured by irradiating ultraviolet rays to the extent that the organic EL element 10 is not adversely affected. The mold 70 may be separated from the transfer layer 60.

上述の転写工程の後、転写層60および転写対象物である有機EL素子10の基板5をエッチングすることで、有機EL素子10の光出射面側に第一の回折光学部4aとなる回折光学素子41を形成することができる。なお、第一の回折光学部4aを形成後、別の材料を形成塗布して第二の回折光学部4bの回折パターンも同様にして形成することができる。   After the transfer process described above, the transfer layer 60 and the substrate 5 of the organic EL element 10 that is the transfer object are etched, so that the diffractive optical that becomes the first diffractive optical part 4a on the light emitting surface side of the organic EL element 10 The element 41 can be formed. In addition, after forming the 1st diffractive optical part 4a, another material can be formed and apply | coated, and the diffraction pattern of the 2nd diffractive optical part 4b can be formed similarly.

そのため、一度モールド用の金型さえ作成すれば、回折パターンの複雑さによる制限を受けることなく同じ形状を再現性よく形成することができ、低コストで回折光学素子4を有する有機EL素子10を形成することができる。   Therefore, once the mold for molding is prepared, the same shape can be formed with good reproducibility without being restricted by the complexity of the diffraction pattern, and the organic EL element 10 having the diffractive optical element 4 can be formed at low cost. Can be formed.

通常、有機EL素子10は、光出射面と支持体とを兼ねる透光性の基板5としてガラス材料を用いることが多い。したがって、回折光学素子4は、有機EL素子10の基板5に形成することができる。有機EL素子10の基板5を利用して、回折光学素子4を形成することで、複数の主発光波長に対して設けられる色収差のための複数の回折光学部4a,4bのうち、1つを省くことができるため、発光素子20を薄型化することもできる。したがって、回折光学部4a,4bを省いた分だけ回折光学素子4用の部材が必要なく色収差を低減させために、回折光学素子4を別途固着させる必要もない。   In general, the organic EL element 10 often uses a glass material as the translucent substrate 5 that serves as a light emitting surface and a support. Therefore, the diffractive optical element 4 can be formed on the substrate 5 of the organic EL element 10. By forming the diffractive optical element 4 using the substrate 5 of the organic EL element 10, one of the plurality of diffractive optical parts 4a and 4b for chromatic aberration provided for a plurality of main emission wavelengths is obtained. Since it can be omitted, the light emitting element 20 can be thinned. Therefore, a member for the diffractive optical element 4 is not required as much as the diffractive optical parts 4a and 4b are omitted, and it is not necessary to fix the diffractive optical element 4 separately in order to reduce chromatic aberration.

なお、ここで予め有機EL素子10の基板5の両面にパターン加工、あるいは重ね合わせした回折光学素子4を形成し、これを基板5とした有機EL素子10を形成してもよい。   Here, it is also possible to form the diffractive optical element 4 that has been patterned or superimposed on both surfaces of the substrate 5 of the organic EL element 10 in advance, and form the organic EL element 10 using this as the substrate 5.

ここで、図1(a)の発光素子20を形成するためには、ガラス材料からなる基板5上であって、陽極層1と、陰極層2との間に黄色発光層3yと青色発光層3bを用いた有機発光層3を形成し、基板5の光取り出し面側に回折光学素子4となる第一の回折光学部4aを凹凸構造として形成させてある。引き続いて、回折光学素子4の凹凸パターンが形成された基板5における光出射面側にガラス膜を塗布形成して平坦にさせた後、同様にして第二の回折光学部4bを凹凸構造として形成させてある。第一の回折光学素子4aおよび第二の回折光学部4bによって、有機EL素子10の黄色発光層3yおよび青色発光層3bから放出された異なる主発光波長の光に対応して、有機EL素子10の色収差を低減させた白色の光を得ることができる。   Here, in order to form the light emitting element 20 of FIG. 1A, the yellow light emitting layer 3y and the blue light emitting layer are formed on the substrate 5 made of a glass material and between the anode layer 1 and the cathode layer 2. The organic light emitting layer 3 using 3b is formed, and the first diffractive optical part 4a to be the diffractive optical element 4 is formed on the light extraction surface side of the substrate 5 as a concavo-convex structure. Subsequently, after a glass film is applied and formed flat on the light emitting surface side of the substrate 5 on which the concavo-convex pattern of the diffractive optical element 4 is formed, the second diffractive optical part 4b is similarly formed as a concavo-convex structure. I'm allowed. The organic EL element 10 corresponds to light having different main emission wavelengths emitted from the yellow light emitting layer 3y and the blue light emitting layer 3b of the organic EL element 10 by the first diffractive optical element 4a and the second diffractive optical part 4b. White light with reduced chromatic aberration can be obtained.

同様に、図1(b)の発光素子20の形成方法は、ガラス材料からなる基板5上に、陽極層1と、陰極層2との間に赤色発光層3rと緑色発光層3gと青色発光層3bを用いた有機発光層3を形成し、基板5の光取り出し面側に回折光学素子4となる第一の回折光学部4aを凹凸構造として形成させてある。引き続いて、回折光学素子4の凹凸パターンが形成された基板5における光出射面側にガラス膜を塗布形成して平坦にさせた後、上記と同様にして第二の回折光学部4bを凹凸構造として形成させてある。さらに、同様にして第三の回折光学部4cを凹凸構造として形成させてある。第一の回折光学部4a、第二の回折光学部4bおよび第三の回折光学部4cによって、有機EL素子10の赤色発光層3r、緑色発光層3gおよび青色発光層3bから放出された異なる主発光波長の光に対応して、有機EL素子10の色収差を低減させた白色の光を得ることができる。   Similarly, in the method of forming the light emitting element 20 in FIG. 1B, the red light emitting layer 3r, the green light emitting layer 3g, and the blue light emitting are formed between the anode layer 1 and the cathode layer 2 on the substrate 5 made of a glass material. The organic light emitting layer 3 using the layer 3b is formed, and the first diffractive optical part 4a to be the diffractive optical element 4 is formed as a concavo-convex structure on the light extraction surface side of the substrate 5. Subsequently, after a glass film is applied and formed flat on the light emitting surface side of the substrate 5 on which the concavo-convex pattern of the diffractive optical element 4 is formed, the second diffractive optical part 4b is formed into a concavo-convex structure in the same manner as described above. It is formed as. Further, similarly, the third diffractive optical part 4c is formed as an uneven structure. The different main light emitted from the red light emitting layer 3r, the green light emitting layer 3g and the blue light emitting layer 3b of the organic EL element 10 by the first diffractive optical part 4a, the second diffractive optical part 4b and the third diffractive optical part 4c. Corresponding to the light having the emission wavelength, white light with reduced chromatic aberration of the organic EL element 10 can be obtained.

また、第一の回折光学部4aと第二の回折光学部4bとの屈折率差、第二の回折光学部4bと第三の回折光学部4cとの屈折率差は、それぞれ大きいほど回折の効果が大きくなる。したがって、第一の回折光学部4aおよび第三の回折光学部4cを屈折率の高い材料(例えば、ホウケイ酸ガラス)により形成し、第二の回折光学部4bを例えば、空気としてもよい。この場合、第二の回折光学部4bと第三の回折光学部4cとなる凹凸パターンが形成されたホウケイ酸ガラスを、第一の回折光学部4aが形成された基板5上に設けるだけでよい。また、逆に第一の回折光学部4aおよび第三の回折光学部4cよりも、さらに高い屈折率をもった第二の回折光学部4bとしてもよい。   Further, the larger the difference in refractive index between the first diffractive optical part 4a and the second diffractive optical part 4b and the difference in refractive index between the second diffractive optical part 4b and the third diffractive optical part 4c, the more diffractive. The effect is increased. Therefore, the first diffractive optical part 4a and the third diffractive optical part 4c may be formed of a material having a high refractive index (for example, borosilicate glass), and the second diffractive optical part 4b may be, for example, air. In this case, it is only necessary to provide the borosilicate glass on which the concave and convex patterns to be the second diffractive optical part 4b and the third diffractive optical part 4c are formed on the substrate 5 on which the first diffractive optical part 4a is formed. . Conversely, the second diffractive optical part 4b may have a higher refractive index than the first diffractive optical part 4a and the third diffractive optical part 4c.

このような凹凸構造は、有機EL素子10の基板5の光出射面の平面形状において、同心円状に形状を変えることもできる。この場合、同心円状のパターンの間隔は、中心から端に向かって徐々に小さくさせて形成することもできる。   Such a concavo-convex structure can be concentrically changed in the planar shape of the light emitting surface of the substrate 5 of the organic EL element 10. In this case, the interval between the concentric patterns can be gradually reduced from the center toward the end.

(実施形態2)
本実施形態の発光素子20における基本構成は実施形態1と略同一であり、基板5の光取り出し面側に形成された凹凸構造を回折光学部4a,4bとして利用する代わりに、図5(a)に示すように基板5の内部に形成された屈折率の異なる領域によって回折光学部4e,4dを形成させた点が異なる。なお、実施形態1と同様の構成要素には、同一の符号を付して説明を適宜省略する。
(Embodiment 2)
The basic configuration of the light emitting element 20 of the present embodiment is substantially the same as that of the first embodiment, and instead of using the concavo-convex structure formed on the light extraction surface side of the substrate 5 as the diffractive optical portions 4a and 4b, FIG. ), The difference is that the diffractive optical portions 4e and 4d are formed by the regions having different refractive indexes formed in the substrate 5. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.

ここで、回折光学素子4は、有機EL素子10の基板5の内部に3次元的に設けられた空洞の媒質と基板5の媒質の屈折率差によって光の回折を行う。本実施形態において、回折光学素子4は、有機EL素子10の基板5における厚み方向であって、図5(a)に示すように、より有機発光層3に近い側に形成された断面視形状が長方形状の空洞と、基板5における有機発光層3とは反対面側に、より近い側に形成された逆台形形状の空洞により構成されている。長方形状の空洞および逆台形形状の空洞は、それぞれ基板5の光取り出し面と略平行な面内で複数個設けられることにより、それぞれ第一の回折光学部4dおよび第二の回折光学部4eを構成することなる。   Here, the diffractive optical element 4 diffracts light by the difference in refractive index between the hollow medium provided three-dimensionally inside the substrate 5 of the organic EL element 10 and the medium of the substrate 5. In the present embodiment, the diffractive optical element 4 is in the thickness direction of the substrate 5 of the organic EL element 10 and as shown in FIG. 5A, the cross-sectional shape formed on the side closer to the organic light emitting layer 3 Is composed of a rectangular cavity and an inverted trapezoidal cavity formed on the side opposite to the organic light emitting layer 3 in the substrate 5 and on the closer side. A plurality of rectangular cavities and inverted trapezoidal cavities are provided in a plane substantially parallel to the light extraction surface of the substrate 5, so that the first diffractive optical part 4d and the second diffractive optical part 4e are respectively provided. It will be composed.

また、図5(b)に示すように、空洞を形成する材料を異なる屈折率の材料としてもよい。この場合、発光素子20の回折光学素子は、第一の回折光学部4dを有機EL素子10の基板5の内部に断面視形状が長方形状の空洞を形成するとともに、第二の回折光学部4eを基板5の表面に接合させた異なる屈折率の材料の内部に断面視形状が逆台形形状の空洞を設けたものであってもよい。   Further, as shown in FIG. 5B, the material forming the cavity may be a material having a different refractive index. In this case, the diffractive optical element of the light emitting element 20 includes the first diffractive optical part 4d having a rectangular cross-sectional shape inside the substrate 5 of the organic EL element 10, and the second diffractive optical part 4e. A cavity having an inverted trapezoidal shape in cross-sectional view may be provided inside a material having a different refractive index that is bonded to the surface of the substrate 5.

ここでは、回折光学素子4の回折光学部4d,4eを基板5の内部に形成させた空洞で示してあるが、空洞だけに限らず材質を改質させたことにより屈折率が変化した領域を利用することもできる。   Here, the diffractive optical portions 4d and 4e of the diffractive optical element 4 are shown as cavities formed inside the substrate 5. However, not only the cavities but also the regions in which the refractive index is changed by modifying the material are shown. It can also be used.

なお、図6に示すように、このような空洞や材質を改質させ屈折率が変化した領域4fは、回折光学素子4を構成する透光性の部材(例えば、ガラス材料からなる基板5)にフェムト秒領域(10−12s以下)のパルスレーザ光30を照射させることで形成させることができる。このようなパルスレーザ光30を透光性の前記部材に照射させると、瞬間値が1011W以上にもなる非常に高いエネルギーにより多光子吸収と呼ばれる現象が生じ、パルスレーザ光30の焦点のごく近傍(例えば、数百nmから数μmの領域)が空洞や材質を改質させた屈折率が変化した領域4fに加工されることになる。回折光学素子4の形成にあたって、上記加工方法によって基板5などに屈折率を変化する領域4fを形成させる場合、ほとんど熱も発生することもなく加工領域以外は実質的に損傷を生じることもない発光素子20を形成させることができる。 As shown in FIG. 6, the region 4f in which the refractive index is changed by modifying the cavity or material is a translucent member constituting the diffractive optical element 4 (for example, a substrate 5 made of a glass material). Can be formed by irradiating a pulse laser beam 30 in a femtosecond region (10 −12 s or less). When such a light transmitting member is irradiated with such a pulse laser beam 30, a phenomenon called multiphoton absorption occurs due to very high energy having an instantaneous value of 10 11 W or more, and the focus of the pulse laser beam 30 is increased. The very vicinity (for example, a region of several hundred nm to several μm) is processed into a region 4f in which the refractive index is changed by modifying the cavity or material. In forming the diffractive optical element 4, when the region 4 f whose refractive index is changed is formed on the substrate 5 or the like by the above-described processing method, almost no heat is generated, and light emission that does not substantially damage other than the processing region is generated. The element 20 can be formed.

従って、本実施形態の図5(a)に示す発光素子20を形成させるためには、予めシリカからなるガラスを基板5として用いた有機EL素子10を形成させる。次に、有機EL素子10の光出射面側から第一の回折光学部4dの形状に応じてパルスレーザ光30を照射させ、基板5における厚み方向であって、より有機発光層3側に近い側に屈折率を変化する領域を形成する。その後、基板5における厚み方向であって、基板5における有機発光層3とは反対面側に、より近い領域に第二の回折光学部4eの形状に応じて同様のパルスレーザ光30を照射させ屈折率を変化させる領域を形成させることで、発光素子20に回折光学素子4を形成させることができる。   Therefore, in order to form the light emitting element 20 shown in FIG. 5A of the present embodiment, the organic EL element 10 using glass made of silica as the substrate 5 in advance is formed. Next, the pulse laser beam 30 is irradiated from the light emitting surface side of the organic EL element 10 according to the shape of the first diffractive optical part 4d, and is in the thickness direction of the substrate 5 and closer to the organic light emitting layer 3 side. A region where the refractive index changes is formed on the side. Thereafter, a similar pulsed laser beam 30 is irradiated to a region closer to the thickness direction of the substrate 5 on the opposite side of the substrate 5 from the organic light emitting layer 3 according to the shape of the second diffractive optical part 4e. By forming the region where the refractive index is changed, the diffractive optical element 4 can be formed in the light emitting element 20.

なお、ここにおいて、基板5の材料としてシリカを用いた場合は、波長550nm付近の屈折率が1.5であり、パルスレーザ光30として波長800nm、出力0.3W、パルス周波数1kHzで150fsの光を照射させると直径約400nmの微小空洞(屈折率が変化する領域4f)を形成させることができる。   Here, when silica is used as the material of the substrate 5, the refractive index in the vicinity of the wavelength of 550 nm is 1.5, and the pulsed laser light 30 has a wavelength of 800 nm, an output of 0.3 W, a pulse frequency of 1 kHz, and 150 fs light. Can form a microcavity (region 4f where the refractive index changes) having a diameter of about 400 nm.

また、回折光学部4d,4eにおける屈折率差を大きくさせには、基板5に屈折率の大きなホウケイ酸ガラスを用い、屈折率を変化させる領域4fを空気の空洞とすること好ましい。   In order to increase the difference in refractive index between the diffractive optical portions 4d and 4e, it is preferable to use borosilicate glass having a high refractive index for the substrate 5 and to make the region 4f in which the refractive index is changed into an air cavity.

さらに、パルスレーザ光30のパルス幅、パルス強度、焦点を調整して走査することにより、空洞を含む屈折率が変化する領域4fを3次元的に形成することができる。   Furthermore, by adjusting and scanning the pulse width, pulse intensity, and focus of the pulsed laser light 30, the region 4f including the cavity where the refractive index changes can be formed three-dimensionally.

これにより有機EL素子10の基板5を回折光学素子4と共用することができるため、別途に回折光学素子4を付加させることもなく発光素子20を形成することができる。   Accordingly, since the substrate 5 of the organic EL element 10 can be shared with the diffractive optical element 4, the light emitting element 20 can be formed without adding the diffractive optical element 4 separately.

1 陽極層
2 陰極層
3 有機発光層
3y 発光層(黄色発光層)
3b 発光層(青色発光層)
4 回折光学素子
4a,4b,4c,4d,4e 回折光学部
5 基板
10 有機EL素子
20 発光素子
DESCRIPTION OF SYMBOLS 1 Anode layer 2 Cathode layer 3 Organic light emitting layer 3y Light emitting layer (yellow light emitting layer)
3b Light emitting layer (blue light emitting layer)
4 diffractive optical element 4a, 4b, 4c, 4d, 4e diffractive optical part 5 substrate 10 organic EL element 20 light emitting element

Claims (3)

陽極層と陰極層との間に少なくとも有機発光層が設けられた有機エレクトロルミネッセンス素子と、該有機エレクトロルミネッセンス素子の光出射面側に設けられた透光性である支持体とを備えており、該支持体は、前記光出射面側に第一の凹凸構造を有し前記光出射面と反対側に平坦面を有する第一の基板と、前記第一の凹凸構造の前記光出射面側に形成され前記第一の基板とは別の材料よりなり、前記光出射面側に第二の凹凸構造を有し前記第一の基板と屈折率差を有する第二の基板とを備え、前記第一の凹凸構造における凹凸の間隔と前記第二の凹凸構造における凹凸の間隔とが異なることを特徴とする発光素子。 An organic electroluminescent element provided with at least an organic light emitting layer between an anode layer and a cathode layer, and a light-transmitting support provided on the light emitting surface side of the organic electroluminescent element, the support, the light exit surface has a first concavo-convex structure on the light emitting surface side and the first substrate that having a flat surface on the opposite side, the light emitting surface of the first relief structure formed on the side made of a different material than the first substrate, Bei example and a second substrate having a second refractive index difference between the first substrate has an uneven structure on the light emitting surface side The light emitting element , wherein the uneven interval in the first uneven structure is different from the uneven interval in the second uneven structure . 前記第一の凹凸構造および前記第二の凹凸構造それぞれは、前記有機エレクトロルミネッセンス素子の前記支持体における厚み方向の断面視形状において、階段構造を有していることを特徴とする請求項1に記載の発光素子。   The first concavo-convex structure and the second concavo-convex structure each have a step structure in a cross-sectional shape in the thickness direction of the support of the organic electroluminescence element. The light emitting element of description. 前記第一の凹凸構造および前記第二の凹凸構造それぞれは、前記有機エレクトロルミネッセンス素子の前記支持体における前記光出射面の平面形状において、同心円状に形状を変えて形成させてなることを特徴とする請求項1または請求項2に記載の発光素子。   Each of the first concavo-convex structure and the second concavo-convex structure is formed by concentrically changing the planar shape of the light emitting surface of the support of the organic electroluminescence element. The light emitting device according to claim 1 or 2.
JP2012227684A 2012-10-15 2012-10-15 Light emitting element Expired - Fee Related JP5395942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012227684A JP5395942B2 (en) 2012-10-15 2012-10-15 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012227684A JP5395942B2 (en) 2012-10-15 2012-10-15 Light emitting element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009041524A Division JP5118659B2 (en) 2009-02-24 2009-02-24 Light emitting element

Publications (2)

Publication Number Publication Date
JP2013048102A JP2013048102A (en) 2013-03-07
JP5395942B2 true JP5395942B2 (en) 2014-01-22

Family

ID=48010969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012227684A Expired - Fee Related JP5395942B2 (en) 2012-10-15 2012-10-15 Light emitting element

Country Status (1)

Country Link
JP (1) JP5395942B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2991183B2 (en) * 1998-03-27 1999-12-20 日本電気株式会社 Organic electroluminescence device
KR100437886B1 (en) * 2001-09-25 2004-06-30 한국과학기술원 High extraction efficiency photonic crystal organic light emitting device
JP4037281B2 (en) * 2002-03-04 2008-01-23 シャープ株式会社 Beam shaping element, light source unit using the same, and optical pickup
JP2004288336A (en) * 2003-03-25 2004-10-14 Hitachi Ltd Optical head
JP4822243B2 (en) * 2003-03-25 2011-11-24 国立大学法人京都大学 LIGHT EMITTING ELEMENT AND ORGANIC ELECTROLUMINESCENT LIGHT EMITTING ELEMENT
US6911674B2 (en) * 2003-04-16 2005-06-28 Zeolux Corporation Feedback and coupling structures and methods
JP4747627B2 (en) * 2004-07-23 2011-08-17 日立化成工業株式会社 Diffraction type condensing film and surface light source device using the same
JP2007114266A (en) * 2005-10-18 2007-05-10 Konica Minolta Holdings Inc Optical element, method of manufacturing optical element, and organic electroluminescence element
JP4905053B2 (en) * 2006-10-24 2012-03-28 凸版印刷株式会社 OVD medium and card-like information medium including OVD medium

Also Published As

Publication number Publication date
JP2013048102A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5118659B2 (en) Light emitting element
US9508956B2 (en) Organic light emitting diode, manufacturing method for organic light emitting diode, image display device, and illumination device
TW201915542A (en) Optical apparatus
KR20130084848A (en) Organic electroluminescent device and method for manufacturing thereof
US20150132876A1 (en) Method for fabricating organic electroluminescent devices
US20040217702A1 (en) Light extraction designs for organic light emitting diodes
US8586963B2 (en) Semiconductor light-emitting devices having concave microstructures providing improved light extraction efficiency and method for producing same
TW200533229A (en) Organic light emitting device
Park et al. Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction
CN109273619B (en) Organic light-emitting display panel, imprinting template and manufacturing method
KR20220010364A (en) Metasurface, light-emitting device including the metasurface, display device including the light-emitting device and method for fabricating the metasurface
JP5357537B2 (en) Lighting device
US10446773B2 (en) Substrate, optical element, mold, organic light-emitting element, organic thin-film solar cell, and method for producing substrate
JP2015018822A (en) Light emitting element
JP6315389B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
JP5395942B2 (en) Light emitting element
JP5732617B2 (en) Method for manufacturing light emitting device
KR102424178B1 (en) Light source
Adhikary et al. Light intensity and efficiency enhancement of n-ZnO/NiO/p-GaN heterojunction-based white light-emitting diodes using micro-pillar array
Dong et al. 21‐1: Invited Paper: Polarized Emission Thin‐Film Light‐Emitting Diodes
KR20140073622A (en) Light emitting diode having multi-layered photonic crystal layers
Wang et al. To enhance light extraction for organic light-emitting diodes by body modification of substrate
EP3005436B1 (en) Method of forming an organic light emitting diode structure
WO2015097971A1 (en) Light-emitting device
Chen et al. P‐152: Emitter‐Apodization‐Dependent Angular Luminance Enhancement of Microlens‐Array Film Attached OLED Devices

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131018

R150 Certificate of patent or registration of utility model

Ref document number: 5395942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees