JP3433990B2 - Ash treatment equipment for pressurized fluidized-bed boiler - Google Patents

Ash treatment equipment for pressurized fluidized-bed boiler

Info

Publication number
JP3433990B2
JP3433990B2 JP32184793A JP32184793A JP3433990B2 JP 3433990 B2 JP3433990 B2 JP 3433990B2 JP 32184793 A JP32184793 A JP 32184793A JP 32184793 A JP32184793 A JP 32184793A JP 3433990 B2 JP3433990 B2 JP 3433990B2
Authority
JP
Japan
Prior art keywords
ash
pressure
storage tank
gas
transport pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32184793A
Other languages
Japanese (ja)
Other versions
JPH07174327A (en
Inventor
彌十郎 清家
敏和 庄島
一朗 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP32184793A priority Critical patent/JP3433990B2/en
Publication of JPH07174327A publication Critical patent/JPH07174327A/en
Application granted granted Critical
Publication of JP3433990B2 publication Critical patent/JP3433990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、石炭を燃料とし石灰石
を脱硫剤として高圧下で流動床燃焼させる加圧流動床ボ
イラの燃焼ガス中から、サイクロン、フィルタなど灰捕
集装置によって回収された灰を減温し系外へ排出する灰
処理装置に関する。 【0002】 【従来の技術】図4は加圧流動床ボイラを有する従来の
ガスタービン・蒸気タービン複合発電プラントの一例を
示す全体構成図、図5は従来の灰処理装置の一例を示す
図である。 【0003】これらの図中(7)は減圧ホッパ、(1
0)は常圧系灰搬送ライン、(15)は灰・ガス吸引
部、(19)は減圧放出ライン、(20)は加圧用空
気、(22)は気密弁、(25)は灰を含む高圧高温燃
焼ガス、(26)は除塵後の高圧高温燃焼ガス、(3
1)は加圧流動床ボイラ、(32)は石炭・石灰石供給
装置、(33)は空気圧縮機、(34)は高温ガス管、
(35)はサイクロン分離器、(36)はセラミックフ
ィルタ、(37)はガスタービン/発電機、(38)は
ガスタービン出口煙道、(39)は脱硝装置、(40)
は排熱回収給水加熱器、(41)は煙突、(43)は蒸
気タービン/発電機、(44)は復水器、(45)は給
水加熱器、(51)は水冷ジャケット式スクリューフィ
ーダ、(52)は高圧灰貯槽をそれぞれ示す。 【0004】まず図4中の加圧流動床ボイラ(31)に
おいて、石炭・石灰石供給装置(32)から石炭と石灰
石が火炉へ供給され、空気圧縮機(33)から供給され
た空気により流動床燃焼する。発生した高圧高温の燃焼
排ガスは、高温ガス管(34)を通りサイクロン分離器
(35)、セラミックフィルタ(36)で除塵された
後、ガスタービン/発電機(37)へ導入されてこれを
駆動する。ガスタービン出口ガスは煙道(38)を通り
脱硝装置(39)、排熱回収給水加熱器(40)を経て
煙突(41)から大気へ放出される。サイクロン分離器
(35)とセラミックフィルタ(36)で捕集された灰
は、灰・ガス吸引部(15)から図5に示される灰処理
装置に送られる。 【0005】すなわちこの例においては、加圧流動床ボ
イラ(31)の燃焼ガス中に含まれる高圧高温の灰を回
収し排出する手段として、粗粒子を除塵する遠心式サイ
クロン分離器(35)と微粒子を除塵するセラミックフ
ィルタ(36)が使用され、回収された灰は、図5に示
す水冷ジャケット式スクリューフィーダ(51)で冷却
され、更に減圧ホッパ(7)により減圧後、常圧系灰搬
送ライン(10)を経て系外に排出される。 【0006】次に図6は従来の灰処理装置の他の例を示
す図である。この例では、灰粒子をサイクロン分離器
(35)からガス・粒子混合物として搬送して、流れ方
向を繰返し変換する特殊な輸送コンジット(61)のベ
ンド損失により減圧し、同時に輸送コンジットを冷却材
(燃焼用空気)(62)で冷却していた。なお図6中、
(63)は絞り、(64)は常圧サイクロン、(65)
はガス冷却器、(66)はバグフィルタ、(67)は灰
排出ライン、(68)は空気投入ラインをそれぞれ示
す。 【0007】 【発明が解決しようとする課題】図4に示される加圧流
動床ボイラ(31)は、ガスタービン(37),(3
3)、蒸気タービン(43)と結合する複合発電プラン
トであり、発生する燃焼ガスが多量であるから、燃焼ガ
ス中の灰を回収するサイクロン分離器(35)やセラミ
ックフィルタ(36)は複数基設置される。これらサイ
クロン分離器(35)、セラミックフィルタ(36)で
回収される灰を減温する手段として図5に示される水冷
ジャケット式スクリューフィーダ(51)は、サイクロ
ン分離器(35)、セラミックフィルタ(36)の各塔
に1台ずつ必要、または各塔を連結するものが必要とな
り、システムが複雑で実用的でない。また、回収される
灰は数μm〜数10μmの微粒であるため圧密しやす
く、スクリューフィーダ(51)の冷却性能が低下す
る。更に加圧流動床ボイラ(31)は、ガスタービン
(37),(33)から燃焼用空気が供給されて負荷に
よりガス系の圧力が変動するので、スクリューフィーダ
(51)内で灰の圧密や灰のフラッシングが生じ易い。 【0008】また図6に示される灰処理装置は、灰の冷
却と減圧を、流れ方向を繰返し変換する特殊な輸送コン
ジット(61)のベンド損失と搬送管の絞り(63)に
より減圧し、コンジットを空気または冷却材で冷却する
ことにより減温するシステムであり、搬送ガス流量は成
行きで制御されていない。そのため、ガスタービン駆動
源である高圧・高温のガスを過剰に系外へ放出してい
る。 【0009】 【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、石炭を燃料とし石灰石を脱硫剤と
して高圧下で流動床燃焼させる加圧流動床ボイラの燃焼
ガス中に含まれる灰を捕集する灰捕集装置と、同灰捕集
装置から下方に排出された高温高圧の灰を搬送する灰搬
送管と、同灰搬送管内の灰を冷却する灰冷却器と、上記
灰搬送管で搬送された灰を受入れる高圧灰貯槽と、同高
圧灰貯槽内において搬送ガスから灰を分離する手段と、
上記高圧灰貯槽内のガスを抜く減圧装置とを備えた灰処
理装置において、上記高圧灰貯槽1基に対して上記灰捕
集装置、上記灰搬送管および上記灰冷却装置複数組
続して上記灰を並列輸送可能とし、同高圧灰貯槽に上記
減圧装置を接続して設け、かつ上記灰捕集装置が上記灰
搬送管に落下・流入する高温高圧の灰を攪拌する手段を
有し、同攪拌する手段は上記灰捕集装置の下部でその中
心線に対し直交する水平方向に加圧空気を噴出する攪拌
ノズルで構成したことを特徴とする加圧流動床ボイラの
灰処理装置を提案するものである。 【0010】 【作用】本発明においては、高圧灰貯槽1基に対して灰
捕集装置、灰搬送管および灰冷却装置複数組接続して
並列輸送を可能とし、かつ、同1基の高圧灰貯槽に対し
て設けた減圧装置により灰搬送を行うので、複数組の灰
捕集装置、灰搬送管及び灰冷却装置を備えるにもかかわ
らず、高圧灰貯槽および減圧装置の集中化により装置全
体として設置スペースと設備コストを大幅に低減でき
る。すなわち一般に粉体を複数の管路で並列搬送する
と、濃度の変動に伴なって圧力損失も変動し、流量のバ
ランスが崩れて閉塞を誘起しやすい。しかし本発明で
は、灰捕集装置が灰搬送管に落下・流入する高温高圧の
灰を攪拌する手段を有し、しかもこの攪拌する手段は上
記灰捕集装置の下部でその中心線に対し直交する水平方
向に加圧空気を噴出する攪拌ノズルで構成しているの
で、灰捕集装置内を上方から下方に進行する灰に対して
攪拌ノズルは閉塞される心配もなく、加圧空気を確実に
噴出することにより灰の塊がほぐされ、灰搬送管に流入
する灰が定量化されて、灰搬送管内の灰濃度が安定す
る。これにより上記したように並列輸送を実現可能と
し、高圧灰槽及び同高圧灰槽に対応する減圧装置の集中
化を図り、上記した設置スペースと設備コストの低減を
達成することができる。 【0011】 【実施例】図1は本発明の一実施例を示す構成図、図2
は図1中の灰捕集装置の下端部を拡大して示す縦断面図
である。これらの図において、前記図4ないし図6によ
り説明した従来のものと同様の部分については、冗長に
なるのを避けるため、同一の符号を付け詳しい説明を省
く。ここで新たに用いられる符号として、(1a),
(1b)は灰捕集装置、(2)は灰搬送管、(3)は灰
冷却器、(4)は高圧灰貯槽、(5)は高圧灰貯槽内蔵
フィルタ、(6)は減圧装置(灰搬送ガス流量制御
弁)、(8)は常圧灰ホッパ、(9)は常圧系空気吸引
部、(11)は攪拌ノズル、(12)は灰搬送管取付
座、(13)は水冷ジャケット、(14)は盲板、(1
6)は冷却水、(17)はパージ空気、(18)はフィ
ルタ逆洗ライン、(21)はブリッジブレーカ空気、
(23)は灰払出弁をそれぞれ示す。 【0012】まず概述すると、本実施例においては、サ
イクロンまたはフィルタ等の複数の灰捕集装置(1
a)、(1b)と高圧灰貯槽(4)との間に、灰搬送管
(2)を内蔵した灰冷却器(3)が各灰捕集装置(1
a),(1b)に対応して設置されている。その高圧灰
貯槽(4)には内蔵フィルタ(5)とガスを排気する手
段である減圧装置(6)が設けられている。排気ガスは
ガスタービン出口煙道(38)に放出され、図示しない
熱交換器(前記図4中の排熱回収給水加熱器(40)
等)によって熱回収が行なわれる。高圧灰貯槽(4)の
下方には高圧灰の減圧ホッパ(7)と常圧ホッパ(8)
が設置されていて、灰は大気圧へ減圧後、常圧灰搬送ラ
イン(10)により図示しない灰サイロへ空気輸送され
る。 【0013】各灰捕集装置(1a),(1b)の下部に
は、図2に示されるように、加圧空気を噴射する攪拌ノ
ズル(11)が設けられている。すなわち、図2におい
て、灰捕集装置(1a)の下部には、同灰捕集装置(1
a)の中心線に対し直交し、水平方向に加圧空気を噴出
する攪拌ノズル(11)が設けられているので、この攪
拌ノズル(11)は灰捕集装置(1a)内を上方から下
方に落下する灰により閉塞される心配もなく空気を噴出
することができ、この攪拌ノズル(11)から噴出する
空気流によって攪拌された灰は、ほぼ定量づつ、灰・ガ
ス吸引部(15)へ流入し、冷却水(16)を冷却材と
する灰冷却器(3)内を通した灰搬送管(2)内を流動
しながら減温され、高圧灰貯槽(4)に搬送される。パ
ージ空気(17)は、灰搬送管(2)の閉塞回復用およ
び起動時のウォーミング等に使用する。 【0014】高圧灰貯槽(4)内で灰分を重力分離した
ガスは、高圧灰貯槽(4)内上部に設置されたフィルタ
(5)で随伴する微粒の灰を除去した後、圧力調整弁等
の減圧装置(6)を通り、ガスタービン出口煙道(3
8)へ放出される。フィルタ(5)には、逆洗ライン
(18)が設置され、圧損上昇を抑えて連続運転を可能
としている。一方、前記微粒灰および重力分離した灰
は、高圧灰貯槽(4)の底部に堆積し、減圧ホッパ
(7)へ払出される。更に減圧ホッパ(7)内を減圧放
出ライン(19)で大気圧まで減圧した後、常圧灰ホッ
パ(8)へ払出され、常圧灰搬送ライン(10)により
図示しない灰サイロへ送られる。減圧ホッパ(7)は、
灰を払出した後、加圧用空気(20)により再加圧し、
高圧灰貯槽(4)から灰を受入れる準備をする。 【0015】本実施例においては、プラント負荷に応じ
て高圧灰貯槽(4)内のガスを減圧装置(6)により連
続的に排気することにより、複数の灰捕集装置(1
a),(1b)と高圧灰貯槽(4)との間に適正な差圧
を発生させ、このために生じるガス流れにより高温灰が
連続的に高圧灰貯槽(4)に搬送され堆積する。そし
て、減圧装置(6)によりガス流量の制御が可能であ
り、灰搬送に要するガス流量を最少にして低速高濃度の
灰流れを実現することができ、高圧高温のガスのロスを
最少にできる。このように高濃度の灰が低速で搬送され
るので、灰搬送管(2)の摩耗が抑制され、機器の信頼
性、耐久性が向上する。本実施例ではまた、灰搬送過程
で灰とガスは冷却され、後流機器の設計温度を下げるこ
とができるので、気密弁(22)、灰払出弁(23)等
の信頼性、耐久性が向上する。更に高圧灰貯槽(4)内
に内蔵するフィルタにより精密な除塵が可能なため、減
圧装置(6)の耐久性も向上する。 【0016】加えて、本実施例では複数の灰捕集装置
(1a),(1b)、複数の灰搬送管(2)を1基の高
圧灰貯槽(4)に接続したので、設置スペースと設備コ
ストを大幅に低減できる。一般に複数の管路で粉体を並
列搬送する場合、濃度の変動に伴なって圧力損失が変動
し、流量のバランスが崩れて閉塞を誘起しやすいが、本
実施例では灰捕集装置(1a),(1b)の下部に攪拌
ノズル(11)を設置して加圧空気を噴射するので、灰
搬送管(2)内の灰輸送が安定し、複数灰搬送管による
並列輸送が可能となる。すなわち、サイクロン分離器
(35)から連続的かつ多量に落下する灰あるいはセラ
ミックフィルタ(36)から逆洗毎に間欠的に落下する
灰に対して、それら灰捕集装置(1a),(1b)の下
部に取付けた攪拌ノズル(11)から噴射される空気等
の噴流が灰の塊をほぐす役割を果たすので、灰・ガス吸
引部(15)に落下・流入する灰が定量化され、灰搬送
管(2)内の濃度が安定する。 【0017】図3はそれぞれ横軸に時間をとり、縦軸に
灰搬送管(2)の水平部圧力損失Aと垂直部圧力損失B
の経時変化を示す図であって、下段(b)は攪拌ノズル
(11)を使用した場合、上段(a)は攪拌ノズル(1
1)を使用しない場合である。この図において、攪拌ノ
ズル(11)を使用しない場合は、濃度変化のため圧力
損失A,Bが大きく脈動しているのに対し、攪拌ノズル
(11)を使用した場合は、灰搬送管(2)内の灰濃度
が安定するため、水平部圧力損失Aも垂直部圧力損失B
も格段に安定することがわかる。以上のことから、灰輸
送管に流入する灰量の平滑化が、並列運転を可能にする
ポイントと言える。 【0018】 【発明の効果】本発明においては、灰捕集装置から灰搬
送管に落下・流入する高温高圧の灰を同灰捕集装置の下
部で攪拌ノズルにより攪拌するので、灰の塊はほぐされ
て定量化され、灰搬送管内の灰輸送が安定し、複数の灰
搬送管による並列輸送が可能となる。すなわち、このよ
うに並列輸送が可能となったことにより、複数組の灰捕
集装置、灰搬送管及び灰冷却装置の各組毎に独立して高
圧灰貯槽を設けることなく同複数組の灰捕集装置、灰搬
送管及び灰冷却装置を1基の高圧灰貯槽に並列に接続
ることが可能となる。しかもこの1基の高圧灰貯槽に対
して接続して設けた減圧装置により、前記複数組の灰捕
集装置、灰搬送管及び灰冷却装置を経て灰の搬送を行う
ので、前記灰捕集装置、灰搬送管及び灰冷却装置の各組
毎に個別に減圧装置を設ける必要もない。従って本発明
によれば、複数組の灰捕集装置、灰搬送管及び灰冷却装
置を備えるにもかかわらず、高圧灰貯槽および減圧装置
の集中化により装置全体として設置スペースおよび設備
コストを大幅に低減できる。また、上記したように減圧
装置による灰搬送としたために、灰搬送に要するガス流
量を最少にして低速高濃度の灰流れを容易に実現するこ
とができ、同低速高濃度の灰流れのために、灰搬送管等
の摩耗が抑制され、機器の信頼性、耐久性が向上する効
果を併せ奏することが出来る。そしてまた、前記高圧灰
貯槽に至る径路には、灰搬送管内の灰を冷却する灰冷却
器を備えているので、灰搬送過程で灰とガスは冷却さ
れ、後流機器の設計温度を下げることができ、装置全体
の信頼性、耐久性が向上する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cyclone, a cyclone, a combustion gas of a pressurized fluidized bed boiler in which fluidized bed combustion is performed under high pressure using coal as fuel and limestone as a desulfurizing agent. The present invention relates to an ash treatment device for reducing the temperature of ash collected by an ash collection device such as a filter and discharging the ash to the outside of the system. 2. Description of the Related Art FIG. 4 is an overall configuration diagram showing one example of a conventional gas turbine / steam turbine combined cycle power plant having a pressurized fluidized bed boiler, and FIG. 5 is a diagram showing one example of a conventional ash treatment device. is there. In these figures, (7) is a decompression hopper, (1)
0) is a normal pressure ash transfer line, (15) is an ash / gas suction unit, (19) is a reduced pressure release line, (20) is pressurized air, (22) is an airtight valve, and (25) contains ash. High pressure high temperature combustion gas, (26) is high pressure high temperature combustion gas after dust removal, (3)
1) is a pressurized fluidized bed boiler, (32) is a coal / limestone feeder, (33) is an air compressor, (34) is a high-temperature gas pipe,
(35) is a cyclone separator, (36) is a ceramic filter, (37) is a gas turbine / generator, (38) is a gas turbine outlet flue, (39) is a denitration device, and (40).
Is a waste heat recovery feed water heater, (41) is a chimney, (43) is a steam turbine / generator, (44) is a condenser, (45) is a feed water heater, (51) is a water-cooled jacket type screw feeder, (52) shows high-pressure ash storage tanks, respectively. First, in a pressurized fluidized bed boiler (31) in FIG. 4, coal and limestone are supplied to a furnace from a coal / limestone supply device (32), and fluidized bed is supplied by air supplied from an air compressor (33). Burn. The generated high-pressure and high-temperature combustion exhaust gas passes through a high-temperature gas pipe (34), is subjected to dust removal by a cyclone separator (35) and a ceramic filter (36), and is then introduced into a gas turbine / generator (37) to drive it. I do. The gas turbine outlet gas passes through a flue (38) and is discharged from a chimney (41) to the atmosphere via a denitration device (39) and an exhaust heat recovery feedwater heater (40). The ash collected by the cyclone separator (35) and the ceramic filter (36) is sent from the ash / gas suction part (15) to the ash treatment device shown in FIG. That is, in this example, as means for collecting and discharging high-pressure and high-temperature ash contained in the combustion gas of the pressurized fluidized-bed boiler (31), a centrifugal cyclone separator (35) for removing coarse particles is provided. A ceramic filter (36) for removing fine particles is used, and the collected ash is cooled by a water-cooled jacket-type screw feeder (51) shown in FIG. 5, and further reduced in pressure by a reduced-pressure hopper (7). It is discharged out of the system via the line (10). Next, FIG. 6 is a view showing another example of a conventional ash processing apparatus. In this example, the ash particles are transported as a gas-particle mixture from the cyclone separator (35), and the pressure is reduced by the bend loss of a special transport conduit (61) that repeatedly changes the flow direction, and at the same time, the transport conduit is cooled by a coolant ( (Combustion air) (62). In FIG. 6,
(63) is a throttle, (64) is a normal pressure cyclone, (65)
Indicates a gas cooler, (66) indicates a bag filter, (67) indicates an ash discharge line, and (68) indicates an air input line. [0007] The pressurized fluidized bed boiler (31) shown in FIG. 4 includes gas turbines (37) and (3).
3) A combined cycle power plant combined with a steam turbine (43). Since a large amount of combustion gas is generated, a plurality of cyclone separators (35) and ceramic filters (36) for collecting ash in the combustion gas are provided. Will be installed. As a means for reducing the temperature of the ash collected by the cyclone separator (35) and the ceramic filter (36), the water-cooled jacket type screw feeder (51) shown in FIG. 5 includes a cyclone separator (35) and a ceramic filter (36). ) Is required for each tower, or one for connecting each tower is required, which makes the system complicated and impractical. Further, the collected ash is fine particles of several μm to several tens of μm, so that it is easily compacted, and the cooling performance of the screw feeder (51) is reduced. Further, in the pressurized fluidized-bed boiler (31), since the combustion air is supplied from the gas turbines (37) and (33) and the pressure of the gas system fluctuates depending on the load, the ash consolidation and the ash consolidation in the screw feeder (51) are performed. Ash flushing is likely to occur. In the ash treatment apparatus shown in FIG. 6, the cooling and decompression of the ash are reduced by the bend loss of a special transport conduit (61) for repeatedly changing the flow direction and the constriction (63) of the conveying pipe. Is cooled by air or coolant, and the flow rate of the carrier gas is not controlled. Therefore, a high-pressure, high-temperature gas, which is a driving source of the gas turbine, is excessively discharged out of the system. SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, the present invention provides a combustion gas of a pressurized fluidized-bed boiler in which coal is used as fuel, limestone is used as a desulfurizing agent, and fluidized-bed combustion is performed under high pressure. An ash collector that collects the ash contained therein, an ash transport pipe that transports the high-temperature, high-pressure ash discharged downward from the ash collector, and an ash cooler that cools the ash in the ash transport pipe And a high-pressure ash storage tank for receiving the ash transported by the ash transport pipe, and means for separating ash from the carrier gas in the high-pressure ash storage tank;
In ash treatment apparatus provided with a pressure reducing device to pull the gas in the high-pressure ash storage tank, the high-pressure ash tank 1 above the ash collecting device relative group, a plurality of sets against the ash conveying pipe and the ash cooler
The above ash can be transported in parallel, and the above ash is stored in the high-pressure ash storage tank.
A decompression device is connected and provided, and the ash collection device has means for stirring high-temperature and high-pressure ash falling and flowing into the ash transport pipe, and the means for stirring is provided at a lower portion of the ash collection device. An ash treatment device for a pressurized fluidized-bed boiler, comprising a stirring nozzle for jetting pressurized air in a horizontal direction orthogonal to a center line, is proposed. In the present invention, a plurality of ash collecting devices, ash transport pipes and ash cooling devices are connected to one high-pressure ash storage tank.
Parallel transportation is possible, and the same high-pressure ash storage tank
The ash is transported by the decompression device provided in the
Although it is equipped with a collecting device, ash transport pipe and ash cooling device,
And the centralization of high-pressure ash storage tanks and decompression equipment
As a body, installation space and equipment costs can be significantly reduced. That is, in general, when powder is conveyed in parallel through a plurality of conduits, the pressure loss also fluctuates with the fluctuation of the concentration, and the flow rate becomes unbalanced, which tends to induce clogging. However, in the present invention, the ash collecting device has means for stirring the high-temperature and high-pressure ash that falls and flows into the ash conveying pipe, and the stirring means is provided at a lower portion of the ash collecting device and perpendicular to its center line. It is composed of a stirring nozzle that blows out pressurized air in the horizontal direction. The ash mass is loosened by ejecting the ash, the ash flowing into the ash transport pipe is quantified, and the ash concentration in the ash transport pipe is stabilized. This will enable parallel transportation as described above.
And high-pressure ash tank and decompression equipment corresponding to the high-pressure ash tank
To reduce the installation space and equipment costs described above.
Can be achieved. FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG.
FIG. 2 is an enlarged longitudinal sectional view showing a lower end portion of the ash collecting device in FIG. 1. In these figures, the same parts as those of the related art described with reference to FIGS. 4 to 6 are denoted by the same reference numerals to avoid redundancy, and detailed description is omitted. Here, as codes newly used, (1a),
(1b) is an ash collector, (2) is an ash transport pipe, (3) is an ash cooler, (4) is a high-pressure ash storage tank, (5) is a filter with a built-in high-pressure ash storage tank, and (6) is a decompression device ( (8) an atmospheric ash hopper, (9) an atmospheric air suction unit, (11) a stirring nozzle, (12) an ash transport pipe mounting seat, and (13) water cooling. Jacket, (14) blind plate, (1
6) cooling water, (17) purge air, (18) filter backwash line, (21) bridge breaker air,
(23) shows ash discharge valves, respectively. First, in general, in this embodiment, a plurality of ash collecting devices (1) such as a cyclone or a filter are used.
An ash cooler (3) having a built-in ash transport pipe (2) is provided between each of the ash collection devices (1) between (a) and (1b) and the high-pressure ash storage tank (4).
a) and (1b). The high-pressure ash storage tank (4) is provided with a built-in filter (5) and a pressure reducing device (6) which is a means for exhausting gas. The exhaust gas is discharged to a gas turbine outlet flue (38), and a heat exchanger (not shown) (exhaust heat recovery feedwater heater (40) in FIG. 4).
Etc.) to perform heat recovery. Below the high pressure ash storage tank (4), a high pressure ash decompression hopper (7) and a normal pressure hopper (8)
After the ash is decompressed to the atmospheric pressure, the ash is pneumatically conveyed to an ash silo (not shown) by a normal pressure ash transfer line (10). As shown in FIG. 2, a stirring nozzle (11) for injecting pressurized air is provided below each of the ash collecting devices (1a) and (1b). That is, in FIG.
In the lower part of the ash collecting device (1a),
Spouts compressed air in a horizontal direction perpendicular to the center line of a)
The stirring nozzle (11) is provided for
The stirring nozzle (11) moves downward from above in the ash collector (1a).
Spouts air without fear of being blocked by ash falling
The ash agitated by the air flow ejected from the agitating nozzle (11) flows into the ash / gas suction unit (15) almost every time, and the ash using the cooling water (16) as a coolant is used. The temperature is reduced while flowing in the ash transport pipe (2) passing through the cooler (3), and transported to the high-pressure ash storage tank (4). The purge air (17) is used for recovery from blockage of the ash transfer pipe (2) and for warming at the time of startup. The gas from which the ash is gravity-separated in the high-pressure ash storage tank (4) is subjected to a filter (5) installed in the upper part of the high-pressure ash storage tank (4) to remove accompanying fine ash, and then to a pressure control valve or the like. Through the pressure reducing device (6) of the gas turbine and the flue (3
8). A backwash line (18) is installed in the filter (5) to enable continuous operation while suppressing an increase in pressure loss. On the other hand, the fine ash and gravity separated ash accumulate on the bottom of the high-pressure ash storage tank (4) and are discharged to the reduced-pressure hopper (7). Further, the pressure inside the reduced-pressure hopper (7) is reduced to atmospheric pressure by a reduced-pressure discharge line (19), then discharged to a normal-pressure ash hopper (8), and sent to an ash silo (not shown) by a normal-pressure ash transport line (10). The decompression hopper (7)
After dispensing the ash, repressurize with pressurized air (20),
Prepare to receive ash from high pressure ash storage tank (4). In the present embodiment, the gas in the high-pressure ash storage tank (4) is continuously exhausted by the pressure reducing device (6) according to the plant load, so that the plurality of ash collecting devices (1) are removed.
An appropriate pressure difference is generated between a) and (1b) and the high-pressure ash storage tank (4), and the high-temperature ash is continuously conveyed and deposited in the high-pressure ash storage tank (4) by the gas flow generated for this purpose. The gas flow rate can be controlled by the decompression device (6), the gas flow rate required for ash conveyance can be minimized, a low-speed and high-concentration ash flow can be realized, and the loss of high-pressure and high-temperature gas can be minimized. . Since the ash having a high concentration is conveyed at a low speed in this manner, wear of the ash conveying pipe (2) is suppressed, and the reliability and durability of the device are improved. In the present embodiment, the ash and gas are cooled during the ash transfer process, and the design temperature of the downstream equipment can be lowered. Therefore, the reliability and durability of the airtight valve (22), the ash discharge valve (23), and the like are reduced. improves. Furthermore, since the dust contained in the high-pressure ash storage tank (4) can be precisely removed by the built-in filter, the durability of the pressure reducing device (6) is also improved. In addition, in the present embodiment, a plurality of ash collecting devices (1a) and (1b) and a plurality of ash transport pipes (2) are connected to one high-pressure ash storage tank (4), so that installation space and space are reduced. Equipment costs can be significantly reduced. Generally, when powder is conveyed in parallel through a plurality of conduits, the pressure loss fluctuates with the fluctuation of the concentration, the flow rate becomes unbalanced, and clogging is likely to occur. In this embodiment, the ash collecting device (1a) is used. ) And (1b), a stir nozzle (11) is installed at the lower part to inject pressurized air, so that ash transport in the ash transport pipe (2) is stabilized, and parallel transport by a plurality of ash transport pipes becomes possible. . That is, for ash falling continuously and in large quantities from the cyclone separator (35) or ash falling intermittently from the ceramic filter (36) at every backwash, the ash collectors (1a) and (1b) are provided. Since the jet of air or the like injected from the stirring nozzle (11) attached to the lower part of the ash serves to loosen the ash mass, the ash falling and flowing into the ash / gas suction part (15) is quantified, and the ash is conveyed. The concentration in the tube (2) stabilizes. In FIG. 3, the horizontal axis represents time, and the vertical axis represents the pressure loss A in the horizontal part and the pressure loss B in the vertical part of the ash transport pipe (2).
FIG. 6 is a diagram showing the change with time in the lower stage (b) when the stirring nozzle (11) is used, and the upper stage (a) shows the stirring nozzle (1).
1) is not used. In this figure, when the stirring nozzle (11) is not used, the pressure losses A and B pulsate greatly due to the concentration change. On the other hand, when the stirring nozzle (11) is used, the ash transfer pipe (2) is used. Since the ash concentration in the parentheses is stable, the horizontal part pressure loss A and the vertical part pressure loss B
It can also be seen that is also much more stable. From the above, it can be said that smoothing of the amount of ash flowing into the ash transport pipe is a point that enables parallel operation. According to the present invention, the high-temperature and high-pressure ash falling and flowing from the ash collecting device into the ash conveying pipe is provided under the ash collecting device.
Than it stirred by the stirring nozzle section, the mass of ash disentangled
Quantified Te, ash transport ash conveying pipe is stabilized, it is possible to parallel transport of a plurality of ash conveying pipe. That is, this
By became possible urchin parallel transport, plural sets of the ash collecting device, high independently for each set of ash conveying pipe and ash cooler
Multiple sets of ash collectors and ash transporters without installing a pressurized ash storage tank
It is connected in parallel flue and ash cooling device to a high pressure ash storage tank of 1 group
It becomes possible. Moreover, this one high pressure ash storage tank
The plurality of sets of ash traps are connected by a pressure reducing device
Conveys ash via collector, ash transfer pipe and ash cooling device
Therefore, each set of the ash collection device, the ash transport pipe and the ash cooling device
There is no need to separately provide a decompression device for each. Therefore, the present invention
According to the ash collection device, ash transport pipe and ash cooling device
High pressure ash storage tank and decompression device
As a result, the installation space and equipment costs of the entire apparatus can be significantly reduced. Also, as described above,
Gas flow required for ash transportation due to ash transportation by device
It is easy to realize low speed and high concentration ash flow by minimizing the amount.
Ash transport pipe etc.
Wear of the equipment is reduced and the reliability and durability of the equipment are improved.
Fruits can be played together. And also said high pressure ash
Ash cooling, which cools the ash in the ash transport pipe, along the path leading to the storage tank
Ash and gas are cooled during the ash transfer process.
This reduces the design temperature of downstream equipment,
Reliability and durability are improved.

【図面の簡単な説明】 【図1】図1は本発明の一実施例を示す構成図である。 【図2】図2は図1中の灰捕集装置の下端部を拡大して
示す縦断面図である。 【図3】図3は上記実施例における攪拌ノズルの効果を
示す図である。 【図4】図4は加圧流動床ボイラを有する従来のガスタ
ービン・蒸気タービン複合発電プラントの一例を示す全
体構成図である。 【図5】図5は従来の灰処理装置の一例を示す図であ
る。 【図6】図6は従来の灰処理装置の他の例を示す図であ
る。 【符号の説明】 (1a),(1b) 灰捕集装置 (2) 灰搬送管 (3) 灰冷却器 (4) 高圧灰貯槽 (5) 高圧灰貯槽内蔵フィルタ (6) 減圧装置(灰搬送ガス流量制御
弁) (7) 減圧ホッパ (8) 常圧灰ホッパ (9) 常圧系空気吸引部 (10) 常圧系灰搬送ライン (11) 攪拌ノズル (12) 灰搬送管取付座 (13) 水冷ジャケット (14) 盲板 (15) 灰・ガス吸引部 (16) 冷却水 (17) パージ空気 (18) フィルタ逆洗ライン (19) 減圧放出ライン (20) 加圧用空気 (21) ブリッジブレーカ空気 (22) 気密弁 (23) 灰払出弁 (25) 灰を含む高圧高温燃焼ガス (26) 除塵後の高圧高温燃焼ガス (31) 加圧流動床ボイラ (32) 石炭・石灰石供給装置 (33) 空気圧縮機 (34) 高温ガス管 (35) サイクロン分離器 (36) セラミックフィルタ (37) ガスタービン/発電機 (38) ガスタービン出口煙道 (39) 脱硝装置 (40) 排熱回収給水加熱器 (41) 煙突 (43) 蒸気タービン/発電機 (44) 復水器 (45) 給水加熱器 (51) 水冷ジャケット式スクリューフィ
ーダ (52) 高圧灰貯槽 (61) 灰輸送コンジット (62) 燃焼用空気(冷却材) (63) 絞り (64) 常圧サイクロン (65) ガス冷却器 (66) バグフィルタ (67) 灰排出ライン (68) 空気投入ライン
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram showing one embodiment of the present invention. FIG. 2 is an enlarged longitudinal sectional view showing a lower end portion of the ash collecting device in FIG. 1; FIG. 3 is a diagram showing an effect of a stirring nozzle in the embodiment. FIG. 4 is an overall configuration diagram showing an example of a conventional combined gas / steam turbine power plant having a pressurized fluidized bed boiler. FIG. 5 is a diagram showing an example of a conventional ash treatment device. FIG. 6 is a diagram showing another example of a conventional ash treatment device. [Description of Signs] (1a), (1b) Ash collection device (2) Ash transport pipe (3) Ash cooler (4) High pressure ash storage tank (5) High pressure ash storage tank built-in filter (6) Decompression device (ash transport) (7) Vacuum hopper (8) Atmospheric pressure ash hopper (9) Atmospheric pressure air suction section (10) Atmospheric pressure ash transport line (11) Stirring nozzle (12) Ash transport pipe mounting seat (13) ) Water cooling jacket (14) Blind plate (15) Ash / gas suction part (16) Cooling water (17) Purge air (18) Filter backwash line (19) Vacuum release line (20) Air for pressurization (21) Bridge breaker Air (22) Airtight valve (23) Ash discharge valve (25) High pressure high temperature combustion gas containing ash (26) High pressure high temperature combustion gas after dust removal (31) Pressurized fluidized bed boiler (32) Coal / limestone supply device (33) ) Air compressor (34) Hot gas pipe (35) Cyclone separator (36) Ceramic filter (37) Gas turbine / generator (38) Gas turbine outlet flue (39) Denitration equipment (40) Waste heat recovery feedwater heater (41) Chimney (43) Steam turbine / generator (44) Condenser (45) Feedwater heater (51) Water-cooled jacket type screw feeder (52) High-pressure ash storage tank (61) Ash transport conduit (62) Combustion air (coolant) (63) Restrictor (64) Cyclone (65) Gas cooler (66) Bag filter (67) Ash discharge line (68) Air inlet line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 一朗 長崎市飽の浦町1番1号 三菱重工業株 式会社長崎造船所内 (56)参考文献 特開 昭59−86511(JP,A) 特開 昭57−164216(JP,A) 特開 昭63−207906(JP,A) 特開 平1−310219(JP,A) 特開 昭57−70315(JP,A) 特開 平5−264013(JP,A) 特開 昭60−238609(JP,A) 特開 昭60−89616(JP,A) 特開 平3−129201(JP,A) 実開 昭59−103031(JP,U) 実開 昭62−18512(JP,U) 実開 昭56−52131(JP,U) 実開 昭56−75538(JP,U) 特表 平3−505777(JP,A) (58)調査した分野(Int.Cl.7,DB名) F23J 1/02 F23C 11/02 B65G 53/04 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Ichiro Amano 1-1-1, Akunouramachi, Nagasaki-shi, Nagasaki Shipyard, Mitsubishi Heavy Industries, Ltd. (56) References JP-A-59-86511 (JP, A) JP-A-57 JP-A-164216 (JP, A) JP-A-63-207906 (JP, A) JP-A-1-310219 (JP, A) JP-A-57-70315 (JP, A) JP-A-5-264013 (JP, A) JP-A-60-238609 (JP, A) JP-A-60-89616 (JP, A) JP-A-3-129201 (JP, A) Fully open sho 59-103031 (JP, U) Really open sho 62- 18512 (JP, U) Shokai Sho 56-52131 (JP, U) Shokai Sho 56-75538 (JP, U) Tokuhyo Hei 3-505777 (JP, A) (58) Fields surveyed (Int. Cl. 7 , DB name) F23J 1/02 F23C 11/02 B65G 53/04

Claims (1)

(57)【特許請求の範囲】 【請求項1】 石炭を燃料とし石灰石を脱硫剤として高
圧下で流動床燃焼させる加圧流動床ボイラの燃焼ガス中
に含まれる灰を捕集する灰捕集装置と、同灰捕集装置か
ら下方に排出された高温高圧の灰を搬送する灰搬送管
と、同灰搬送管内の灰を冷却する灰冷却器と、上記灰搬
送管で搬送された灰を受入れる高圧灰貯槽と、同高圧灰
貯槽内において搬送ガスから灰を分離する手段と、上記
高圧灰貯槽内のガスを抜く減圧装置とを備えた灰処理装
置において、上記高圧灰貯槽1基に対して上記灰捕集装
置、上記灰搬送管および上記灰冷却装置複数組接続し
て上記灰を並列輸送可能とし、同高圧灰貯槽に上記減圧
装置を接続して設け、かつ上記灰捕集装置が上記灰搬送
管に落下・流入する高温高圧の灰を攪拌する手段を有
し、同攪拌する手段は上記灰捕集装置の下部でその中心
線に対し直交する水平方向に加圧空気を噴出する攪拌ノ
ズルで構成したことを特徴とする加圧流動床ボイラの灰
処理装置。
(57) [Claims 1] Ash collection for collecting ash contained in the combustion gas of a pressurized fluidized bed boiler in which fluidized bed combustion is performed under high pressure using coal as fuel and limestone as a desulfurizing agent The apparatus, an ash transport pipe for transporting high-temperature and high-pressure ash discharged downward from the ash collection apparatus, an ash cooler for cooling ash in the ash transport pipe, and an ash transported by the ash transport pipe. A high-pressure ash storage tank for receiving, a means for separating ash from a carrier gas in the high-pressure ash storage tank, and a decompression device for removing gas from the high-pressure ash storage tank; The ash collecting device, the ash transport pipe and the ash cooling device are connected in plural sets.
The above ash can be transported in parallel.
Provided by connecting the device, and the ash collecting device has a means for stirring the ash at high temperature and high pressure to drop or flow into the ash conveying pipe, means for the agitating its center at the bottom of the ash collecting device An ash treatment device for a pressurized fluidized-bed boiler, comprising a stirring nozzle for jetting pressurized air in a horizontal direction orthogonal to a line.
JP32184793A 1993-12-21 1993-12-21 Ash treatment equipment for pressurized fluidized-bed boiler Expired - Fee Related JP3433990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32184793A JP3433990B2 (en) 1993-12-21 1993-12-21 Ash treatment equipment for pressurized fluidized-bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32184793A JP3433990B2 (en) 1993-12-21 1993-12-21 Ash treatment equipment for pressurized fluidized-bed boiler

Publications (2)

Publication Number Publication Date
JPH07174327A JPH07174327A (en) 1995-07-14
JP3433990B2 true JP3433990B2 (en) 2003-08-04

Family

ID=18137093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32184793A Expired - Fee Related JP3433990B2 (en) 1993-12-21 1993-12-21 Ash treatment equipment for pressurized fluidized-bed boiler

Country Status (1)

Country Link
JP (1) JP3433990B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5317726B2 (en) * 2009-01-29 2013-10-16 中国電力株式会社 Fly ash transport system
JP5907621B2 (en) 2012-05-30 2016-04-26 月島機械株式会社 Impurity transfer method for pressurized fluidized furnace system

Also Published As

Publication number Publication date
JPH07174327A (en) 1995-07-14

Similar Documents

Publication Publication Date Title
JP5781423B2 (en) Bin system and char recovery device
KR101685859B1 (en) Powder conveyance device and char collection device
US20140231239A1 (en) Bin system and char recovery apparatus
JP2010216721A (en) Steel ball recovery device and steel ball recovery method for shot cleaning device
EP0108505B1 (en) Apparatus for conveying particulate material from a pressurized container
US5013341A (en) Apparatus for separating particulate material from high-temperature gases
JP3433990B2 (en) Ash treatment equipment for pressurized fluidized-bed boiler
JP6660790B2 (en) Pulverized coal supply system, operation method thereof, and coal gasification power generation equipment
JP5896777B2 (en) Char recovery device
US5297622A (en) Method for cooling of dust separated from the flue gases from a PFBC plant
JP2002267141A (en) Method and device for removing clinging matter from fluidized bed
JPH0742910A (en) Ash treating device for boiler of pressurized fluidized bed type
WO1990000702A1 (en) A power plant with a screw conveyor ash cooler
JPH10318A (en) Dust removing device for high-temperature gas
US4756257A (en) Power plant with centrifugal type cleaners for combustion gases
CN112585404A (en) Pulverized fuel supply device, gasification furnace facility, gasification combined power generation facility, and method for controlling pulverized fuel supply device
EP0264735B1 (en) Cyclone for separation of a particulate material from a gas
JPH1033927A (en) Dust collector
JPH06193826A (en) Fluidized bed boiler equipment and composite power generating facilities
JPH10110924A (en) Foreign matter discharging device for circulating fluidized bed type combustion device and foreign matter discharging method
JP2943353B2 (en) Removal device for adhering foreign matter in heat exchanger
JP2000097405A (en) Ash treatment apparatus
JP3322503B2 (en) Fluidized bed height control device
CA2047194A1 (en) Transfer chambers for the conveyor in a pneumatic transport system
JPH10160117A (en) Ash transportation device for priessurized fluid bed boiler

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010220

LAPS Cancellation because of no payment of annual fees