JP5392389B2 - Electrolytic capacitor - Google Patents
Electrolytic capacitor Download PDFInfo
- Publication number
- JP5392389B2 JP5392389B2 JP2012207865A JP2012207865A JP5392389B2 JP 5392389 B2 JP5392389 B2 JP 5392389B2 JP 2012207865 A JP2012207865 A JP 2012207865A JP 2012207865 A JP2012207865 A JP 2012207865A JP 5392389 B2 JP5392389 B2 JP 5392389B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure valve
- thin
- sealing body
- capacitor
- electrolytic capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Description
本発明は、電解コンデンサに関し、特に小形の電解コンデンサであっても、コンデンサ内圧上昇時に確実に作動する圧力弁を備えた電解コンデンサに関するものである。 The present invention relates to an electrolytic capacitor, and more particularly to an electrolytic capacitor having a pressure valve that operates reliably even when the internal pressure of the capacitor is increased, even a small electrolytic capacitor.
電解コンデンサでは、定格電圧を超えた過電圧の印加により、電解コンデンサ内部でのガスが発生し、内圧が上昇して外装ケースが破れたり、外装ケースの開口部を封止する封口体が離脱したりする場合がある。 In an electrolytic capacitor, application of overvoltage exceeding the rated voltage generates gas inside the electrolytic capacitor, the internal pressure rises and the outer case is torn, or the sealing body that seals the opening of the outer case is detached. There is a case.
このため、電解コンデンサでは、急激な内圧上昇による前記外装ケースの破損や封口体の離脱を防止するために、防爆構造がとられているが、この防爆構造には、外装ケースの底面に形成するもの、外装ケースを封止する封口体に形成するものなどがある。前者の例としては、アルミニウムなどで外装ケースが形成される場合にその底面に特定圧力によって開口可能なV字状をなす圧力弁を形成し、後者の例としては、電解コンデンサ素子を収納した外装ケースの封口体に薄肉部からなる圧力弁を形成するものである。 For this reason, in an electrolytic capacitor, an explosion-proof structure is taken in order to prevent damage to the outer case and detachment of the sealing body due to a sudden rise in internal pressure. The explosion-proof structure is formed on the bottom surface of the outer case. And those formed on a sealing body for sealing an outer case. As an example of the former, when an exterior case is formed of aluminum or the like, a V-shaped pressure valve that can be opened by a specific pressure is formed on the bottom surface, and as an example of the latter, an exterior containing an electrolytic capacitor element is formed. A pressure valve composed of a thin portion is formed in the sealing body of the case.
この外装ケースの封口体51に設けられた圧力弁構造としては、従来より、図7に示すように、内面凹状の薄肉部52の周辺部に凸部53を形成し、かつ薄肉部52のヒンジ部54を薄肉部52よりさらに薄肉に形成して内部ガスが所定の圧力に達した際に、凹状薄肉部52が凸状53により反転し、この反転するときのモーメントを利用し、且つ前記薄肉部52の周辺部の凸部53が封口体51の壁面と接触して支点となり、前記薄肉部52の周辺部、主にヒンジ部54を破壊させて内部ガスを脱出させる防爆構造が開示されている(特許文献1)。
As a pressure valve structure provided in the sealing
また、図8に示すように、封口体61の中心付近に円形の大面積薄肉部62と、この大面積薄肉部62に近接した小面積薄肉部63と、小面積薄肉部63の中心と大面積薄肉部内の所定範囲を結ぶ厚肉部64を設け、前記大面積薄肉部62の周縁と該厚肉部64の周縁の間をコンデンサの内部方向に凹状に形成し、前記大面積薄肉部62と小面積薄肉部63に前記厚肉部64を介してヒンジ機能を持たせた防爆構造が開示されている(特許文献2)。
Further, as shown in FIG. 8, a circular large-area thin-
ところで、電解コンデンサは小型化が強く望まれており、外装ケースの底面に圧力弁を設けた場合、該圧力弁の作動領域として外装ケースの底面と基板との間に所定領域が必要であり、電解コンデンサの小形化の阻害要因となっている。 By the way, it is strongly desired to reduce the size of the electrolytic capacitor, and when a pressure valve is provided on the bottom surface of the outer case, a predetermined region is required between the bottom surface of the outer case and the substrate as an operation region of the pressure valve. This is an impediment to downsizing of electrolytic capacitors.
そこで、外装ケースの封口体に圧力弁を形成することが検討されている。
ところで、電解コンデンサの内圧上昇時に、圧力弁に加わる圧力は、下記式で表される。
F=PA
(Fは圧力弁に加わる力、Pは電解コンデンサの内圧、Aは圧力弁の断面積)
つまり、圧力弁の断面積を大きくすると、圧力弁の動作圧力は低減される。
Then, forming a pressure valve in the sealing body of an exterior case is examined.
By the way, when the internal pressure of the electrolytic capacitor increases, the pressure applied to the pressure valve is expressed by the following equation.
F = PA
(F is the force applied to the pressure valve, P is the internal pressure of the electrolytic capacitor, and A is the cross-sectional area of the pressure valve)
That is, when the cross-sectional area of the pressure valve is increased, the operating pressure of the pressure valve is reduced.
通常、比較的大型の電解コンデンサでは、外装ケース外径や、封口体の外径が大きいため、外装ケースの底面や封口体に形成する圧力弁の断面積を十分に確保できる。従って、電解コンデンサの内圧上昇時には、前記圧力弁に付加される圧力は高く、内圧上昇時に圧力弁が作動し、内部ガスを放出できる。
これに対し、φ15以下の小形の電解コンデンサでは、封口体には封口体に陰極側及び陽極側のリード線貫通孔や、外装ケースの加締めるための必要所定領域があるため、圧力弁の形成断面積が限られている。
Usually, in a relatively large electrolytic capacitor, the outer diameter of the outer case and the outer diameter of the sealing body are large, so that a sufficient cross-sectional area of the pressure valve formed on the bottom surface of the outer case and the sealing body can be secured. Therefore, when the internal pressure of the electrolytic capacitor rises, the pressure applied to the pressure valve is high, and when the internal pressure rises, the pressure valve operates to release the internal gas.
On the other hand, in a small electrolytic capacitor having a diameter of 15 mm or less, the sealing body has a lead wire through hole on the cathode side and the anode side on the sealing body, and a necessary predetermined region for caulking the exterior case. The cross-sectional area is limited.
従って、小さい断面積の圧力弁となり、この圧力弁を動作させるには、高い内圧が必要となってしまう。外装ケースの内圧が高くなると、封口体と外装ケースの封止状態を維持できなくなり、従って、圧力弁が動作せずに、外装ケースから封口体が離脱するなどの不具合が生じてしまう。 Accordingly, the pressure valve has a small cross-sectional area, and a high internal pressure is required to operate the pressure valve. If the internal pressure of the outer case increases, the sealing state between the sealing body and the outer case cannot be maintained, and therefore, the pressure valve does not operate and the sealing body is detached from the outer case.
そこで、動作圧力が低く小形の圧力弁が求められているが、上記特許文献1に開示された防爆構造では、内圧上昇により反転する内面凹状の薄肉部52、その周辺部に形成した凸部53、及び該薄肉部のヒンジ部54を弾性封口体に形成するには、封口体51の成形と同時に、金型によって封口体51に前記防爆構造を形成するのであるが、特に内面凹状の薄肉部52の反転させ、ヒンジ部54を破断する構成をとるため、極めて高い加工精度が要求され、防爆構造自体を小形化することは難しく、このような複雑な構造の防爆構造を弾性封口体に形成することが困難であった。
Therefore, there is a demand for a small pressure valve with a low operating pressure. However, in the explosion-proof structure disclosed in Patent Document 1, a thin-
また、上記特許文献2に開示された防爆構造では、複数の薄肉部62,63と、該薄肉部を跨いで形成される厚肉部64を有しているため、この防爆構造では、所定の面積が必要であり、小形の電解コンデンサの防爆構造には不向きであるとともに、複雑な構造であり、弾性封口体に金型による成形は困難である。
In addition, the explosion-proof structure disclosed in Patent Document 2 has a plurality of thin-
また、上記特許文献1及び特許文献2の防爆構造に代えて、弾性封口体に薄肉部のみからなる圧力弁を形成することもできるが、この薄肉部の厚みには限界があるため、圧力弁の動作圧力を低くすることができない。従って、内圧上昇時には、前記薄肉部の全体が伸長して湾曲に変形した状態で維持され、小形の電解コンデンサなど、外装ケースと封口体との封止力が小さい場合には、前記封口体が外装ケースから離脱してしまう場合がある。 In addition, instead of the explosion-proof structure of Patent Document 1 and Patent Document 2, a pressure valve including only a thin portion can be formed on the elastic sealing body. However, since the thickness of the thin portion is limited, the pressure valve The operating pressure cannot be lowered. Therefore, when the internal pressure rises, the entire thin portion is maintained in an expanded and deformed state, and when the sealing force between the exterior case and the sealing body is small, such as a small electrolytic capacitor, the sealing body is It may come off from the outer case.
そこで、本発明は、圧力弁の動作圧力を低くし、小形の電解コンデンサなど、圧力弁の形成領域が限られている場合であっても、外装ケースから弾性封口体の離脱などがなく、確実に動作する圧力弁が精度よく容易に形成された電解コンデンサを提供することを目的としている。 Therefore, the present invention reduces the operating pressure of the pressure valve, and even if the formation area of the pressure valve is limited, such as a small electrolytic capacitor, there is no detachment of the elastic sealing body from the outer case, and the It is an object of the present invention to provide an electrolytic capacitor in which a pressure valve that operates in a simple manner is formed accurately and easily.
上記の課題を解決した本発明の電解コンデンサは、コンデンサ素子と、該コンデンサ素子を収納する有底筒状の外装ケースと、該外装ケースの開口部を封止する弾性封口体とからなり、前記弾性封口体は、ゴムからなる薄肉部と、この薄肉部のほぼ中心付近に設けられ、内圧上昇時にコンデンサ外部側に移動する非変形部とからなる圧力弁を備え、前記非変形部は、内圧上昇時にコンデンサ外部側に移動して、前記薄肉部がコンデンサ外部側からコンデンサ内部側に傾斜し、前記圧力弁の内壁との境界付近または前記非変形部との境界付近に応力を集中させたことを特徴としている。 The electrolytic capacitor of the present invention that has solved the above problems comprises a capacitor element, a bottomed cylindrical outer case that houses the capacitor element, and an elastic sealing body that seals the opening of the outer case, The elastic sealing body includes a pressure valve including a thin wall portion made of rubber and a non-deformable portion that is provided near the center of the thin wall portion and moves to the outside of the capacitor when the internal pressure rises. When moving up, it moved to the outside of the capacitor, and the thin portion inclined from the outside of the capacitor to the inside of the capacitor, and stress was concentrated near the boundary with the inner wall of the pressure valve or near the boundary with the non-deformed portion. It is characterized by.
これによると、圧力弁を構成する薄肉部のほぼ中心付近に非変形部が設けられているため、内圧上昇時に前記非変形部は変形が少ない状態でコンデンサ外部側に移動され、この移動により、圧力弁の内壁と前記非変形部との間の薄肉部を伸長させて応力を集中させることができ、圧力弁の動作圧力を低くできる。 According to this, since the non-deformation part is provided near the center of the thin part constituting the pressure valve, the non-deformation part is moved to the outside of the capacitor with little deformation when the internal pressure rises. The thin portion between the inner wall of the pressure valve and the non-deformed portion can be extended to concentrate the stress, and the operating pressure of the pressure valve can be lowered.
また、この圧力弁は薄肉部のほぼ中心付近に非変形部を形成するのみで容易に構成でき、また薄肉部の径のみの大きさにて形成できるため、小形の電解コンデンサの弾性封口体にも容易に適用できる。 In addition, this pressure valve can be easily configured only by forming a non-deformed portion near the center of the thin-walled portion, and can be formed only by the diameter of the thin-walled portion, so that it can be used as an elastic sealing body for small electrolytic capacitors. Can also be easily applied.
例えば、薄肉部を金型にて形成した後、該薄肉部のほぼ中心付近に、該非変形の板材を貼り付けて構成したり、また弾性封口体と同種材料から構成する場合でも、薄肉部を成形する金型の一面に凹部を形成すればよく、圧力弁の成形は容易である。 For example, after forming the thin-walled portion with a mold, the thin-walled portion is formed even if the non-deformable plate material is pasted around the center of the thin-walled portion or the same material as the elastic sealing body. A concave portion may be formed on one surface of the mold to be molded, and the pressure valve can be easily molded.
また、前記圧力弁の非変形部は、前記薄肉部の両面に形成されたことを特徴としている。これによると、非変形部の強度が増し、内圧上昇時に該非変形部は変形が極めて少ない状態にてコンデンサ外部側に移動させることができ、従って、圧力弁の内壁と非変形部との間の薄肉部に効率よく応力を集中させて確実に破断させ、内部ガスを放出させることができる。 Further, the non-deformation part of the pressure valve is formed on both surfaces of the thin part. According to this, the strength of the non-deformed portion increases, and when the internal pressure rises, the non-deformed portion can be moved to the outside of the capacitor in a state where the deformation is extremely small, and accordingly, between the inner wall of the pressure valve and the non-deformed portion. It is possible to efficiently concentrate the stress on the thin-walled portion and reliably break it, thereby releasing the internal gas.
また、前記圧力弁の非変形部は、薄肉部と同種材料からなる厚肉部であることを特徴としている。これによると、薄肉部を成形する金型の一部に凹部を設けるのみで容易に同時成形でき、且つ前記非変形部が離脱することがない。 Further, the non-deformable portion of the pressure valve is a thick portion made of the same material as the thin portion. According to this, simultaneous molding can be easily performed only by providing a recess in a part of a mold for molding the thin portion, and the non-deformable portion does not come off.
また、前記圧力弁の非変形部は、球状からなることを特徴としている。これによると、内圧が非変形部にほぼ均一に付与されるため、非変形部は変形が極めて少ない状態にてコンデンサ外部側に移動させることができ、圧力弁の内壁と非変形部との間の薄肉部に効率よく応力を集中させて確実に破断させ、内部ガスを放出させることができる。またこの圧力弁成形時には、金型より、該非変形部を剥離させる際に、非変形部が球状であるため、該非変形部を金型から容易に剥離でき、製造過程における不具合品が低減する。 Moreover, the non-deformation part of the said pressure valve consists of spherical shapes. According to this, since the internal pressure is almost uniformly applied to the non-deformed portion, the non-deformed portion can be moved to the outside of the capacitor with very little deformation, and between the inner wall of the pressure valve and the non-deformed portion. It is possible to efficiently concentrate the stress on the thin-walled portion and to break it reliably and to release the internal gas. Further, at the time of forming the pressure valve, since the non-deformed portion is spherical when the non-deformed portion is peeled off from the mold, the non-deformed portion can be easily peeled from the die, and defective products in the manufacturing process are reduced.
また、前記圧力弁の非変形部は、非変形の板材を前記薄肉部のほぼ中心付近に配置したことを特徴としている。これによると薄肉部のほぼ中心付近に非変形の板材を配することで、従来より使用されている圧力弁を構成する薄肉部を用いることができ、工程の複雑な変更などが不要である。 Further, the non-deformable portion of the pressure valve is characterized in that a non-deformed plate material is disposed in the vicinity of the center of the thin portion. According to this, by arranging the non-deformable plate material in the vicinity of the center of the thin portion, the thin portion constituting the pressure valve that has been used conventionally can be used, and a complicated change of the process is unnecessary.
また、前記圧力弁は、弾性封口体の中心から点対称に複数設けたことを特徴としている。これによると、外装ケースの開口部をカーリング処理にて加締め封止する際に、弾性封口体には、中心より点対称位置に圧力弁が配置されているため、内部ガスが通過する空間が点対称にて配置されているため前記カーリング処理が不均一になることがない。 In addition, a plurality of the pressure valves are provided symmetrically with respect to the center of the elastic sealing body. According to this, when the opening portion of the outer case is caulked and sealed by the curling process, since the pressure valve is arranged at a point-symmetrical position from the center in the elastic sealing body, there is a space through which the internal gas passes. Since they are arranged in a point symmetry, the curling process does not become uneven.
また、前記圧力弁の薄肉部を、前記外装ケースの側面の加締め位置より、コンデンサ外部側に形成したことを特徴としている。これによると、圧力弁の薄肉部が前記外装ケースの加締め位置からずれるため、加締め圧力によって圧力弁の薄肉部が変形することがなく、圧力弁の動作不良などの問題がない。 The thin portion of the pressure valve is formed on the outside of the capacitor from the caulking position on the side surface of the exterior case. According to this, since the thin portion of the pressure valve is displaced from the caulking position of the outer case, the thin portion of the pressure valve is not deformed by the caulking pressure, and there is no problem such as malfunction of the pressure valve.
本発明によれば、弾性封口体に設けられた圧力弁は、薄肉部と、この薄肉部のほぼ中心付近に設けられ、内圧上昇時にコンデンサ外部側に移動する非変形部とからなるため、その構成は簡易であり、かつ小面積にて形成できるため、小形の電解コンデンサであってもその弾性封口体に容易に設けることができるとともに、内圧上昇時には、非変形部をコンデンサ外部側に移動させ、薄肉部に応力を集中させて破断させることができ、圧力弁の動作圧力を低くでき、外装ケースから弾性封口体が離脱するなどがなく、確実に圧力弁を動作させて内部ガスを放出させることができる。 According to the present invention, the pressure valve provided in the elastic sealing body is composed of a thin portion and an undeformed portion that is provided near the center of the thin portion and moves to the outside of the capacitor when the internal pressure increases. Since the structure is simple and can be formed in a small area, even a small electrolytic capacitor can be easily provided on its elastic sealing body, and when the internal pressure rises, the non-deformed part is moved to the outside of the capacitor. It can be broken by concentrating stress on the thin-walled part, the operating pressure of the pressure valve can be lowered, the elastic sealing body is not detached from the outer case, and the pressure valve is operated reliably to release the internal gas be able to.
以下に図面に基づき本発明の実施例を説明する。図1は、本発明の実施例に係る電解コンデンサにおいて、キャップをコンデンサ素子にキャップを装着し、キャップの収納部に絶縁樹脂材を充填する工程を示している。図2は、本発明の実施例の電解コンデンサにおいて、コンデンサ素子に装着されるキャップを示している。図3は、本発明の実施例に係る電解コンデンサの断面図を示している。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a process of mounting a cap on a capacitor element and filling an insulating resin material into a cap housing portion in an electrolytic capacitor according to an embodiment of the present invention. FIG. 2 shows a cap attached to the capacitor element in the electrolytic capacitor of the embodiment of the present invention. FIG. 3 shows a cross-sectional view of an electrolytic capacitor according to an embodiment of the present invention.
図1において、外装ケース3は、アルミニウムなどの金属板を成形したものであり、有底筒状で、収納されるコンデンサ素子2の形状に合わせ、円形、楕円形、長円形、角形に成形される。コンデンサ素子2は、陽極側及び陰極側の電極箔を電気絶縁性セパレータを介して巻回または積層して、円形、楕円形、長円形、角形などの形状に形成され、コンデンサ素子2の端面からは、前記各電極箔にそれぞれ接続されたリード線5が導出され、このリード線5は、弾性封口体4を貫通して外装ケース3の外部に引き出される。 In FIG. 1, an outer case 3 is formed by molding a metal plate such as aluminum, and has a bottomed cylindrical shape, and is formed into a circular shape, an elliptical shape, an oval shape, a rectangular shape according to the shape of the capacitor element 2 to be stored. The Capacitor element 2 is formed in a shape such as a circle, an ellipse, an oval, a square, etc. by winding or laminating electrode foils on the anode side and the cathode side via an electrically insulating separator, and from the end face of capacitor element 2 The lead wires 5 connected to the respective electrode foils are led out, and the lead wires 5 penetrate the elastic sealing body 4 and are drawn out of the outer case 3.
弾性封口体4は、外装ケース3の開口部に合致する形状にゴムなどの気密性を持つ弾性材料によって成形され、円形又は角形柱状体を成し、弾性封口体4の上面側には中心から離間して2つの半円形の段部6が形成されている。この段部6は、外装ケース3の開口部を封止するためにカーリング処理した場合に、そのカーリング部の頂部との段差が生じるのを防止し、且つプリント基板などへの設置を安定化するためのものであり、外装ケース3のカーリング部の頂部に合わせた高さに形成されている。 The elastic sealing body 4 is formed of a gas-tight elastic material such as rubber in a shape that matches the opening of the outer case 3 and forms a circular or square columnar body. Two semicircular step portions 6 are formed apart from each other. When the curling process is performed to seal the opening of the outer case 3, the stepped portion 6 prevents a step from the top of the curling portion from occurring and stabilizes the installation on a printed circuit board or the like. Therefore, it is formed at a height that matches the top of the curling portion of the outer case 3.
この弾性封口体4の段部6は、リード線5を引き出すための貫通孔を有し、前記外装ケース3のカーリング部との接触によるショートも防いでいる。図2に示すように、前記弾性封口体4のほぼ中心付近の前記段部6が形成されていない領域に、圧力弁7が形成され、弾性封口体4の段部6の表面をプリント基板の面に密着させた際に、前記段部6と段部6の間は、圧力弁7が作動した際の内部ガスが通過する通路となる。
この圧力弁7は、弾性封口体4のほぼ中心位置に設けても良く、また図3に示すように弾性封口体4のほぼ中心から点対称に複数設けても良い。
The step portion 6 of the elastic sealing body 4 has a through hole for drawing out the lead wire 5, and prevents a short circuit due to contact with the curling portion of the outer case 3. As shown in FIG. 2, a pressure valve 7 is formed in a region where the step portion 6 is not formed in the vicinity of the center of the elastic sealing body 4, and the surface of the step portion 6 of the elastic sealing body 4 is placed on the printed circuit board. When brought into close contact with the surface, a space between the step 6 and the step 6 becomes a passage through which the internal gas passes when the pressure valve 7 is operated.
The pressure valve 7 may be provided at substantially the center position of the elastic sealing body 4, or a plurality of pressure valves 7 may be provided symmetrically with respect to the center of the elastic sealing body 4 as shown in FIG.
前記圧力弁7は、薄肉部8と、この薄肉部8のほぼ中心付近に設けられ、内圧上昇時にコンデンサ外部側に移動する非変形部9とから構成される。なお、外装ケース3の封止を、該外装ケース3の開口端のカーリング処理とともに、弾性封口体4の側面に対応する外装ケース3の側面をカーリング処理して封止する場合には、前記薄肉部8は、外装ケース3の側面のカーリング処理位置からずらし、コンデンサの外部側に設けることが好ましい。前記薄肉部8のほぼ中心付近に設けられる非変形部9は、薄肉部8より剛性を有し、又は変形しにくい性質を有する。なお「非変形」とは内圧により非変形部9がコンデンサ外部側に移動した際に、圧力弁7の内壁と前記非変形部9との間の破断部となる薄肉部8に応力を加えられる程度での非変形部9の変形は含まれる。 The pressure valve 7 includes a thin portion 8 and a non-deformable portion 9 that is provided near the center of the thin portion 8 and moves to the outside of the capacitor when the internal pressure increases. In addition, when sealing the exterior case 3 by curling the side surface of the exterior case 3 corresponding to the side surface of the elastic sealing body 4 together with the curling process of the open end of the exterior case 3, the thin wall It is preferable that the portion 8 is shifted from the curling position on the side surface of the outer case 3 and provided on the outer side of the capacitor. The non-deformable portion 9 provided in the vicinity of the center of the thin portion 8 is more rigid than the thin portion 8 or has a property of being difficult to deform. Note that “non-deformation” means that when the non-deformation portion 9 moves to the outside of the capacitor due to internal pressure, stress is applied to the thin-wall portion 8 that is a fracture portion between the inner wall of the pressure valve 7 and the non-deformation portion 9. The deformation of the non-deformation part 9 to the extent is included.
この非変形部9は、薄肉部8と同種材料からなり、円柱状、角柱状や球状に薄肉部8より突出した形状のものや、異種材料を用いる場合は、非変形の板材、例えばアルミニウムなどの金属板11などから構成される。これら非変形部9は、薄肉部8のほぼ中心付近に配置され、薄肉部8の少なくとも一方の面に形成されていればよいが、両面に配置されるのが好ましい。なお、図に示すように、薄肉部8にアルミニウムなどの金属板11を配置する場合には、該金属板の両端に薄肉部に食い込む突起12を設けるとよい。 The non-deformable portion 9 is made of the same material as the thin-walled portion 8, and has a cylindrical shape, a prismatic shape, or a spherical shape protruding from the thin-walled portion 8, or a non-deformed plate material such as aluminum when a different material is used. The metal plate 11 etc. are comprised. These non-deformable portions 9 need only be disposed near the center of the thin portion 8 and formed on at least one surface of the thin portion 8, but are preferably disposed on both sides. As shown in the drawing, when a metal plate 11 such as aluminum is disposed on the thin portion 8, it is preferable to provide protrusions 12 that bite into the thin portion at both ends of the metal plate.
図5に示すように、圧力弁7の内壁と非変形部9との間の破断部となる薄肉部8の幅t1又はt2は、0.4mm以下が好ましい。0.4mmを超えると、前記薄肉部8が破断せずに伸長した状態となり、従って圧力弁7の動作圧力が高くなり、小形の電解コンデンサ1では、前記圧力弁7の動作する前に弾性封口体4が離脱するなどの不具合が生じてしまう。
また、前記薄肉部8の厚みは、0.3mm以下が好ましく、0.3mmを超えると、内圧上昇時に圧力弁7が動作しづらく、弾性封口体4が離脱するなどの問題がある。
As shown in FIG. 5, the width t <b> 1 or t <b> 2 of the thin-walled portion 8 that is a fracture portion between the inner wall of the pressure valve 7 and the non-deformed portion 9 is preferably 0.4 mm or less. If the thickness exceeds 0.4 mm, the thin-walled portion 8 is in an expanded state without breaking, so that the operating pressure of the pressure valve 7 is increased, and in the small electrolytic capacitor 1, the elastic sealing is performed before the pressure valve 7 is operated. Problems such as the body 4 detaching occur.
Further, the thickness of the thin portion 8 is preferably 0.3 mm or less, and if it exceeds 0.3 mm, there is a problem that the pressure valve 7 is difficult to operate when the internal pressure is increased, and the elastic sealing body 4 is detached.
そして圧力弁7は、弾性封口体4の成形時に同時に成形して製造される。これは、弾性封口体4の原材料となるゴム板に対してその表裏両面から2つの金型を押し当てて行う型成形によって得られる。この2つの金型には、リード線5貫通孔用の突起と、段部6用の凹部と、弾性封口体4の中心付近に圧力弁7を設けるための薄肉部8用の突起、この突起の頂面に非変形部9を成形するための円柱状、角柱状又は球状の凹部が設けられている。この金型間に封口体材料となるゴム板を挟んで成形し、金型を剥離することで弾性封口体4が成形される。この剥離の際に、前記圧力弁7の非変形部9が球状10であると、金型に貼り付かず、剥離が容易となり、不具合品が低減される。 The pressure valve 7 is manufactured by molding at the same time as the elastic sealing body 4 is molded. This is obtained by molding performed by pressing two molds from both the front and back surfaces of the rubber plate as a raw material of the elastic sealing body 4. The two molds include a lead wire 5 through hole projection, a stepped portion recess, a thin portion 8 projection for providing a pressure valve 7 near the center of the elastic sealing body 4, and the projection. A cylindrical, prismatic, or spherical concave portion for forming the non-deformable portion 9 is provided on the top surface. The elastic sealing body 4 is molded by forming a rubber plate as a sealing body material between the molds and peeling the mold. When the non-deformation portion 9 of the pressure valve 7 is spherical 10 at the time of peeling, it does not stick to the mold, and peeling becomes easy and defective products are reduced.
また圧力弁7は、他の方法として、前記型成形には、前述の様な非変形部9を成形する凹部を設けていない、薄肉部8用の突起にてゴム板を挟んで成形し、非変形部9を形成していない薄肉部8を設け、この薄肉部8に非変形の板材を配して非変形部9を形成することもできる。 As another method, the pressure valve 7 is formed by sandwiching a rubber plate with a protrusion for the thin portion 8 that does not have a recess for forming the non-deformable portion 9 as described above in the mold, The non-deformed portion 9 can also be formed by providing a thin-wall portion 8 on which the non-deformable portion 9 is not formed and arranging a non-deformable plate material on the thin-wall portion 8.
次にこの圧力弁7の動作について説明する。
図6に示すように電解コンデンサ1に大電流が流れ、内部ガスが生じ、コンデンサの内圧が上昇すると、この内圧は、圧力弁7の薄肉部8及び非変形部9に付与される。この際に、非変形部9が該内圧により変形が少ない状態でコンデンサ外部側に移動し、この移動により、圧力弁7の内壁と前記非変形部9との間の薄肉部8に応力が集中し、薄肉部8における圧力弁7の内壁との境界付近、又は非変形部9との境界付近より破断され、内部ガスがコンデンサ外部に放出される。
このように、前記非変形部9は変形が少ない状態にてコンデンサ外部側に移動させることで、圧力弁7の内壁と非変形部9との間の薄肉部8を伸長させ確実に応力を集中させることができるため、圧力弁7の動作圧力を低くでき、且つ小形化を実現できる。
Next, the operation of the pressure valve 7 will be described.
As shown in FIG. 6, when a large current flows through the electrolytic capacitor 1 to generate internal gas and the internal pressure of the capacitor increases, this internal pressure is applied to the thin portion 8 and the non-deformed portion 9 of the pressure valve 7. At this time, the non-deformed portion 9 moves to the outside of the capacitor with little deformation due to the internal pressure, and due to this movement, stress concentrates on the thin-walled portion 8 between the inner wall of the pressure valve 7 and the non-deformed portion 9. Then, the thin portion 8 is broken near the boundary with the inner wall of the pressure valve 7 or near the boundary with the non-deformed portion 9, and the internal gas is released to the outside of the capacitor.
As described above, the non-deformable portion 9 is moved to the outside of the capacitor with little deformation, so that the thin portion 8 between the inner wall of the pressure valve 7 and the non-deformable portion 9 is extended to concentrate stress reliably. Therefore, the operating pressure of the pressure valve 7 can be lowered and downsizing can be realized.
次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.
(実施例1)
実施例1の電解コンデンサは、定格電圧300V、静電容量5μF、大きさφ5×L16mmである。圧力弁は、弾性封口体のほぼ中心付近に、薄肉部と、この薄肉部のほぼ中心付近に設けられ、内圧上昇時にコンデンサ外部側に移動する非変形部を備えている。非変形部は、薄肉部と同種材料からなり、ほぼ球状である。圧力弁の大きさは、薄肉部の直径が1.0mm、薄肉部の厚みが0.2mm、薄肉部の幅は各0.2mm、非変形部の厚みが0.6mmである。
Example 1
The electrolytic capacitor of Example 1 has a rated voltage of 300 V, a capacitance of 5 μF, and a size φ5 × L16 mm. The pressure valve includes a thin portion near the center of the elastic sealing body and a non-deformable portion that is provided near the center of the thin portion and moves to the outside of the capacitor when the internal pressure increases. The non-deformed portion is made of the same material as the thin-walled portion and is substantially spherical. As for the size of the pressure valve, the diameter of the thin portion is 1.0 mm, the thickness of the thin portion is 0.2 mm, the width of the thin portion is 0.2 mm, and the thickness of the non-deformed portion is 0.6 mm.
(実施例2)
実施例2の電解コンデンサは、実施例1の圧力弁を、弾性封口体の中心から点対称位置に、2つの圧力弁を設けたものである。
(Example 2)
In the electrolytic capacitor of Example 2, the pressure valve of Example 1 is provided with two pressure valves in a point-symmetrical position from the center of the elastic sealing body.
(実施例3)
実施例3の電解コンデンサは、実施例1の圧力弁の非弾性部に代えて、薄肉部の中心付近の両面に、厚さ0.1mmのアルミニウム板を貼り付けて非変形部を形成したものである。
(Example 3)
In the electrolytic capacitor of Example 3, instead of the non-elastic part of the pressure valve of Example 1, a non-deformed part was formed by sticking an aluminum plate having a thickness of 0.1 mm on both surfaces near the center of the thin part. It is.
(実施例4)
実施例4の電解コンデンサは、実施例3の圧力弁を、弾性封口体の中心から点対称位置に、2つの圧力弁を設けたものである。
Example 4
In the electrolytic capacitor of Example 4, the pressure valve of Example 3 is provided with two pressure valves in a point-symmetric position from the center of the elastic sealing body.
(従来例1)
従来例1の電解コンデンサは、圧力弁として、非変形部を形成していない薄肉部を用いない以外は実施例1と同様である。
(Conventional example 1)
The electrolytic capacitor of Conventional Example 1 is the same as that of Example 1 except that the pressure valve does not use a thin part that does not form a non-deformed part.
上記実施例1〜4及び従来例1につき、次のような圧力弁作動試験を行った。
電解コンデンサのリード線間に、規格極性の逆極性の電圧を1A、50Vにて印加し、電圧印加後の電解コンデンサの状態を観察した。その結果を表1に示す。
About the said Examples 1-4 and the prior art example 1, the following pressure valve action | operation tests were done.
A voltage having a polarity opposite to the standard polarity was applied at 1 A and 50 V between the lead wires of the electrolytic capacitor, and the state of the electrolytic capacitor after voltage application was observed. The results are shown in Table 1.
表1から明らかなように、実施例1〜4の電解コンデンサでは、圧力弁が全て正常に動作したのに対し、従来例1では、圧力弁の正常な動作が得られず、電解コンデンサの内圧によって、弾性封口体自体が外装ケースから離脱してしまった。なお、圧力弁を1つ設けた実施例1及び実施例3では、弾性封口体の膨れが生じたものが一部見られており、実施には影響は少ないものの、圧力弁を2つ設けた実施例2及び実施例4の方が良好である。以上の試験結果から明らかなように、この発明の圧力弁構造では、圧力弁の動作圧力を低くすることができ、従って小形の電解コンデンサであっても圧力弁の正常な動作が得られ、弾性封口体の離脱などの不具合を回避できることがわかる。 As is clear from Table 1, in the electrolytic capacitors of Examples 1 to 4, all the pressure valves operated normally, whereas in Conventional Example 1, the pressure valve did not operate normally, and the internal pressure of the electrolytic capacitor was not obtained. As a result, the elastic sealing body itself has detached from the outer case. In Example 1 and Example 3 in which one pressure valve was provided, some of the elastic sealing bodies were swollen, and although there was little influence on the implementation, two pressure valves were provided. Examples 2 and 4 are better. As is clear from the above test results, the pressure valve structure of the present invention can reduce the operating pressure of the pressure valve, and therefore, even with a small electrolytic capacitor, the normal operation of the pressure valve can be obtained and elastic. It can be seen that problems such as removal of the sealing body can be avoided.
1 電解コンデン
2 コンデンサ素子
3 外装ケース
4 弾性封口体
5 リード線
6 段部
7 圧力弁
8 薄肉部
9 非変形部
10 球状非変形部
11 金属板
12 突起
DESCRIPTION OF SYMBOLS 1 Electrolytic condenser 2 Capacitor element 3 Exterior case 4 Elastic sealing body 5 Lead wire 6 Step part 7 Pressure valve 8 Thin part 9 Nondeformation part 10 Spherical nondeformation part 11 Metal plate 12 Protrusion
Claims (5)
該コンデンサ素子を収納する有底筒状の外装ケースと、
該外装ケースの開口部を封止する弾性封口体とからなり、
前記弾性封口体は、ゴムからなる薄肉部と、
この薄肉部のほぼ中心付近に設けられ、内圧上昇時にコンデンサ外部側に移動する非変形部とからなる圧力弁を備え、
前記非変形部は、内圧上昇時にコンデンサ外部側に移動して、
前記薄肉部がコンデンサ外部側からコンデンサ内部側に傾斜し、
前記圧力弁の内壁との境界付近または前記非変形部との境界付近に応力を集中させることを特徴とする電解コンデンサ。 A capacitor element;
A bottomed cylindrical outer case for storing the capacitor element;
It consists of an elastic sealing body that seals the opening of the exterior case,
The elastic sealing body is a thin portion made of rubber,
A pressure valve is provided near the center of the thin wall portion, and includes a non-deformable portion that moves to the outside of the capacitor when the internal pressure rises.
The non-deformed portion moves to the outside of the capacitor when the internal pressure rises,
The thin portion is inclined from the outside of the capacitor to the inside of the capacitor,
An electrolytic capacitor characterized in that stress is concentrated near a boundary with an inner wall of the pressure valve or near a boundary with the non-deformed portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012207865A JP5392389B2 (en) | 2012-09-21 | 2012-09-21 | Electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012207865A JP5392389B2 (en) | 2012-09-21 | 2012-09-21 | Electrolytic capacitor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004226980A Division JP5133498B2 (en) | 2004-08-03 | 2004-08-03 | Electrolytic capacitor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012248906A JP2012248906A (en) | 2012-12-13 |
JP5392389B2 true JP5392389B2 (en) | 2014-01-22 |
Family
ID=47468991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012207865A Expired - Fee Related JP5392389B2 (en) | 2012-09-21 | 2012-09-21 | Electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5392389B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6016478B2 (en) * | 2012-06-28 | 2016-10-26 | ニチコン株式会社 | Pressure valve for electrolytic capacitor and electrolytic capacitor using the same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS549344U (en) * | 1977-06-22 | 1979-01-22 | ||
JPS562622A (en) * | 1979-06-22 | 1981-01-12 | Nichicon Capacitor Ltd | Method of sealing electrolytic condenser |
JPS63184318A (en) * | 1987-01-27 | 1988-07-29 | 日本ケミコン株式会社 | Explosion-proof structure of electrolytic capacitor |
JPS63192221A (en) * | 1987-02-04 | 1988-08-09 | 日本ケミコン株式会社 | Explosion-proof construction of electrolytic capacitor |
JP3890675B2 (en) * | 1996-06-12 | 2007-03-07 | Fdk株式会社 | Square electrochemical device and method for producing the same |
JPH11111577A (en) * | 1997-10-02 | 1999-04-23 | Hitachi Ltd | Horizontally-set electrolytic capacitor |
JPH11307408A (en) * | 1998-04-22 | 1999-11-05 | Nippon Chemicon Corp | Electrolytic capacitor |
-
2012
- 2012-09-21 JP JP2012207865A patent/JP5392389B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012248906A (en) | 2012-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006286561A (en) | Sealing plate for sealed battery | |
KR20150027734A (en) | Pressure valve for electrolytic capacitor, and electrolytic capacitor using same | |
JP5971943B2 (en) | Capacitor | |
TWI640024B (en) | Electronic parts | |
JP5455719B2 (en) | Flat battery and tire air pressure detecting device having the same | |
JP5392389B2 (en) | Electrolytic capacitor | |
JP2011060880A (en) | Sealing plate | |
JP2012206733A (en) | Delamination container | |
JP5133498B2 (en) | Electrolytic capacitor and manufacturing method thereof | |
JP2016177877A (en) | Sealing plate for cylindrical battery and cylindrical battery | |
JP5818004B2 (en) | Sealing plate for sealed electrochemical devices | |
JP2009246287A (en) | Electrolytic capacitor | |
JP5837468B2 (en) | Sealed battery | |
JP2013143370A5 (en) | ||
TWI687950B (en) | Pressure valve and electrolytic capacitor | |
JP5891689B2 (en) | Capacitor | |
JP2016046388A (en) | Capacitor and method of manufacturing the same | |
JP6688029B2 (en) | battery | |
JP5486356B2 (en) | Flat battery | |
JP6390266B2 (en) | Capacitor manufacturing method | |
JP6191015B2 (en) | Electrolytic capacitor | |
JP4498244B2 (en) | Aluminum electrolytic capacitor case | |
JP5165638B2 (en) | Electrolytic capacitor | |
JP2015213137A (en) | Capacitor | |
JP2013026293A (en) | Capacitor and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130917 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130930 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5392389 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |