JP5390225B2 - Steel ball collecting device and steel ball collecting method of shot cleaning device - Google Patents

Steel ball collecting device and steel ball collecting method of shot cleaning device Download PDF

Info

Publication number
JP5390225B2
JP5390225B2 JP2009064212A JP2009064212A JP5390225B2 JP 5390225 B2 JP5390225 B2 JP 5390225B2 JP 2009064212 A JP2009064212 A JP 2009064212A JP 2009064212 A JP2009064212 A JP 2009064212A JP 5390225 B2 JP5390225 B2 JP 5390225B2
Authority
JP
Japan
Prior art keywords
steel ball
dust
sieve
boiler
chute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009064212A
Other languages
Japanese (ja)
Other versions
JP2010216722A (en
Inventor
光正 戸高
敏郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Nippon Steel Plant Designing Corp
Original Assignee
NS Plant Designing Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NS Plant Designing Corp, Nippon Steel Engineering Co Ltd filed Critical NS Plant Designing Corp
Priority to JP2009064212A priority Critical patent/JP5390225B2/en
Publication of JP2010216722A publication Critical patent/JP2010216722A/en
Application granted granted Critical
Publication of JP5390225B2 publication Critical patent/JP5390225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Incineration Of Waste (AREA)

Description

本発明は、ボイラの排ガス流路に配置される熱交換器の伝熱管表面に付着したダストを鋼球を散布することにより、鋼球を落下衝突させることで除去するショットクリーニング装置の鋼球回収装置および鋼球回収方法に関する。   The present invention relates to a steel ball recovery of a shot cleaning device, in which dust adhered to the heat transfer tube surface of a heat exchanger disposed in an exhaust gas passage of a boiler is removed by colliding the steel ball by falling and colliding with the steel ball. The present invention relates to an apparatus and a steel ball collection method.

ボイラの排ガス流路に配置される熱交換器の伝熱管表面にダストが付着すると、熱交換器の熱回収率が低下するため、付着したダストを定期的に除去する必要がある。   If dust adheres to the surface of the heat exchanger tube of the heat exchanger disposed in the exhaust gas flow path of the boiler, the heat recovery rate of the heat exchanger decreases, and thus the adhering dust needs to be removed periodically.

水平管群で構成されている伝熱管のダスト払い落としとして、従来、ボイラからの発生蒸気を伝熱管に噴射させて除去するスートブロー方式が一般的である。この方式では、スートブローからの伝熱管の距離や伝熱管群の内の位置によって払い落とし能力に強弱が発生する。即ち、スートブローの噴射ノズルに近い側の伝熱管群の表面は強い噴射力により伝熱管群に付着したダストは除去されるが、伝熱管群の内部側では噴射力が弱まりダスト除去性能が低下するという問題があった。このため、スートブローは高さ方向に多数設置する必要があり、設置のためのコストが多大となっていた。更に、噴射ノズルに近い側の表面伝熱管群には噴射力が強いため伝熱管群が磨耗するという問題もあった。また、噴射流体として蒸気を使用するため、スートブロー時には蒸気回収量が低下し、特に蒸気タービンで発電を行っている場合には発電力が低下することになる。   Conventionally, a soot blow system in which steam generated from a boiler is sprayed onto a heat transfer tube to remove dust from the heat transfer tube formed of a horizontal tube group is generally used. In this system, the strength of the wiping off is generated depending on the distance of the heat transfer tube from the soot blow and the position in the heat transfer tube group. That is, the dust attached to the heat transfer tube group is removed by the strong injection force on the surface of the heat transfer tube group on the side close to the soot blow injection nozzle, but the injection force is weakened on the inner side of the heat transfer tube group and the dust removal performance is deteriorated. There was a problem. For this reason, it is necessary to install a large number of soot blowers in the height direction, and the cost for installation has been great. Furthermore, the surface heat transfer tube group on the side close to the injection nozzle has a problem that the heat transfer tube group is worn because the injection force is strong. Further, since steam is used as the jet fluid, the steam recovery amount is reduced at the time of soot blow, and the power generation is reduced particularly when power is generated by the steam turbine.

図3はスートブロー方式のダスト除去装置を廃熱ボイラ20に設置した例である。図3において、高温の排ガスは放射冷却室21で冷却され、ボイラ下部より隣室に入り、過熱器22、蒸発器23、節炭器24を通って熱交換され、ボイラ上部より排出される。これら熱交換器はいずれも水平伝熱管群で構成されている。これら伝熱管群に付着堆積したダストを除去るため、多数のスートブロー26が設けられており、プローブの先端にプローブと軸直角に方向に噴射する蒸気噴出孔が設けられ、同プローブが回転および進退する動作により伝熱管全体に噴射する。スートブローの間欠動作により、伝熱管群に付着堆積したダストを払い落とす。払い落とされたダストは下方に沈降し、ダスト排出装置25からボイラ外に排出される。   FIG. 3 shows an example in which a soot blow type dust removing device is installed in the waste heat boiler 20. In FIG. 3, the hot exhaust gas is cooled in the radiation cooling chamber 21, enters the adjacent chamber from the lower part of the boiler, exchanges heat through the superheater 22, the evaporator 23, and the economizer 24, and is discharged from the upper part of the boiler. Each of these heat exchangers is composed of a horizontal heat transfer tube group. A number of soot blowers 26 are provided to remove dust adhering to and accumulated on these heat transfer tube groups, and a steam ejection hole is provided at the tip of the probe in a direction perpendicular to the axis of the probe. It sprays to the whole heat exchanger tube by the operation to do. The dust deposited on the heat transfer tube group is removed by intermittent soot blow operation. The dust that has been wiped down settles down and is discharged from the dust discharge device 25 to the outside of the boiler.

このスートブロー方式の場合、ノズル側に近い側の伝熱管、特に表面側の伝熱管は強い噴射力を受け、ダストの払い落とし効果は得られるが、奥側の伝熱管では噴射力が急激に弱まり、ダスト払い落とし能力が低下する。このため、奥側の伝熱管にも十分なダスト払い落とし力を確保すべく噴射力の圧力を上げることになるが、これは表面側の伝熱管を磨耗させる結果となる。また、スートブロー方式では、噴射流体としてボイラ蒸気を使用するのが一般的であるが、蒸気量として1〜2トン/時の蒸気を使用するため、ボイラからの熱回収量が低下することになる。   In this soot blow system, the heat transfer tube near the nozzle side, especially the heat transfer tube on the surface side, receives a strong injection force, and the dust removal effect is obtained, but the injection force is sharply reduced in the back heat transfer tube , Dust wiping ability is reduced. For this reason, the pressure of the injection force is increased to ensure a sufficient dust wiping force for the heat transfer tube on the back side, but this results in the wear of the heat transfer tube on the surface side. Further, in the soot blow system, it is common to use boiler steam as the jet fluid, but since steam of 1 to 2 ton / hour is used as the amount of steam, the amount of heat recovered from the boiler is reduced. .

このスートブロー方式に対して、特許文献1に開示されているように熱交換器の上部から鋼球を散布する方式が従来より採用されている。それを図4に示す。図4において、伝熱管27を落下通過する過程で伝熱管群と衝突し、ダストを払い落としながら下方へ落下し、ダストとともに落下した鋼球28は切出ゲートによりダストセパレータ29へ送られ、ダストと鋼球を分離し、回収する。回収された鋼球は、垂直搬送装置30によりシュート管を介して鋼球分配器32に送られ、再び伝熱管群の上部から散布される。   In contrast to this soot blow system, a system in which steel balls are dispersed from the upper part of the heat exchanger as disclosed in Patent Document 1 has been conventionally employed. This is shown in FIG. In FIG. 4, the steel ball 28 collides with the heat transfer tube group in the process of falling through the heat transfer tube 27, falls down while dust is removed, and the steel ball 28 dropped together with the dust is sent to the dust separator 29 by the cutting gate, And steel balls are separated and recovered. The collected steel balls are sent to the steel ball distributor 32 via the chute tube by the vertical conveying device 30 and again sprayed from the upper part of the heat transfer tube group.

従来のショットクリーニング方式では、ボイラ内の上部から散布された鋼球が伝熱管群を通過する過程で高温のガス流により昇温されるが、伝熱管群を通過する時間が10秒程度と短いため、高温ガスとの接触によって上昇する鋼球の温度は、200℃程度であり、耐熱上問題となる温度ではない。しかし、鋼球とともに降下してくるダストの温度は700〜900℃程度あり、ホッパの下部に貯留されてダストとともに切出ゲートからダストセパレータへ排出される構造では、ダストから熱を受け高温化する。さらに、ダストセパレータ内はダストと鋼球が混在して貯留されているため、ダストセパレータ内の通気が安定せず、冷却空気を吹き込んでも鋼球が一様に冷却することができない。また、鋼球が高温化することで、鋼球の磨耗が早く、鋼球の補充量が多くなるという問題もあった。このため、ショットクリーニング方式はガス温度とダスト温度が低い節炭器部分に限定されていた。   In the conventional shot cleaning system, the temperature of the steel balls dispersed from the upper part of the boiler is raised by a high-temperature gas flow in the process of passing through the heat transfer tube group, but the time for passing through the heat transfer tube group is as short as about 10 seconds. Therefore, the temperature of the steel ball that rises due to contact with the high-temperature gas is about 200 ° C., and is not a temperature that causes a problem in heat resistance. However, the temperature of the dust descending with the steel ball is about 700 to 900 ° C., and in the structure where the dust is stored in the lower part of the hopper and discharged together with the dust from the cutting gate to the dust separator, it receives heat from the dust and becomes high temperature. . Furthermore, since dust and steel balls are mixed and stored in the dust separator, ventilation in the dust separator is not stable, and the steel balls cannot be cooled uniformly even when cooling air is blown. In addition, since the temperature of the steel balls is increased, there is a problem that the wear of the steel balls is quick and the replenishment amount of the steel balls is increased. For this reason, the shot cleaning method is limited to the economizer portion where the gas temperature and the dust temperature are low.

特開平10−223396号公報JP-A-10-223396

本発明の解決すべき課題は、鋼球が高温のダストと長時間接触することにより高温化することを防止するショットクリーニング装置の鋼球回収装置及び鋼球回収方法を提供することである。   The problem to be solved by the present invention is to provide a steel ball recovery device and a steel ball recovery method of a shot cleaning device that prevent a steel ball from being heated to high temperature due to contact with high temperature dust for a long time.

本発明は、伝熱管に鋼球を散布してボイラ伝熱管に付着したダストを除去し、散布した鋼球およびダストをボイラ下部より取り出して前記鋼球をダストより分離・冷却するショットクリーニング装置の鋼球分離装置において、前記ボイラ下部に供給シュートを介してトロンメル構造の分離装置をボイラ内と常時連通状態で連結し、前記トロンメル構造は篩を同心円筒状の二重構造とし、同一の回転軸により一体的に回転する構造ともに、内側の篩は鋼球と粉状ダストを外側の篩に払い落とす粗目の篩とし、外側の篩は粉状ダストを払い落とす細目の篩とし、前記トロンメル構造の分離装置をケーシングで包囲し、該ケーシングの下部に鋼球を回収する鋼球シュートと粉状ダストおよび塊状ダストを回収するダスト集合シュートを設け、前記鋼球シュートには鋼球タンクを連結し、該鋼球タンクに鋼球を冷却する冷却空気配管を配設し、前記鋼球タンクに吹き込まれた空気は、前記篩を通過し、前記供給シュートを経由して前記ボイラ内に排出されることを特徴とするものである。 The present invention relates to a shot cleaning device in which steel balls are dispersed on a heat transfer tube to remove dust adhering to the boiler heat transfer tube, and the dispersed steel balls and dust are taken out from the lower part of the boiler to separate and cool the steel balls from the dust. In the steel ball separating device, a separator having a trommel structure is connected to a boiler lower part through a supply chute in a constantly communicating state with the inside of the boiler, and the trommel structure has a concentric cylindrical double structure and the same rotating shaft. a structure that rotates integrally together, inside the sieve with a coarse sieve shake off the steel ball and powdery dust on the outside of the sieve, the outer sieve with sieve particulars shake off powder dust by the trommel structure A separation device of the above is surrounded by a casing, and a steel ball chute for collecting a steel ball and a dust collecting chute for collecting powdery dust and massive dust are provided at a lower portion of the casing, A steel ball tank is connected to the ball chute, and a cooling air pipe for cooling the steel ball is arranged in the steel ball tank, and the air blown into the steel ball tank passes through the sieve and passes the supply chute. It is characterized by being discharged into the boiler via .

このように、ボイラ下部より供給シュートが二重構造のトロンメル分離装置に内側の篩に連結されているため、鋼球とダストは内側の篩へ供給される。内側の篩は、鋼球と粉状ダストを篩落とす。一般的に使用される鋼球のサイズは6.3mm程度であるため、内側の篩目のサイズは10mm程度を採用する。10mm程度の篩目を採用することにより、使用される鋼球6.3mmは外側の篩へと払い落とされる同時に、10mm以下の塊状物と粉状ダストも払い落とされる。外側の篩目は5mm程度を採用することにより、5mm以下の粉状ダストのみが篩い落とされる。また、鋼球と5mm以上10mm以下の塊状物は鋼球タンクに回収される。   In this way, since the supply chute is connected to the inner screen of the double structure trommel separator from the lower part of the boiler, the steel ball and the dust are supplied to the inner screen. The inner screen sifts out steel balls and powdered dust. Since the size of steel balls generally used is about 6.3 mm, the size of the inner mesh is about 10 mm. By adopting a sieve mesh of about 10 mm, the steel ball 6.3 mm used is wiped off to the outer sieve, and at the same time, lump and powder dust of 10 mm or less are also wiped off. By adopting an outer sieve mesh of about 5 mm, only powdered dust of 5 mm or less is sieved off. Moreover, the steel ball and the lump of 5 mm to 10 mm are collected in the steel ball tank.

また、本発明において、内側の篩の内面および外側の篩の内面に螺旋状の送り羽根を配設したことを特徴とする。このように送り羽根を設置することにより供給された鋼球およびダストが篩装置の回転だけで鋼球およびダストを移動させて篩うものよりより、コンパクトにすることができる。   In the present invention, a spiral feed blade is provided on the inner surface of the inner sieve and the inner surface of the outer sieve. In this way, the steel balls and dust supplied by installing the feed blades can be made more compact than those in which the steel balls and dust are moved and sieved only by the rotation of the sieve device.

また、本発明の送り羽根は、回転軸の回転動作によって内側に設置した送り羽根と外側に設置した送り羽根の方向を互いに正逆方向に設置ことにより内側に供給された鋼球およびダストが内側の篩装置と外側の篩装置とでは篩装置内での移動方向が逆となり、ダストおよび塊状物は同一集合シュートで一括して回収することが可能となり、鋼球と分離することができ設備がコンパクトになる。   Further, the feed blade of the present invention is configured such that the steel ball and the dust supplied to the inside are inside by setting the direction of the feed blade installed on the inside and the direction of the feed blade installed on the outside in the forward and reverse directions by the rotation operation of the rotating shaft. The movement direction in the sieving device is opposite to that in the sieving device, and dust and lump can be collected in a lump with the same collective chute and can be separated from the steel ball. It becomes compact.

本発明によれば、ボイラ内を下降した鋼球とダストはトロンメル構造の分離装置によりダストと鋼球を分離することができ、鋼球の温度上昇を防止することができる。また、鋼球を回収するタンクには、ダストの混入が少ないので、タンクは通気性が向上し冷却空気により冷却効果を高めることができる。   According to the present invention, the steel ball and dust that have descended in the boiler can be separated from the dust and the steel ball by the trommel separator, and the temperature of the steel ball can be prevented from rising. In addition, since the dust collecting is less in the tank that collects the steel balls, the tank has improved air permeability, and the cooling effect can be enhanced by the cooling air.

本発明の実施例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the Example of this invention. 図1のA―A矢視図である。It is an AA arrow line view of FIG. 従来の鋼球分離装置の概略図である。It is the schematic of the conventional steel ball separation apparatus. 従来の鋼球分離装置の概略図である。It is the schematic of the conventional steel ball separation apparatus.

以下、図面に示す実施例に基づき本発明の実施の形態を説明する。 Embodiments of the present invention will be described below based on examples shown in the drawings.

図1に示すように、ボイラ下部シュート5により集められたダスト及び鋼球は常時開放している遮断弁4を経由して供給シュート3によりトロンメル構造の分離装置1内に送り込まれる。トロンメル篩1は、ケーシング2内に収められ、外気と遮断されている。また、トロンメル篩1は、二重円筒構造とし、内側の篩に粗目篩1b、外側の篩に細目篩1aとして、これら篩は回転軸7により内側篩サポート柱17bおよび外側篩サポート柱17aにより連結支持されている。回転軸7の両端は、ケーシング2を貫通して一端は回転駆動装置6と連結し、他端は回転軸支持ベアリング18により軸支されている。回転軸7の貫通部は、回転軸シール装置19が設けられている。   As shown in FIG. 1, the dust and steel balls collected by the boiler lower chute 5 are fed into the trommel structure separation device 1 by the supply chute 3 via the shut-off valve 4 which is always open. The trommel sieve 1 is housed in the casing 2 and is blocked from the outside air. The trommel sieve 1 has a double-cylindrical structure, with a coarse sieve 1b on the inner sieve and a fine sieve 1a on the outer sieve. These sieves are connected by a rotary shaft 7 by an inner sieve support column 17b and an outer sieve support column 17a. It is supported. Both ends of the rotary shaft 7 pass through the casing 2, one end is connected to the rotary drive device 6, and the other end is pivotally supported by a rotary shaft support bearing 18. A rotary shaft sealing device 19 is provided in the penetrating portion of the rotary shaft 7.

トロンメル篩1で、供給物は内側の粗目篩1bへ入る。一般的にショット用の鋼球は6.3mmの鋼球が使用され、同サイズの鋼球を使用した場合は粗目篩1bは10mm目程度が適している。この粗目により、10mm以下の鋼球および粉状ダストは外側の細目篩1aへ篩落とされる。一方、外側の細目篩1aは5mm程度の篩目としている。したがって、細目篩1aに篩落とされた鋼球14は、細目篩1aの回転により鋼球シュート2bを経て鋼球タンク8に回収される。5mm以下の粉状ダスト15は、細目篩1aの篩目から集合ダストシュート2aに直接回収される。また、まれに鋼球サイズ以上の塊状物が流入することがあり、これが鋼球切出装置の噛み込みや鋼球の移送に障害をきたすことがあるため、塊状物は粗目篩1bから集合ダストシュート2aに直接回収される。また、細目篩1aの下流側の篩端は集合ダストシュート2aに連結されているので、塊状物ともに塊状ダスト16も回収される。   With the trommel sieve 1, the feed enters the inner coarse sieve 1b. In general, a steel ball of 6.3 mm is used as a steel ball for shot, and when a steel ball of the same size is used, the coarse sieve 1b is preferably about 10 mm. Due to this coarseness, steel balls of 10 mm or less and powdered dust are sieved to the outer fine sieve 1a. On the other hand, the outer fine screen 1a has a screen size of about 5 mm. Therefore, the steel balls 14 sieved on the fine sieve 1a are collected in the steel ball tank 8 through the steel ball chute 2b by the rotation of the fine sieve 1a. The powdery dust 15 of 5 mm or less is directly recovered from the mesh of the fine sieve 1a to the collective dust chute 2a. In addition, a lump of the size of the steel ball or larger may flow in rarely, and this may impede the biting of the steel ball cutting device or the transfer of the steel ball, so the lump is collected from the coarse sieve 1b. It is collected directly on the chute 2a. Further, since the downstream sieve end of the fine sieve 1a is connected to the collective dust chute 2a, the massive dust 16 is also collected together with the massive matter.

細目篩1aを通過した粉状ダスト15は直下に設けた集合ダストシュート2aに集められ、シール機能を備えた2重シール弁13より系外に排出される。外側の細目篩1a上に残った鋼球14は鋼球シュート2bを介して鋼球タンク8に集められる。ボイラ内を通過する過程で昇温された鋼球14は鋼球タンク8に設置された冷却空気配管9により吹き込まれる空気により冷却される。吹き込まれた空気は、鋼球間の空隙を通過する過程で鋼球14を冷却し、トロンメル篩1内を通過して供給シュート3を経由してボイラ内に排出される。このとき、ボイラ下部シュート5の出口での風速は、ダストの下降排出に障害を与えない速度となるよう断面積を設定することが必要であり、3〜5m/sの速度が好ましい。また、鋼球タンク8の出口に、鋼球切り出しフィーダ10を介してインジェクタ11が設けられている。   The powdery dust 15 that has passed through the fine sieve 1a is collected in an aggregate dust chute 2a provided immediately below, and is discharged out of the system through a double seal valve 13 having a sealing function. The steel balls 14 remaining on the outer fine screen 1a are collected in the steel ball tank 8 through the steel ball chute 2b. The steel ball 14 heated in the process of passing through the boiler is cooled by the air blown by the cooling air piping 9 installed in the steel ball tank 8. The blown air cools the steel balls 14 in the process of passing through the gaps between the steel balls, passes through the trommel sieve 1, and is discharged into the boiler via the supply chute 3. At this time, it is necessary to set the cross-sectional area so that the wind speed at the outlet of the boiler lower chute 5 does not hinder the downward discharge of dust, and a speed of 3 to 5 m / s is preferable. In addition, an injector 11 is provided at the outlet of the steel ball tank 8 via a steel ball cutting feeder 10.

トロンメル篩1のケーシング2内はボイラと連通状態で運転されるため、粉状ダスト15および塊状ダスト16の排出口にもシール機構を持たせるための二重シールダンパ13が用いられる。鋼球切出フィーダ10には、高圧の搬送空気のリークを防止するため、シール機能を備えている。前述のように、鋼球タンク8に吹き込まれた空気はトロンメル篩1内を経由してボイラに常時排出されるため、トロンメル篩1ケーシング2は常に空気で満たされボイラ内のガスの流入により腐食の心配はない。   Since the inside of the casing 2 of the trommel sieve 1 is operated in communication with the boiler, a double seal damper 13 is used to provide a sealing mechanism for the discharge port of the powdery dust 15 and the massive dust 16. The steel ball cutting feeder 10 has a sealing function to prevent leakage of high-pressure carrier air. As described above, since the air blown into the steel ball tank 8 is always discharged to the boiler via the trommel sieve 1, the trommel sieve 1 casing 2 is always filled with air and corroded by the inflow of gas in the boiler. There is no worry.

また、二重構造の篩は、外側の細目篩1aの内面および内側の粗目篩1bの内面に鋼球およびダストを移動させる送り羽根1c、1dを配設している。また、送り羽根1c、1dは、外側の細目篩1aに設置した送り羽根1cと内側の粗目篩1bの内面に設置した送り羽根1dとは、互いに鋼球およびダストが逆送りになるように取り付けている。例えば、外側の細目篩1aの送り羽根1cにより鋼球およびダストを供給シュート3側へ移動するように設置した場合、内側の粗目篩1bの送り羽根1dその逆に移動するように設置する。内側の粗目篩1bの篩上には、10mm以上の塊状ダストが残っているが、送り羽根1dにより供給シュート3側とは反対側に移動され内側の粗目篩1bの端部より排出される。   In the double-structure sieve, feed blades 1c and 1d for moving steel balls and dust are disposed on the inner surface of the outer fine sieve 1a and the inner surface of the inner coarse sieve 1b. The feed blades 1c and 1d are attached so that the feed blade 1c installed on the outer fine screen 1a and the feed blade 1d installed on the inner surface of the inner coarse screen 1b are reversely fed to each other. ing. For example, when the steel ball and dust are installed to move toward the supply chute 3 by the feed blade 1c of the outer fine screen 1a, the feed blade 1d of the inner coarse screen 1b is installed to move in the opposite direction. Although lump dust of 10 mm or more remains on the inner coarse sieve 1b, the dust is moved to the opposite side of the supply chute 3 by the feed blade 1d and discharged from the end of the inner coarse sieve 1b.

1 トロンメル篩
1a 細目篩
1b 粗目篩
1c 細目篩の送り羽根
1d 粗目篩の送り羽根
2 ケーシング
2a 集合ダストシュート
2b 鋼球シュート
3 供給シュート
4 遮断弁
5 ボイラ下部シュート
6 トロンメル回転駆動部
7 トロンメル回転駆動軸
8 鋼球タンク
9 冷却空気吹き込み管
10 鋼球切出フィーダ
11 インジェクタ
12 欠番
13 二重シール弁
14 鋼球
15 粉状ダスト
16 塊状ダスト
17a 外側トロンメル篩サポート柱
17b 内側トロンメル篩サポート柱
18 回転軸支持ベアリング
19 回転軸シール装置
20 ボイラ
21 放射冷却室
22 過熱器
23 蒸発器
24 節炭器
25 ダスト排出装置
26 スートブロー
DESCRIPTION OF SYMBOLS 1 Trommel sieve 1a Fine sieve 1b Coarse sieve 1c Fine sieve feed blade 1d Coarse sieve feed blade 2 Casing 2a Aggregate dust chute 2b Steel ball chute 3 Supply chute 4 Shut-off valve 5 Boiler lower chute 6 Trommel rotation drive 7 Trommel rotation drive Axis 8 Steel ball tank 9 Cooling air blowing pipe 10 Steel ball cutting feeder 11 Injector 12 Missing number 13 Double seal valve 14 Steel ball 15 Powdery dust 16 Bulk dust 17a Outer trommel sieve support column 17b Inner trommel sieve support column 18 Rotating shaft Support bearing 19 Rotating shaft sealing device 20 Boiler 21 Radiation cooling chamber 22 Superheater 23 Evaporator 24 Carbon saver 25 Dust discharge device 26 Soot blow

Claims (4)

伝熱管に鋼球を散布してボイラ伝熱管に付着したダストを除去し、散布した鋼球およびダストをボイラ下部より取り出して前記鋼球をダストより分離・冷却するショットクリーニング装置の鋼球分離装置において、
前記ボイラ下部に供給シュートを介してトロンメル構造の分離装置をボイラ内と常時連通状態で連結し、前記トロンメル構造は篩を同心円筒状の二重構造とし、同一の回転軸により一体的に回転する構造ともに、内側の篩は鋼球と粉状ダストを外側の篩に払い落とす粗目の篩とし、外側の篩は粉状ダストを払い落とす細目の篩とし、前記トロンメル構造の分離装置をケーシングで包囲し、該ケーシングの下部に鋼球を回収する鋼球シュートと粉状ダストおよび塊状ダストを回収するダスト集合シュートを設け、前記鋼球シュートには鋼球タンクを連結し、該鋼球タンクに鋼球を冷却する冷却空気配管を配設し、前記鋼球タンクに吹き込まれた空気は、前記篩を通過し、前記供給シュートを経由して前記ボイラ内に排出されることを特徴とするショットクリーニング装置の鋼球分離装置。
A steel ball separator for a shot cleaning device that disperses steel balls on the heat transfer tubes to remove the dust adhering to the boiler heat transfer tubes, takes out the scattered steel balls and dust from the bottom of the boiler, and separates and cools the steel balls from the dust. In
A trommel structure separation device is connected to the inside of the boiler through a supply chute at the bottom of the boiler in a continuous communication state. The trommel structure has a concentric cylindrical double structure and rotates integrally with the same rotating shaft. structure and both the inner sieve and a coarse sieve shake off the steel ball and powdery dust on the outside of the sieve, the outer sieve and sieve particulars shake off powder dust separation device of the trommel structure casing A steel ball chute for collecting the steel ball and a dust collecting chute for collecting the powdery dust and the lump dust are provided at a lower part of the casing, and a steel ball tank is connected to the steel ball chute, and the steel ball tank is connected to the steel ball chute. disposed cooling air pipe for cooling the steel balls, the air blown into the steel ball tank passes through said sieve, to characterized in that it is discharged via the feed chute into the boiler Steel ball separator of shot cleaning devices.
上記内側の篩の内面および外側の篩の内面に螺旋状の送り羽根配設したことを特徴とする請求項1に記載のショットクリーニング装置の鋼球分離装置。 The steel ball separating device for a shot cleaning device according to claim 1, wherein spiral feed blades are disposed on the inner surface of the inner screen and the inner surface of the outer screen. 上記送り羽根は、回転軸の回転動作によって内側に設置した送り羽根と外側に設置した送り羽根の方向を互いに正逆方向に設置したことを特徴とする請求項1および2に記載のショットクリーニング装置の鋼球分離装置。   3. The shot cleaning device according to claim 1 or 2, wherein the feed blades are installed so that the directions of the feed blades installed on the inside and the feed blades installed on the outside in the forward and reverse directions by the rotation operation of the rotation shaft. Steel ball separator. 伝熱管に鋼球を散布してボイラ伝熱管に付着したダストを除去し、散布した鋼球およびダストをボイラ下部より取り出して前記鋼球をダストより分離・冷却するショットクリーニング装置の鋼球分離方法において、
前記ボイラ下部に供給シュートを介してトロンメル構造の分離装置をボイラ内と常時連通状態で連結し、前記トロンメル構造は篩を同心円筒状の二重構造とし、同一の回転軸により一体的に回転する構造ともに、内側の粗目の篩から鋼球と粉状ダストを外側の篩に払い落と、外側の細目の篩から粉状ダストを払い落とし、前記トロンメル構造の分離装置をケーシングで包囲し、該ケーシングの下部に鋼球を回収する鋼球シュートと粉状ダストおよび塊状ダストを回収するダスト集合シュートを設け、前記鋼球シュートには鋼球タンクを連結し、該鋼球タンクに鋼球を冷却する冷却空気配管を配設し、前記鋼球タンクに吹き込まれた空気は、前記篩を通過し、前記供給シュートを経由して前記ボイラ内に排出されることを特徴とするショットクリーニング装置の鋼球分離方法。
A steel ball separation method for a shot cleaning device in which steel balls are dispersed on a heat transfer tube to remove dust adhering to the boiler heat transfer tube, and the dispersed steel balls and dust are taken out from the lower part of the boiler to separate and cool the steel balls from the dust. In
A trommel structure separation device is connected to the inside of the boiler through a supply chute at the bottom of the boiler in a continuous communication state. The trommel structure has a concentric cylindrical double structure and rotates integrally with the same rotating shaft. structure and both to overlooked pay the steel balls and powder dust outside the sieve from the inside of the coarse sieve, to overlooked paying powdery dust from the outside of the fine sieve, the separation device of the trommel structure surrounded by a casing A steel ball chute for collecting the steel ball and a dust collecting chute for collecting powdery dust and lump dust are provided at the lower part of the casing, and a steel ball tank is connected to the steel ball chute, and the steel ball is connected to the steel ball tank. disposed cooling air pipe for cooling the air blown into the steel ball tank passes through the sieve, through the feed chute, characterized in that it is discharged into the boiler shop Steel ball separation method of the cleaning device.
JP2009064212A 2009-03-17 2009-03-17 Steel ball collecting device and steel ball collecting method of shot cleaning device Active JP5390225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009064212A JP5390225B2 (en) 2009-03-17 2009-03-17 Steel ball collecting device and steel ball collecting method of shot cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009064212A JP5390225B2 (en) 2009-03-17 2009-03-17 Steel ball collecting device and steel ball collecting method of shot cleaning device

Publications (2)

Publication Number Publication Date
JP2010216722A JP2010216722A (en) 2010-09-30
JP5390225B2 true JP5390225B2 (en) 2014-01-15

Family

ID=42975759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009064212A Active JP5390225B2 (en) 2009-03-17 2009-03-17 Steel ball collecting device and steel ball collecting method of shot cleaning device

Country Status (1)

Country Link
JP (1) JP5390225B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112571291A (en) * 2020-11-12 2021-03-30 樊锟 Full-automatic numerical control shot blasting machine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014094413A (en) * 2011-03-01 2014-05-22 Sintokogio Ltd Shot processing device
JP6304957B2 (en) * 2013-07-10 2018-04-04 中央発條株式会社 Shot peening equipment
CN112296887A (en) * 2020-10-26 2021-02-02 江西科迪亚精密工业有限公司 Shot blasting machine with automatic cleaning function
CN115179200B (en) * 2022-06-20 2024-04-26 大田县恒通机械制造有限公司 Automatic shot blasting machine for cast part and use method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63296851A (en) * 1987-05-28 1988-12-02 株式会社村田製作所 Classifying apparatus
JP2000121288A (en) * 1998-10-21 2000-04-28 Babcock Hitachi Kk Particulate separating device, and shot cleaning device
JP2004069267A (en) * 2002-08-09 2004-03-04 Babcock Hitachi Kk Shot cleaning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112571291A (en) * 2020-11-12 2021-03-30 樊锟 Full-automatic numerical control shot blasting machine

Also Published As

Publication number Publication date
JP2010216722A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5415793B2 (en) Steel ball collecting device and steel ball collecting method of shot cleaning device
JP5390225B2 (en) Steel ball collecting device and steel ball collecting method of shot cleaning device
US8052766B2 (en) Device and method for cleaning selective catalytic reduction protective devices
CN100496671C (en) Method and device for the separation of dust particles
JP6821371B2 (en) Cleaning method of carbon-containing solid fuel crusher and carbon-containing solid fuel crusher
CN102084183B (en) Method and apparatus for cooling solid particles under high temperature and pressure
JP2009202142A (en) Dust removal apparatus
KR102126663B1 (en) Exhaust gas treatment device
CN207797778U (en) Glass waste-heat recovery device
JP5564894B2 (en) Vertical mill
CN103866067A (en) Blast furnace coal gas gravitational dust collector with cooling effect
JP2009119384A (en) Flue gas denitrification apparatus
JP2010264401A (en) Flue gas denitration apparatus
JP6612655B2 (en) Method and apparatus for processing fluidized medium in fluidized bed furnace
JP2009204232A (en) Heat recovering device from fusion blast furnace slag
JP4550690B2 (en) Char transporter with coarse grain separation function
CN108057304A (en) A kind of ultracentrifugation deduster using spray equipment
JP6611621B2 (en) Shot ball collection device
JPH10318A (en) Dust removing device for high-temperature gas
JP2014141619A (en) Manufacturing apparatus of modified coal and fire power power-generating plant with the same
JP6590705B2 (en) Shot ball collection device
GB2142407A (en) Cleaning heat exchangers
JP3433990B2 (en) Ash treatment equipment for pressurized fluidized-bed boiler
CN107127293A (en) A kind of efficient sand temperature modulator with grading function
JP2013027871A (en) Dust removal device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131010

R150 Certificate of patent or registration of utility model

Ref document number: 5390225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250