JP5392471B2 - Electrostrictive polymer material, method for producing the same, and electronic component - Google Patents

Electrostrictive polymer material, method for producing the same, and electronic component Download PDF

Info

Publication number
JP5392471B2
JP5392471B2 JP2009029501A JP2009029501A JP5392471B2 JP 5392471 B2 JP5392471 B2 JP 5392471B2 JP 2009029501 A JP2009029501 A JP 2009029501A JP 2009029501 A JP2009029501 A JP 2009029501A JP 5392471 B2 JP5392471 B2 JP 5392471B2
Authority
JP
Japan
Prior art keywords
sample
polymer material
stretching
electrostrictive polymer
electrostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009029501A
Other languages
Japanese (ja)
Other versions
JP2010186849A (en
Inventor
博 丸澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009029501A priority Critical patent/JP5392471B2/en
Publication of JP2010186849A publication Critical patent/JP2010186849A/en
Application granted granted Critical
Publication of JP5392471B2 publication Critical patent/JP5392471B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、電歪高分子材料とその製造方法、及び電子部品に関し、より詳しくは、人工筋肉等の使用に適した電歪高分子材料とその製造方法、及び前記電歪高分子材料を使用した電歪アクチュエータ等の電子部品に関する。   The present invention relates to an electrostrictive polymer material, a method for producing the same, and an electronic component, and more specifically, an electrostrictive polymer material suitable for use in an artificial muscle, a method for producing the same, and the electrostrictive polymer material. The present invention relates to an electronic component such as an electrostrictive actuator.

近年、人工筋肉は、ロボット、介護機器、リハビリ機器等への応用が注目されており、盛んに研究されているが、この種の人工筋肉材料は、低電界の印加で所望の歪み量を得ることができ、かつ、歪みが発生したときに容易には弾性変形しない剛性の高い材料が望まれる。   In recent years, artificial muscles have attracted attention for application to robots, care devices, rehabilitation devices, and the like, and have been actively studied. However, this type of artificial muscle material obtains a desired amount of strain by applying a low electric field. A highly rigid material that can be used and that does not easily elastically deform when strain occurs is desired.

このような状況下、電歪材料は、電界強度の二乗に比例する歪みが生じることから、低電界の印加で大きな歪み量を得ることが可能と考えられる。その中でも電歪高分子材料は、小型・軽量化が可能であることから、人工筋肉への応用が期待されている。   Under such circumstances, the electrostrictive material is distorted in proportion to the square of the electric field strength, so that it is considered possible to obtain a large amount of strain by applying a low electric field. Among them, electrostrictive polymer materials are expected to be applied to artificial muscles because they can be reduced in size and weight.

そして、非特許文献1には、フッ化ビニリデン(vinylidene fluoride;以下、「VDF」という。) とクロロトリフルオロエチレン(chlorotrifluoroethylene;以下、「CTFE」という。)との重合比が88/12の共重合体、すなわちpoly(VDF−CTFE)(以下、「P(VDF−CTFE)」という。)からなる電歪高分子材料が記載されている。   Non-Patent Document 1 discloses that a polymerization ratio of vinylidene fluoride (hereinafter referred to as “VDF”) and chlorotrifluoroethylene (hereinafter referred to as “CTFE”) is 88/12. An electrostrictive polymer material made of a polymer, that is, poly (VDF-CTFE) (hereinafter referred to as “P (VDF-CTFE)”) is described.

この非特許文献1では、歪み量が印加電界の略二乗に比例して直線的に増加し、250MV/mの電界を印加した場合の電歪による歪み量が5.5%であり、かつ820MPaのヤング率を有する電歪高分子材料が記載されている。ここで、歪み量は、歪み前の原材料の全長に対する歪みを百分率で表記したものであり、例えば、1mmの全長に対し、電界が印加されて1μm歪むと歪み量は0.1%(=1/1000×100)ということになる。   In Non-Patent Document 1, the amount of strain increases linearly in proportion to the approximate square of the applied electric field, the amount of strain due to electrostriction when an electric field of 250 MV / m is applied is 5.5%, and 820 MPa. An electrostrictive polymer material having a Young's modulus is described. Here, the amount of strain is expressed as a percentage of the total length of the raw material before strain. For example, when the electric field is applied to the entire length of 1 mm and the strain is 1 μm, the strain amount is 0.1% (= 1). / 1000 × 100).

Qiming Zhang, Zhongyang Chang, “Electropolymers for Mechtronics and Artificial Muscles”,Handbook of Organics and Photonics, volume 0, アメリカ合衆国、American Scientific Publishers, 2006, p.35-38Qiming Zhang, Zhongyang Chang, “Electropolymers for Mechtronics and Artificial Muscles”, Handbook of Organics and Photonics, volume 0, American Scientific Publishers, 2006, p.35-38

しかしながら、非特許文献1は、250MV/mの高電界を印加した場合に歪み量が5.5%の高分子材料を得ることができるものの、ヤング率(縦弾性係数)が820MPa程度と低い。すなわち、歪が発生して大きく変位しても、ヤング率が低く、比較的小さな応力負荷で容易に弾性変形する。このため歪みが発生したときに大きな力を発揮することができず、人工筋肉用の電歪高分子材料としては、未だ不十分である。   However, although Non-Patent Document 1 can obtain a polymer material having a strain amount of 5.5% when a high electric field of 250 MV / m is applied, the Young's modulus (longitudinal elastic modulus) is as low as about 820 MPa. That is, even if the strain is generated and greatly displaced, the Young's modulus is low, and the elastic deformation easily occurs with a relatively small stress load. For this reason, a large force cannot be exhibited when strain occurs, and it is still insufficient as an electrostrictive polymer material for artificial muscle.

本発明はこのような事情に鑑みなされたものであって、低電界の印加で所望の歪み量を得ることができ、残留分極も小さく、かつ歪みが発生した場合に大きな力を安定的に得ることができ、絶縁耐力にも優れた電歪高分子材料とその製造方法、及び電歪アクチュエータ等の電子部品を提供することを目的とする。   The present invention has been made in view of such circumstances. A desired amount of strain can be obtained by applying a low electric field, the residual polarization is small, and a large force is stably obtained when strain occurs. It is an object of the present invention to provide an electrostrictive polymer material excellent in dielectric strength, a method for producing the same, and an electronic component such as an electrostrictive actuator.

電歪材料の場合、歪ませるためには分極させる必要があるが、抗電界が低いと低電界での印加で分極させることができる。したがって、抗電界は低いのが望ましい。また、印加電界が「0」の状態における残留歪みは極力小さいのが望ましく、したがって、延伸させても残留分極が小さいのが望まれる。   In the case of an electrostrictive material, it is necessary to polarize it in order to be distorted. Therefore, it is desirable that the coercive electric field is low. Further, it is desirable that the residual strain in the state where the applied electric field is “0” is as small as possible. Therefore, it is desirable that the residual polarization is small even if the applied electric field is extended.

一方、PVDFは強誘電性を有する圧電材料として知られており、該PVDFをシート状に延伸させることにより、常誘電相(β相)から強誘電相(α相)に転移する。   On the other hand, PVDF is known as a piezoelectric material having ferroelectricity, and transitions from a paraelectric phase (β phase) to a ferroelectric phase (α phase) by stretching the PVDF into a sheet shape.

しかしながら、PVDF単独では、延伸させた場合に残留分極が増加する傾向にあり、しかも電歪定数が低いため、所望の大きな歪み量を得ようとした場合、斯かる歪み量を得る前に素子が破壊されてしまうおそれがある。   However, PVDF alone tends to increase the remanent polarization when stretched, and the electrostriction constant is low, so when attempting to obtain a desired large amount of strain, the element must be obtained before obtaining such amount of strain. There is a risk of being destroyed.

そこで、本発明者が鋭意研究を行なったところ、VDF中に重合比で〜6%のCTFEを含ませて共重合体を作製し、この共重合体を1.5〜2.5倍の延伸倍率で延伸させることにより、延伸前に比べて残留分極が増加するのを抑制でき、しかも素子が破壊されることなく所望の大きな歪み量を得ることができるという知見を得た。しかも、低電界で歪ませることができ、ヤング率も大きく、歪みが発生して大きく変位した場合であっても、剛性が高く容易には弾性変形しない大きな力を得ることができ、かつ絶縁耐力の優れた電歪高分子材料を得ることができるという知見も併せて得た。 Therefore, when the present inventor conducted earnest research, a copolymer was prepared by containing 3 to 6% of CTFE in the polymerization ratio in VDF, and this copolymer was 1.5 to 2.5 times larger . It has been found that by stretching at a stretching ratio, it is possible to suppress an increase in remanent polarization compared to before stretching, and to obtain a desired large strain amount without destroying the element. In addition, it can be distorted with a low electric field, has a large Young's modulus, and can generate a large force that is highly rigid and not easily elastically deformed, even when the strain occurs and is greatly displaced. In addition, the knowledge that an electrostrictive polymer material excellent in the above can be obtained was also obtained.

本発明はこのような知見に基づきなされたものであって、本発明に係る電歪高分子材料は、VDFとCTFEとの重合比が97/3〜94/6とされたシート状の共重合体からなり、延伸倍率が1.5〜2.5倍となるように前記共重合体が所定方向に延伸処理されていることを特徴としている。   The present invention has been made on the basis of such knowledge, and the electrostrictive polymer material according to the present invention is a sheet-like co-polymer with a polymerization ratio of VDF and CTFE of 97/3 to 94/6. The copolymer is characterized in that the copolymer is stretched in a predetermined direction so that the stretch ratio is 1.5 to 2.5 times.

また、本発明の電歪高分子材料は、ヤング率が1GPa以上であることを特徴としている。   The electrostrictive polymer material of the present invention is characterized by having a Young's modulus of 1 GPa or more.

さらに、本発明に係る電歪高分子材料の製造方法は、VDFとCTFEとの重合比が97/3〜94/6に調製された共重合体を作製し、該共重合体を溶媒中に溶解させて溶解液を作製した後、該溶解液をシート状に成形加工して成形体を作製し、該成形体を所定方向に1.5〜2.5倍延伸させたことを特徴としている。   Furthermore, in the method for producing an electrostrictive polymer material according to the present invention, a copolymer prepared by setting a polymerization ratio of VDF and CTFE to 97/3 to 94/6 is prepared, and the copolymer is placed in a solvent. A solution is prepared by dissolving, and then the solution is molded into a sheet to produce a molded body, and the molded body is stretched 1.5 to 2.5 times in a predetermined direction. .

また、本発明に係る電子部品は、上記電歪高分子材料が使用されていることを特徴としている。   The electronic component according to the present invention is characterized in that the electrostrictive polymer material is used.

本発明の電歪高分子材料によれば、VDFとCTFEとの重合比が97/3〜94/6とされたシート状の共重合体からなり、延伸倍率が1.5〜2.5倍となるように前記共重合体が所定方向に延伸処理されているので、低電界の印加で所望の歪み量を得ることができ、残留分極の増加を抑制でき、しかもヤング率が大きく、歪みが生じても大きな力を発揮でき、かつ絶縁耐力の優れた電歪高分子材料を得ることができる。   According to the electrostrictive polymer material of the present invention, the electrostrictive polymer material is composed of a sheet-like copolymer having a polymerization ratio of VDF and CTFE of 97/3 to 94/6, and a draw ratio of 1.5 to 2.5 times. The copolymer is stretched in a predetermined direction so that a desired amount of strain can be obtained by applying a low electric field, an increase in remanent polarization can be suppressed, and a Young's modulus is large and strain is reduced. Even if it occurs, it is possible to obtain an electrostrictive polymer material that can exert a large force and has an excellent dielectric strength.

また、ヤング率が1GPa以上であるので、大きな歪みが生じても応力負荷に対し容易には弾性変形しない剛性の高い電歪高分子材料を得ることができる。   In addition, since the Young's modulus is 1 GPa or more, it is possible to obtain a highly rigid electrostrictive polymer material that is not easily elastically deformed against a stress load even when a large strain occurs.

本発明の電歪高分子材料の製造方法によれば、VDFとCTFEとの重合比が97/3〜94/6に調製された共重合体を作製し、該共重合体を溶媒中に溶解させて溶解液を作製した後、該溶解液をシート状に成形加工して成形体を作製し、該成形体を所定方向に1.5〜2.5倍延伸させたので、延伸前に強誘電体とすることができ、さらに延伸させることにより、より強誘電性の優れた電歪高分子材料を得ることができる。   According to the method for producing an electrostrictive polymer material of the present invention, a copolymer prepared with a polymerization ratio of VDF and CTFE of 97/3 to 94/6 is prepared, and the copolymer is dissolved in a solvent. Then, the solution is molded into a sheet to produce a molded body, and the molded body is stretched 1.5 to 2.5 times in a predetermined direction. An electrostrictive polymer material with more excellent ferroelectricity can be obtained by making it a dielectric and further stretching.

また、本発明の電子部品によれば、上記電歪高分子材料が使用されているので、低電界の印加で所望の歪み量を有し、しかも歪んだときにも大きな力を発揮でき、かつ良好な絶縁耐力を有する人工筋肉等の用途に適した電歪アクチュエータ等の電子部品を得ることができる。   According to the electronic component of the present invention, since the electrostrictive polymer material is used, the electrostrictive polymer material has a desired amount of distortion when applied with a low electric field, and can exert a great force even when distorted. It is possible to obtain an electronic component such as an electrostrictive actuator suitable for an application such as an artificial muscle having a good dielectric strength.

本発明に係る電歪高分子材料を使用して製造された電子部品としての電歪アクチュエータの一実施の形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the electrostrictive actuator as an electronic component manufactured using the electrostrictive polymer material which concerns on this invention. 実施例1における電歪高分子材料の平面図である。1 is a plan view of an electrostrictive polymer material in Example 1. FIG. 試料番号1におけるP(VDF−CTFE)の2倍延伸後のDEヒステリシス曲線を延伸前のDEヒステリシス曲線と共に示した特性図である。It is the characteristic view which showed DE hysteresis curve after 2 time extending | stretching of P (VDF-CTFE) in sample number 1 with DE hysteresis curve before extending | stretching. 試料番号2におけるPVDFの2倍延伸後のDEヒステリシス曲線を延伸前のDEヒステリシス曲線と共に示した特性図である。It is the characteristic view which showed DE hysteresis curve after 2 time extending | stretching of PVDF in sample number 2 with DE hysteresis curve before extending | stretching. 実施例2で作製した変位測定用試料の正面図である。6 is a front view of a displacement measurement sample produced in Example 2. FIG. 図5の変位測定用試料の側面図である。It is a side view of the sample for displacement measurement of FIG.

次に、本発明の実施の形態を詳説する。   Next, an embodiment of the present invention will be described in detail.

図1は本発明に係る電歪高分子材料を使用して製造された電子部品としての電歪アクチュエータの一実施の形態を模式的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing one embodiment of an electrostrictive actuator as an electronic component manufactured using an electrostrictive polymer material according to the present invention.

この電歪アクチュエータ1は、第1の素子本体2aの上下両面にはPt、Ni、Au等からなる電極3a、3bが形成されると共に、第1の素子素体2aの下面には電極3bを挟むような形態で第2の素子本体2bが貼着されている。   In the electrostrictive actuator 1, electrodes 3a and 3b made of Pt, Ni, Au, or the like are formed on the upper and lower surfaces of the first element body 2a, and the electrode 3b is formed on the lower surface of the first element body 2a. The 2nd element main body 2b is stuck in the form which pinches | interposes.

また、電歪アクチュエータ1は、基端が支持部材4で支持されており、電極3a、3bに電圧を印加することにより、先端が電歪効果によって矢印X方向に変位するように構成されている。   In addition, the electrostrictive actuator 1 is configured such that the base end is supported by the support member 4 and the tip is displaced in the arrow X direction by the electrostrictive effect by applying a voltage to the electrodes 3a and 3b. .

そして、上記第1及び第2の素子本体2a、2bは、本発明の電歪高分子材料で形成されている。   The first and second element bodies 2a and 2b are formed of the electrostrictive polymer material of the present invention.

すなわち、上記電歪高分子材料は、化学式(A)で表されるVDFと化学式(B)で表されるCTFEの重合比が97/3〜94/6となるように調製されたシート状の共重合体で形成されている。   That is, the electrostrictive polymer material is a sheet-like material prepared so that the polymerization ratio of VDF represented by the chemical formula (A) and CTFE represented by the chemical formula (B) is 97/3 to 94/6. It is formed of a copolymer.

Figure 0005392471
Figure 0005392471

Figure 0005392471
Figure 0005392471

ここで、VDFとCTFEとの重合比を97/3〜94/6としたのは以下の理由による。   Here, the reason why the polymerization ratio of VDF and CTFE was set to 97/3 to 94/6 is as follows.

VDFの重合体であるPVDFは、シート状に延伸させることにより、常誘電体相(α相)から強誘電体相(β相)に転移し、強誘電体材料となる。   PVDF, which is a polymer of VDF, transitions from a paraelectric phase (α phase) to a ferroelectric phase (β phase) by being stretched into a sheet shape, and becomes a ferroelectric material.

しかしながら、PVDF単独では、延伸処理を行った場合、延伸前のPVDFに比べ、抗電界Ecは略同等に低下させることはできるが、残留分極Prが大きくなり、したがって残留歪みが大きくなる。しかも、PVDF単独では電歪定数が低く、電界を印加していった場合、所望の歪み量が得られる前に素子が破壊されてしまうおそれがある。   However, with PVDF alone, when the stretching process is performed, the coercive electric field Ec can be reduced substantially the same as PVDF before stretching, but the remanent polarization Pr increases, and therefore the residual strain increases. Moreover, PVDF alone has a low electrostriction constant, and when an electric field is applied, the element may be destroyed before a desired amount of strain is obtained.

しかるに、本発明者が鋭意研究を行なったところ、VDFに粘弾性の高いCTFEを混合させて共重合体を生成することにより、抗電界Ecを低く維持しつつ残留分極Prを延伸前と同程度に抑制できることが分かった。   However, when the present inventor has intensively studied, by mixing VDF with CTFE having high viscoelasticity to produce a copolymer, the residual polarization Pr is kept at the same level as before stretching while keeping the coercive electric field Ec low. It was found that it can be suppressed.

そこで、本電歪高分子材料は、VDFにCTFEを混合させた共重合体、すなわちP(VDF−CTFE)で構成している。   Therefore, the electrostrictive polymer material is composed of a copolymer obtained by mixing CTFE with VDF, that is, P (VDF-CTFE).

ただし、延伸による残留分極Prの増加を抑制し、所望の電歪定数を確保するためには、CTFEの含有量は、重合比で少なくとも3%以上は必要である。   However, in order to suppress the increase in remanent polarization Pr due to stretching and to secure a desired electrostriction constant, the content of CTFE is required to be at least 3% in terms of polymerization ratio.

一方、CTFEを重合比で6%以上含ませると、粘弾性が過度に高くなってヤング率が1GPa未満に低下し、かつ耐電圧が大幅に低下する。   On the other hand, when CTFE is included in a polymerization ratio of 6% or more, the viscoelasticity is excessively increased, the Young's modulus is decreased to less than 1 GPa, and the withstand voltage is significantly decreased.

そこで、本実施の形態では、VDFとCTFEの重合比が97/3〜94/6となるように調製したシート状の共重合体を使用している。   Therefore, in this embodiment, a sheet-like copolymer prepared so that the polymerization ratio of VDF and CTFE is 97/3 to 94/6 is used.

また、前記共重合体は、数式(1)で示す延伸倍率Zが、1.5〜2.5倍となるように所定方向に延伸処理されている。   Moreover, the said copolymer is extended | stretched in the predetermined direction so that the draw ratio Z shown by Numerical formula (1) may be 1.5 to 2.5 times.

Z=x/x …(1)
ここで、xは延伸前のシート長、xは延伸後のシート長である。
Z = x / x 0 (1)
Here, x 0 is the sheet length before stretching, x is a sheet length after the stretching.

すなわち、上述したようにVDFとCTFEの重合比が97/3〜94/6からなるシート状の共重合体を延伸させることにより、残留分極が小さくヤング率の大きな強誘電体材料を得ることができる。   That is, as described above, by stretching a sheet-like copolymer having a polymerization ratio of VDF and CTFE of 97/3 to 94/6, a ferroelectric material having a small remanent polarization and a large Young's modulus can be obtained. it can.

しかしながら、延伸倍率Zが1.5倍未満の場合は、十分な強誘電性を得ることができず、電界を印加していった場合、所望の歪み量を得る前に素子が破壊されてしまうおそれがある。一方、延伸倍率Zが2.5倍を超えると、シートに薄肉化箇所が生じ、高電界での絶縁性を確保するのが困難になるおそれがある。   However, when the draw ratio Z is less than 1.5, sufficient ferroelectricity cannot be obtained, and when an electric field is applied, the element is destroyed before obtaining a desired strain amount. There is a fear. On the other hand, when the draw ratio Z exceeds 2.5 times, a thinned portion is generated in the sheet, and it may be difficult to ensure insulation in a high electric field.

そこで、本実施の形態では延伸倍率Zが1.5〜2.5倍となるように延伸処理している。   Therefore, in this embodiment, the stretching process is performed so that the stretching ratio Z is 1.5 to 2.5 times.

このように本実施の形態では、電歪高分子材料が、VDFとCTFEとの重合比が97/3〜94/6とされたシート状の共重合体からなり、延伸倍率が1.5〜2.5倍となるように前記共重合体が所定方向に延伸処理されているので、抗電界が低く、延伸前に比べて残留分極の増加が抑制され、かつヤング率が大きく絶縁耐力に優れた電歪高分子材料を得ることができ、これにより大振幅による所望の電歪特性を有する電歪アクチュエータを得ることが可能となる。   Thus, in this embodiment, the electrostrictive polymer material is a sheet-like copolymer in which the polymerization ratio of VDF and CTFE is 97/3 to 94/6, and the draw ratio is 1.5 to Since the copolymer is stretched in a predetermined direction so as to be 2.5 times, the coercive electric field is low, the increase in remanent polarization is suppressed as compared to before stretching, and the Young's modulus is large and the dielectric strength is excellent. Thus, an electrostrictive polymer material having desired electrostrictive characteristics with a large amplitude can be obtained.

そして、この電歪高分子材料は、以下のようにして製造することができる。   And this electrostrictive polymer material can be manufactured as follows.

まず、VDFとCTFEとの重合比が97/3〜94/6に調製された共重合体P(VDF−CTFE)を作製する。次いで、この共重合体が10〜20重量%となるように、エアモータ等の撹拌機を使用して溶剤中に溶解させ、溶解液を作製する。   First, a copolymer P (VDF-CTFE) having a polymerization ratio of VDF and CTFE of 97/3 to 94/6 is prepared. Next, the solution is dissolved in a solvent by using a stirrer such as an air motor so that the copolymer becomes 10 to 20% by weight to prepare a solution.

ここで、溶剤としては特に限定されるものではないが、N,N−ジメチルホルムアミド(DMF)やN−メチル−2−ピロリドン(NMP)等を好んで使用することができる。   Here, the solvent is not particularly limited, but N, N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) and the like can be preferably used.

次に、ドクターブレード法等を使用して、この溶解液を成形加工し、所定厚み(例えば、10〜20μm)のシート状の成形体を作製し、乾燥させる。   Next, this solution is molded using a doctor blade method or the like, and a sheet-like molded body having a predetermined thickness (for example, 10 to 20 μm) is produced and dried.

その後、成形体の両端を所定冶具で保持し、1.5〜2.5倍の長さとなるように延伸させる。そしてこれにより、シート厚みが延伸前の約1/1.5〜1/2.5の長さの電歪高分子材料を製造することができる。   Thereafter, both ends of the molded body are held with a predetermined jig and stretched to have a length of 1.5 to 2.5 times. Thus, an electrostrictive polymer material having a sheet thickness of about 1 / 1.5 to 1 / 2.5 before stretching can be produced.

このように上記電歪高分子材料は、所定重合比の共重合体P(VDF−CTFE)を溶媒中に溶解させ、その後シート成形した成形体を1.5〜2.5倍の長さとなるように延伸させているので、延伸前の段階で強誘電体とすることができ、さらに延伸させることにより、より強誘電性が向上した電歪高分子材料を得ることができる。   As described above, the electrostrictive polymer material is obtained by dissolving a copolymer P (VDF-CTFE) having a predetermined polymerization ratio in a solvent, and then forming a sheet formed into a sheet 1.5 to 2.5 times longer. Thus, it is possible to obtain a ferroelectric material at a stage before stretching, and by further stretching, an electrostrictive polymer material with improved ferroelectricity can be obtained.

尚、本発明は上記実施の形態に限定されるものではない。電歪高分子材料の分子量についても、特に限定されるものではなく、例えば、20万〜60万の分子量の共重合体P(VDF−CTFE)を好んで使用することができる。また、上記実施の形態では、電子部品として電歪アクチュエータを例示したが、その他のチップ型電歪部品も同様に適用可能であるのはいうまでもない。   The present invention is not limited to the above embodiment. The molecular weight of the electrostrictive polymer material is not particularly limited, and for example, a copolymer P (VDF-CTFE) having a molecular weight of 200,000 to 600,000 can be preferably used. In the above embodiment, the electrostrictive actuator is exemplified as the electronic component. However, it is needless to say that other chip type electrostrictive components can be similarly applied.

〔試料の作製〕
VDFとCTFEとの重合比が96/4に調製されたP(VDF−CTFE)からなる共重合体を用意した。
[Sample preparation]
A copolymer made of P (VDF-CTFE) having a polymerization ratio of VDF and CTFE of 96/4 was prepared.

そして、P(VDF−CTFE)が10〜20重量%となるように、P(VDF−CTFE)をDMF中にエアモータを使用して数時間溶解させ、溶解液を得た。   And P (VDF-CTFE) was dissolved in DMF for several hours using an air motor so that P (VDF-CTFE) might become 10 to 20 weight%, and the solution was obtained.

次いで、ドクターブレード法を使用し、厚みが10〜20μmの成形体を作製し、70℃の温度で乾燥させた。   Next, using a doctor blade method, a molded body having a thickness of 10 to 20 μm was produced and dried at a temperature of 70 ° C.

次に、得られた成形体を所定寸法に切断し、その後、両端を保持し、110℃の加熱下、成形体寸法の2倍の長さとなるように水平横方向に延伸させ、これにより試料番号1の電歪高分子材料を得た。   Next, the obtained molded body is cut into a predetermined size, and then both ends are held, and heated at 110 ° C., and stretched in the horizontal and lateral directions so as to be twice as long as the molded body dimension. An electrostrictive polymer material of No. 1 was obtained.

尚、この電歪高分子材料の厚みは、前記成形体の厚みの約1/2、すなわち5〜10μmであった。   The thickness of the electrostrictive polymer material was about ½ of the thickness of the molded body, that is, 5 to 10 μm.

次いで、図2に示すように、試料番号1の電歪高分子材料11を長さL1が30mm、幅Wが20mmとなるように切断し、端面からの距離tが2mmとなるように、スパッタ法で電歪高分子材料11の上下両面にPt電極12を形成した。   Next, as shown in FIG. 2, the electrostrictive polymer material 11 of sample number 1 is cut so that the length L1 is 30 mm and the width W is 20 mm, and the sputter is performed so that the distance t from the end surface is 2 mm. Pt electrodes 12 were formed on the upper and lower surfaces of the electrostrictive polymer material 11 by the method.

また、比較例として、P(VDF−CTFE)に代えてPVDF単独を使用した以外は、試料番号1と同様の方法・手順で、試料番号2の電歪高分子材料を作製した。   As a comparative example, an electrostrictive polymer material of sample number 2 was prepared in the same manner and procedure as sample number 1 except that PVDF alone was used instead of P (VDF-CTFE).

〔試料の評価〕
試料番号1及び2について、東陽テクニカ社製FCE−1型を使用し、延伸前と2倍延伸後のDEヒステリシス曲線を測定した。
(Sample evaluation)
For sample numbers 1 and 2, FCE-1 type manufactured by Toyo Technica Co., Ltd. was used, and DE hysteresis curves before stretching and after 2-fold stretching were measured.

図3は試料番号1のDEヒステリシス曲線を示している。図中、実線が2倍延伸後試料であり、破線が延伸前試料である。また、Pr1、Pr1′はそれぞれ2倍延伸後試料及び延伸前試料の残留分極、Ec1、Ec1′はそれぞれ2倍延伸後試料及び延伸前試料の抗電界である。   FIG. 3 shows the DE hysteresis curve of sample number 1. In the figure, the solid line is the sample after stretching twice, and the broken line is the sample before stretching. In addition, Pr1 and Pr1 ′ are remanent polarization of the sample after 2 times stretching and the sample before stretching, respectively, and Ec1 and Ec1 ′ are coercive electric fields of the sample after 2 times stretching and the sample before stretching, respectively.

また、図4は試料番号2のDEヒステリシス曲線を示している。図中、実線が2倍延伸後の試料であり、破線が延伸前の試料である。また、Pr2、Pr2′はそれぞれ2倍延伸後試料及び延伸前試料の残留分極、Ec2、Ec2′はそれぞれ2倍延伸後試料及び延伸前試料の抗電界である。   FIG. 4 shows the DE hysteresis curve of Sample No. 2. In the figure, the solid line is the sample after double stretching, and the broken line is the sample before stretching. In addition, Pr2 and Pr2 ′ are remanent polarization of the sample after 2 times stretching and the sample before stretching, respectively, and Ec2 and Ec2 ′ are coercive electric fields of the sample after 2 times stretching and the sample before stretching, respectively.

図4から明らかなように、2倍延伸後試料の抗電界Ec2は、約85MV/mであり、延伸前試料の抗電界Ec2′(≒120MV/m)に比べ、小さくなっているが、2倍延伸後試料の残留分極Pr2は延伸前試料の残留分極P2′に比べて増加しており、残留歪みが延伸前に比べ大きくなると考えられる。   As is clear from FIG. 4, the coercive electric field Ec2 of the sample after 2 times stretching is about 85 MV / m, which is smaller than the coercive electric field Ec2 ′ (≈120 MV / m) of the sample before stretching. The residual polarization Pr2 of the sample after double stretching is increased as compared with the residual polarization P2 ′ of the sample before stretching, and it is considered that the residual strain becomes larger than that before stretching.

これに対し試料番号1は、図3から明らかなように、抗電界に関しては、試料番号2と同様、2倍延伸後試料は約85MV/mと延伸前試料に比べて小さくなっており(Ec1<Ec1′)、しかも残留分極も延伸前試料に比べ、同等程度に抑制されている(Pr1≒Pr1′)。   On the other hand, as is clear from FIG. 3, sample No. 1 has a coercive electric field of about 85 MV / m, which is smaller than the sample before extension, as in sample No. 2 (Ec1). <Ec1 ′) and the remanent polarization is suppressed to the same extent as compared with the sample before stretching (Pr1≈Pr1 ′).

すなわち、試料番号1の試料は、試料番号2の試料に比べ、延伸処理を行うことにより、抗電界は略同等に小さくなり、かつ残留分極の増加も抑制されている。したがって低電界で歪ませることができ、かつ試料番号2の試料に比べ、残留歪みの小さい電歪高分子材料が得られることが分かった。   That is, the sample No. 1 sample has a coercive electric field substantially equal to that of the sample No. 2 sample, and the residual polarization is suppressed from increasing by performing the stretching process. Therefore, it was found that an electrostrictive polymer material which can be distorted by a low electric field and has a small residual strain as compared with the sample of sample number 2 can be obtained.

また、試料番号1について、延伸前試料と2倍延伸後試料について、フーリエ変換赤外分光光度計(FT−IR)を使用し、強誘電体相(β相)と常誘電体相(α相)との比β/αを求めたところ、延伸前試料は2.0であったのに対し、2倍延伸後試料は12.6となり、延伸処理を行うことにより、強誘電性が大幅に向上することが分かった。   In addition, with respect to Sample No. 1, a Fourier transform infrared spectrophotometer (FT-IR) is used for a sample before stretching and a sample after stretching twice, and a ferroelectric phase (β phase) and a paraelectric phase (α phase) ) And the ratio β / α were 2.0, the sample before stretching was 2.0, whereas the sample after 2 times stretching was 12.6. By performing the stretching treatment, the ferroelectricity was greatly increased. It turns out that it improves.

尚、VDFとCTFEの重合比が80/20の共重合体を作製してDEヒステリシス曲線を測定しようとしたが、後述する実施例2から明らかなように、重合比を80/20にすると耐電圧が極端に低くなり、DEヒステリシス曲線を測定することができなかった。   Incidentally, an attempt was made to measure a DE hysteresis curve by preparing a copolymer having a polymerization ratio of VDF and CTFE of 80/20. However, as is clear from Example 2 described later, when the polymerization ratio is 80/20, resistance The voltage became extremely low and the DE hysteresis curve could not be measured.

試料番号1、2の共重合体について、〔実施例1〕に示した延伸前試料及び2倍延伸後試料に加え、〔実施例1〕と同様の方法・手順で、延伸倍率が1.5倍及び2.5倍の試料を作製し、それぞれ試料番号11、12とした。   For the copolymers of Sample Nos. 1 and 2, in addition to the sample before stretching and the sample after 2-fold stretching shown in [Example 1], the stretching ratio was 1.5 in the same manner and procedure as in [Example 1]. Double and 2.5-fold samples were prepared and designated as sample numbers 11 and 12, respectively.

また、〔実施例1〕と同様の方法・手順で、VDFとCTFEの重合比が80/20の共重合体を作製し、延伸前試料、及び延伸倍率が1.5倍、2倍、2.5倍の試料を作製し、試料番号13とした。   Further, a copolymer having a polymerization ratio of VDF and CTFE of 80/20 was prepared in the same manner and procedure as in [Example 1], and the sample before stretching and the stretching ratio were 1.5 times, 2 times, 2 times, A sample of 5 times was prepared and designated as sample number 13.

試料番号11〜13の各試料について、直流電圧を300V/sの昇圧速度で印加して耐電圧を測定した。   With respect to each of samples Nos. 11 to 13, a withstand voltage was measured by applying a DC voltage at a boosting rate of 300 V / s.

また、試料番号11〜13のうち、延伸前試料及び2倍延伸後試料について、粘弾性計(レオメトリックサイエンス社製RSAIII)を使用し、ヤング率を測定した。   Moreover, the Young's modulus was measured about the sample before extending | stretching among the sample numbers 11-13, and the sample after 2 time extending | stretching using the viscoelasticity meter (RSAIII by Rheometric Science).

さらに、試料番号11〜13のうち、延伸前試料及び2倍延伸後試料について、上下両面にPt電極12a、12bを形成した。   Furthermore, among the sample numbers 11 to 13, Pt electrodes 12a and 12b were formed on the upper and lower surfaces of the sample before stretching and the sample after double stretching.

一方、前記Pt電極が形成されていない延伸前試料及び2倍延伸後試料について、長さL2が25mm、幅Wが20mmに切断したシートを用意した。   On the other hand, for the pre-stretched sample and the double-stretched sample in which the Pt electrode was not formed, a sheet was prepared by cutting the length L2 to 25 mm and the width W to 20 mm.

そして、図5及び図6に示すように、これらシート13をエポキシ樹脂14を介し、Pt電極12aが形成された表面に貼着し、シート13をインアクティブ層とする試料番号11〜13の各電歪アクチュエータを作製した。   And as shown in FIG.5 and FIG.6, these sheet | seats 13 are stuck to the surface in which the Pt electrode 12a was formed through the epoxy resin 14, and each of the sample numbers 11-13 which use the sheet | seat 13 as an inactive layer An electrostrictive actuator was fabricated.

次いで、これら試料の長手方向の一方の端部を支持部材(不図示)で保持し、Pt電極12a、12bに電圧を印加して各試料を矢印B方向に歪ませる共に、レーザ変位計(キーエンス社製LK−GD500)を使用して矢印A方向にレーザ光を照射した。そしてこれにより歪み量が0.20%及び0.50%のときの印加電界を測定した。   Next, one end in the longitudinal direction of these samples is held by a support member (not shown), and a voltage is applied to the Pt electrodes 12a and 12b to distort each sample in the direction of arrow B. The laser beam was irradiated in the direction of arrow A using LK-GD500 manufactured by the company. Then, the applied electric field was measured when the strain amount was 0.20% and 0.50%.

表1は各試料の測定結果である。   Table 1 shows the measurement results of each sample.

Figure 0005392471
Figure 0005392471

試料番号12は、PVDF単独で形成されており、耐電圧は十分に大きいが、電歪定数が小さいため、歪み量が0.20%又は0.50%となる前に試料が破壊した。   Sample No. 12 is formed of PVDF alone and has a sufficiently high withstand voltage. However, since the electrostriction constant is small, the sample was destroyed before the strain amount reached 0.20% or 0.50%.

試料番号13は、CTFEの含有量が過剰であるため、耐電圧が極めて低く、歪み量が0.20%又は0.50%となる前に試料が破壊した。しかも、ヤング率も小さく、人工筋肉用の電歪材料には適さないことが分かった。   Sample No. 13 had an excessive CTFE content, so the withstand voltage was extremely low, and the sample was destroyed before the strain amount reached 0.20% or 0.50%. Moreover, the Young's modulus is small, and it has been found that the material is not suitable for an electrostrictive material for artificial muscle.

これに対し試料番号11は、延伸処理を行うことによりヤング率は3.255GPaと延伸前(1.685GPa)に比べて飛躍的に向上し、かつ97.3MV/m及び111.9MV/mの電界を印加することにより、それぞれ歪み量が0.20%及び0.50%の電歪アクチュエータを得ることができ、破壊電界に対して十分に余裕のある印加電界で駆動できることが分かった。   On the other hand, Sample No. 11 has a Young's modulus of 3.255 GPa, which is dramatically improved as compared with that before stretching (1.685 GPa) by performing the stretching treatment, and 97.3 MV / m and 111.9 MV / m. It was found that by applying an electric field, electrostrictive actuators having strain amounts of 0.20% and 0.50% can be obtained, respectively, and it can be driven with an applied electric field having a sufficient margin with respect to the breakdown electric field.

ロボット、介護機器、リハビリ機器等の人工筋肉用に有用である。   It is useful for artificial muscles such as robots, care devices, and rehabilitation devices.

2a 第1の素子本体(電歪高分子材料)
2b 第2の素子本体(電歪高分子材料)
2a First element body (electrostrictive polymer material)
2b Second element body (electrostrictive polymer material)

Claims (4)

フッ化ビニリデンとクロロトリフルオロエチレンとの重合比が97/3〜94/6とされたシート状の共重合体からなり、
延伸倍率が1.5〜2.5倍となるように前記共重合体が所定方向に延伸処理されていることを特徴とする電歪高分子材料。
A sheet-like copolymer having a polymerization ratio of vinylidene fluoride and chlorotrifluoroethylene of 97/3 to 94/6,
An electrostrictive polymer material, wherein the copolymer is stretched in a predetermined direction so that a stretching ratio is 1.5 to 2.5 times.
ヤング率が1GPa以上であることを特徴とする請求項1記載の電歪高分子材料。   The electrostrictive polymer material according to claim 1, wherein Young's modulus is 1 GPa or more. フッ化ビニリデンとクロロトリフルオロエチレンとの重合比が97/3〜94/6に調製された共重合体を作製し、該共重合体を溶媒中に溶解させて溶解液を作製した後、該溶解液をシート状に成形加工して成形体を作製し、該成形体を所定方向に1.5〜2.5倍延伸させたことを特徴とする電歪高分子材料の製造方法。   A copolymer having a polymerization ratio of vinylidene fluoride and chlorotrifluoroethylene of 97/3 to 94/6 was prepared, and the copolymer was dissolved in a solvent to prepare a solution. A method for producing an electrostrictive polymer material, comprising forming a molded body by molding a solution into a sheet and stretching the molded body in a predetermined direction by 1.5 to 2.5 times. 請求項1又は請求項2記載の電歪高分子材料が使用されていることを特徴とする電子部品。   An electronic component, wherein the electrostrictive polymer material according to claim 1 or 2 is used.
JP2009029501A 2009-02-12 2009-02-12 Electrostrictive polymer material, method for producing the same, and electronic component Expired - Fee Related JP5392471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009029501A JP5392471B2 (en) 2009-02-12 2009-02-12 Electrostrictive polymer material, method for producing the same, and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009029501A JP5392471B2 (en) 2009-02-12 2009-02-12 Electrostrictive polymer material, method for producing the same, and electronic component

Publications (2)

Publication Number Publication Date
JP2010186849A JP2010186849A (en) 2010-08-26
JP5392471B2 true JP5392471B2 (en) 2014-01-22

Family

ID=42767328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009029501A Expired - Fee Related JP5392471B2 (en) 2009-02-12 2009-02-12 Electrostrictive polymer material, method for producing the same, and electronic component

Country Status (1)

Country Link
JP (1) JP5392471B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6322900B2 (en) * 2013-04-26 2018-05-16 デクセリアルズ株式会社 POLYMER ELEMENT, ITS MANUFACTURING METHOD, LENS MODULE, AND IMAGING DEVICE

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733939A (en) * 1993-07-23 1995-02-03 Central Glass Co Ltd Vinylidene fluoride resin composition
JP4361241B2 (en) * 2002-04-26 2009-11-11 株式会社クレハ Non-aqueous secondary battery electrode binder composition, electrode mixture composition, electrode and secondary battery
JP2006153842A (en) * 2004-11-02 2006-06-15 Hiroshima Univ Sheet for detecting fluctuating load, and fluctuating load detecting circuit
JP2009522775A (en) * 2005-12-28 2009-06-11 ザ・ペン・ステート・リサーチ・ファンデーション High electrical energy density polymer capacitor with high discharge rate and high efficiency with special polyvinylidene fluoride copolymer and terpolymer as dielectric
JP2008096371A (en) * 2006-10-16 2008-04-24 Seiko Epson Corp Inkjet head
JP5078362B2 (en) * 2007-01-10 2012-11-21 株式会社クレハ Method for producing polymer piezoelectric film and polymer piezoelectric film

Also Published As

Publication number Publication date
JP2010186849A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
US11171281B2 (en) Piezoelectric nanoparticle-polymer composite structure
Gebrekrstos et al. Nanoparticle-enhanced β-phase formation in electroactive PVDF composites: a review of systems for applications in energy harvesting, EMI shielding, and membrane technology
Martins et al. Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications
Romasanta et al. Increasing the performance of dielectric elastomer actuators: A review from the materials perspective
US7402264B2 (en) Sensing/actuating materials made from carbon nanotube polymer composites and methods for making same
Kaczmarek et al. Advances in the study of piezoelectric polymers
Tugui et al. Dielectric elastomers with dual piezo-electrostatic response optimized through chemical design for electromechanical transducers
Gebrekrstos et al. Does the nature of chemically grafted polymer onto PVDF decide the extent of electroactive β-polymorph?
Qiao et al. Synergistic effects of Maxwell stress and electrostriction in electromechanical properties of poly (vinylidene fluoride)-based ferroelectric polymers
CN104409626A (en) Preparation method for polyvinylidene fluoride (PVDF)-based high voltage coefficient thin film
US20220181543A1 (en) Lead-free piezo composites and methods of making thereof
JP6300458B2 (en) Multilayer piezoelectric element
US20190023817A1 (en) Ferroelectric polymers from dehydrofluorinated PVDF
JP5392471B2 (en) Electrostrictive polymer material, method for producing the same, and electronic component
Ram et al. Fluorinated nanocellulose-reinforced all-organic flexible ferroelectric nanocomposites for energy generation
US10131765B2 (en) Method for manufacturing composite material polarizable under the action of a weak electric field
EP3583138B1 (en) Ferroelectric polymers from dehydrofluorinated pvdf
KR20140083315A (en) Cantilever type energy harverster
Zhu Interfacial preparation of ferroelectric polymer nanostructures for electronic applications
Kim et al. Piezoelectric polymeric thin films tuned by carbon nanotube fillers
KR20170102953A (en) Polymer piezoelectric film and manufacturing method thereof
KR101972242B1 (en) Piezoelectric polymer film
Shafeeq et al. Nanohydroxyapatite embedded blends of ethylene‐co‐vinyl acetate and millable polyurethane as piezoelectric materials: dielectric, viscoelastic and mechanical features
JP2010193534A (en) Multilayer polymer actuator and method for manufacturing the same
Zhang et al. Electromechanical behavior of electroactive P (VDF-TrFE) copolymers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131001

R150 Certificate of patent or registration of utility model

Ref document number: 5392471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees