JP5392397B2 - Steel sheet with small welding deformation and excellent corrosion resistance - Google Patents

Steel sheet with small welding deformation and excellent corrosion resistance Download PDF

Info

Publication number
JP5392397B2
JP5392397B2 JP2012500560A JP2012500560A JP5392397B2 JP 5392397 B2 JP5392397 B2 JP 5392397B2 JP 2012500560 A JP2012500560 A JP 2012500560A JP 2012500560 A JP2012500560 A JP 2012500560A JP 5392397 B2 JP5392397 B2 JP 5392397B2
Authority
JP
Japan
Prior art keywords
less
steel
deformation
welding
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012500560A
Other languages
Japanese (ja)
Other versions
JPWO2011102259A1 (en
Inventor
隆之 上村
和幸 鹿島
英昭 幸
友弥 川畑
浩史 中村
秀治 岡口
和茂 有持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012500560A priority Critical patent/JP5392397B2/en
Publication of JPWO2011102259A1 publication Critical patent/JPWO2011102259A1/en
Application granted granted Critical
Publication of JP5392397B2 publication Critical patent/JP5392397B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、造船、海洋構造物、建築構造物、橋梁、土木などの分野で用いられる、溶接変形が小さく耐食性に優れた鋼板に関する。特に、隅肉溶接の作業時に発生する溶接変形が小さい厚鋼板に関する。   The present invention relates to a steel plate having a small weld deformation and excellent corrosion resistance, which is used in the fields of shipbuilding, offshore structures, building structures, bridges, civil engineering, and the like. In particular, the present invention relates to a thick steel plate with small welding deformation that occurs during fillet welding.

一般に、各種溶接鋼構造物の製作時には、溶接金属の凝固収縮およびその後の冷却と相変態による収縮・膨張により、変形が発生する。溶接変形の代表的なものとして、T型隅肉溶接部の角変形が挙げられる。角変形を残したまま構造物を製作すると、部材の変形により座屈強度が大幅に低下したり、破壊特性が劣化したりするので、設計者が狙った構造物とはならない。そのような事態を防ぐために、様々な工夫により防止策が講じられている。   In general, during the production of various welded steel structures, deformation occurs due to solidification shrinkage of the weld metal and subsequent shrinkage and expansion due to cooling and phase transformation. As a typical welding deformation, there is an angular deformation of a T-type fillet weld. If a structure is manufactured with the angular deformation left, the buckling strength is greatly reduced due to the deformation of the member, or the fracture characteristics are deteriorated. Therefore, the structure is not aimed by the designer. In order to prevent such a situation, various measures have been taken to prevent it.

現状適用されている溶接変形防止策を大別すると、次の(i)〜(iii)の3つになる。   The welding deformation prevention measures currently applied are roughly divided into the following three (i) to (iii).

(i) 設計の工夫(被変形部材の剛性を高める方法)
溶接変形が残留する原因は、溶接金属や母材の溶接止端部近傍が塑性変形を受けるためである。塑性変形を受けた部位は、その外側の部分を弾性的に変形させようとするが、剛性が高い場合、すなわち断面積が大きい場合には、その変形量は小さくなる。したがって、断面積を大きくするように設計変更することが一つの防止策となり得る。しかしながら、断面積を大きくするという設計変更は、使用鋼材のコストアップ、重量アップおよび工期長期化の面でロスが多い。
(i) Design ingenuity (method to increase the rigidity of the deformed member)
The reason why the welding deformation remains is that the vicinity of the weld toe of the weld metal or the base metal is subjected to plastic deformation. The part that has undergone plastic deformation tends to elastically deform its outer part, but when the rigidity is high, that is, when the cross-sectional area is large, the amount of deformation is small. Therefore, changing the design to increase the cross-sectional area can be one preventive measure. However, the design change to increase the cross-sectional area has a lot of loss in terms of cost increase, weight increase and construction period extension of the steel material used.

(ii) 溶接時の工夫
溶接時に、何らかの工夫をしておくことで溶接変形を防止することが可能である。幾つかの方法があるが、まずは溶接前に予め逆方向に曲げておくことである。溶接後には角変形が発生するが、予め逆方向に曲げておくことにより所望の形状に仕上がる可能性がある。また、溶接時に端部を拘束しておき変形を許容しない方法もある。さらに、後行トーチを設置し、溶接後に適切な位置を再加熱することにより逆に曲げ戻す方法も採られる場合がある。しかしながら、何れも大幅な工数増加を伴うので、コストアップ要因となる。
(ii) Device for welding Welding deformation can be prevented by making some device for welding. There are several methods, but the first is to bend in the opposite direction before welding. Although angular deformation occurs after welding, there is a possibility that it will be finished in a desired shape by bending it in the opposite direction in advance. There is also a method in which the end is constrained during welding and deformation is not allowed. Further, there is a case where a backward torch is installed and bent back by reheating an appropriate position after welding. However, all of them are accompanied by a significant increase in man-hours, which causes a cost increase.

(iii) 溶接後の矯正加工
溶接後に矯正する方法として、機械的矯正と線状加熱矯正がある。しかしながら、これらの方法も大幅な工数増加が必要であるとともに熟練した高度な技能も要求される。
(iii) Straightening after welding There are mechanical straightening and linear heating straightening as methods for straightening after welding. However, these methods also require a significant increase in man-hours and require highly skilled skills.

上記の(i)〜(iii)の対策はすべて製作上の工夫であるが、溶接材料の工夫により溶接変形の低減を図ることが、たとえば、特許文献1に提案されている。しかしながら、溶接材料のコストアップが経済性を阻害したり、また効果が不十分であったりと、問題は多く、現実には適用が進んでいない状況である。   All of the measures (i) to (iii) above are contrivances in production. For example, Patent Document 1 proposes reducing welding deformation by contriving with welding materials. However, there are many problems that the increase in the cost of the welding material hinders the economic efficiency and the effect is insufficient, and the application is not progressing in reality.

これに対して、母材となる鋼材の工夫により溶接変形を抑制しようとした例もあり、次のとおり、いくつか提案されている。   On the other hand, there is an example of trying to suppress welding deformation by devising a steel material as a base material, and some have been proposed as follows.

特許文献2には、NbとMoを複合添加することにより溶接熱履歴中の析出を促し降伏応力を高める方法が開示されている。しかしながら、特にMoの添加は大幅なコストアップをもたらすため、汎用性に乏しい。   Patent Document 2 discloses a method of increasing yield stress by promoting precipitation in welding heat history by adding Nb and Mo in combination. However, since addition of Mo brings about a significant cost increase, it is poor in versatility.

特許文献3および4には、母材となる鋼材のベイナイトおよび/又はマルテンサイトの分率を20%以上に制御し、さらに炭窒化物の分散状態を規定することによって、降伏応力を高め、もって溶接変形を抑制することの記載がある。しかしながら、必ずしも実用上十分な溶接変形低減効果を得るまでには至っていない。   In Patent Documents 3 and 4, by controlling the fraction of bainite and / or martensite of the steel material as the base material to 20% or more and further defining the dispersion state of carbonitride, the yield stress is increased, and There is a description of suppressing welding deformation. However, it has not yet reached a practically sufficient weld deformation reduction effect.

そして、特許文献5には、母材となる鋼材のベイナイト率を70%以上とし、さらに固溶Nb量を0.0040%以上確保することによって、溶接変形を抑制することの記載がある。しかしながら、ベイナイト比率が70%以上になると母材の強度が汎用レンジから逸脱する場合が生じるだけでなく、Nbによる溶接割れ性の阻害が問題化するおそれがある。   And patent document 5 has description of suppressing welding deformation by ensuring the bainite rate of the steel materials used as a base material to 70% or more, and also ensuring the amount of solute Nb 0.0040% or more. However, when the bainite ratio is 70% or more, not only does the strength of the base material deviate from the general-purpose range, but there is a concern that inhibition of weld cracking by Nb may become a problem.

一方で、溶接鋼構造物は海浜地域や融雪塩が散布される地域等における、飛来塩分量が多い環境下で使用される場合が多い。また、造船分野では海水飛沫環境下で使用される場合が多い。   On the other hand, a welded steel structure is often used in an environment where there is a large amount of incoming salt, such as in a beach area or an area where snow melting salt is scattered. In the shipbuilding field, it is often used in a seawater splash environment.

一般に、耐候性鋼材を大気腐食環境中に暴露すると、その表面に保護性のあるさび層が形成され、それ以降の鋼材腐食が抑制される。そのため、耐候性鋼材は、塗装せずに裸のまま使用できるミニマムメンテナンス鋼材として橋梁等の構造物に用いられている。   Generally, when a weather-resistant steel material is exposed to an atmospheric corrosive environment, a protective rust layer is formed on the surface, and subsequent steel material corrosion is suppressed. For this reason, weathering steel is used for structures such as bridges as a minimum maintenance steel that can be used as it is without being painted.

ところが、海浜地域だけでなく、内陸部であっても融雪塩や凍結防止剤が散布される地域のように飛来塩分量が多い地域では、耐候性鋼材の表面に保護性のあるさび層が形成されにくいために、腐食を抑制する効果が発揮されにくい。そのため、これらの地域では、裸のままの耐候性鋼材を用いることができず、普通鋼に塗装を施して使用する普通鋼の塗装使用が一般的である。しかし、このような普通鋼の塗装使用の場合には、腐食による塗膜劣化のため約10年毎に再塗装する必要があり、そのため維持管理に要する費用は莫大なものとなる。   However, a protective rust layer is formed on the surface of weathering steel not only in the beach area but also in inland areas where there is a large amount of incoming salt, such as areas where snowmelt salt and antifreeze are sprayed. Since it is hard to be done, the effect which suppresses corrosion is hard to be exhibited. Therefore, in these regions, it is not possible to use bare weatherproof steel, and ordinary steel is used by painting on ordinary steel. However, in the case of using such ordinary steel for coating, it is necessary to repaint every 10 years because of coating deterioration due to corrosion, and therefore the cost required for maintenance becomes enormous.

近年、日本工業規格(JIS)で規格化された耐候性鋼(JIS G 3114:溶接構造用耐候性熱間圧延鋼材)は、飛来塩分量がNaClとして0.05mg/dm/day(0.05mdd)以上の地域、たとえば海浜地域では、ウロコ状錆や層状錆等の発生により腐食減量が大きいため、無塗装では使用できないことになっている(建設省土木研究所、(社)鋼材倶楽部、(社)日本橋梁建設協会:耐候性鋼の橋梁への適用に関する共同研究報告書(XX)−無塗耐候性橋梁の設計・施工要領(改訂版−1993.3)参照)。In recent years, weathering steel standardized by Japanese Industrial Standards (JIS) (JIS G 3114: weathering hot rolled steel for welded structures) has an incoming salt content of 0.05 mg / dm 2 / day (0. 05mdd) and higher areas, for example, beach areas, where the loss of corrosion is large due to the occurrence of scale-like rust, layered rust, etc., so it cannot be used without painting (Ministry of Construction, Public Works Research Institute, Steel Club) Japan Bridge Construction Association: Joint Research Report on the Application of Weatherproof Steel to Bridges (XX)-Design and Construction Guidelines for Uncoated Weatherproof Bridges (Ref. Rev. 1993.3)).

このように、海浜地域などの塩分の多い環境下では、通常普通鋼材に塗装を行って対処している。しかしながら、河口付近の海浜地域や融雪塩を撒く山間部等の道路に建設される橋梁は腐食が著しく、再塗装せざるを得ないのが現状である。これらの再塗装には多大な工数がかかることから、無塗装で使用できる鋼材への要望が強い。   In this way, in a salty environment such as a beach area, ordinary steel materials are usually coated. However, the current situation is that bridges constructed in the coastal area near the river mouth and roads such as mountainous areas where snow melt is salted are extremely corroded and must be repainted. Since these repainting takes a lot of man-hours, there is a strong demand for steel materials that can be used without painting.

最近、Niを1〜3%程度添加したNi系高耐候性鋼が開発された。しかしながら、飛来塩分量が0.3〜0.4mddを越える地域では、このようなNi添加だけでは、無塗装で使用できる鋼材への適用が難しいことが判明してきた。   Recently, a Ni-based high weathering steel to which about 1 to 3% of Ni has been added has been developed. However, it has been found that in regions where the amount of incoming salt exceeds 0.3 to 0.4 mdd, it is difficult to apply to steel materials that can be used without coating with such addition of Ni alone.

鋼材の腐食は、飛来塩分量が多くなるにしたがって激しくなるため、耐食性と経済性の観点からは、飛来塩分量に応じた耐候性鋼材が必要になる。また、橋梁といっても、使用される場所や部位により鋼材の腐食環境は同じではない。例えば、桁外部では、降雨、結露水および日照に曝される。一方、桁内部では、結露水に曝されるが雨掛かりはない。一般に、飛来塩分量が多い環境では、桁外部より桁内部の方が腐食が激しいと言われている。   Since corrosion of steel materials increases as the amount of flying salt increases, weathering steel according to the amount of flying salt is required from the viewpoint of corrosion resistance and economy. Moreover, even if it is called a bridge, the corrosive environment of steel materials is not the same by the place and site | part used. For example, outside the girders, they are exposed to rainfall, condensed water and sunlight. On the other hand, inside the girder, it is exposed to condensed water, but there is no rain. In general, in an environment where the amount of incoming salt is large, it is said that the inside of the girders is more corrosive than the outside of the girders.

また、融雪塩や凍結防止剤を道路に撒く環境では、その塩が走行中の車に巻き上げられ、道路を支える橋梁に付着するので、厳しい腐食環境となる。さらに、海岸から少し離れた軒下等も厳しい塩害環境に曝され、このような地域では、飛来塩分量が1mdd以上の厳しい腐食環境になる。   In addition, in an environment where snow melting salt or an antifreezing agent is sprayed on the road, the salt is wound up on a running car and adheres to a bridge that supports the road, resulting in a severe corrosive environment. Furthermore, the eaves under the eaves a little away from the coast are also exposed to severe salt damage environments, and in such areas, the amount of incoming salt becomes a severe corrosive environment with 1 mdd or more.

このような問題に対応するため、飛来塩分量が多い環境での腐食を防止する鋼材の開発が従来から進められている。   In order to cope with such problems, the development of steel materials that prevent corrosion in an environment with a large amount of incoming salt has been underway.

たとえば、特許文献6にはクロム(Cr)の含有量を増加させた耐候性鋼材が提案され、そして、特許文献7にはニッケル(Ni)含有量を増加させた耐候性鋼材が提案されている。   For example, Patent Document 6 proposes a weather-resistant steel material having an increased chromium (Cr) content, and Patent Document 7 proposes a weather-resistant steel material having an increased nickel (Ni) content. .

しかしながら、上記特許文献6で提案されたクロム(Cr)の含有量を増加させた耐候性鋼材は、ある程度以下の飛来塩分量の領域においては耐候性を改善することができるものの、それを超える厳しい塩分環境においては逆に耐候性を劣化させる。   However, although the weathering steel material with the increased chromium (Cr) content proposed in Patent Document 6 can improve the weathering resistance in a region where the amount of incoming salt is below a certain level, it is severer than that. In a salt environment, the weather resistance is deteriorated.

また、上記特許文献7で提案されたニッケル(Ni)含有量を増加させた耐候性鋼材の場合、耐候性はある程度改善されるが、鋼材自体のコストが高くなり、橋梁等の用途に使用される材料としては高価なものになる。これを避けるため、Ni含有量を少なくすると、耐候性はさほど改善されず、飛来塩分量が多い場合には、鋼材の表面に層状の剥離さびが生成し、腐食が著しく、長期間の使用に耐えられないという問題が生じる。   Further, in the case of the weathering steel material with the increased nickel (Ni) content proposed in Patent Document 7, the weather resistance is improved to some extent, but the cost of the steel material itself is increased, and it is used for applications such as bridges. As an expensive material, it becomes expensive. In order to avoid this, if the Ni content is reduced, the weather resistance will not be improved so much, and if the amount of incoming salt is high, layered peeling rust will form on the surface of the steel material, corrosion will be remarkable, and it will be used for a long time. The problem of being unbearable arises.

特開平7-9191号公報Japanese Unexamined Patent Publication No. 7-9191 特開平7-138715号公報Japanese Laid-Open Patent Publication No.7-138715 特開2003-268484号公報JP 2003-268484 A 特開2006-2211号公報JP 2006-2211 A 特開2006-2198号公報Japanese Unexamined Patent Publication No. 2006-2198 特開平9-176790号公報Japanese Patent Laid-Open No. 9-1779090 特開平5-118011号公報Japanese Patent Laid-Open No. 5-118011

このように、従来方法では、それぞれ経済性および実際的再現性の観点から難があり、実用上では改良の余地が大きい。   Thus, the conventional methods have difficulty from the viewpoints of economy and practical reproducibility, and there is much room for improvement in practical use.

特に、厚さ15mm以上の厚鋼板を用いて製造される溶接構造物では、個々の溶接箇所における変形量は小さくても溶接構造物全体としては大きな変形が生じ得るため、溶接変形量を極力小さくすることが必要となる。なお、厚みの上限は特に限定するものではないが、50mmまでのものを扱うのが好ましい。   In particular, in a welded structure manufactured using a thick steel plate having a thickness of 15 mm or more, even if the amount of deformation at each weld location is small, large deformation can occur as a whole welded structure. It is necessary to do. In addition, although the upper limit of thickness is not specifically limited, It is preferable to handle a thing to 50 mm.

さらに、飛来塩分量が多い環境下で使用される溶接鋼構造物では耐塗装剥離性が大きな問題となる。すなわち、上記に示したように、多量の塩化物が飛来する海岸環境や、融雪剤や凍結防止剤を散布する環境においては、塗装を施しても塗装が早期に剥離し、且つ腐食が進行するという問題があり、数年から十数年毎に塗装の塗り替えを実施する必要がある。また、塗装の塗り替えを実施する際にはその前工程として、一度腐食した橋梁に足場を組んで再ブラスト処理を施す必要があるので多大なコストがかかる。そして、再ブラスト処理を施してもさびを完全に除去することは困難であるところ、さびを完全には除去しきれていない鋼材上に再度、塗装しても、塗装寿命が著しく短くなる。耐塗装剥離性は下地である鋼材の耐食性を含めた特性によるところも大きい。   Furthermore, in a welded steel structure that is used in an environment where the amount of incoming salt is large, paint peeling resistance is a major problem. That is, as shown above, in a coastal environment where a large amount of chloride comes in or an environment where a snow melting agent or an antifreezing agent is sprayed, the coating peels off early and corrosion progresses. Therefore, it is necessary to repaint the paint every few to a few dozen years. In addition, when repainting is performed, it is necessary to assemble a scaffold on a once-corroded bridge and perform a reblasting process as a previous process, which is very expensive. And even if it re-blasts, it is difficult to remove rust completely, but even if it paints again on the steel material which has not removed rust completely, the coating life will become remarkably short. The paint peel resistance is largely due to the characteristics including the corrosion resistance of the steel material as the base.

したがって、塗装の寿命を延長し、補修塗装間隔を大きく延ばすことが強く望まれていた。すなわち、塗装が必要とされる船舶分野や橋梁分野においても、ライフサイクルコストのミニマム化の要求が高く、塗装寿命を延長することは橋梁のライフサイクルマネジメントを考える上で非常に重要となる。   Therefore, it has been strongly desired to extend the service life of the coating and greatly extend the interval between repair coatings. In other words, in the marine field and the bridge field where painting is required, there is a high demand for minimizing the life cycle cost, and extending the coating life is very important in considering the life cycle management of the bridge.

本発明は、上記事情に鑑み、低コストで確実に溶接変形を抑制させる技術を確立し、溶接変形が小さい鋼板を提供することを目的とする。特に、隅肉溶接において、溶接変形が小さい鋼板を提供することを目的とする。なお、溶接変形量の目標値は従来鋼の1/2とする。   In view of the above circumstances, an object of the present invention is to establish a technique for reliably suppressing welding deformation at low cost, and to provide a steel plate having small welding deformation. In particular, in fillet welding, an object is to provide a steel plate with small welding deformation. Note that the target value of the amount of welding deformation is ½ that of conventional steel.

さらに、本発明は、高塩化物環境における耐食性(塗装が剥離せず且つ塗装欠陥部における腐食が抑制され耐食性が維持されること(耐塗装剥離性)および無塗装時の耐候性を含む)にも優れた鋼材を提供することを目的とする。   Furthermore, the present invention provides corrosion resistance in a high chloride environment (including that the coating does not peel off and that corrosion at the coating defect is suppressed and corrosion resistance is maintained (including coating peeling resistance) and weather resistance when no coating is applied). It aims to provide an excellent steel material.

本発明者らは、かかる課題を解決すべく、種々検討の結果、鋼板の化学組成を規定するとともに、その金属組織についても規定した。実験と併せて実施した熱連成FEM解析によって得られた各材料物性値の独立した影響を示したものを図1に示す。また、FEM解析の計算条件を図2に示す。   As a result of various studies, the present inventors have prescribed the chemical composition of the steel sheet and the metal structure thereof in order to solve such problems. FIG. 1 shows the independent influence of the physical property values of each material obtained by the thermal coupled FEM analysis conducted in conjunction with the experiment. Moreover, the calculation conditions of FEM analysis are shown in FIG.

図1中、横軸は熱伝導率(白丸プロット)、変態点Ac1(黒丸プロット)、強度TS(四角プロット)であり、縦軸は角変形量を示す。図1より、鋼板の熱伝導率を大きくしても角変形量は変化がなく、変態点が上昇すると角変形量は大きくなり、強度が大きくなると角変形量は小さくなることが判る。よって、溶接変形は特に強度や変態点に大きく依存し、溶接変形量(角変形量)の目標値を従来鋼(角変形量はおよそ0.8mm)の1/2、すなわち0.4mmとすると、強度が極めて高くなって汎用強度クラスから逸脱することになる。汎用強度クラスからの逸脱は、一般的な商取引上の対象外となるだけでなく、構造設計上の問題や溶接性の問題も併発する可能性があり、望ましくない。In FIG. 1, the horizontal axis represents thermal conductivity (white circle plot), transformation point Ac 1 (black circle plot), strength TS (square plot), and the vertical axis represents the amount of angular deformation. From FIG. 1, it can be seen that the amount of angular deformation does not change even when the thermal conductivity of the steel sheet is increased, the amount of angular deformation increases as the transformation point increases, and the amount of angular deformation decreases as the strength increases. Therefore, the welding deformation particularly depends largely on the strength and transformation point, and the target value of the welding deformation amount (angular deformation amount) is ½ that of conventional steel (angular deformation amount is about 0.8 mm), that is, 0.4 mm. The strength becomes extremely high and deviates from the general-purpose strength class. Deviations from the general strength class are not desirable because they are not only subject to general commercial transactions, but may also cause structural design problems and weldability problems.

そこで、本発明者らは、汎用強度クラスに適合する常温強度は保持したまま、高温強度を増加させてなる鋼種の開発を目指した。   Therefore, the present inventors have aimed to develop a steel type in which the high-temperature strength is increased while maintaining the normal temperature strength suitable for the general-purpose strength class.

なお、従来から高温強度に効果のあると言われるMoは、合金コストの高騰によりコストアップ要因となるので、現実的ではない。そこで、本発明者らはCの含有量を減らすとともにNbとBを複合して含有させることに着目し、種々試験を実施した。その結果、次の(a)〜(d)に示す知見が得られた。   Note that Mo, which has been conventionally said to be effective in high-temperature strength, is not realistic because it causes a cost increase due to a rise in alloy costs. Accordingly, the present inventors conducted various tests focusing on reducing the C content and containing Nb and B in combination. As a result, the following findings (a) to (d) were obtained.

(a) 強度を汎用強度レンジに適合させるために、Cを通常レベルよりも低下させ、Bを複合添加させることにより、安定して570MPa級の強度を得ることが可能である。   (a) In order to adapt the strength to the general-purpose strength range, it is possible to stably obtain a strength of 570 MPa class by reducing C below the normal level and adding B in combination.

(b) NbとBを複合して含有させることにより、高温強度を増加させることができる。Nbを含有させないと高温強度の確保は不十分なものとなる。ただし、Nbの含有量は少量でよく、0.02%以上であれば高温強度の確保を通じて溶接変形を抑制することができる。   (b) By containing Nb and B in combination, the high temperature strength can be increased. If Nb is not contained, securing of high temperature strength is insufficient. However, the Nb content may be small, and if it is 0.02% or more, welding deformation can be suppressed through securing high temperature strength.

(c) 鋼板の製造方法は一般的な条件でも良いが、通常鋼に比べて、NbとBを複合して含有させてなる鋼は焼入性が高い傾向にあるため、汎用強度レベルに適合させるために工夫するのが好ましい。   (c) The steel plate manufacturing method may be under general conditions, but steels containing Nb and B in combination tend to have higher hardenability than ordinary steels, so they conform to general-purpose strength levels. It is preferable to devise for this purpose.

(d) 汎用強度レベルに適合させるためには、低炭素ベイナイト組織を主体とすることが必須である。一方、低炭素ベイナイト組織は高炭素ベイナイト組織に比べると硬さが低い分、耐変形能はやや劣る傾向にある。このため、硬度を低下させる要因となるフェライト組織を極力減らす必要がある。また、鋼組織の主体となるベイナイト組織の硬さも強度および耐変形能に影響する。このため、ベイナイト組織の硬さも調節する必要がある。   (d) In order to meet the general-purpose strength level, it is essential to have a low carbon bainite structure as a main component. On the other hand, the low carbon bainite structure has a lower hardness than the high carbon bainite structure, and the deformation resistance tends to be slightly inferior. For this reason, it is necessary to reduce as much as possible the ferrite structure that causes the hardness to decrease. In addition, the hardness of the bainite structure, which is the main component of the steel structure, also affects the strength and deformation resistance. For this reason, it is necessary to adjust the hardness of the bainite structure.

一方、本発明者らは、飛来塩分量の多い環境での腐食について検討した結果、このような環境下では、FeCl溶液の乾湿繰り返しが腐食の本質的な条件となり、Fe3+の加水分解によりpHが低下した状態で、かつFe3+が酸化剤として作用することによって腐食が加速されることを見出した。On the other hand, the present inventors examined corrosion in an environment with a large amount of incoming salt. As a result, in such an environment, repeated drying and wetting of the FeCl 3 solution became an essential condition of corrosion, and due to hydrolysis of Fe 3+ It has been found that corrosion is accelerated by lowering the pH and by Fe 3+ acting as an oxidizing agent.

このときの腐食反応は、以下に示すとおりである。   The corrosion reaction at this time is as follows.

カソード反応としては、主として、次の反応が起こる。
Fe3++e→Fe2+ (Fe3+の還元反応)
As the cathode reaction, the following reaction mainly occurs.
Fe 3+ + e → Fe 2+ (reduction reaction of Fe 3+ )

そして、この反応以外にも、次のカソード反応も併発する。
2HO+O+2e→4OH
2H+2e→H
In addition to this reaction, the following cathode reaction also occurs.
2H 2 O + O 2 + 2e → 4OH ,
2H + + 2e → H 2

一方、上記のFe3+の還元反応に対して、次のアノード反応が起こる。
アノード反応:Fe→Fe2++2e (Feの溶解反応)
On the other hand, the following anodic reaction occurs with respect to the above Fe 3+ reduction reaction.
Anode reaction: Fe → Fe 2+ + 2e (Fe dissolution reaction)

従って、腐食の総括反応は、次の(1)式のとおりである。
2Fe3++Fe→3Fe2+・・・・・・(1)式
Therefore, the overall reaction of corrosion is as shown in the following equation (1).
2Fe 3+ + Fe → 3Fe 2+ (1)

上記(1)式の反応により生成したFe2+は、空気酸化によってFe3+に酸化され、生成したFe3+は再び酸化剤として作用し、腐食を加速する。この際、Fe2+の空気酸化の反応速度は低pH環境では一般に遅いが、濃厚塩化物溶液中では加速され、Fe3+が生成され易くなる。このようなサイクリックな反応のため、飛来塩分量が非常に多い環境では、Fe3+が常に供給され続け、鋼の腐食が加速され、耐食性が著しく劣化することになることが判明した。Fe 2+ generated by the reaction of the above formula (1) is oxidized to Fe 3+ by air oxidation, and the generated Fe 3+ acts again as an oxidant to accelerate corrosion. At this time, the reaction rate of air oxidation of Fe 2+ is generally slow in a low pH environment, but is accelerated in a concentrated chloride solution, and Fe 3+ is easily generated. It has been found that due to such a cyclic reaction, in an environment where the amount of incoming salt is very large, Fe 3+ is always supplied, corrosion of steel is accelerated, and corrosion resistance is significantly deteriorated.

本発明者らは、このような塩分環境における腐食のメカニズムを基に、種々の合金元素の耐候性への影響について検討した結果、下記の(e)〜(g)に示す知見を得た。   As a result of examining the influence of various alloy elements on the weather resistance based on the mechanism of corrosion in such a salt environment, the present inventors have obtained the findings shown in the following (e) to (g).

(e)Snは、Sn2+として溶解し、2Fe3++Sn2+→2Fe2++Sn4+なる反応によりFe3+の濃度を低下させることで、(1)式の反応を抑制する。Snには、さらにアノード溶解を抑制するという作用もある。(e) Sn is dissolved as Sn 2+ , and the concentration of Fe 3+ is reduced by a reaction of 2Fe 3+ + Sn 2+ → 2Fe 2+ + Sn 4+ to suppress the reaction of formula (1). Sn also has an effect of suppressing anodic dissolution.

(f)Cuは、従来から飛来塩分量の多い環境において耐食性改善効果の基本とされていた元素であり、比較的濡れ時間が長い環境において耐食性改善効果は見られる。しかしながら、塩化物濃度がさらに大きくなり、局部的にpHが下がるような環境、例えば塩分が付着し、湿度が変化することにより乾湿が繰り返され、β−FeOOHが生成するような比較的ドライな環境では、Cuはむしろ腐食を促進することが判明した。   (f) Cu is an element that has conventionally been regarded as the basis for the effect of improving the corrosion resistance in an environment with a large amount of incoming salt, and the effect of improving the corrosion resistance is seen in an environment with a relatively long wetting time. However, an environment where the chloride concentration is further increased and the pH is locally lowered, for example, a relatively dry environment in which salt is attached and the humidity is changed, resulting in repeated drying and wetting to produce β-FeOOH. Then, it was found that Cu rather promotes corrosion.

(g)このように、Snを積極的に含有させかつCuの含有量を抑制した鋼材は、高い耐食性が期待できる。さらに耐食性が高いことから、鋼材に塗装を行っても、鋼材の腐食に起因する塗装の剥離が少なく塗装欠陥部の腐食を抑制する一方、塗膜による防食効果も期待できるため、塗装をした場合には、より一層の耐食性の効果が期待できる。したがって、耐食性のほかに、塗装の寿命を延長化でき、補修塗装間隔を大きく延ばす作用をも有する。特に、船舶分野や橋梁分野における耐塗装剥離性の改善において、効果を発揮する。   (g) Thus, the steel material which contains Sn actively and suppresses the Cu content can be expected to have high corrosion resistance. In addition, since the corrosion resistance is high, even if the steel material is painted, there is little peeling of the paint due to the corrosion of the steel material, and the corrosion of the coating defect part is suppressed, but the anticorrosive effect by the coating film can also be expected. In addition, a further effect of corrosion resistance can be expected. Therefore, in addition to the corrosion resistance, the service life of the coating can be extended and the repair coating interval can be greatly extended. In particular, it is effective in improving paint peeling resistance in the marine and bridge fields.

本発明は、上記の知見を基礎として完成したものであって、その要旨は下記の(1)〜(4)に示す溶接変形が小さく耐食性に優れた鋼板にある。   The present invention has been completed on the basis of the above knowledge, and the gist thereof lies in a steel sheet having small corrosion deformation and excellent corrosion resistance as shown in the following (1) to (4).

(1) 質量%で、C:0.0005%以上かつ0.02%未満、Si:0.01〜0.7%、Mn:0.1〜5.0%、P:0.05%以下、S:0.008%以下、Cu:0.2%未満、Nb:0.02〜0.3%、Al:0.003〜0.1%、N:0.01%以下、B:0.0005〜0.004%およびSn:0.03〜0.50%を含み、残部Feおよび不純物からなり、かつ、Cu/Sn比が1以下である化学組成を有し、金属組織がベイナイト組織を80%以上含み、かつ、ベイナイト硬度がビッカース硬さで150〜250であることを特徴とする溶接変形が小さく耐食性に優れた鋼板。   (1) By mass%, C: 0.0005% or more and less than 0.02%, Si: 0.01 to 0.7%, Mn: 0.1 to 5.0%, P: 0.05% or less , S: 0.008% or less, Cu: less than 0.2%, Nb: 0.02-0.3%, Al: 0.003-0.1%, N: 0.01% or less, B: 0 .0005 to 0.004% and Sn: 0.03 to 0.50%, the balance is made of Fe and impurities, and the Cu / Sn ratio is 1 or less, and the metal structure is a bainite structure. , And a bainite hardness of 150 to 250 in terms of Vickers hardness, having a small weld deformation and excellent corrosion resistance.

(2) 質量%で、さらに、Ti:0.1%以下を含有することを特徴とする上記(1)の溶接変形が小さく耐食性に優れた鋼板。   (2) The steel sheet having a small weld deformation and excellent corrosion resistance according to the above (1), characterized by containing, by mass%, Ti: 0.1% or less.

(3) 質量%で、さらに、Ni:3.5%以下、Cr:2%以下、Mo:0.5%以下、V:0.1%以下およびZr:0.02%以下のうちの1種又は2種以上を含有することを特徴とする上記(1)または(2)の溶接変形が小さく耐食性に優れた鋼板。   (3) 1% by mass, further, Ni: 3.5% or less, Cr: 2% or less, Mo: 0.5% or less, V: 0.1% or less, and Zr: 0.02% or less A steel plate having small corrosion deformation and excellent corrosion resistance, characterized by containing seeds or two or more kinds.

(4) 質量%で、さらに、Ca:0.004%以下、Mg:0.002%以下およびREM:0.002%以下のうちの1種又は2種以上を含有することを特徴とする上記(1)〜(3)のいずれかの溶接変形が小さく耐食性に優れた鋼板。   (4) The above-mentioned, characterized by further containing one or more of Ca: 0.004% or less, Mg: 0.002% or less, and REM: 0.002% or less in mass%. A steel sheet having small corrosion deformation and excellent corrosion resistance according to any one of (1) to (3).

なお、鋼板における溶接変形の小さい溶接方法との観点から本発明を考察すると、鋼板における溶接変形は実質的には溶接熱影響部(HAZ)における溶接変形であるので、溶接熱影響部において所定の要件を満足した上で溶接をすれば、溶接変形抑制能は向上すると考えられる。   Considering the present invention from the viewpoint of a welding method with small welding deformation in a steel plate, the welding deformation in the steel plate is substantially a welding deformation in the weld heat affected zone (HAZ). If welding is performed after satisfying the requirements, it is considered that the ability to suppress welding deformation is improved.

したがって、本発明は、溶接方法の観点からは、
「質量%で、C:0.0005%以上かつ0.02%未満、Si:0.01〜0.7%、Mn:0.1〜5.0%、P:0.05%以下、Cu:0.2%未満、S:0.008%以下、Nb:0.02〜0.3%、Al:0.003〜0.1%、N:0.01%以下、B:0.0005〜0.004%およびSn:0.03〜0.50%を含み、残部Feおよび不純物からなる化学組成を有する鋼板の溶接方法であって、溶接前の鋼板における溶接熱影響部となる部位の金属組織がベイナイト組織を80%以上含み、かつ、ベイナイト硬度がビッカース硬さで150〜250であることを特徴とする溶接方法。」
と把握することもできる。
Therefore, from the viewpoint of the welding method, the present invention
“In mass%, C: 0.0005% or more and less than 0.02%, Si: 0.01 to 0.7%, Mn: 0.1 to 5.0%, P: 0.05% or less, Cu : Less than 0.2%, S: 0.008% or less, Nb: 0.02 to 0.3%, Al: 0.003 to 0.1%, N: 0.01% or less, B: 0.0005 -0.004% and Sn: 0.03-0.50%, a welding method of a steel sheet having a chemical composition consisting of the balance Fe and impurities, the portion of the steel heat-affected zone in the steel sheet before welding A welding method characterized in that the metal structure contains 80% or more of a bainite structure, and the bainite hardness is 150 to 250 in terms of Vickers hardness.
It can also be grasped.

もちろん、鋼板が、質量%で、さらに、Ti:0.1%以下、Ni:3.5%以下、Cr:2%以下、Mo:0.5%以下、V:0.1%以下、Zr:0.02%以下、Ca:0.004%以下、Mg:0.002%以下およびREM:0.002%以下のうちの1種又は2種以上を含有してもよい。   Of course, the steel sheet is in% by mass, Ti: 0.1% or less, Ni: 3.5% or less, Cr: 2% or less, Mo: 0.5% or less, V: 0.1% or less, Zr : 0.02% or less, Ca: 0.004% or less, Mg: 0.002% or less, and REM: 0.002% or less may be contained.

ここで、後述するように、母材となる鋼板全体が上記の要件を満足するように製造した上で溶接してもよいし、母材となる鋼板のうち溶接しようとする部位(溶接熱影響部となる部位)のみを加工してその部位について上記の要件を満足させた上で溶接してもよい。   Here, as will be described later, the steel plate as a base material may be welded after being manufactured so as to satisfy the above requirements, or the part to be welded (welding heat effect in the steel plate as a base material). It is also possible to weld only after satisfying the above requirements for the part by processing only the part to be a part.

そして、この溶接方法は、溶接変形の大きい隅肉溶接の際にも適用することができる。なお、隅肉溶接は、重ね継手、T継手、十字継手などにおいて行われるが、この溶接方法は継手母材の相対的な位置関係で特に大きな溶接変形が生じるT継手と十字継手における隅肉溶接に特に有効である。   And this welding method is applicable also in the case of fillet welding with a large welding deformation. Fillet welding is performed on lap joints, T joints, cruciform joints, etc., but this welding method involves fillet welding on T joints and cruciform joints, which cause particularly large welding deformations due to the relative positional relationship of the joint base material. Is particularly effective.

本発明によれば、低コストで確実に溶接変形を抑制することができ、かつ耐食性にも優れた鋼板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the steel plate which can suppress welding deformation | transformation reliably at low cost and was excellent also in corrosion resistance can be provided.

溶接角変形量に及ぼす各材料物性値の影響を示すFEM計算結果である。It is a FEM calculation result which shows the influence of each material physical property value on the amount of welding angle deformation. FEM解析の計算条件を示す模式図である。It is a schematic diagram which shows the calculation conditions of FEM analysis. 溶接角変形量を評価するのに用いた試験片を示す図である。It is a figure which shows the test piece used in evaluating the welding angle deformation. 溶接角変形量の定義を示す図である。It is a figure which shows the definition of the welding angle deformation amount.

本発明において、鋼板の化学組成および金属組織を限定する理由は次のとおりである。   In the present invention, the reason for limiting the chemical composition and metal structure of the steel sheet is as follows.

(A)鋼板の化学組成
鋼板の各成分の作用効果および各成分の好ましい含有量は下記のとおりである。なお、含有量に関する「%」は「質量%」を意味する。
(A) Chemical composition of steel sheet The effects of each component of the steel sheet and the preferred contents of each component are as follows. In addition, "%" regarding content means "mass%".

C:0.0005%以上かつ0.02%未満
Cは強度向上にもっとも有効な元素であり、かつ安価な元素である。ただし、0.0005%未満では他の元素の併用による強度保証が必要となり、結果的にコストアップ要因となる。また、0.02%以上含有させると強度が上昇しすぎて汎用性を失う。したがって、Cの含有量は0.0005%以上かつ0.02%未満とする。好ましくは、0.0005〜0.02%である。なお、強度汎用性の面で好ましいCの含有量の上限は0.002%である。
C: 0.0005% or more and less than 0.02% C is an element most effective for improving the strength and is an inexpensive element. However, if it is less than 0.0005%, it is necessary to guarantee strength by using other elements in combination, resulting in an increase in cost. Moreover, when it contains 0.02% or more, intensity | strength will raise too much and versatility will be lost. Therefore, the C content is 0.0005% or more and less than 0.02%. Preferably, it is 0.0005 to 0.02%. In addition, the upper limit of content of C preferable in terms of strength versatility is 0.002%.

Si:0.01〜0.7%
Siは強度向上に寄与する元素である。ただし、0.01%未満では必要とする強度を確保することができない。また、0.7%を超えて含有させると母材靱性と溶接性靱性を著しく劣化させることになる。したがって、Siの含有量は0.01〜0.7%とする。
Si: 0.01 to 0.7%
Si is an element contributing to strength improvement. However, if it is less than 0.01%, the required strength cannot be ensured. Moreover, when it contains exceeding 0.7%, base material toughness and weldability toughness will deteriorate remarkably. Therefore, the Si content is set to 0.01 to 0.7%.

Mn:0.1〜5.0%
Mnは強度確保のために必要な元素である。ただし、0.1%未満では必要とする強度を確保することができない。また、5.0%を超えて含有させると溶接性が劣化する。したがって、Mnの含有量は0.1〜5.0%とする。過剰のMnの添加は耐食性を劣化させる場合があるので、好ましくは4.0%以下、より好ましくは2.0%以下とする。
Mn: 0.1 to 5.0%
Mn is an element necessary for ensuring strength. However, if it is less than 0.1%, the required strength cannot be ensured. Moreover, when it contains exceeding 5.0%, weldability will deteriorate. Therefore, the Mn content is 0.1 to 5.0%. Since addition of excessive Mn may deteriorate the corrosion resistance, it is preferably 4.0% or less, more preferably 2.0% or less.

P:0.05%以下
Pは、不純物として鋼中に存在する元素である。Pの含有量が0.05%を超えると、粒界に偏析して靭性を低下させるのみならず、溶接時に高温割れを招くため、Pの含有量を0.05%以下とする。
P: 0.05% or less P is an element present in steel as an impurity. If the P content exceeds 0.05%, it not only segregates at the grain boundaries and lowers the toughness, but also causes hot cracking during welding, so the P content is 0.05% or less.

S:0.008%以下
Sは、不純物として鋼中に存在する元素である。Sの含有量が0.008%を超えると、中心偏析を助長したり、延伸形状のMnSが多量に生成したりするため、母材および溶接熱影響部の機械的性質が劣化する。したがって、Sの含有量の上限を0.008%とする。
S: 0.008% or less S is an element present in steel as an impurity. If the S content exceeds 0.008%, center segregation is promoted or a large amount of stretched MnS is generated, so that the mechanical properties of the base material and the weld heat affected zone deteriorate. Therefore, the upper limit of the S content is 0.008%.

Cu:0.2%未満
Cuは、一般的に耐候性を向上させる基本元素とされ、全ての海浜耐候性鋼や耐食鋼に添加されているが、高飛来塩分下の比較的ドライな環境においては、むしろ耐食性を低下させる。またSnと共存すると圧延時に割れが生じる。したがって、Cuの含有は少なくする必要がある。不純物として含有されるとしても、Cu含有量は0.2%未満とする必要がある。好ましくは0.1%未満である。
Cu: Less than 0.2% Cu is generally regarded as a basic element for improving weather resistance, and is added to all beach weather resistant steels and corrosion resistant steels. Rather, it reduces the corrosion resistance. Further, if it coexists with Sn, cracking occurs during rolling. Therefore, it is necessary to reduce the Cu content. Even if contained as an impurity, the Cu content needs to be less than 0.2%. Preferably it is less than 0.1%.

Nb:0.02〜0.3%
Nbは、高温中で析出挙動を発現し、高温強度の上昇をもたらす。ただし、その含有量が0.02%未満ではその効果が得られない。また、0.3%を超えると溶接熱影響部の靱性を著しく損なう。したがって、Nbの含有量は0.02〜0.3%とする。なお、好ましい含有量は0.02〜0.18%である。
Nb: 0.02-0.3%
Nb expresses the precipitation behavior at high temperature and brings about an increase in high temperature strength. However, if the content is less than 0.02%, the effect cannot be obtained. On the other hand, if it exceeds 0.3%, the toughness of the weld heat affected zone is significantly impaired. Therefore, the Nb content is 0.02 to 0.3%. A preferable content is 0.02 to 0.18%.

Al:0.003〜0.1%
Alは脱酸のために必須の元素である。脱酸を安定的に行うためには、0.003%以上の含有量が必要である。ただし、0.1%を超えると、特に溶接熱影響部において靱性が劣化しやすくなる。これは、粗大なクラスター状のアルミナ系介在物粒子が形成されやすくなるためと考えられる。したがって、Alの含有量は0.003〜0.1%とする。
Al: 0.003-0.1%
Al is an essential element for deoxidation. In order to stably perform deoxidation, a content of 0.003% or more is necessary. However, if it exceeds 0.1%, the toughness tends to deteriorate particularly in the weld heat affected zone. This is presumably because coarse cluster-like alumina inclusion particles are easily formed. Therefore, the Al content is 0.003 to 0.1%.

N:0.01%以下
Nは、不純物として鋼中に存在する元素である。Nの含有量が0.01%を超えると、母材靱性と溶接熱影響部靭性の悪化原因となる。したがって、Nの含有量の上限を0.01%とする。
N: 0.01% or less N is an element present in steel as an impurity. When the N content exceeds 0.01%, the base material toughness and the weld heat affected zone toughness are deteriorated. Therefore, the upper limit of the N content is 0.01%.

B:0.0005〜0.004%
Bは焼入れ性を向上させて強度を高める作用がある。この効果を安定的に得るためにBの含有量は0.0005%以上とする必要がある。ただし、その含有量が0.004%を超えると、強度を高める効果が飽和し、また、母材、溶接熱影響部ともに靱性劣化の傾向が著しくなる。したがって、Bの含有量は0.0005〜0.004%とする。なお、好ましい含有量は0.0005〜0.0025%である。
B: 0.0005 to 0.004%
B has the effect of improving the hardenability and increasing the strength. In order to stably obtain this effect, the B content needs to be 0.0005% or more. However, when the content exceeds 0.004%, the effect of increasing the strength is saturated, and the tendency of deterioration of toughness becomes remarkable in both the base material and the weld heat affected zone. Therefore, the B content is 0.0005 to 0.004%. In addition, preferable content is 0.0005 to 0.0025%.

Sn:0.03〜0.50%
Snは、Sn2+となって溶解し、酸性塩化物溶液中でのインヒビター作用により腐食を抑制する作用を有する。また、Fe3+を速やかに還元させ、酸化剤としてのFe3+濃度を低減する作用を有することにより、Fe3+の腐食促進作用を抑制するので、高飛来塩分環境における耐候性を向上させる。また、Snには鋼のアノード溶解反応を抑制し耐食性を向上させる作用がある。これらの作用は、Snを0.03%以上含有させることにより得られ、0.50%を超えると飽和する。したがって、Snの含有量は0.03〜0.50%とする。Snの好ましい含有量は0.03〜0.20%である。
Sn: 0.03-0.50%
Sn dissolves as Sn 2+ and has an action of inhibiting corrosion by an inhibitor action in an acidic chloride solution. Further, rapidly to reduce the Fe 3+, by having an effect of reducing Fe 3+ concentration as oxidizing agent, since inhibit corrosion promoting effect of Fe 3+, thereby improving the weather resistance in high airborne salt environments. Moreover, Sn has the effect | action which suppresses the anodic dissolution reaction of steel and improves corrosion resistance. These effects are obtained by containing 0.03% or more of Sn, and saturate when it exceeds 0.50%. Therefore, the Sn content is 0.03 to 0.50%. The preferable content of Sn is 0.03 to 0.20%.

Cu/Sn比:1以下
Snを含有する鋼の場合には、Cuの含有による耐食性の低下が著しい。また、鋼材を製造する際、Cuの含有による圧延割れの原因ともなる。このため、Cu/Sn比、すなわち、Sn含有量に対するCu含有量の比を1.0以下とする必要がある。
Cu / Sn ratio: 1 or less In the case of steel containing Sn, the corrosion resistance is significantly reduced by the inclusion of Cu. Moreover, when manufacturing steel materials, it becomes a cause of the rolling crack by inclusion of Cu. For this reason, it is necessary to make Cu / Sn ratio, ie, ratio of Cu content with respect to Sn content 1.0 or less.

本発明に係る鋼板は、上記の化学組成を有し、残部がFeおよび不純物からなる。ここで、不純物とは、鋼板を工業的に製造する際に鉱石やスクラップ等のような原料をはじめとして製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。   The steel sheet according to the present invention has the chemical composition described above, with the balance being Fe and impurities. Here, the impurity is a component that is mixed due to various factors in the manufacturing process including raw materials such as ore and scrap when industrially manufacturing a steel sheet, and does not adversely affect the present invention. It means what is allowed.

本発明に係る鋼板は、上記の成分のほか、必要に応じて、次の第1群から第3群までの少なくとも1群から選んだ1種以上の成分を含有させることができる。以下、これらの群に属する成分について述べる。   In addition to the above components, the steel sheet according to the present invention can contain one or more components selected from at least one of the following first group to third group, if necessary. Hereinafter, components belonging to these groups will be described.

第1群の成分:Ti
Ti:0.1%以下
Tiは、主に脱酸元素として作用するので、必要に応じて含有させることができる。ただし、脱酸はAlによっても可能であるため、必ずしも含有させる必要はない。ただし、Ti含有量が多い場合にはTi酸化物またはTi−Al酸化物が形成されるため、特に小入熱溶接の溶接熱影響部における組織を微細化する能力が失われる。このため、含有させる場合のTi含有量は0.1%以下とする。なお、Tiを含有させることによる脱酸効果を安定的に得るためには、その含有量を0.01%以上とするのが好ましい。
Group 1 ingredients: Ti
Ti: 0.1% or less Since Ti mainly acts as a deoxidizing element, it can be contained if necessary. However, since deoxidation can be performed with Al, it is not always necessary to contain it. However, since Ti oxide or Ti—Al oxide is formed when the Ti content is large, the ability to refine the structure particularly in the weld heat affected zone of small heat input welding is lost. For this reason, Ti content in the case of making it contain shall be 0.1% or less. In addition, in order to acquire the deoxidation effect by containing Ti stably, it is preferable that the content shall be 0.01% or more.

第2群の成分:Ni、Cr、Mo、V、Zr
Ni:3.5%以下
Niは母材靱性を向上させ、かつ焼入性向上により強度向上にも寄与する元素であるので、必要に応じて含有させることができる。ただし、Niは高価な元素であるからNiを過大に含有させると大きなコストアップ要因となる。また、Snと共存すると、塩化物存在下での耐食性を劣化させる。このため、含有させる場合のNiの含有量の上限を3.5%以下とする。好ましくは1.0%以下、より好ましくは0.5%以下である。なお、Niを含有させることによる上記効果を安定的に得るためには、その含有量を0.02%以上とするのが好ましい。
Second group of components: Ni, Cr, Mo, V, Zr
Ni: 3.5% or less Ni is an element that improves the toughness of the base material and contributes to the improvement of the strength by improving the hardenability, and can be contained as necessary. However, since Ni is an expensive element, if Ni is excessively contained, it causes a large cost increase. Moreover, when it coexists with Sn, it will deteriorate the corrosion resistance in the presence of chloride. For this reason, the upper limit of content of Ni in the case of making it contain shall be 3.5% or less. Preferably it is 1.0% or less, More preferably, it is 0.5% or less. In addition, in order to acquire the said effect by containing Ni stably, it is preferable that the content shall be 0.02% or more.

Cr:2.0%以下
Crは焼入れ性の向上を通じて強度を高めるのに有効な元素であるので、必要に応じて含有させることができる。ただし、2.0%を超えると靱性が劣化する。したがって、含有させる場合のCrの含有量は2.0%以下とする。Crは塩分環境では耐食性を劣化させる元素であるが、Snと共存させると、その悪影響は著しく抑制される。なお、Crを含有させることによる強度向上効果を安定的に得るためには、その含有量を0.02%以上とするのが好ましい。
Cr: 2.0% or less Cr is an element effective for increasing the strength through improvement of hardenability, and can be contained as necessary. However, if it exceeds 2.0%, the toughness deteriorates. Therefore, the Cr content when contained is 2.0% or less. Cr is an element that degrades corrosion resistance in a salt environment, but when it coexists with Sn, its adverse effect is remarkably suppressed. In order to stably obtain the strength improvement effect by containing Cr, the content is preferably set to 0.02% or more.

Mo:0.5%以下
Moは強度を高めるのに有効な元素であるから、必要に応じて含有させることができる。ただし、Moを0.5%を超えて含有させるとコストの著しい増加をもたらし、また強度の向上も飽和する。したがって、含有させる場合のMoの含有量は0.5%以下とする。なお、Moを含有させることによる強度向上効果を安定的に得るためには、その含有量を0.06%以上とするのが好ましい。
Mo: 0.5% or less Since Mo is an element effective for increasing the strength, it can be contained as required. However, if Mo is contained in excess of 0.5%, the cost is significantly increased, and the improvement in strength is saturated. Therefore, the Mo content in the case of inclusion is 0.5% or less. In addition, in order to acquire the strength improvement effect by containing Mo stably, it is preferable that the content shall be 0.06% or more.

V:0.1%以下
Vは強度向上に有効な元素であるので、必要に応じて含有させることができる。ただし、Vの含有量が0.1%を超えると靱性が大きく劣化するので、含有させる場合のV含有量は0.1%以下とする。なお、Vを含有させることによる強度向上効果を安定的に得るためには、その含有量を0.005%以上とするのが好ましい。
V: 0.1% or less V is an element effective for improving the strength, and can be contained as necessary. However, if the V content exceeds 0.1%, the toughness is greatly deteriorated. In addition, in order to obtain the strength improvement effect by containing V stably, it is preferable to make the content 0.005% or more.

Zr:0.02%以下
Zrは鋼中で窒化物を微細分散析出し、強度を向上させる効果があるので、必要に応じて含有させることができる。ただし、0.02%を超えて含有させると粗大析出物を形成し、靭性を劣化させるので、含有させる場合のZrの含有量は0.02%以下とする。なお、Zrを含有させることによる強度向上効果を安定的に得るためには、Zrの含有量は0.0003%以上とすることが好ましい。
Zr: 0.02% or less Zr has the effect of finely dispersing and precipitating nitrides in steel and improving the strength, and can be contained as required. However, if the content exceeds 0.02%, coarse precipitates are formed and toughness is deteriorated, so the content of Zr in the case of inclusion is 0.02% or less. In order to stably obtain the strength improvement effect by containing Zr, the Zr content is preferably 0.0003% or more.

第3群の成分:Ca、Mg、REM
Ca:0.004%以下
Caは鋼中のSと反応して溶鋼中で酸硫化物(オキシサルファイド)を形成する。この酸硫化物はMnSなどの延伸形状の介在物とは異なり、圧延加工で圧延方向に伸びることがなく圧延後も球状であるため、延伸形状の介在物の先端などを割れの起点とする溶接割れや水素誘起割れを抑制する作用があるので、必要に応じて含有させることができる。ただし、その含有量が0.004%を超えると靱性の劣化を招くことがある。したがって、含有させる場合のCaの含有量は0.004%以下とする。なお、溶接割れや水素誘起割れを抑制する効果を安定的に得るためには、Caの含有量は0.0003%以上とすることが好ましい。
Group 3 components: Ca, Mg, REM
Ca: 0.004% or less Ca reacts with S in steel to form oxysulfide (oxysulfide) in molten steel. Unlike the elongated shaped inclusions such as MnS, this oxysulfide does not extend in the rolling direction during rolling and is spherical after rolling. Therefore, welding with the tip of the elongated shaped inclusions as the starting point of cracking Since there exists an effect | action which suppresses a crack and a hydrogen induction crack, it can be made to contain as needed. However, if its content exceeds 0.004%, toughness may be deteriorated. Therefore, when Ca is contained, the content of Ca is set to 0.004% or less. In addition, in order to acquire the effect which suppresses a weld crack and a hydrogen induction crack stably, it is preferable that content of Ca shall be 0.0003% or more.

Mg:0.002%以下
MgはMg含有酸化物を生成し、TiNの発生核となり、TiNを微細分散させる効果を持つので、必要に応じて含有させることができる。ただし、その含有量が0.002%を超えると、酸化物が多くなりすぎて延性低下をもたらす。したがって、含有させる場合のMgの含有量の上限を0.002%とする。なお、TiNを微細分散させる効果を安定的に得るためには、Mgの含有量は0.0003%以上とすることが好ましい。
Mg: 0.002% or less Mg forms an Mg-containing oxide, serves as a generation nucleus of TiN, and has an effect of finely dispersing TiN. Therefore, Mg can be contained as necessary. However, when the content exceeds 0.002%, the amount of oxide becomes excessive and ductility is reduced. Therefore, the upper limit of the Mg content in the case of inclusion is set to 0.002%. In order to stably obtain the effect of finely dispersing TiN, the Mg content is preferably 0.0003% or more.

REM:0.002%以下
REMは、溶接熱影響部の組織の微細化や、Sの固定に寄与するので、必要に応じて含有させることができる。ただし、その含有量が0.002%を超えると、REMは母材の靱性に悪影響を与える介在物となるので、含有させる場合のREMの含有量を0.002%以下とする。なお、組織の微細化やSの固定効果を安定的に得るためには、REMの含有量は0.0003%以上とすることが好ましい。なお、REMとは、ランタニドの15元素にYおよびScを合わせた17元素の総称であり、これらの元素のうちの1種又は2種以上を含有させることができる。また、REMの含有量はこれらの元素の合計含有量を意味する。
REM: 0.002% or less REM contributes to the refinement of the structure of the weld heat affected zone and the fixation of S, and can be contained as necessary. However, if the content exceeds 0.002%, REM becomes an inclusion that adversely affects the toughness of the base material, so the content of REM when contained is 0.002% or less. In addition, in order to obtain the refinement | miniaturization of a structure | tissue and the fixing effect of S stably, it is preferable that content of REM shall be 0.0003% or more. Note that REM is a generic name for 17 elements in which Y and Sc are combined with 15 elements of lanthanide, and one or more of these elements can be contained. Further, the content of REM means the total content of these elements.

(B)金属組織
金属組織のベイナイト分率は80%以上とする。ベイナイトは耐変形能に優れるが、炭素含有量が低い鋼ではベイナイトにおける炭素が不足し低炭素ベイナイト組織となり、高炭素ベイナイト組織に比べやや耐変形能が劣る。よって、低炭素鋼において耐変形能を確保するために、一定量のベイナイト組織を確保し、フェライト過多にしない必要がある。NbとBの含有を必須にしたうえでベイナイト比率が80%以上であれば十分な耐溶接変形性能が得られるため、ベイナイト組織の比率を80%以上と規定する。残部はフェライトが主体となると考えられるが、特に規定するものではない。
(B) Metal structure The bainite fraction of a metal structure shall be 80% or more. Bainite is excellent in deformation resistance, but steel with a low carbon content lacks carbon in bainite, resulting in a low-carbon bainite structure, which is slightly inferior in deformation resistance compared to a high-carbon bainite structure. Therefore, in order to ensure deformation resistance in low carbon steel, it is necessary to secure a certain amount of bainite structure and not to have excessive ferrite. If the bainite ratio is 80% or more with the inclusion of Nb and B essential, sufficient weld deformation resistance can be obtained, so the ratio of the bainite structure is defined as 80% or more. The balance is thought to be mainly composed of ferrite, but is not particularly specified.

また、ベイナイトの硬度(ビッカース硬さ)が低すぎる場合にも耐変形能を確保できないため、その下限を150とする。また、硬すぎる場合には強度の汎用性を損ねるため、その上限を250とする。   Further, even when the bainite hardness (Vickers hardness) is too low, the deformation resistance cannot be secured, so the lower limit is set to 150. Moreover, since the versatility of intensity | strength is impaired when too hard, the upper limit is set to 250.

次に、本発明に係る鋼板を得ることができる圧延や熱処理の条件等について説明する。   Next, conditions for rolling and heat treatment capable of obtaining the steel sheet according to the present invention will be described.

熱間圧延に先立ってまず鋼塊を加熱するが、このときの加熱温度をAc点以上にすると完全にオーステナイト相にすることができ、未変態部分がない状態で均質化されるため、加熱温度をAc点以上とするのが好ましい。具体的には900〜1200℃に加熱するのが好ましい。そして、熱間圧延に際して薄肉端の圧延仕上げ温度を900℃以下にすると、結晶粒が適度な大きさとなって、素材の破壊靭性が十分となることから、900℃以下とするのが好ましい。圧延仕上げ温度の下限は、特に定めるものではなく、強度を汎用強度レンジに適合させることができればどのような条件でも良い。なお、圧延仕上げ温度を700℃以上にすると、二相域加工による異方性は目立たなくなるから、圧延仕上げ温度を700℃以上にするのが望ましい。圧延に引き続いて、加速冷却なども行って良い。加速冷却を行う場合には、圧延後直ちにあるいは若干の放置時間のあと、中心部の冷却速度を0.5〜40℃/sに制御するのが好ましい。冷却停止温度については150〜500℃を目安に制御するのが好ましい。また、圧延後に熱処理を適宜実施してもよい。熱処理を実施する場合には焼ならし処理か焼戻し処理を行うのが好ましく、温度はそれぞれ800〜1100℃、300〜700℃の温度帯を選ぶのが好ましい。Prior to hot rolling, the steel ingot is first heated, but if the heating temperature at this time is set to Ac 3 or higher, it can be completely austenitic phase and homogenized without any untransformed part. It is preferable that the temperature be Ac 3 point or higher. Specifically, it is preferable to heat to 900 to 1200 ° C. When the rolling finish temperature at the thin end is set to 900 ° C. or lower during hot rolling, the crystal grains become an appropriate size and the fracture toughness of the material becomes sufficient. The lower limit of the rolling finishing temperature is not particularly defined, and any conditions may be used as long as the strength can be adapted to the general-purpose strength range. When the rolling finish temperature is 700 ° C. or higher, the anisotropy due to the two-phase region processing becomes inconspicuous, so that the rolling finish temperature is desirably 700 ° C. or higher. Subsequent to rolling, accelerated cooling may be performed. In the case of performing accelerated cooling, it is preferable to control the cooling rate of the central portion to 0.5 to 40 ° C./s immediately after rolling or after some standing time. The cooling stop temperature is preferably controlled using 150 to 500 ° C. as a guide. Moreover, you may implement heat processing suitably after rolling. When the heat treatment is performed, it is preferable to perform a normalizing process or a tempering process, and it is preferable to select temperature ranges of 800 to 1100 ° C. and 300 to 700 ° C., respectively.

本発明にかかる鋼板の一例を示す。表1に示す組成成分の鋼塊を、表2に示すそれぞれの加熱温度・仕上げ温度・加速冷却・熱処理条件にて製造した。鋼板の板厚は16mmとした。   An example of the steel plate concerning this invention is shown. Steel ingots having the composition components shown in Table 1 were produced under the heating temperature, finishing temperature, accelerated cooling, and heat treatment conditions shown in Table 2. The plate thickness of the steel plate was 16 mm.

Figure 0005392397
Figure 0005392397

Figure 0005392397
Figure 0005392397

また、表3にこのようにして得られた鋼板の降伏点YP、引張強度TS、遷移温度vTrs、ベイナイト分率、ベイナイト相のビッカース硬さ、溶接角変形量、板厚減少量および剥離面積率をそれぞれ示す。   Table 3 shows the yield point YP, tensile strength TS, transition temperature vTrs, bainite fraction, bainite hardness of the bainite phase, welding angle deformation, plate thickness reduction, and peel area ratio of the steel sheet thus obtained. Respectively.

Figure 0005392397
Figure 0005392397

なお、得られた鋼板の引張特性を測定するために、JIS−Z−2201に記載の試験方法に準じて試片を採取した。採取位置は、板厚方向の1/4近辺およびL方向(圧延方向と平行)とした。なお、降伏点は10N/mm・sの試験速度として下降伏点を求め、明確な降伏点が現れない場合は0.2%耐力とした。引張特性の目標値は、降伏点YPが350N/mm以上、そして、引張強度TSが490〜720N/mmとした。In addition, in order to measure the tensile property of the obtained steel plate, the test piece was extract | collected according to the test method as described in JIS-Z-2201. The sampling position was set to around ¼ of the plate thickness direction and the L direction (parallel to the rolling direction). The yield point was determined as a test speed of 10 N / mm · s, and the yield point was 0.2% proof stress when no clear yield point appeared. The target value of the tensile properties, the yield point YP is 350 N / mm 2 or more, and the tensile strength TS has a 490~720N / mm 2.

また、得られた鋼板の衝撃特性を測定するために、JIS−Z−2202に記載の試験方法に準じて試片を採取した。採取位置は、板厚方向の1/4近辺およびL方向(圧延方向と平行)で、2mmVノッチシャルピー試験片とし、様々な温度における脆性破面率を測定し、遷移温度を求めた。シャルピー特性の目標値は遷移温度が0℃以下であることとした。組織観察は光学顕微鏡で行った。観察によって得られた像を画像解析した。金属組織のベイナイト分率は、上記の観察法によって得られた100視野観察分の面積に対するベイナイトの面積割合を算出することによって求めた。   Moreover, in order to measure the impact characteristic of the obtained steel plate, the test piece was extract | collected according to the test method as described in JIS-Z-2202. The sampling position was around 1/4 in the plate thickness direction and the L direction (parallel to the rolling direction), and a 2 mmV notch Charpy test piece was measured. The brittle fracture surface ratio at various temperatures was measured to determine the transition temperature. The target value of the Charpy characteristic is that the transition temperature is 0 ° C. or lower. Tissue observation was performed with an optical microscope. The image obtained by observation was subjected to image analysis. The bainite fraction of the metal structure was obtained by calculating the area ratio of bainite to the area of 100 visual field observations obtained by the above observation method.

さらに、隅肉溶接による溶接角変形量は次の要領にて評価を行った。   Furthermore, the welding angle deformation amount by fillet welding was evaluated in the following manner.

鋼板は、図3に示すように、T型の溶接試験片を作成し、片側を三角形の剛性の高い鋼板で拘束し、反対側を1パスの隅肉溶接を実施した。使用した溶接材料は、一般的な50キロ鋼用フラックスコアードワイヤであり、溶接条件は10.4kJ/cm(200A−26V−30cm/min)とした。溶接後の十分時間が経ったところで、試験片を定板の上に置き、図4に定義する角変形量θを、溶接開始位置・中央位置・終端位置の3箇所において、すきまゲージによって測定し、それらの平均値を溶接角変形量とした。なお、この方法で測定した通常の汎用50キロ鋼の溶接角変形量はおよそ1゜程度であり、本発明の目標とする溶接角変形レベルは0.5゜である。   As shown in FIG. 3, a T-shaped welding test piece was prepared for the steel plate, one side was constrained with a triangular steel plate having high rigidity, and the other side was subjected to 1-pass fillet welding. The welding material used was a general 50-kilo steel flux cored wire, and the welding conditions were 10.4 kJ / cm (200 A-26 V-30 cm / min). When a sufficient time has elapsed after welding, place the test piece on the surface plate, and measure the angular deformation θ defined in Fig. 4 with three clearance gauges at the welding start position, center position and end position. The average value thereof was taken as the welding angle deformation. In addition, the welding angle deformation amount of ordinary general-purpose 50 kg steel measured by this method is about 1 °, and the target welding angle deformation level of the present invention is 0.5 °.

そして、耐食性に関しては、得られた鋼材から得た試験片をSAE(Society of Automotive Engineers)J2334試験により評価した。SAE J2334試験は、湿潤:50℃、100%RH、6時間、塩分付着:0.5%NaCl、0.1%CaCl、0.075%NaHCO水溶液浸漬、0.25時間、乾燥:60℃、50%RH、17.75時間を1サイクル(合計24時間)とした加速試験であり、腐食形態が大気暴露試験に類似しているとされている(長野博夫、山下正人、内田仁著:環境材料学、共立出版(2004)、p.74)。なお、本試験は、飛来塩分量が1mddを超えるような厳しい腐食環境を模擬する試験である。And about corrosion resistance, the test piece obtained from the obtained steel materials was evaluated by SAE (Society of Automotive Engineers) J2334 test. SAE J2334 test is wet: 50 ° C., 100% RH, 6 hours, salt adhesion: 0.5% NaCl, 0.1% CaCl 2 , 0.075% NaHCO 3 aqueous solution, 0.25 hour, dry: 60 It is an accelerated test with 1 cycle (total 24 hours) at ℃, 50% RH, 17.75 hours, and the corrosion form is said to be similar to the atmospheric exposure test (Hiroo Nagano, Masato Yamashita, Hitoshi Uchida) : Environmental Materials Science, Kyoritsu Shuppan (2004), p.74). This test is a test that simulates a severe corrosive environment in which the amount of incoming salt exceeds 1 mdd.

SAE J2334試験120サイクル終了後、各試験片の表面のさび層を除去し、板厚減少量を測定した。ここで、「板厚減少量」は、試験片の平均の板厚減少量であり、試験前後の重量減少と試験片の表面積を用いて算出したものである。   After 120 cycles of the SAE J2334 test, the rust layer on the surface of each test piece was removed, and the thickness reduction was measured. Here, the “plate thickness reduction amount” is an average plate thickness reduction amount of the test piece, and is calculated using the weight reduction before and after the test and the surface area of the test piece.

また、耐塗装剥離性を調べるために、150×70mmの大きさの試験片にエアースプレーにより変性エポキシ塗料(バンノー200:中国塗料製)を乾燥膜厚で150μmになるように塗装し、鋼材素地に達する深さでクロスカットを入れてから、同じくSAE J2334試験により評価した。   In addition, in order to investigate the anti-peeling resistance, a test piece with a size of 150 x 70 mm was coated with a modified epoxy paint (Banno 200: made in China) by air spray to a dry film thickness of 150 μm, and the steel substrate After making a crosscut at a depth reaching, the SAE J2334 test was also evaluated.

この結果、Mark 1-eの鋼板(比較例)においては、冷却後の熱処理を1150℃とし、高い温度で焼ならしをしたため、十分な量のベイナイトが生成されなかった。このため、溶接角変形量も大きくなった。Mark 1-eの鋼板は溶接角変形量が大きいので、構造用鋼板として不適切な鋼材である。   As a result, in the steel sheet of Mark 1-e (comparative example), the heat treatment after cooling was set to 1150 ° C. and normalization was performed at a high temperature, so that a sufficient amount of bainite was not generated. For this reason, the welding angle deformation amount also increased. Mark 1-e steel plate is unsuitable as a structural steel plate because of its large welding angle deformation.

Mark 1-fの鋼板(比較例)においては、冷却停止温度を120℃と、比較的低温まで焼入れしたため、ベイナイト相の硬さが硬くなり、引張強度が大きくなると共に靭性も悪化した。このため、構造用鋼板としては不適切な鋼材である。   In the Mark 1-f steel plate (comparative example), the cooling stop temperature was 120 ° C., which was quenched to a relatively low temperature. Therefore, the hardness of the bainite phase became hard, the tensile strength increased, and the toughness deteriorated. For this reason, it is an inappropriate steel material as a structural steel plate.

Mark12-bの鋼板(比較例)においては、水冷停止温度を120℃とし、比較的低温まで焼入れしたため、ベイナイト相の硬さが硬くなり、引張強度が大きくなると共に靭性も悪化した。このため、この鋼材も構造用鋼板としては不適切の鋼材である。   In the steel sheet of Mark12-b (comparative example), the water cooling stop temperature was set to 120 ° C., and the steel was quenched to a relatively low temperature. Therefore, the hardness of the bainite phase became hard, the tensile strength increased, and the toughness deteriorated. For this reason, this steel material is also unsuitable as a structural steel plate.

Mark38の鋼板(比較例)においては、Snが本発明に規定する組成を満足しておらず、耐食性が低下し、塗装の剥離も多くなった。このため、高塩化物環境下で使用する構造用鋼材としては不適切である。   In the steel plate of Mark 38 (comparative example), Sn did not satisfy the composition defined in the present invention, the corrosion resistance was lowered, and the coating peeled off. For this reason, it is unsuitable as a structural steel material used in a high chloride environment.

Mark39〜44の鋼板(比較例)においては、本発明に規定する鋼組成を満足しておらず、鋼板自体の靭性が低下した。このため、構造用鋼材としては不適切である。特に、Mark 39の鋼板(比較例)では、Cu/Sn比が1を超えているため、圧延割れも発生した。また、Mark41の鋼板(比較例)では、Snが本発明に規定する組成を満足しておらず、耐食性が低下し、塗装の剥離も多くなった。   In the steel sheets of Mark 39 to 44 (comparative examples), the steel composition specified in the present invention was not satisfied, and the toughness of the steel sheet itself was lowered. For this reason, it is inappropriate as a structural steel material. In particular, in the steel sheet of Mark 39 (comparative example), since the Cu / Sn ratio exceeded 1, rolling cracks also occurred. Moreover, in the steel plate of Mark 41 (comparative example), Sn did not satisfy the composition defined in the present invention, the corrosion resistance was lowered, and the coating peeled off.

これに対して、その他のMarkで示される本発明例に係る鋼板においては、いずれも引張特性が、降伏点YPが350N/mm以上、そして、引張強度TSが490〜720N/mm級の汎用鋼であって、遷移温度vTrs、ベイナイト分率、ベイナイト相のビッカース硬さも適正範囲にあり、溶接角変形量も目標の0.5゜以内に収まっているので、構造用鋼板として適切であることが分かる。また、高い耐食性も有しており、塗装した場合のクロスカット部に腐食は見られたもののいずれの鋼板も剥離も少ないので塗装の補修間隔を延ばすことができることがわかる。On the other hand, in the steel sheets according to the examples of the present invention indicated by other marks, the tensile properties are all such that the yield point YP is 350 N / mm 2 or more and the tensile strength TS is 490 to 720 N / mm 2 class. It is a general-purpose steel, and transition temperature vTrs, bainite fraction, Vickers hardness of bainite phase are also in the proper range, and the welding angle deformation is within the target 0.5 °, so it is suitable as a structural steel plate. I understand that. Moreover, although it has high corrosion resistance and corrosion was seen in the crosscut part at the time of painting, it turns out that any steel plate has few peeling, Therefore The repair interval of coating can be extended.

以上説明したように、本発明によれば、低コストで確実に溶接変形を抑制することができ、かつ、耐食性に優れた鋼板を提供することができる。   As described above, according to the present invention, it is possible to provide a steel plate that can reliably suppress welding deformation at low cost and that has excellent corrosion resistance.

Claims (4)

質量%で、C:0.0005%以上かつ0.02%未満、Si:0.01〜0.7%、Mn:0.1〜5.0%、P:0.05%以下、S:0.008%以下、Cu:0.2%未満、Nb:0.02〜0.3%、Al:0.003〜0.1%、N:0.01%以下、B:0.0005〜0.004%およびSn:0.03〜0.50%を含み、残部Feおよび不純物からなり、かつ、Cu/Sn比が1以下である化学組成を有し、金属組織がベイナイト組織を80%以上含み、かつ、ベイナイト硬度がビッカース硬さで150〜250であることを特徴とする溶接変形が小さく耐食性に優れた鋼板。   In mass%, C: 0.0005% or more and less than 0.02%, Si: 0.01 to 0.7%, Mn: 0.1 to 5.0%, P: 0.05% or less, S: 0.008% or less, Cu: less than 0.2%, Nb: 0.02-0.3%, Al: 0.003-0.1%, N: 0.01% or less, B: 0.0005 0.004% and Sn: 0.03 to 0.50%, consisting of the balance Fe and impurities, and having a chemical composition with a Cu / Sn ratio of 1 or less, and the metal structure is 80% of the bainite structure A steel sheet including the above, having a low bainite hardness and having a Vickers hardness of 150 to 250 and having a small weld deformation and excellent corrosion resistance. 質量%で、さらに、Ti:0.1%以下を含有することを特徴とする請求項1に記載の溶接変形が小さく耐食性に優れた鋼板。   The steel sheet having a small weld deformation and excellent corrosion resistance according to claim 1, further comprising, by mass%, Ti: 0.1% or less. 質量%で、さらに、Ni:3.5%以下、Cr:2.0%以下、Mo:0.5%以下、V:0.1%以下およびZr:0.02%以下のうちの1種又は2種以上を含有することを特徴とする請求項1または2に記載の溶接変形が小さく耐食性に優れた鋼板。   1% by mass of Ni: 3.5% or less, Cr: 2.0% or less, Mo: 0.5% or less, V: 0.1% or less, and Zr: 0.02% or less Alternatively, the steel sheet according to claim 1 or 2, wherein the steel sheet contains two or more kinds and has small weld deformation and excellent corrosion resistance. 質量%で、さらに、Ca:0.004%以下、Mg:0.002%以下およびREM:0.002%以下のうちの1種又は2種以上を含有することを特徴とする請求項1から3までのいずれかに記載の溶接変形が小さく耐食性に優れた鋼板。   2. From mass%, further comprising one or more of Ca: 0.004% or less, Mg: 0.002% or less, and REM: 0.002% or less. 3. A steel sheet having small corrosion deformation and excellent corrosion resistance according to any one of items 3 to 3.
JP2012500560A 2010-02-18 2011-02-08 Steel sheet with small welding deformation and excellent corrosion resistance Active JP5392397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012500560A JP5392397B2 (en) 2010-02-18 2011-02-08 Steel sheet with small welding deformation and excellent corrosion resistance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010033837 2010-02-18
JP2010033837 2010-02-18
JP2012500560A JP5392397B2 (en) 2010-02-18 2011-02-08 Steel sheet with small welding deformation and excellent corrosion resistance
PCT/JP2011/052573 WO2011102259A1 (en) 2010-02-18 2011-02-08 Steel plate exhibiting little welding deformation and excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPWO2011102259A1 JPWO2011102259A1 (en) 2013-06-17
JP5392397B2 true JP5392397B2 (en) 2014-01-22

Family

ID=44482846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012500560A Active JP5392397B2 (en) 2010-02-18 2011-02-08 Steel sheet with small welding deformation and excellent corrosion resistance

Country Status (4)

Country Link
JP (1) JP5392397B2 (en)
KR (1) KR101442366B1 (en)
CN (1) CN102762756B (en)
WO (1) WO2011102259A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114574766B (en) * 2022-03-04 2023-04-11 武安市裕华钢铁有限公司 Ni-RE series corrosion-resistant low-carbon hot-rolled steel strip and production process thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269602A (en) * 1998-03-23 1999-10-05 Kawasaki Steel Corp High-strength high-toughness steel products having decreased variation in material quality and excellent low-temperature toughness of weld zone and their production
JP2000239792A (en) * 1999-02-25 2000-09-05 Nippon Steel Corp Low yield ratio type fire resistant hot rolled steel sheet and steel tube and their production
JP2005264294A (en) * 2004-03-22 2005-09-29 Jfe Steel Kk Steel having reduced variation in material and having excellent toughness in weld heat affected zone
JP2005290554A (en) * 2004-03-11 2005-10-20 Nippon Steel Corp Steel plate excellent in machinability, toughness and weldability, and method for production thereof
JP2006002198A (en) * 2004-06-16 2006-01-05 Nippon Steel Corp Steel sheet with little welding distortion
JP2010047816A (en) * 2008-08-25 2010-03-04 Sumitomo Metal Ind Ltd Steel sheet less in welding deformation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013505B2 (en) * 2000-11-27 2007-11-28 住友金属工業株式会社 Ultra-low carbon steel sheet and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269602A (en) * 1998-03-23 1999-10-05 Kawasaki Steel Corp High-strength high-toughness steel products having decreased variation in material quality and excellent low-temperature toughness of weld zone and their production
JP2000239792A (en) * 1999-02-25 2000-09-05 Nippon Steel Corp Low yield ratio type fire resistant hot rolled steel sheet and steel tube and their production
JP2005290554A (en) * 2004-03-11 2005-10-20 Nippon Steel Corp Steel plate excellent in machinability, toughness and weldability, and method for production thereof
JP2005264294A (en) * 2004-03-22 2005-09-29 Jfe Steel Kk Steel having reduced variation in material and having excellent toughness in weld heat affected zone
JP2006002198A (en) * 2004-06-16 2006-01-05 Nippon Steel Corp Steel sheet with little welding distortion
JP2010047816A (en) * 2008-08-25 2010-03-04 Sumitomo Metal Ind Ltd Steel sheet less in welding deformation

Also Published As

Publication number Publication date
JPWO2011102259A1 (en) 2013-06-17
KR101442366B1 (en) 2014-09-17
CN102762756B (en) 2014-04-02
CN102762756A (en) 2012-10-31
WO2011102259A1 (en) 2011-08-25
KR20120099516A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP4924775B2 (en) Steel sheet with small welding deformation and excellent corrosion resistance
JP4495668B2 (en) High corrosion resistance steel
JP5691350B2 (en) Structural steels and steel structures with excellent weather resistance
JP5163310B2 (en) Method for producing steel material excellent in corrosion resistance and toughness in Z direction
JP5879758B2 (en) Steel material with excellent corrosion resistance
JP4924774B2 (en) Steel material having excellent fatigue crack growth resistance and corrosion resistance and method for producing the same
JP2006169626A5 (en)
JP2008274367A (en) Bolt steel, and bridge using it
JP2012122103A (en) Thick steel plate excellent in hydrogen-induced crack resistance, brittle crack propagation arrest characteristic, and corrosion resistance
CN110832099A (en) Structural steel and structure
JP5644522B2 (en) Thick steel plate for offshore structures and manufacturing method thereof
JP5488395B2 (en) High-strength thick steel plate with excellent arrest properties and corrosion resistance
JP5556632B2 (en) Low yield ratio steel material excellent in corrosion resistance and method for producing the same
JP5942532B2 (en) Steel material with excellent corrosion resistance
KR101723459B1 (en) Steel material for welded structure
JP5392397B2 (en) Steel sheet with small welding deformation and excellent corrosion resistance
JP3265867B2 (en) Welded structural steel with excellent weather resistance
JP4041781B2 (en) Steel material with excellent corrosion resistance
JP7261364B1 (en) steel plate
JP7327444B2 (en) Thick steel plate, method for manufacturing thick steel plate, and structure
JP7548148B2 (en) Steel plate and its manufacturing method
JP2002309340A (en) Structural steel having excellent weather resistance
JP4483378B2 (en) High corrosion resistant steel
JP2023132089A (en) Steel
JP2023112979A (en) steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R151 Written notification of patent or utility model registration

Ref document number: 5392397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350