JP5393070B2 - Carbon fiber and method for producing the same - Google Patents

Carbon fiber and method for producing the same Download PDF

Info

Publication number
JP5393070B2
JP5393070B2 JP2008175819A JP2008175819A JP5393070B2 JP 5393070 B2 JP5393070 B2 JP 5393070B2 JP 2008175819 A JP2008175819 A JP 2008175819A JP 2008175819 A JP2008175819 A JP 2008175819A JP 5393070 B2 JP5393070 B2 JP 5393070B2
Authority
JP
Japan
Prior art keywords
carbon fiber
strength
fiber
slope
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008175819A
Other languages
Japanese (ja)
Other versions
JP2010013772A (en
Inventor
秀和 吉川
貴也 鈴木
太郎 尾山
洋 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Rayon Co Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP2008175819A priority Critical patent/JP5393070B2/en
Publication of JP2010013772A publication Critical patent/JP2010013772A/en
Application granted granted Critical
Publication of JP5393070B2 publication Critical patent/JP5393070B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Fibers (AREA)

Description

本発明は、マトリックス材料と炭素繊維を複合化して複合材料を作製する際に用いる、表面・界面特性に優れた炭素繊維及びその製造方法に関する。   The present invention relates to a carbon fiber excellent in surface / interface characteristics and a method for producing the same, which is used when a composite material is produced by combining a matrix material and carbon fiber.

炭素繊維の製造方法としては、原料繊維にポリアクリロニトリル(PAN)等の前駆体繊維を使用し、耐炎化処理及び炭素化処理を経て炭素繊維を得る方法が広く知られている(例えば、特許文献1参照)。このようにして得られた炭素繊維は、高い比強度、比弾性率など良好な特性を有している。   As a method for producing carbon fiber, a method of using a precursor fiber such as polyacrylonitrile (PAN) as a raw fiber and obtaining carbon fiber through flameproofing treatment and carbonization treatment is widely known (e.g., patent document). 1). The carbon fibers thus obtained have good characteristics such as high specific strength and specific elastic modulus.

近年、炭素繊維を利用した複合材料[例えば、炭素繊維強化プラスチック(CFRP)など]の工業的な用途は、大きく広がりつつある。特にスポーツ・レジャー分野、航空宇宙分野、自動車分野においては、(1)より高性能化(高強度化、高弾性化)、(2)より軽量化(繊維軽量化及び繊維含有量低減)、(3)複合化した際のより高い複合材料の物性の発現性向上(炭素繊維表面・界面特性の向上)に向けた要求が強まっている。   In recent years, industrial applications of composite materials using carbon fibers [for example, carbon fiber reinforced plastic (CFRP) and the like] have been greatly expanded. Especially in the sports / leisure field, aerospace field, and automobile field, (1) higher performance (higher strength, higher elasticity), (2) lighter (fiber weight reduction and fiber content reduction), ( 3) There is an increasing demand for improvement in the physical properties of higher composite materials when composited (improvement of carbon fiber surface / interface properties).

炭素繊維と樹脂等のマトリックス材料との複合化において高性能化を追求する為には、マトリックス材料が有する特性も重要であるが、炭素繊維自体の表面特性、強度及び弾性率を向上させることが不可欠である。つまり、炭素繊維表面とマトリックス材料との接着性が高いもの同士を複合化し、マトリックス材料と炭素繊維をより均一に分散することで、複合材料のより高性能なもの(高強度、高弾性)を得ることができる。   In order to pursue high performance in the composite of carbon fiber and matrix material such as resin, the characteristics of the matrix material are also important, but it is necessary to improve the surface characteristics, strength and elastic modulus of the carbon fiber itself. It is essential. In other words, by combining materials with high adhesion between the carbon fiber surface and the matrix material, and dispersing the matrix material and the carbon fiber more uniformly, the composite material with higher performance (high strength, high elasticity) can be obtained. Can be obtained.

炭素繊維の表面特性、強度及び弾性率を向上させることについては、従来より検討されている(例えば、特許文献2〜4参照)。   The improvement of the surface properties, strength, and elastic modulus of carbon fibers has been studied conventionally (see, for example, Patent Documents 2 to 4).

しかし、従来の炭素繊維は、上記複合材料の要求を満たすには不充分であった。   However, conventional carbon fibers are insufficient to satisfy the requirements of the composite material.

そこで、本発明者は、上記問題を解決するため検討を重ねているうちに、樹脂含浸ストランド強度、樹脂含浸ストランド弾性率及び密度が所定範囲にあり、且つ繊維軸方向に配向する襞を表面に有する炭素繊維が、マトリックス材料と複合化して複合材料にした場合、マトリックス材料との良好な接着性を発現することを見出し、先に出願した(特許文献5)。
特開2001−131833号公報 (特許請求の範囲) 特公平8−6210号公報 (特許請求の範囲) 特開2003−73932号公報 (特許請求の範囲) 特開平11−152626号公報 (特許請求の範囲) 特開2007−177368号公報 (特許請求の範囲)
Therefore, the present inventor has repeatedly studied in order to solve the above-described problems, and has a surface on which the wrinkles oriented in the fiber axis direction have the resin-impregnated strand strength, the resin-impregnated strand elastic modulus and density in a predetermined range. It has been found that when the carbon fibers possessed are combined with a matrix material to form a composite material, good adhesion to the matrix material is developed, and an application was made earlier (Patent Document 5).
JP 2001-131833 A (Claims) Japanese Patent Publication No. 8-6210 (Claims) JP 2003-73932 A (Claims) JP-A-11-152626 (Claims) JP 2007-177368 A (Claims)

しかし、特許文献4に記載の製造方法では、得られた炭素繊維において強度にばらつきがあること、例えば、ストランド強度が高くても、後述する単繊維の測定長さ(X)と強度(Y)とで得られる関係式における傾き(a)が良好でないことがあること、後述する単繊維のトランスバース方向の圧縮強度が低いことがあることが解った。   However, in the production method described in Patent Document 4, the obtained carbon fiber has variations in strength, for example, even if the strand strength is high, the measured length (X) and strength (Y) of a single fiber to be described later It has been found that the slope (a) in the relational expression obtained in (1) and (2) may not be good, and that the compressive strength in the transverse direction of single fibers described later may be low.

本発明者は、上記問題について種々検討しているうちに、炭素繊維強度(Y)は、単繊維の測定長さ(X)が長くなる程、低下する関係にあることを見出した。この関係は、横軸に繊維の測定長さの対数値[Ln(X)]、縦軸に炭素繊維強度(Y)をとると、右下がりで傾き(a)の直線になり、この傾き(a)により炭素繊維強度のばらつきを評価でき、この傾き(a)を所定の範囲にすることにより単繊維測定長さについての強度のばらつきを少なくできることを見出した。同様に、単繊維のトランスバース方向の圧縮強度によって、単繊維の測定方向についての強度を評価できることを見出した。   The present inventor has found that the carbon fiber strength (Y) decreases as the measured length (X) of the single fiber increases, while variously examining the above problems. This relationship is obtained by taking the logarithmic value [Ln (X)] of the measured length of the fiber on the horizontal axis and the carbon fiber strength (Y) on the vertical axis. It was found that variation in carbon fiber strength can be evaluated by a), and variation in strength with respect to the single fiber measurement length can be reduced by setting the slope (a) within a predetermined range. Similarly, it has been found that the strength in the measurement direction of a single fiber can be evaluated by the compressive strength in the transverse direction of the single fiber.

また、加電流−加電圧測定より求めた傾きより得られる電気抵抗値(A)と、導電性ペーストを用いて加電流−加電圧測定より求めた傾きより得られる電気抵抗値(B)との比(A/B)が所定の範囲の炭素繊維は、その表面・界面特性が良好であり、高強度であることを見出した。   Moreover, the electrical resistance value (A) obtained from the slope obtained from the applied current-applied voltage measurement and the electrical resistance value (B) obtained from the slope obtained from the applied current-applied voltage measurement using the conductive paste. It has been found that carbon fibers having a ratio (A / B) in a predetermined range have good surface / interface characteristics and high strength.

更に、走査型プローブ顕微鏡(SPM)測定によるインデント表面モジュラスが所定の範囲の炭素繊維は、高強度であり且つ高弾性率であることを見出した。   Furthermore, it has been found that a carbon fiber having an indent surface modulus in a predetermined range measured by a scanning probe microscope (SPM) has a high strength and a high elastic modulus.

また更に、アクリル系前駆体繊維を所定の条件で耐炎化処理、炭素化処理して原料炭素繊維を得、次いで硝酸中で電解酸化法により複数段の表面酸化処理を行う際に、1段目の表面酸化処理を所定の電気量で行うことにより上記良好な物性の炭素繊維を製造できることを見出し、本発明を完成するに到った。   Furthermore, when the acrylic precursor fiber is subjected to flameproofing treatment and carbonization treatment under a predetermined condition to obtain raw material carbon fiber, and then performing a plurality of surface oxidation treatments by electrolytic oxidation in nitric acid, the first step It was found that the carbon fiber having the above-mentioned good physical properties can be produced by performing the surface oxidation treatment with a predetermined amount of electricity, and the present invention has been completed.

よって、本発明の目的とするところは、上記問題を解決した炭素繊維及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a carbon fiber and a method for producing the same, which have solved the above problems.

上記目的を達成する本発明は、以下に記載のものである。   The present invention for achieving the above object is as follows.

[1] 強度が6100MPa以上、弾性率が340GPa以上、比重が1.76以上の炭素繊維であって、
加電流−加電圧測定より求めた傾きより得られる電気抵抗値(A)と、導電性ペーストを用いて加電流−加電圧測定より求めた傾きより得られる電気抵抗値(B)との比(A/B)が
A/B ≦ 1.30
の範囲であり、単繊維の測定長さ(X)と強度(Y)とで得られる関係式
y = aLn(X) + b
において傾き(a)が
0 ≧ a > −650
の範囲であり、且つ、走査型プローブ顕微鏡(SPM)測定によるインデント表面モジュラスが8〜11.5GPaの範囲である炭素繊維。
[1] A carbon fiber having a strength of 6100 MPa or more, an elastic modulus of 340 GPa or more, and a specific gravity of 1.76 or more,
Ratio between the electrical resistance value (A) obtained from the slope obtained from the applied current-applied voltage measurement and the electrical resistance value (B) obtained from the slope obtained from the applied current-applied voltage measurement using a conductive paste ( A / B) is A / B ≦ 1.30
The relational expression y = aLn (X) + b obtained from the measured length (X) and strength (Y) of the single fiber
The slope (a) is 0 ≧ a> −650
And an indentation surface modulus measured by a scanning probe microscope (SPM) is in the range of 8 to 11.5 GPa.

[2] 紡糸口金から紡糸原液を紡出して得たアクリル系前駆体繊維を、加熱空気中200〜280℃で熱処理して耐炎化繊維を得、得られた耐炎化繊維を、不活性ガス雰囲気中、温度1600〜2000℃で炭素化処理を行った後、硝酸中の電解酸化法による表面酸化処理を複数段で行う際に、1段目の表面酸化処理を50〜270c/gの電気量で行うことを特徴とする[1]に記載の炭素繊維の製造方法。   [2] Acrylic precursor fibers obtained by spinning a spinning dope from a spinneret are heat-treated at 200 to 280 ° C. in heated air to obtain flame-resistant fibers, and the resulting flame-resistant fibers are treated with an inert gas atmosphere. After performing carbonization treatment at a temperature of 1600 to 2000 ° C., when performing surface oxidation treatment by electrolytic oxidation in nitric acid in a plurality of stages, the first stage surface oxidation treatment is performed with an electric quantity of 50 to 270 c / g. The method for producing carbon fiber as described in [1], wherein

本発明の炭素繊維は、横軸に繊維の測定長さの対数値[Ln(X)]、縦軸に炭素繊維強度(Y)をとって形成される直線の傾き(a)、加電流−加電圧測定より求めた傾きより得られる電気抵抗値(A)と、導電性ペーストを用いて加電流−加電圧測定より求めた傾きより得られる電気抵抗値(B)との比(A/B)、並びに、走査型プローブ顕微鏡(SPM)測定によるインデント表面モジュラスが所定の範囲にあるので、炭素繊維強度のばらつきが少なく、高強度且つ高弾性率である。   The carbon fiber of the present invention has a logarithmic value [Ln (X)] of the measured length of the fiber on the horizontal axis and the slope (a) of the straight line formed by taking the carbon fiber strength (Y) on the vertical axis. Ratio (A / B) of the electrical resistance value (A) obtained from the slope obtained from the applied voltage measurement and the electrical resistance value (B) obtained from the slope obtained from the applied current-applied voltage measurement using a conductive paste ), And the indent surface modulus measured by a scanning probe microscope (SPM) is in a predetermined range, so that there is little variation in carbon fiber strength, and the strength and elasticity are high.

本発明の製造方法によれば、アクリル系原料炭素繊維を、硝酸中で電解酸化法により複数段の表面酸化処理を行う際に、1段目の表面酸化処理を通常よりも多量の電気量で行っているので、上記の良好な物性の炭素繊維を容易に製造することができる。   According to the production method of the present invention, when the acrylic raw material carbon fiber is subjected to a plurality of stages of surface oxidation treatment by electrolytic oxidation in nitric acid, the first stage surface oxidation treatment is performed with a larger amount of electricity than usual. Therefore, the above-described carbon fiber having good physical properties can be easily produced.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の炭素繊維は、強度が6100MPa以上、好ましくは6150MPa以上、弾性率が340GPa以上、好ましくは340〜370GPa、比重が1.76以上、好ましくは1.76〜1.80である。本発明の炭素繊維は、加電流−加電圧測定より求めた傾きより得られる電気抵抗値(A)と、導電性ペーストを用いて加電流−加電圧測定より求めた傾きより得られる電気抵抗値(B)との比(A/B)が
A/B ≦ 1.30
の範囲である。
The carbon fiber of the present invention has a strength of 6100 MPa or more, preferably 6150 MPa or more, an elastic modulus of 340 GPa or more, preferably 340 to 370 GPa, and a specific gravity of 1.76 or more, preferably 1.76 to 1.80. The carbon fiber of the present invention has an electrical resistance value (A) obtained from the slope obtained from the applied current-applied voltage measurement and an electrical resistance value obtained from the slope obtained from the applied current-applied voltage measurement using a conductive paste. Ratio (A / B) to (B) is A / B ≦ 1.30
Range.

電気抵抗値(A)は、以下の方法により測定する。図1(A)に示すように、評価用炭素繊維ストランド2を25cm採取し、両端部側2cmの位置に加電圧用電極4、6、電圧、電流測定用の検出端8、10を取り付ける。これらの電極、検出端を電極クリップで挟んで下記測定装置と電気的に接続する。加電流I[A]を変えて、それぞれについて加電圧E[v]を測定する。12は電圧、電流測定装置である。電圧、電流測定装置12には、北斗電工(株)製 電気化学測定装置HSV100を使用する。   The electrical resistance value (A) is measured by the following method. As shown in FIG. 1 (A), 25 cm of the evaluation carbon fiber strand 2 is sampled, and the applied electrodes 4 and 6 and the detection ends 8 and 10 for measuring the voltage and current are attached to the positions 2 cm on both ends. These electrodes and detection ends are sandwiched between electrode clips and electrically connected to the following measuring device. The applied current I [A] is changed and the applied voltage E [v] is measured for each. Reference numeral 12 denotes a voltage / current measuring device. As the voltage / current measuring device 12, an electrochemical measuring device HSV100 manufactured by Hokuto Denko Co., Ltd. is used.

この測定値から、次式
電気抵抗値(Ω・g/m2)
=(E[v]/I[A]) × 100/25 × 繊度[tex]/1000
により、電気抵抗値(A)を求める。
From this measured value, the electrical resistance value (Ω · g / m 2 )
= (E [v] / I [A]) x 100/25 x fineness [tex] / 1000
Thus, the electric resistance value (A) is obtained.

次に、図1(B)に示すように、同じ評価用炭素繊維ストランド2の両端からそれぞれの電極、検出端の取付位置までストランドの表面及び両端を覆って、導電性ペースト(ドータイト)14、16を塗布し、導電性ペーストが乾燥した後、電極、検出端を電極クリップで挟み、以下同様に、電気抵抗値(B)を求める。   Next, as shown in FIG. 1 (B), covering the surface and both ends of the strand from the both ends of the same carbon fiber strand 2 for evaluation to the respective electrode and the attachment position of the detection end, a conductive paste (dortite) 14, 16 is applied and the conductive paste is dried, the electrode and the detection end are sandwiched between electrode clips, and the electrical resistance value (B) is obtained in the same manner.

電気抵抗値(A)を電気抵抗値(B)で除して電気抵抗値比(A/B)を求める。   The electric resistance value (A) is divided by the electric resistance value (B) to obtain the electric resistance value ratio (A / B).

本発明において、定義される電気抵抗値(A)、(B)は上述の通りである。電気抵抗値(A)は、炭素繊維ストランド中の単繊維の表面を伝って流れる電流を主として測定していると考えられる。電気抵抗値(B)は、銀ペースト等の導電性ペーストでストランドの端面を覆っている炭素繊維ストランドを用いる。このため、電気抵抗値(B)の測定においては、電流は単繊維表面と単繊維内部を流れる電流を測定していると考えられる。   In the present invention, the defined electrical resistance values (A) and (B) are as described above. It is considered that the electric resistance value (A) mainly measures the current flowing along the surface of the single fiber in the carbon fiber strand. For the electrical resistance value (B), a carbon fiber strand covering the end face of the strand with a conductive paste such as a silver paste is used. For this reason, in the measurement of the electrical resistance value (B), it is considered that the current is a current flowing through the single fiber surface and inside the single fiber.

炭素化工程が終了して、電解酸化処理する前の炭素繊維は、表面が不規則で欠陥のある炭素層で覆われている。この炭素層は、電気抵抗値が高く且つ欠陥があるので、この欠陥を出発点として炭素繊維の切断が起き易く、強度が弱い。   The carbon fiber before the electrolytic oxidation treatment after the carbonization step is finished is covered with a carbon layer having irregular and defective surfaces. Since the carbon layer has a high electric resistance value and a defect, the carbon fiber is likely to be cut from the defect as a starting point, and the strength is weak.

しかし、本発明のように第1段の電解酸化処理を50c/g以上と通常よりも多量の電気量で処理すると、この欠陥のある炭素層が除去され、その結果、高強度の炭素繊維を得ることができる。   However, when the first-stage electrolytic oxidation treatment is performed with a larger amount of electricity than usual, such as 50 c / g or more as in the present invention, this defective carbon layer is removed, and as a result, high-strength carbon fibers are removed. Can be obtained.

上記電解酸化処理で除去される欠陥を有する炭素層はnmオーダー以下と考えられ、通常の顕微鏡観察では確認できない。しかし、明確に表面構造上の変化は生じており、その変化は電気抵抗値(A)、(B)、電気抵抗値比(A/B)として観察される。   The carbon layer having defects removed by the electrolytic oxidation treatment is considered to be on the order of nm or less and cannot be confirmed by ordinary microscope observation. However, a change in the surface structure clearly occurs, and the change is observed as an electric resistance value (A), (B) and an electric resistance value ratio (A / B).

本発明においては、A/B≦1.30になるまで電解酸化処理を行うことにより、目に見えない欠陥を有する炭素繊維から、欠陥を有する炭素層を除去し、高強度の炭素繊維を得るものである。A/B>1.3の場合は欠陥の多い表面層が多く残り、低強度の炭素繊維となる。   In the present invention, by performing electrolytic oxidation treatment until A / B ≦ 1.30, the carbon layer having defects is removed from the carbon fibers having invisible defects to obtain high-strength carbon fibers. Is. In the case of A / B> 1.3, many surface layers with many defects remain, resulting in low-strength carbon fibers.

なお、電解酸化処理において、第1段の処理電気量及び/又はトータル電気量が過多の場合は、得られる炭素繊維の、SPM測定によるインデント表面モジュラスが小さい数値になったり、単繊維の測定長さ(X)と強度(Y)とで得られる関係式における傾き(a)の絶対値が大きい数値になったり、ストランド強度が低下したりするので好ましくない。   In addition, in the electrolytic oxidation treatment, when the first stage treatment electricity and / or total electricity is excessive, the obtained carbon fiber has a small indent surface modulus by SPM measurement, or the measurement length of the single fiber. This is not preferable because the absolute value of the slope (a) in the relational expression obtained by the length (X) and the strength (Y) becomes a large numerical value or the strand strength decreases.

本発明の炭素繊維は、単繊維の測定長さ(X)と強度(Y)とで得られる関係式
y = aLn(X) + b
において傾き(a)が
0 ≧ a > −650
の範囲であり、且つ、走査型プローブ顕微鏡(SPM)測定によるインデント表面モジュラスが8〜11.5GPaの範囲であり、好ましくは繊維軸方向に配向する襞を表面に有する。
The carbon fiber of the present invention has a relational expression y = aLn (X) + b obtained from the measured length (X) and strength (Y) of a single fiber.
The slope (a) is 0 ≧ a> −650
And the indent surface modulus measured by scanning probe microscope (SPM) is in the range of 8 to 11.5 GPa, and preferably has wrinkles oriented in the fiber axis direction on the surface.

傾き(a)の絶対値が小さいことは、単位長さ中の欠陥数が少ないことを示す。   A small absolute value of the slope (a) indicates that the number of defects in the unit length is small.

走査型プローブ顕微鏡(SPM)測定によるインデント表面モジュラスが8より小さい炭素繊維は、電解酸化処理が過度である場合、処理温度が低く所定の弾性率が取れない場合などに得られる炭素繊維であり、複合材料用の炭素繊維として好ましくない。他方、インデント表面モジュラスが11.5GPaを超える炭素繊維は、電解酸化処理が不足している場合などに得られる炭素繊維であり、複合材料用の炭素繊維として好ましくない。   A carbon fiber having an indent surface modulus smaller than 8 as measured by a scanning probe microscope (SPM) is a carbon fiber obtained when the electrolytic oxidation treatment is excessive, when the treatment temperature is low and a predetermined elastic modulus cannot be obtained, It is not preferable as a carbon fiber for composite materials. On the other hand, a carbon fiber having an indentation surface modulus exceeding 11.5 GPa is a carbon fiber obtained when the electrolytic oxidation treatment is insufficient, and is not preferable as a carbon fiber for a composite material.

以上の構成にすることにより、本発明の炭素繊維は、上述したように、マトリックス材料と複合化して複合材料にした場合、マトリックス材料との良好な接着性を有する補強材として機能する。しかも、この炭素繊維は、毛羽や糸切れの少ない繊維である。   With the above configuration, as described above, the carbon fiber of the present invention functions as a reinforcing material having good adhesion to the matrix material when combined with the matrix material to form a composite material. Moreover, this carbon fiber is a fiber with less fuzz and yarn breakage.

本発明の炭素繊維は、例えば、以下の方法により製造することができる。   The carbon fiber of the present invention can be produced, for example, by the following method.

<前駆体繊維>
本例の炭素繊維の製造方法に用いる前駆体繊維は、紡糸口金から紡糸原液を紡出して得たアクリル系前駆体繊維を使用する。具体的にはアクリロニトリルを90質量%以上、好ましくは95質量%以上含有し、その他の単量体を10質量%以下含有する単量体を単独又は共重合した紡糸溶液を紡糸して製造する、アクリル系前駆体繊維が好ましい。その他の単量体としてはイタコン酸、(メタ)アクリル酸エステル等が例示される。
<Precursor fiber>
As the precursor fiber used in the carbon fiber manufacturing method of this example, an acrylic precursor fiber obtained by spinning a spinning dope from a spinneret is used. Specifically, 90% by mass or more, preferably 95% by mass or more of acrylonitrile, and produced by spinning a spinning solution obtained by homopolymerizing or copolymerizing a monomer containing 10% by mass or less of other monomers, Acrylic precursor fibers are preferred. Examples of other monomers include itaconic acid and (meth) acrylic acid esters.

紡糸方法としては湿式又は乾湿式紡糸方法いずれの方法も用いることができるが、最終的に得られた炭素繊維が表面に襞を形成し、樹脂との接着性が期待できるので、湿式紡糸方法がより好ましい。なお、紡糸溶剤としては、塩化亜鉛等の無機塩水溶液、DMF等の有機溶媒等を用いる事ができ、特に限定するものでは無い。繊維表面襞の形状の制御は、紡糸条件(紡糸液の粘度、紡糸速度等)を変えることにより調節できる。   As the spinning method, either a wet or dry wet spinning method can be used. However, since the finally obtained carbon fiber forms wrinkles on the surface and adhesiveness with the resin can be expected, the wet spinning method is used. More preferred. In addition, as a spinning solvent, inorganic salt aqueous solution, such as zinc chloride, organic solvents, such as DMF, etc. can be used, It does not specifically limit. Control of the shape of the fiber surface wrinkles can be adjusted by changing the spinning conditions (such as the viscosity of the spinning solution and the spinning speed).

紡糸後の原料繊維を、水洗、乾燥、延伸、オイリング処理することにより、前駆体繊維が得られる。   Precursor fibers are obtained by subjecting the raw fiber after spinning to water washing, drying, stretching, and oiling treatment.

<耐炎化処理>
得られた前駆体繊維は、引き続き加熱空気中200〜280℃で耐炎化処理される。この時の処理は、一般的に、延伸倍率0.85〜1.30の範囲で処理されるが、高強度・高弾性率の炭素繊維を得るためには、0.95以上がより好ましい。この耐炎化処理は、繊維密度1.3〜1.5g/cm3の耐炎化繊維とするものであり、耐炎化時の張力(延伸配分)は特に限定されるものでは無い。
<Flame resistance treatment>
The obtained precursor fiber is subsequently flameproofed at 200 to 280 ° C. in heated air. The treatment at this time is generally carried out in the range of a draw ratio of 0.85 to 1.30, but 0.95 or more is more preferable in order to obtain a carbon fiber with high strength and high elastic modulus. This flameproofing treatment is to obtain flameproofed fibers having a fiber density of 1.3 to 1.5 g / cm 3 , and the tension (stretch distribution) at the time of flameproofing is not particularly limited.

<第一炭素化処理>
上記耐炎化繊維は、従来の公知の方法を採用して炭素化することができる。例えば、窒素雰囲気下300〜800℃で第一炭素化炉で徐々に温度を高めると共に、耐炎化繊維の張力を制御して緊張下で1段目の第一炭素化をする。
<First carbonization treatment>
The flame-resistant fiber can be carbonized by employing a conventionally known method. For example, the temperature is gradually raised in a first carbonization furnace at 300 to 800 ° C. in a nitrogen atmosphere, and the first carbonization in the first stage is performed under tension by controlling the tension of the flameproof fiber.

<第二炭素化処理>
より炭素化を進め且つグラファイト化(炭素の高結晶化)を進める為に、窒素等の不活性ガス雰囲気下800〜1500℃で第二炭素化炉で徐々に温度を高めると共に、第一炭素化繊維の張力を制御して焼成する。
<Second carbonization treatment>
In order to promote further carbonization and graphitization (high crystallization of carbon), the temperature is gradually increased in a second carbonization furnace at 800 to 1500 ° C. in an inert gas atmosphere such as nitrogen, and the first carbonization is performed. Firing is performed by controlling the tension of the fiber.

<第三炭素化処理>
第三炭素化工程においても、窒素等の不活性ガス雰囲気下で徐々に温度を高めると共に、第二炭素化繊維の張力を制御して焼成する。
<Third carbonization treatment>
Also in the third carbonization step, the temperature is gradually raised in an inert gas atmosphere such as nitrogen and the tension of the second carbonized fiber is controlled and fired.

焼成温度については、最高温度領域で、好ましくは1600℃から2000℃、より好ましくは1800℃から2000℃に保つことがよい。   The firing temperature is preferably kept at 1600 ° C. to 2000 ° C., more preferably 1800 ° C. to 2000 ° C. in the maximum temperature range.

なお、各炭素化炉において、炉の入り口付近からに急激な温度変化、例えば最高温度に急激に繊維を導入することは、表面欠陥、内部欠陥を多く発生させるため好ましくない。また、炉内の高温部で必要以上に滞留時間が長くなると、グラファイト化が進み過ぎ、脆性化した炭素繊維が得られることになるので好ましくない。   In each carbonization furnace, it is not preferable to introduce fibers rapidly from the vicinity of the furnace entrance, for example, abruptly at the maximum temperature, because many surface defects and internal defects are generated. Further, if the residence time becomes longer than necessary at a high temperature portion in the furnace, graphitization proceeds excessively, and brittle carbon fibers are obtained, which is not preferable.

<表面酸化処理>
上記第三炭素化処理繊維は、前述したように目に見えない欠陥を有する炭素繊維から欠陥を有する炭素層を除去するために、引き続いて硝酸中の電解酸化法による表面酸化処理を複数段、好ましくは2〜5段で行う。複数段のうち、1段目の表面酸化処理を50〜270c/g、好ましくは50〜120c/gの電気量で行う。複数段全体を通しての電気量、即ちトータル電気量は、130〜320c/gとすることが好ましい。
<Surface oxidation treatment>
In order to remove the carbon layer having defects from the carbon fibers having invisible defects as described above, the third carbonized fiber is subsequently subjected to a plurality of stages of surface oxidation treatment by electrolytic oxidation in nitric acid, Preferably it is performed in 2 to 5 stages. Of the plurality of stages, the surface oxidation treatment of the first stage is performed at an electric quantity of 50 to 270 c / g, preferably 50 to 120 c / g. The amount of electricity throughout the plurality of stages, that is, the total amount of electricity is preferably 130 to 320 c / g.

各段の表面酸化処理は、陽極と陰極とを互いに逆方向に配列した2槽を1セットとした電解処理装置が用いられる。硝酸の濃度は、0.1〜2.0Nの範囲が好ましく、0.5〜1.5Nの範囲がより好ましい。   For the surface oxidation treatment at each stage, an electrolytic treatment apparatus is used in which two tanks each having an anode and a cathode arranged in opposite directions are set as one set. The concentration of nitric acid is preferably in the range of 0.1 to 2.0N, and more preferably in the range of 0.5 to 1.5N.

表面酸化処理において、1段目の処理電気量及び/又はトータル電気量が過少の場合は、得られる炭素繊維の、電気抵抗値比(A/B)が大きい数値になり、単繊維の測定長さ(X)と強度(Y)とで得られる関係式における傾き(a)の絶対値が大きい数値になり、及び/又は、ストランド強度が低下するので好ましくない。   In the surface oxidation treatment, if the amount of electricity processed and / or the total amount of electricity in the first stage is too small, the electric resistance ratio (A / B) of the obtained carbon fiber becomes a large value, and the measured length of the single fiber This is not preferable because the absolute value of the slope (a) in the relational expression obtained by the length (X) and the strength (Y) becomes a large numerical value and / or the strand strength decreases.

他方、表面酸化処理において、1段目の処理電気量及び/又はトータル電気量が過多の場合は、得られる炭素繊維の、SPM測定によるインデント表面モジュラスが小さい数値になり、単繊維の測定長さ(X)と強度(Y)とで得られる関係式における傾き(a)の絶対値が大きい数値になり、及び/又は、ストランド強度が低下するので好ましくない。   On the other hand, in the surface oxidation treatment, when the amount of electricity processed and / or the total electricity in the first stage is excessive, the indent surface modulus of the obtained carbon fiber by SPM measurement is a small value, and the measured length of the single fiber Since the absolute value of the slope (a) in the relational expression obtained by (X) and strength (Y) is a large numerical value and / or the strand strength is lowered, it is not preferable.

<サイジング処理>
上記第三炭素化処理繊維は、引き続いてサイジング処理を施す。サイジング方法は、従来の公知の方法で行うことができ、サイジング剤は、用途に即して適宜組成を変更して使用し、均一付着させた後に、乾燥することが好ましい。付着量は0.3〜2.6質量%が好ましい。サイジング剤としては、一般にエポキシ樹脂、ウレタン樹脂が例示されるが、特に限定されるものではない。
<Sizing process>
The third carbonized fiber is subsequently subjected to a sizing process. The sizing method can be carried out by a conventionally known method, and the sizing agent is preferably used after changing its composition as appropriate according to the application, and after uniformly adhering. The adhesion amount is preferably 0.3 to 2.6% by mass. The sizing agent is generally exemplified by an epoxy resin and a urethane resin, but is not particularly limited.

このようにして得られた炭素繊維は、繊維軸方向に配向する襞を表面に有するので、マトリックス材料と複合化して複合材料にした場合、マトリックス材料との良好な接着性を有する補強材として機能する。しかも、この炭素繊維は、樹脂含浸ストランド強度、樹脂含浸ストランド弾性率、及び密度が高いことに加えて、毛羽や糸切れの少ない繊維である。   The carbon fiber obtained in this manner has wrinkles oriented in the fiber axis direction on the surface, so when combined with a matrix material to form a composite material, it functions as a reinforcing material with good adhesion to the matrix material. To do. Moreover, this carbon fiber is a fiber with less fuzz and yarn breakage in addition to high resin-impregnated strand strength, resin-impregnated strand elastic modulus, and high density.

以下、本発明を実施例及び比較例により更に具体的に説明する。また、各実施例及び比較例における処理条件及び炭素繊維の物性についての評価方法は以下の方法により実施した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Moreover, the processing method in each Example and a comparative example and the evaluation method about the physical property of carbon fiber were implemented with the following method.

<比重>
アルキメデス法により測定した。試料繊維はアセトン中にて脱気処理し測定した。
<Specific gravity>
Measured by Archimedes method. The sample fiber was degassed in acetone and measured.

<ストランド強度、ストランド弾性率>
評価用炭素繊維ストランドについて、JIS R 7601に規定された方法により強度、弾性率を測定した。
<Strand strength, strand elastic modulus>
About the carbon fiber strand for evaluation, strength and elastic modulus were measured by the method prescribed in JIS R7601.

<SPMによるインデント表面モジュラス>
SPMによるインデント表面モジュラスは、以下の方法で測定した。
<Indented surface modulus by SPM>
The indentation surface modulus by SPM was measured by the following method.

評価用炭素繊維ストランドを数mmにカットした。これをエタノール中に分散させ、マイカ板上に滴下した。風乾して炭素繊維をマイカ板上に固定し、走査型プローブ顕微鏡 Nano ScopeIIIa(DI社製 SPM)にて表面インデントを測定した。得られたデータを付属のソフトを用いてモジュラスを算出した。   The evaluation carbon fiber strand was cut into several mm. This was dispersed in ethanol and dropped onto a mica plate. The carbon fiber was fixed on a mica plate by air drying, and the surface indent was measured with a scanning probe microscope Nano Scope IIIa (SPM manufactured by DI). The modulus of the obtained data was calculated using the attached software.

使用したプローブは#9を用いた。   The probe used was # 9.

<単繊維の測定長さ(X)と強度(Y)とで得られる関係式における傾き(a)>
評価用炭素繊維ストランドから単繊維を取り出し、JIS7606に従い強度測定を実施した。単繊維の測定長さ(X)を3、5、10、50mmとして強度測定を行い、n=20の平均値を単繊維強度(Y)とした。横軸に繊維の測定長さの対数値[Ln(X)]、縦軸に炭素繊維強度(Y)をとって得られた直線について傾き(a)を求めた。
<Inclination (a) in the relational expression obtained from measured length (X) and strength (Y) of single fiber>
A single fiber was taken out from the carbon fiber strand for evaluation, and the strength was measured in accordance with JIS7606. Strength measurement was performed with the measured length (X) of the single fiber being 3, 5, 10, 50 mm, and the average value of n = 20 was defined as the single fiber strength (Y). The slope (a) was determined for a straight line obtained by taking the logarithmic value [Ln (X)] of the measured length of the fiber on the horizontal axis and the carbon fiber strength (Y) on the vertical axis.

<単繊維のトランスバース方向の圧縮強度>
評価用炭素繊維ストランドから単繊維を取り出し、この単繊維をスライドグラス上に固定したサンプルを作製した。このサンプルについて、島津製作所製微小圧縮試験機「MCTM−200」を用いて、平面50μm圧子を使用し、負荷速度0.071mN/sec(7.25mgf/sec)にて圧縮強度の測定を行い、n=5の平均値を単繊維のトランスバース方向の圧縮強度とした。
<Compressive strength of single fiber in transverse direction>
A single fiber was taken out from the carbon fiber strand for evaluation, and a sample in which the single fiber was fixed on a slide glass was produced. About this sample, using a micro compression tester “MCTM-200” manufactured by Shimadzu Corporation, using a flat 50 μm indenter, the compression strength is measured at a load speed of 0.071 mN / sec (7.25 mgf / sec), The average value of n = 5 was defined as the compressive strength in the transverse direction of the single fiber.

単繊維のトランスバース方向の圧縮強度とは、単繊維の繊維軸方向に直角方向の圧縮強度を意味するものである。この圧縮強度は、評価用炭素繊維を用いて複合材料を作製した場合、複合材料の衝撃後圧縮強度(CAI)や圧縮特性に反映される。   The compressive strength in the transverse direction of the single fiber means the compressive strength in the direction perpendicular to the fiber axis direction of the single fiber. This compressive strength is reflected in the post-impact compressive strength (CAI) and compressive properties of the composite material when a composite material is produced using the evaluation carbon fiber.

実施例1
アクリロニトリル95質量%/アクリル酸メチル4質量%/イタコン酸1質量%よりなる共重合体紡糸原液を湿式紡糸し、水洗・乾燥・延伸・オイリングして繊維直径9.1μmのアクリル系前駆体繊維を得た。この前駆体繊維を、熱風循環式耐炎化炉の最高温度域を250℃に設定した加熱空気中で耐炎化処理し、耐炎化繊維を得た。
Example 1
A copolymer spinning stock solution of 95% by mass of acrylonitrile / 4% by mass of methyl acrylate / 1% by mass of itaconic acid is wet-spun, washed with water, dried, drawn and oiled to obtain an acrylic precursor fiber having a fiber diameter of 9.1 μm. Obtained. This precursor fiber was subjected to flame resistance treatment in heated air in which the maximum temperature range of the hot-air circulation type flame resistance furnace was set to 250 ° C. to obtain flame resistant fibers.

この耐炎化繊維を、第一炭素化炉の不活性雰囲気中300〜800℃の温度域を通過させて第一炭素化処理を施した。   This flame-resistant fiber was subjected to a first carbonization treatment by passing through a temperature range of 300 to 800 ° C. in an inert atmosphere of the first carbonization furnace.

この第一炭素化処理繊維を、第二炭素化炉の不活性雰囲気中800〜1500℃の温度域を通過させて第二炭素化処理を施した。   The first carbonized fiber was subjected to a second carbonization treatment by passing through a temperature range of 800 to 1500 ° C. in an inert atmosphere of a second carbonization furnace.

さらに、この第二炭素化処理繊維を、第三炭素化炉の不活性雰囲気中、最高温度1850℃の温度域を通過させて第三炭素化処理を施した。   Further, the second carbonized fiber was subjected to a third carbonization treatment by passing it through a temperature range of a maximum temperature of 1850 ° C. in an inert atmosphere of a third carbonization furnace.

次いで、この第三炭素化処理繊維を、30℃、濃度1.0Nの硝酸水溶液を電解液(処理剤)として用いたトータル処理段数が2段の表面酸化処理において、1段目の処理電気量70c/g、トータル処理電気量150c/gで、表面酸化処理を施した。   Next, in this third carbonization-treated fiber, in the surface oxidation treatment using a nitric acid aqueous solution of 30 ° C. and a concentration of 1.0 N as an electrolytic solution (treatment agent), the total number of treatment steps is two steps. The surface oxidation treatment was performed at 70 c / g and a total processing electricity of 150 c / g.

引き続き公知の方法で、サイジング剤を施し、乾燥して表1に示すストランド強度、ストランド弾性率、比重、電気抵抗値(A)、(B)、電気抵抗値比(A/B)、単繊維の測定長さ(X)と強度(Y)とで得られる関係式における傾き(a)の炭素繊維を得た。その結果、複合材料用の炭素繊維として良好な物性が得られた。   Subsequently, a sizing agent is applied and dried by a known method, and the strand strength, strand elastic modulus, specific gravity, electrical resistance value (A), (B), electrical resistance value ratio (A / B), monofilament shown in Table 1 A carbon fiber having a slope (a) in the relational expression obtained from the measured length (X) and strength (Y) was obtained. As a result, good physical properties were obtained as carbon fibers for composite materials.

実施例2〜5及び比較例1〜4
実施例1で得られた第三炭素化処理繊維を表1に示す条件で処理した以外は、実施例1と同様に、表面酸化処理、サイジング処理を行い、表1に示す物性の炭素繊維を得た。
Examples 2-5 and Comparative Examples 1-4
Except that the third carbonized fiber obtained in Example 1 was treated under the conditions shown in Table 1, the surface oxidation treatment and sizing treatment were performed in the same manner as in Example 1, and the carbon fibers having physical properties shown in Table 1 were obtained. Obtained.

以上の結果、実施例2〜5で得られた炭素繊維は表1に示すように、実施例1と同様に複合材料用の炭素繊維として良好な物性が得られた。また、実施例2で得られた炭素繊維は、単繊維のトランスバース方向の圧縮強度が1280MPaと高く、この圧縮強度からも複合材料用の炭素繊維として良好な物性が得られたことが解る。   As a result, as shown in Table 1, the carbon fibers obtained in Examples 2 to 5 had good physical properties as carbon fibers for composite materials as in Example 1. Moreover, the carbon fiber obtained in Example 2 has a high compressive strength of the single fiber in the transverse direction of 1280 MPa. From this compressive strength, it can be seen that good physical properties were obtained as a carbon fiber for a composite material.

他方、比較例1〜3におけるトータル処理段数、トータル処理電気量は、それぞれ実施例1、3、5と同じであるが、1段目の処理電気量は30c/g又は40c/gと少ないものであった。その結果、得られた炭素繊維は何れも、電気抵抗値比(A/B)が大きい数値、単繊維の測定長さ(X)と強度(Y)とで得られる関係式における傾き(a)の絶対値が大きい数値になり、ストランド強度が低下し、複合材料用の炭素繊維として良好な物性ではなかった。   On the other hand, the total number of processing stages and the total amount of processing electricity in Comparative Examples 1 to 3 are the same as those in Examples 1, 3, and 5, respectively, but the amount of processing electricity in the first stage is as small as 30 c / g or 40 c / g. Met. As a result, all of the obtained carbon fibers have a large electrical resistance ratio (A / B), a slope (a) in the relational expression obtained from the measured length (X) and strength (Y) of the single fiber. The absolute value of was a large value, the strand strength was lowered, and the carbon fiber for the composite material was not a good physical property.

また、比較例4では電解液(処理剤)として硫酸アンモニウムの水溶液を用いた。その結果、得られた炭素繊維は、SPM測定によるインデント表面モジュラスが大きい数値、単繊維の測定長さ(X)と強度(Y)とで得られる関係式における傾き(a)の絶対値が大きい数値になり、強度が低下し、複合材料用の炭素繊維として良好な物性ではなかった。   In Comparative Example 4, an aqueous solution of ammonium sulfate was used as the electrolytic solution (treatment agent). As a result, the obtained carbon fiber has a large absolute value of the slope (a) in the relational expression obtained by the numerical value having a large indent surface modulus by SPM measurement and the measured length (X) and strength (Y) of the single fiber. It became a numerical value, the strength decreased, and it was not a good physical property as a carbon fiber for a composite material.

比較例5〜10
実施例1で得られた第二炭素化処理繊維を表1に示す条件で処理した以外は、実施例1と同様に、第三炭素化処理、表面酸化処理、サイジング処理を行い、表1に示す物性の炭素繊維を得た。
Comparative Examples 5-10
Except that the second carbonized fiber obtained in Example 1 was treated under the conditions shown in Table 1, the third carbonization treatment, the surface oxidation treatment, and the sizing treatment were performed in the same manner as in Example 1, and Table 1 Carbon fibers having the physical properties shown were obtained.

比較例5では第三炭素化処理温度が低いものであった。その結果、得られた炭素繊維は、SPM測定によるインデント表面モジュラスが小さい数値になり、弾性率が低下し、複合材料用の炭素繊維として良好な物性ではなかった。   In Comparative Example 5, the third carbonization treatment temperature was low. As a result, the obtained carbon fiber had a small indent surface modulus by SPM measurement, the elastic modulus was lowered, and the carbon fiber for the composite material was not a good physical property.

比較例6〜7では第三炭素化処理温度が高いと共に、トータル処理段数、トータル処理電気量は実施例1〜5と同程度であるが、1段目の処理電気量は20c/gであった。その結果、得られた炭素繊維は何れも、ストランド強度は高いものであったが、電気抵抗値比(A/B)が大きい数値であった。また、比較例6で得られた炭素繊維は、単繊維の測定長さ(X)と強度(Y)とで得られる関係式における傾き(a)の絶対値が大きい数値になり、複合材料用の炭素繊維として良好な物性ではなかった。比較例7で得られた炭素繊維は、単繊維のトランスバース方向の圧縮強度が1100MPaと低く、複合材料用の炭素繊維として良好な物性ではなかった。   In Comparative Examples 6 to 7, the third carbonization treatment temperature is high, and the total number of processing stages and the total amount of electricity processed are the same as those in Examples 1 to 5, but the amount of electricity processed in the first stage is 20 c / g. It was. As a result, all of the obtained carbon fibers had high strand strength, but had a large electrical resistance value ratio (A / B). In addition, the carbon fiber obtained in Comparative Example 6 has a large absolute value of the slope (a) in the relational expression obtained from the measured length (X) and strength (Y) of the single fiber, and is for composite materials. It was not a good physical property as a carbon fiber. The carbon fiber obtained in Comparative Example 7 had a low compressive strength in the transverse direction of a single fiber of 1100 MPa, and was not a good physical property as a carbon fiber for a composite material.

比較例8では第三炭素化処理温度が高いと共に、トータル処理段数、トータル処理電気量は実施例1〜5と同程度であるが、1段目の処理電気量は280c/gであった。その結果、得られた炭素繊維は、ストランド強度は高いものであったが、SPM測定によるインデント表面モジュラスが小さい数値になり、単繊維の測定長さ(X)と強度(Y)とで得られる関係式における傾き(a)の絶対値が大きい数値になり、複合材料用の炭素繊維として良好な物性ではなかった。   In Comparative Example 8, the third carbonization temperature was high and the total number of processing stages and the total amount of electricity processed were the same as those in Examples 1 to 5, but the amount of electricity processed in the first stage was 280 c / g. As a result, although the obtained carbon fiber had high strand strength, the indent surface modulus by SPM measurement was a small numerical value, and it was obtained with the measured length (X) and strength (Y) of the single fiber. The absolute value of the slope (a) in the relational expression was a large numerical value, and the physical properties were not good as a carbon fiber for composite materials.

比較例9では、第三炭素化処理温度、トータル処理段数、1段目の処理電気量は比較例6〜7と同程度であるが、トータル処理電気量は100c/gであった。その結果、得られた炭素繊維は、電気抵抗値比(A/B)が大きい数値、単繊維の測定長さ(X)と強度(Y)とで得られる関係式における傾き(a)の絶対値が大きい数値になり、ストランド強度が低下し、複合材料用の炭素繊維として良好な物性ではなかった。   In Comparative Example 9, the third carbonization treatment temperature, the total number of treatment stages, and the amount of electricity processed in the first stage were the same as those in Comparative Examples 6 to 7, but the amount of electricity treated was 100 c / g. As a result, the obtained carbon fiber has a large electrical resistance value ratio (A / B), the absolute value of the slope (a) in the relational expression obtained from the measured length (X) and strength (Y) of the single fiber. The value was a large value, the strand strength was lowered, and the physical properties were not good as a carbon fiber for a composite material.

比較例10では、第三炭素化処理温度、トータル処理段数、1段目の処理電気量は比較例8と同程度であるが、トータル処理電気量は350c/gであった。その結果、得られた炭素繊維は、ストランド強度が低下し、SPM測定によるインデント表面モジュラスが小さい数値になり、単繊維の測定長さ(X)と強度(Y)とで得られる関係式における傾き(a)の絶対値が大きい数値になり、複合材料用の炭素繊維として良好な物性ではなかった。   In Comparative Example 10, the third carbonization treatment temperature, the total number of treatment stages, and the amount of electricity processed in the first stage were the same as those in Comparative Example 8, but the amount of electricity treated in total was 350 c / g. As a result, the obtained carbon fiber has a reduced strand strength, a small indent surface modulus by SPM measurement, and a slope in the relational expression obtained from the measured length (X) and strength (Y) of the single fiber. The absolute value of (a) was a large value, and it was not a good physical property as a carbon fiber for composite materials.

Figure 0005393070
Figure 0005393070

炭素繊維ストランドの電気抵抗値測定装置の一例を示す概念図であり、(A)は導電性ペーストを用いないで電気抵抗値(A)を測定する場合の概念図であり、(B)は導電性ペーストを用いて電気抵抗値(B)を測定する場合の概念図である。It is a conceptual diagram which shows an example of the electrical resistance value measuring apparatus of a carbon fiber strand, (A) is a conceptual diagram in the case of measuring an electrical resistance value (A) without using an electrically conductive paste, (B) is conductive It is a conceptual diagram in the case of measuring an electrical resistance value (B) using a conductive paste.

符号の説明Explanation of symbols

2 評価用炭素繊維ストランド
4、6 加電圧用電極
8、10 電圧、電流測定用の検出端
12 電圧、電流測定装置
14、16 導電性ペースト
2 Carbon fiber strand for evaluation 4, 6 Electrode for applied voltage 8, 10 Voltage, detection end for current measurement 12 Voltage, current measurement device 14, 16 Conductive paste

Claims (2)

強度が6100MPa以上、弾性率が340GPa以上、比重が1.76以上の炭素繊維であって、
加電流−加電圧測定より求めた傾きより得られる電気抵抗値(A)と、導電性ペーストを用いて加電流−加電圧測定より求めた傾きより得られる電気抵抗値(B)との比(A/B)が
A/B ≦ 1.30
の範囲であり、単繊維の測定長さ(X)と強度(Y)とで得られる関係式
y = aLn(X) + b
において傾き(a)が
0 ≧ a > −650
の範囲であり、且つ、走査型プローブ顕微鏡(SPM)測定によるインデント表面モジュラスが8〜11.5GPaの範囲である炭素繊維。
A carbon fiber having a strength of 6100 MPa or more, an elastic modulus of 340 GPa or more, and a specific gravity of 1.76 or more,
Ratio between the electrical resistance value (A) obtained from the slope obtained from the applied current-applied voltage measurement and the electrical resistance value (B) obtained from the slope obtained from the applied current-applied voltage measurement using a conductive paste ( A / B) is A / B ≦ 1.30
The relational expression y = aLn (X) + b obtained from the measured length (X) and strength (Y) of the single fiber
The slope (a) is 0 ≧ a> −650
And an indentation surface modulus measured by a scanning probe microscope (SPM) is in the range of 8 to 11.5 GPa.
紡糸口金から紡糸原液を紡出して得たアクリル系前駆体繊維を、加熱空気中200〜280℃で熱処理して耐炎化繊維を得、得られた耐炎化繊維を、不活性ガス雰囲気中、温度1600〜2000℃で炭素化処理を行った後、硝酸中の電解酸化法による表面酸化処理を複数段で行う際に、1段目の表面酸化処理を50〜120c/gの電気量で行うことを特徴とする請求項1に記載の炭素繊維の製造方法。
Acrylic precursor fibers obtained by spinning a spinning dope from a spinneret are heat-treated in heated air at 200 to 280 ° C. to obtain flame-resistant fibers. The obtained flame-resistant fibers are heated in an inert gas atmosphere at a temperature. After performing carbonization treatment at 1600 to 2000 ° C., when performing surface oxidation treatment by electrolytic oxidation in nitric acid in a plurality of stages, the first stage surface oxidation treatment is performed with an electric quantity of 50 to 120 c / g. The method for producing a carbon fiber according to claim 1.
JP2008175819A 2008-07-04 2008-07-04 Carbon fiber and method for producing the same Expired - Fee Related JP5393070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008175819A JP5393070B2 (en) 2008-07-04 2008-07-04 Carbon fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008175819A JP5393070B2 (en) 2008-07-04 2008-07-04 Carbon fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010013772A JP2010013772A (en) 2010-01-21
JP5393070B2 true JP5393070B2 (en) 2014-01-22

Family

ID=41700124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008175819A Expired - Fee Related JP5393070B2 (en) 2008-07-04 2008-07-04 Carbon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP5393070B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282364A (en) * 1987-05-15 1988-11-18 株式会社 ペトカ Surface treatment of carbon fiber
JP3755255B2 (en) * 1997-09-16 2006-03-15 東レ株式会社 Carbon fiber and method for producing the same
JP4365502B2 (en) * 2000-02-02 2009-11-18 東邦テナックス株式会社 Continuous production method of carbon fiber chopped strands
JP4023226B2 (en) * 2001-06-12 2007-12-19 東レ株式会社 Carbon fiber bundle processing method
JP5036182B2 (en) * 2005-12-01 2012-09-26 東邦テナックス株式会社 Carbon fiber, precursor and method for producing carbon fiber
JP4870511B2 (en) * 2006-09-29 2012-02-08 東邦テナックス株式会社 High strength carbon fiber

Also Published As

Publication number Publication date
JP2010013772A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
EP2208813B1 (en) Carbon fiber strand and process for producing the same
EP2905364A1 (en) Flame-proofed fiber bundle, carbon fiber bundle, and processes for producing these
CN111793857A (en) Carbon fiber surface treatment method
EP3816212A1 (en) Fiber-reinforced resin prepreg, molding, and fiber-reinforced thermoplastic resin prepreg
JP4662450B2 (en) Carbon fiber manufacturing method
JP2012122164A (en) Carbon fiber excellent in exhibiting mechanical characteristics
JP5393070B2 (en) Carbon fiber and method for producing the same
JP4726102B2 (en) Carbon fiber and method for producing the same
JP2009046770A (en) Acrylonitrile-based precursor fiber for carbon fiber
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP5999462B2 (en) Carbon fiber with excellent mechanical properties
JP4271019B2 (en) Carbon fiber manufacturing method
JP2023146344A (en) Carbon fiber bundle and method for manufacturing carbon fiber bundle
JP2009242971A (en) Carbon fiber having excellent compression strength and method for producing the same
JP5226238B2 (en) Carbon fiber and composite material using the same
JP6590040B2 (en) Carbon fiber with excellent mechanical properties
JP5419768B2 (en) Carbon fiber surface treatment method and carbon fiber produced by the treatment method
JP2004060069A (en) Polyacrylonitrile-based carbon fiber, and method for producing the same
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JP2004197278A (en) Method for producing carbon fiber
JP2006283225A (en) Method for producing flame-proofed fiber and carbon fiber
TW201934840A (en) Flame-retardant fiber bundle and method for manufacturing carbon fiber bundle
JP2016194191A (en) Carbon fiber excellent in mechanical property appearance
JP2006225769A (en) Flameproof fiber, carbon fiber and manufacturing method thereof
JP2007182645A (en) Method for producing acrylic fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees