JP2000097405A - Ash treatment apparatus - Google Patents

Ash treatment apparatus

Info

Publication number
JP2000097405A
JP2000097405A JP10267913A JP26791398A JP2000097405A JP 2000097405 A JP2000097405 A JP 2000097405A JP 10267913 A JP10267913 A JP 10267913A JP 26791398 A JP26791398 A JP 26791398A JP 2000097405 A JP2000097405 A JP 2000097405A
Authority
JP
Japan
Prior art keywords
ash
air
line
pressure vessel
bin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10267913A
Other languages
Japanese (ja)
Inventor
Terutoshi Uchida
輝俊 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP10267913A priority Critical patent/JP2000097405A/en
Publication of JP2000097405A publication Critical patent/JP2000097405A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple ash treatment apparatus of a low cost by stably treating ash. SOLUTION: The ash treatment apparatus for treating ash content H after separation by passing combustion exhaust gas exhausted from a pressurized fluidized-bed burning furnace 12 surrounded by a pressure vessel 11 comprises an ash bottle 21 connected at its upper part to a lower part of a ceramic tube filter 16 and having an ash dropping port 21a at its lower part, an air line 23 connected to the vessel 1 to extend via the port 21a of the bottle 21, an ash conveying line 22 for coupling the bottle 21 to an ash cooler 15 in the vessel 11, and a shut-off valve 26 connected to the line 23 downstream of the port 21a for feeding pressurized air to the line 22 via the port 21a or to the downstream side of the line 23.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、灰処理装置に係
り、特に、加圧流動床燃焼式複合発電における燃焼排ガ
ス中に含まれる灰分を処理する装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ash treatment apparatus, and more particularly to an apparatus for treating ash contained in flue gas in a pressurized fluidized bed combustion combined cycle power generation system.

【0002】[0002]

【従来の技術】従来の灰処理装置を備えた加圧流動床燃
焼式複合発電装置の模式図を図3に示す。
2. Description of the Related Art FIG. 3 is a schematic diagram of a combined pressurized fluidized bed combustion type power generator equipped with a conventional ash treatment device.

【0003】加圧流動床燃焼式複合発電(PFBC:Pr
essurize Fluidize Bed Combustion)は、図3に示すよ
うに、加圧流動床燃焼炉32を圧力容器31で囲繞した
ものであり、加圧流動床燃焼炉32の底部のウィンドボ
ックス37から散気管38を介して空気を吹き出し、加
圧流動床燃焼炉32内に投入された石炭スラリーを流動
させつつ燃焼させ、層内管パネル19内を循環する水を
加熱して蒸気とし、タービン(図示せず)を駆動させる
ようになっている。
[0003] Pressurized fluidized bed combustion combined cycle power generation (PFBC: Pr
As shown in FIG. 3, the essurize Fluidize Bed Combustion includes a pressurized fluidized bed combustion furnace 32 surrounded by a pressure vessel 31, and a diffuser pipe 38 is provided from a wind box 37 at the bottom of the pressurized fluidized bed combustion furnace 32. Air is blown out through the furnace, and the coal slurry charged into the pressurized fluidized bed combustion furnace 32 is caused to flow and burn, and the water circulating in the inner tube panel 19 is heated to be steam, and a turbine (not shown) Is driven.

【0004】灰処理装置は、0次サイクロン33,33
と、1次サイクロン34と、灰クーラ35,35と、セ
ラミックチューブフィルタ(以下、CTFと呼ぶ)3
6,36とで構成される。
[0004] The ash treatment device is composed of zero-order cyclones 33,33.
, Primary cyclone 34, ash coolers 35, 35, ceramic tube filter (hereinafter referred to as CTF) 3
6, 36.

【0005】図3に示すように、加圧流動床燃焼炉32
で発生した燃焼排ガスは、先ず、加圧流動床燃焼炉32
から圧力容器31内に設けられた0次サイクロン33,
33に導入されて灰分が粗分級され、ガス分は、圧力容
器31内に設けられた1次サイクロン(図3中では予備
を含めて8個)34へと導かれる。
[0005] As shown in FIG.
The flue gas generated in the first step is firstly supplied to the pressurized fluidized bed combustion furnace 32.
, A zero-order cyclone 33 provided in the pressure vessel 31,
The ash is coarsely classified by being introduced into 33, and the gas is guided to a primary cyclone (eight in FIG. 3 including a spare) 34 provided in the pressure vessel 31.

【0006】この1次サイクロン34において、燃焼排
ガス中の灰分の約95%が除去され、灰分(1次サイク
ロン灰)は圧力容器31内の灰クーラ35,35へ、ガ
ス分はCTF36,36へと導かれる。各灰クーラ35
において熱交換された灰分は1次灰減圧器(図示せず)
へと導かれ、各種処理が施される。
In the primary cyclone 34, about 95% of the ash in the flue gas is removed, the ash (primary cyclone ash) is sent to the ash coolers 35 and 35 in the pressure vessel 31, and the gas is sent to the CTFs 36 and 36. It is led. Each ash cooler 35
The ash that has undergone heat exchange in the primary ash decompressor (not shown)
And various treatments are performed.

【0007】次に、各CTF36において燃焼排ガス中
の残りの灰分が分離除去され、ガス分はガスタービン
(図示せず)へと導かれ、CTF灰はスクリューフィー
ダー(図示せず)で切り出され、冷却水で冷却された
後、回収される。
Next, in each CTF 36, the remaining ash in the flue gas is separated and removed, the gas is led to a gas turbine (not shown), and the CTF ash is cut out by a screw feeder (not shown). After being cooled with cooling water, it is collected.

【0008】この灰処理装置では、圧力容器31内に多
数個の1次サイクロン34を設ける必要があるため、圧
力容器31のサイズが必然的に大きくなるという問題が
あると共に、設備(1次サイクロン)コストの上昇を招
くという問題があった。
In this ash treatment apparatus, it is necessary to provide a large number of primary cyclones 34 in the pressure vessel 31, so that there is a problem that the size of the pressure vessel 31 is inevitably increased, and the equipment (primary cyclone) ) There was a problem that the cost was increased.

【0009】このため、図4に示すように、0次サイク
ロン43,43で粗分級された燃焼排ガスを、1次サイ
クロンに導くことなく、直接、CTF46,46に導入
し、燃焼排ガス中の灰分の全量をCTF46,46で分
離した後、分離されたCTF灰をアッシュビン51,5
1内に一時貯留した後、圧力容器41内の灰クーラ4
5,45にそれぞれ気流搬送する灰処理装置50が提案
されている。
For this reason, as shown in FIG. 4, the combustion exhaust gas roughly classified by the zero-order cyclone 43, 43 is directly introduced into the CTFs 46, 46 without leading to the primary cyclone, and the ash content in the combustion exhaust gas is reduced. Is separated by CTFs 46 and 46, and the separated CTF ash is separated into ash bins 51 and 5.
Ash cooler 4 in pressure vessel 41
An ash processing device 50 that transports airflows respectively has been proposed in US Pat.

【0010】この灰処理装置50は、CTF46の下部
に接続された各アッシュビン51と、各アッシュビン5
1と圧力容器41内の各灰クーラ45とを結ぶ複数本
(例えば、4本;図4中における図示は1本)の灰搬送
二重管52と、圧力容器41に接続され、各灰搬送二重
管52の外筒内および各アッシュビン51の下部に加圧
エアを供給するエアライン53を備えたものである。
The ash processing device 50 includes an ash bin 51 connected to a lower portion of the CTF 46 and an ash bin 5 connected to the ash bin 5.
A plurality of (for example, four; one as shown in FIG. 4) ash transport double pipes 52 connecting the ash cooler 45 in the pressure vessel 41 and the ash cooler 45 in the pressure vessel 41, and each ash transporter connected to the pressure vessel 41 An air line 53 for supplying pressurized air is provided in the outer cylinder of the double pipe 52 and in the lower part of each ash bin 51.

【0011】CTF46のフィルタに付着した灰分は、
付着面の裏側から逆洗装置(図示せず)を用いて逆洗す
ることによってフィルタから分離し、各アッシュビン5
1内に落下する。すなわち、各アッシュビン51内の状
態は、逆洗直後のCTF灰が堆積している状態からCT
F灰が殆ど無い状態まで様々であり、各アッシュビン5
1内における圧力及びCTF灰量は常時変動している。
The ash attached to the filter of the CTF 46 is as follows:
Each of the ash bottles 5 was separated from the filter by backwashing from the back side of the attached surface using a backwashing device (not shown).
Fall into one. That is, the state in each ash bin 51 is changed from the state where the CTF ash immediately after
It is various until there is almost no F ash, and each ash bin 5
The pressure and the amount of CTF ash within 1 constantly fluctuate.

【0012】各アッシュビン51の下部からは、エアラ
イン53に接続されたバブリングライン55を介してバ
ブリングエア(加圧エア)が吹き込まれており、このバ
ブリングエアによってCTF灰は各アッシュビン51内
の底部において流動する。また、各アッシュビン51の
側部からは、エアライン53に接続された各パージライ
ン56、および各パージライン56に接続された各灰搬
送二重管52の外筒を介して加圧エアが吹き込まれてい
る。
Bubbling air (pressurized air) is blown from a lower portion of each ash bin 51 through a bubbling line 55 connected to an air line 53, and CTF ash is blown into each ash bin 51 by the bubbling air. Flows at the bottom of the. In addition, pressurized air is supplied from the side of each ash bin 51 via each purge line 56 connected to the air line 53 and the outer cylinder of each ash transfer double pipe 52 connected to each purge line 56. It has been infused.

【0013】各アッシュビン51内で流動するCTF灰
は、各アッシュビン51内に供給された加圧エアによっ
て気流搬送され、各灰搬送二重管52の内筒内を通って
各灰クーラ45へと導かれる。ここで、各灰搬送二重管
52の内筒の灰詰まりを防止すべく、一端がエアライン
53に接続され、他端が各灰搬送二重管52の内筒に接
続された各パージライン57が設けられている。尚、C
TF灰中に含まれる粗粒(灰塊)は各アッシュビン51
の底部に堆積する。
The CTF ash flowing in each ash bin 51 is conveyed in a gas stream by pressurized air supplied into each ash bin 51, passes through the inner cylinder of each ash transfer double pipe 52, and transfers each ash cooler 45. It is led to. Here, in order to prevent ash clogging of the inner cylinder of each ash transport double pipe 52, each purge line having one end connected to the air line 53 and the other end connected to the inner cylinder of each ash transport double pipe 52. 57 are provided. Note that C
The coarse particles (ash mass) contained in the TF ash
Deposits at the bottom of

【0014】[0014]

【発明が解決しようとする課題】しかしながら、各灰搬
送二重管52の吸込口(内筒)よりも下方に位置するC
TF灰は、アッシュビン51内から抜出すことができな
いため、常に、CTF灰がアッシュビン51内に残留し
ていた。このため、CTF灰を流動させるために行うバ
ブリングに悪影響を及ぼすおそれがあり、バブリングに
偏りが生じた場合、各灰搬送二重管52から均等にCT
F灰を抜き出すことができなくなり、灰搬送二重管52
の下流部の設備(例えば、灰クーラ45など)で灰詰ま
り等が生じるおそれがあった。
However, C located below the suction port (inner cylinder) of each of the ash transport double pipes 52 is required.
Since TF ash cannot be extracted from the ash bin 51, CTF ash always remains in the ash bin 51. For this reason, there is a possibility that the bubbling performed for flowing the CTF ash may be adversely affected.
F ash cannot be extracted, and the ash transfer double pipe 52
There is a possibility that ash clogging or the like may occur in equipment (for example, the ash cooler 45 or the like) in the downstream part of the apparatus.

【0015】また、アッシュビン51内のCTF灰量が
変動するため、アッシュビン51内への加圧エアおよび
バブリングエアの供給量を調節する必要がある。このた
め、各灰搬送二重管52とバブリングライン55のそれ
ぞれに1個づつ流量計および流量調節弁を設ける必要が
あり、灰処理装置50の装置コストの上昇を招くという
問題があった。
Further, since the amount of CTF ash in the ash bin 51 fluctuates, it is necessary to adjust the supply amount of pressurized air and bubbling air into the ash bin 51. For this reason, it is necessary to provide one flow meter and one flow control valve for each of the ash transfer double pipe 52 and the bubbling line 55, and there is a problem that the cost of the ash treatment device 50 is increased.

【0016】さらに、アッシュビン51の底部にバブリ
ング部を形成する必要があると共に、二重管によってC
TF灰の気流搬送を行うなど、灰処理装置50の構成が
複雑であるという問題があった。
Further, it is necessary to form a bubbling portion at the bottom of the ash bin 51, and the double pipe has
There is a problem that the configuration of the ash treatment device 50 is complicated, for example, by carrying out the TF ash by air flow.

【0017】そこで本発明は、上記課題を解決し、安定
した灰処理が可能であると共に、安価で、かつ、簡易な
灰処理装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide an inexpensive and simple ash processing apparatus which can perform stable ash processing.

【0018】[0018]

【課題を解決するための手段】上記課題を解決するため
に請求項1の発明は、圧力容器で囲繞された加圧流動床
燃焼炉から排出される燃焼排ガスをセラミックチューブ
フィルタに通し、分離した後の灰分を処理する装置にお
いて、上部が上記セラミックチューブフィルタの下部に
接続され、下部に灰落下口を有するアッシュビンと、上
記圧力容器に接続され、上記アッシュビンの灰落下口と
連通して延びるエアラインと、上記アッシュビンと上記
圧力容器内の灰クーラとを結ぶ灰搬送ラインと、上記灰
落下口の下流の上記エアラインに接続され、加圧エア
を、灰落下口を介して灰搬送ラインに又はエアラインの
下流側に流すための遮断弁とを備えたものである。
According to a first aspect of the present invention, a combustion exhaust gas discharged from a pressurized fluidized bed combustion furnace surrounded by a pressure vessel is passed through a ceramic tube filter and separated. In the apparatus for treating the ash after, the upper part is connected to the lower part of the ceramic tube filter, the ash bin having an ash drop port at the lower part, and connected to the pressure vessel, and communicates with the ash drop port of the ash bin. An air line extending from the ash bin to the ash cooler in the pressure vessel, and an ash transfer line connected to the air line downstream of the ash drop port. And a shutoff valve for flowing in the transport line or downstream of the air line.

【0019】請求項2の発明は、上記灰落下口上流のエ
アラインに、流量計および加圧エア調節弁を設けた請求
項1記載の灰処理装置である。
According to a second aspect of the present invention, there is provided the ash processing apparatus according to the first aspect, wherein a flow meter and a pressurized air control valve are provided in the air line upstream of the ash falling port.

【0020】以上の構成によれば、装置構成が簡易とな
るため、装置コストの低減を図ることが可能となると共
に、灰クーラなどで灰詰まりが生じること無く、安定し
た灰処理を行うことができる。
According to the above construction, the construction of the apparatus is simplified, so that it is possible to reduce the cost of the apparatus, and it is possible to perform stable ash processing without causing ash clogging in an ash cooler or the like. it can.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0022】1次サイクロンレスの加圧流動床燃焼式複
合発電装置に本発明の灰処理装置を適用した模式図を図
1に、図1における灰処理装置の拡大模式図を図2に示
す。
FIG. 1 is a schematic diagram in which the ash treatment device of the present invention is applied to a primary cycloneless pressurized fluidized bed combustion combined cycle power plant, and FIG. 2 is an enlarged schematic diagram of the ash treatment device in FIG.

【0023】図1および図2に示すように、本発明の灰
処理装置10は、上部がCTF16の下部に接続され、
下部に灰落下口21aを有するアッシュビン21,21
と、圧力容器11に接続され、各アッシュビン21の灰
落下口21aと連通して延びるエアライン23,23
と、各アッシュビン21の上側部と圧力容器11内の各
灰クーラ15,15とを結ぶ複数本(例えば、4本)の
灰搬送ライン22,22と、各灰落下口21aの下流の
エアライン23,23に設けられ、加圧エアAを、灰搬
送ライン22,22の下流側又はエアライン23,23
の下流側に流すための遮断弁26,26とを備えたもの
である。ここで、各灰落下口21aの上流のエアライン
23,23には、それぞれ流量計24および加圧エア調
節弁25が設けられている。
As shown in FIGS. 1 and 2, the ash treatment device 10 of the present invention has an upper portion connected to a lower portion of the CTF 16,
Ash bins 21 and 21 having an ash fall port 21a at the bottom
And air lines 23, 23 connected to the pressure vessel 11 and extending in communication with the ash drop openings 21a of the respective ash bins 21.
(For example, four) ash transfer lines 22 connecting the upper part of each ash bin 21 and each ash cooler 15 inside the pressure vessel 11, and air downstream of each ash drop port 21 a. The compressed air A is provided in the lines 23, 23 and is supplied to the ash transfer lines 22, 22 on the downstream side or the air lines 23, 23.
And shut-off valves 26, 26 for flowing downstream. Here, a flow meter 24 and a pressurized air control valve 25 are provided on the air lines 23, 23 upstream of each ash drop opening 21a.

【0024】本発明の灰処理装置10を備えた1次サイ
クロンレスの加圧流動床燃焼式複合発電装置の運転は、
以下の手順で行われる。
The operation of the primary cyclone-less pressurized fluidized bed combustion combined cycle power generator equipped with the ash treatment device 10 of the present invention is as follows.
The following procedure is performed.

【0025】先ず、加圧流動床燃焼炉12の底部に設け
られたウィンドボックス17から散気管18を介して加
圧流動床燃焼炉12内に空気を吹き出す。これによっ
て、加圧流動床燃焼炉12内における散気管18の上方
に、石炭スラリー投入手段(図示せず)から供給された
石炭スラリーの流動層が形成される。ここで、圧力容器
11内は、約10kg/cm2 に加圧されている。
First, air is blown into the pressurized fluidized bed combustion furnace 12 through a diffuser 18 from a wind box 17 provided at the bottom of the pressurized fluidized bed combustion furnace 12. Thus, a fluidized bed of the coal slurry supplied from the coal slurry charging means (not shown) is formed above the diffuser tube 18 in the pressurized fluidized bed combustion furnace 12. Here, the inside of the pressure vessel 11 is pressurized to about 10 kg / cm 2 .

【0026】石炭と空気との燃焼反応によって加圧流動
床燃焼炉12内に発生した燃焼排ガスは、圧力容器11
内に設けられた0次サイクロン13,13に導入され、
灰分が粗分級される。粒度が大きい灰分は、再び、加圧
流動床燃焼炉12内に戻される。また、燃焼熱によって
層内管パネル19内を循環する水を加熱して蒸気とし、
タービン(図示せず)を駆動させるようになっている。
The combustion exhaust gas generated in the pressurized fluidized bed combustion furnace 12 by the combustion reaction between coal and air is supplied to the pressure vessel 11
Introduced into the zero-order cyclones 13, 13 provided in the
Ash content is roughly classified. The ash having a large particle size is returned to the pressurized fluidized bed combustion furnace 12 again. Further, the water circulating in the inner tube panel 19 is heated by the combustion heat to be steam,
A turbine (not shown) is driven.

【0027】その後、粗分級された燃焼排ガスはCTF
16,16へと導かれ、CTF16,16において灰分
(CTF灰)とガス分とに分離される。ガス分のみとな
った燃焼排ガスは、その後、ガスタービン(図示せず)
へと導かれる。
Thereafter, the roughly classified combustion exhaust gas is subjected to CTF
The CTFs 16 and 16 are separated into ash (CTF ash) and gas. The flue gas that has become the only gas is then discharged to a gas turbine (not shown).
It is led to.

【0028】次に、本発明の作用を説明する。Next, the operation of the present invention will be described.

【0029】CTF16,16に付着した高温(約85
0℃)のCTF灰Hは、逆洗装置(図示せず)を用いて
逆洗することによってフィルタから分離し、図2に示し
たように、下方に落下してアッシュビン21,21内に
導入される。この時、CTF灰Hを気流搬送すべく、圧
力容器11内の加圧エア(約10kg/cm2 )Aが、
エアライン23,23を介してアッシュビン21,21
下部の灰落下口21a,21aから全量供給されてい
る。また、灰落下口21a,21aの下流側のエアライ
ン23,23に設けられた遮断弁26,26は、灰落下
口21a,21aの下流側のエアライン23,23に加
圧エアAが流れないように閉じている。さらに、アッシ
ュビン21,21内におけるCTF灰Hの量は常時変動
するため、流量計24および加圧エア調節弁25を用い
てアッシュビン21,21内への加圧エアAの供給量を
常時調節する。
The high temperature (about 85) adhered to the CTFs 16 and 16
The CTF ash H at 0 ° C.) is separated from the filter by backwashing using a backwashing device (not shown), and falls down as shown in FIG. be introduced. At this time, pressurized air (approximately 10 kg / cm 2 ) A in the pressure vessel 11 in order to carry the CTF ash H in an air stream,
Ash bins 21 and 21 via air lines 23 and 23
The whole amount is supplied from the lower ash fall openings 21a, 21a. Further, the shutoff valves 26, 26 provided on the air lines 23, 23 downstream of the ash drop ports 21a, 21a allow the pressurized air A to flow through the air lines 23, 23 downstream of the ash drop ports 21a, 21a. Not closed. Furthermore, since the amount of CTF ash H in the ash bins 21 and 21 constantly changes, the supply amount of the pressurized air A into the ash bins 21 and 21 is constantly controlled using the flow meter 24 and the pressurized air control valve 25. Adjust.

【0030】加圧エアAを灰落下口21a,21aから
全量供給することによって、全てのCTF灰Hが、アッ
シュビン21,21内で撹拌されると共に、灰搬送ライ
ン22,22を介して灰クーラ15,15に気流搬送さ
れる。灰クーラ15,15に気流搬送されたCTF灰H
は、灰クーラ15内の空気との熱交換が行われ、その
後、1次減圧器(図示せず)に導かれる。熱交換によっ
て高温になった空気は、予熱空気としてウィンドボック
ス17に供給される。
By supplying the pressurized air A in its entirety from the ash falling ports 21a, 21a, all the CTF ash H is stirred in the ash bins 21, 21 and the ash is transferred through the ash transport lines 22, 22. The air is conveyed to the coolers 15 and 15. CTF ash H air-transported to ash coolers 15 and 15
Is subjected to heat exchange with the air in the ash cooler 15 and thereafter guided to a primary pressure reducer (not shown). The air heated to a high temperature by the heat exchange is supplied to the wind box 17 as preheated air.

【0031】また、CTF16,16からアッシュビン
21,21内に落下するCTF灰Hの中には、粗粒(灰
塊)が含まれている。この粗粒の一部は、加圧エアAに
よる撹拌によって粉砕され、灰搬送ライン22,22を
介して気流搬送されるが、残部は粉砕されることなく灰
落下口21a,21aから落下し、灰落下口21a,2
1aの下流のエアライン23,23に堆積してゆく。
The CTF ash H that falls from the CTFs 16 and 16 into the ash bins 21 and 21 contains coarse particles (lump of ash). A part of the coarse particles is pulverized by agitation by the pressurized air A, and conveyed through the ash conveying lines 22 and 22. The remaining part falls from the ash drop openings 21a and 21a without being pulverized. Ash drop 21a, 2
It accumulates in the air lines 23 downstream of 1a.

【0032】この粗粒がある程度たまったら遮断弁2
6,26を開放して、加圧エアAの流体圧によって、粗
粒を、遮断弁26,26の下流側に排出する。この時、
粗粒の排出は瞬時に行われるため、遮断弁26,26の
開放は一瞬でよく、アッシュビン21,21内における
CTF灰Hの気流搬送に支障をきたすおそれがない。ま
た、遮断弁26およびエアライン23からなる粗粒の排
出ラインは、通常閉じていると共に、アッシュビン21
に直接接続されているものではないため、アッシュビン
21内の圧力損失を考慮する必要がないと共に、アッシ
ュビン21の構造に左右されることがなく、適宜、排出
ラインの内径を選択・設定することができる。
When the coarse particles accumulate to some extent, shut-off valve 2
The coarse particles are discharged downstream of the shut-off valves 26 and 26 by the fluid pressure of the pressurized air A. At this time,
Since the coarse particles are discharged instantaneously, the opening of the shut-off valves 26, 26 may be instantaneous, and there is no possibility that the airflow of the CTF ash H in the ash bins 21, 21 will be disturbed. Further, the coarse-grain discharge line including the shut-off valve 26 and the air line 23 is normally closed, and the ash bin 21 is closed.
Since it is not directly connected to the ash bin 21, it is not necessary to consider the pressure loss in the ash bin 21, and the inner diameter of the discharge line is appropriately selected and set without being affected by the structure of the ash bin 21. be able to.

【0033】[0033]

【発明の効果】以上要するに本発明によれば、圧力容器
内の加圧エアをアッシュビン下部の灰落下口から全量供
給し、アッシュビン内のCTF灰を撹拌させると共に、
アッシュビンに接続された灰搬送ラインを介して灰クー
ラに気流搬送することで、CTF灰の処理を安定して行
うことができるという優れた効果を発揮する。
In summary, according to the present invention, all of the pressurized air in the pressure vessel is supplied from the ash fall port at the lower part of the ash bin, and the CTF ash in the ash bin is agitated.
By carrying the airflow to the ash cooler via the ash transfer line connected to the ash bin, an excellent effect that the CTF ash can be stably processed is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】1次サイクロンレスの加圧流動床燃焼式複合発
電装置に本発明の灰処理装置を適用した模式図である。
FIG. 1 is a schematic diagram in which an ash treatment device of the present invention is applied to a primary cycloneless pressurized fluidized bed combustion combined cycle power generation device.

【図2】図1における灰処理装置の拡大模式図である。FIG. 2 is an enlarged schematic view of the ash treatment device in FIG.

【図3】従来の灰処理装置を備えた加圧流動床燃焼式複
合発電装置の模式図である。
FIG. 3 is a schematic diagram of a combined pressurized fluidized bed combustion type power generation device equipped with a conventional ash treatment device.

【図4】1次サイクロンレスの加圧流動床燃焼式複合発
電装置に従来の灰処理装置を適用した模式図である。
FIG. 4 is a schematic diagram in which a conventional ash treatment device is applied to a primary cycloneless pressurized fluidized bed combustion combined power generation device.

【符号の説明】[Explanation of symbols]

11 圧力容器 12 加圧流動床燃焼炉 15 灰クーラ 16 セラミックチューブフィルタ(CTF) 21 アッシュビン21 21a 灰落下口21a 22 灰搬送ライン 23 エアライン 24 流量計 25 加圧エア調節弁 26 遮断弁 A 加圧エア H 灰分(CTF灰) Reference Signs List 11 pressure vessel 12 pressurized fluidized bed combustion furnace 15 ash cooler 16 ceramic tube filter (CTF) 21 ash bin 21 21a ash drop port 21a 22 ash transport line 23 air line 24 flow meter 25 pressurized air control valve 26 shutoff valve A Pressurized air H Ash (CTF ash)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧力容器で囲繞された加圧流動床燃焼炉
から排出される燃焼排ガスをセラミックチューブフィル
タに通し、分離した後の灰分を処理する装置において、
上部が上記セラミックチューブフィルタの下部に接続さ
れ、下部に灰落下口を有するアッシュビンと、上記圧力
容器に接続され、上記アッシュビンの灰落下口と連通し
て延びるエアラインと、上記アッシュビンと上記圧力容
器内の灰クーラとを結ぶ灰搬送ラインと、上記灰落下口
の下流の上記エアラインに接続され、加圧エアを、灰落
下口を介して灰搬送ラインに又はエアラインの下流側に
流すための遮断弁とを備えたことを特徴とする灰処理装
置。
An apparatus for treating flue gas discharged from a pressurized fluidized bed combustion furnace surrounded by a pressure vessel through a ceramic tube filter to treat ash after separation.
An ash bin having an upper portion connected to the lower portion of the ceramic tube filter and having an ash drop port at a lower portion, an air line connected to the pressure vessel and extending in communication with the ash drop port of the ash bin, and the ash bin; An ash transport line connecting the ash cooler in the pressure vessel and the air line downstream of the ash drop port, and pressurized air is supplied to the ash transport line via the ash drop port or downstream of the air line. An ash treatment device, comprising: a shutoff valve for flowing water through the ash.
【請求項2】 上記灰落下口上流のエアラインに、流量
計および加圧エア調節弁を設けた請求項1記載の灰処理
装置。
2. The ash treatment apparatus according to claim 1, wherein a flow meter and a pressurized air control valve are provided in the air line upstream of the ash fall port.
JP10267913A 1998-09-22 1998-09-22 Ash treatment apparatus Pending JP2000097405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10267913A JP2000097405A (en) 1998-09-22 1998-09-22 Ash treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10267913A JP2000097405A (en) 1998-09-22 1998-09-22 Ash treatment apparatus

Publications (1)

Publication Number Publication Date
JP2000097405A true JP2000097405A (en) 2000-04-04

Family

ID=17451370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10267913A Pending JP2000097405A (en) 1998-09-22 1998-09-22 Ash treatment apparatus

Country Status (1)

Country Link
JP (1) JP2000097405A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665726A (en) * 2009-09-04 2010-03-10 湖北华强化工集团有限公司 Ash conveying device of gas making furnace
CN102627184A (en) * 2012-04-01 2012-08-08 张家港市嘉华炉业有限公司 Conveying device for dual-support type high pressure air bottle in curing furnace
CN102627189A (en) * 2012-04-01 2012-08-08 张家港市嘉华炉业有限公司 Conveying device for cantilever type high pressure air bottle in curing furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665726A (en) * 2009-09-04 2010-03-10 湖北华强化工集团有限公司 Ash conveying device of gas making furnace
CN102627184A (en) * 2012-04-01 2012-08-08 张家港市嘉华炉业有限公司 Conveying device for dual-support type high pressure air bottle in curing furnace
CN102627189A (en) * 2012-04-01 2012-08-08 张家港市嘉华炉业有限公司 Conveying device for cantilever type high pressure air bottle in curing furnace

Similar Documents

Publication Publication Date Title
US7273015B2 (en) Method and apparatus for combustion of residual carbon in fly ash
CN101124434B (en) Cyclone bypass for a circulating fluidized bed reactor
CN108753368B (en) Circulating fluidized bed coal gasification system and method
JP2010501822A (en) Cooling system for dry extraction of heavy ash from boilers
CN1759066B (en) Process and plant for producing metal oxide from metal compounds
JPH1085577A (en) Manufacturing device for inorganic spheroidized particle
CN208649244U (en) A kind of circulation fluidized bed coal gasifying system
EP2132425B1 (en) Method and apparatus for preparing pulverized coal used to produce synthesis gas
CN101142329A (en) Process and plant for the heat treatment of solids containing titanium
JP2000097405A (en) Ash treatment apparatus
UA79669C2 (en) Method and unit for production of low temperature coke
WO1991017391A1 (en) A cooler for cooling of particulate material, especially fine-grained dust
SE460728B (en) PROCEDURE AND EQUIPMENT IN TREATMENT OF MESA
CN213113227U (en) Slag discharge system of fluidized bed gasification furnace
CN103528055B (en) Pressurize grey residues processing technique and system
CN208814958U (en) A kind of dry coal powder airflow bed gasification system of low pressure
CN213835181U (en) Pulverized coal conveying system of gasification furnace
JPS62285990A (en) Fuel feed apparatus for coal gasification oven
AU2007338485A1 (en) Process and plant for the thermal treatment of particulate solids, in particular for producing metal oxide from metal hydroxide
JP3433990B2 (en) Ash treatment equipment for pressurized fluidized-bed boiler
JPH0742910A (en) Ash treating device for boiler of pressurized fluidized bed type
JPH01217107A (en) Method and device for cooling ash of pfbc power plant
CN210624506U (en) Serial multi-fluidized bed furnace
CN112391206A (en) Gasification furnace pulverized coal conveying system and working method thereof
JPH10300020A (en) Power generation system