JP5388658B2 - Composite molded article and manufacturing method thereof - Google Patents

Composite molded article and manufacturing method thereof Download PDF

Info

Publication number
JP5388658B2
JP5388658B2 JP2009090054A JP2009090054A JP5388658B2 JP 5388658 B2 JP5388658 B2 JP 5388658B2 JP 2009090054 A JP2009090054 A JP 2009090054A JP 2009090054 A JP2009090054 A JP 2009090054A JP 5388658 B2 JP5388658 B2 JP 5388658B2
Authority
JP
Japan
Prior art keywords
composite molded
thermoplastic resin
crystalline thermoplastic
molded article
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009090054A
Other languages
Japanese (ja)
Other versions
JP2010240906A (en
Inventor
英彦 鎌野
眞治 木坊子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NARUMI GOUKIN MANUFACTURING CO., LTD.
Mitsubishi Engineering Plastics Corp
Original Assignee
NARUMI GOUKIN MANUFACTURING CO., LTD.
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NARUMI GOUKIN MANUFACTURING CO., LTD., Mitsubishi Engineering Plastics Corp filed Critical NARUMI GOUKIN MANUFACTURING CO., LTD.
Priority to JP2009090054A priority Critical patent/JP5388658B2/en
Publication of JP2010240906A publication Critical patent/JP2010240906A/en
Application granted granted Critical
Publication of JP5388658B2 publication Critical patent/JP5388658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明は、電磁波シールド材及び磁気シールド材に好適な複合成形品及びその製造方法に関する。   The present invention relates to a composite molded article suitable for an electromagnetic wave shielding material and a magnetic shielding material, and a method for producing the same.

例えば、自動車に搭載され、あるいは、組み込まれる部品や部材は、寒冷地域では、エンジンの始動前には、例えば−40゜C程度の低温になっている一方、エンジンの始動後は、急速に暖められる。従って、斯かる部品や部材は、過酷な熱衝撃を受け、大きな熱膨張に晒される。他方、酷暑地域では、寒冷地域とは逆に、高い温度にある部品や部材は、エンジンの始動後、エアーコンデショナーにより急速に冷却される。即ち、斯かる部品や部材は、やはり、過酷な熱衝撃を受け、大きな熱膨張に晒される。   For example, parts and members mounted on or incorporated in automobiles are, for example, about −40 ° C. before starting the engine in a cold region, but rapidly warm after starting the engine. It is done. Therefore, such parts and members are subjected to severe thermal shock and are exposed to large thermal expansion. On the other hand, in an extremely hot region, contrary to a cold region, parts and members that are at a high temperature are rapidly cooled by an air conditioner after the engine is started. That is, such components and members are also subjected to severe thermal shock and are exposed to large thermal expansion.

ところで、斯かる部品や部材が、金属製の基材、及び、基材上に形成された樹脂層から構成され、インサート成形法やアウトサート成形法に基づき製造されている場合、基材と樹脂層の線膨張係数の違いから、樹脂層は、著しい応力集中を受ける。その結果、成形直後、最悪の場合は、使用中の温度変化で樹脂層に割れが発生したり、樹脂層が基材から剥がれるといった不具合が生じる。最近では、斯かる部品の構造が複雑なこと、樹脂の肉厚変化部分が多いこと、使用される場所がエンジン付近等の温度変化が大きいこと、部品の小型化・軽量化による樹脂部分の薄肉化のために、樹脂の割れ等が発生しやすい。従って、このような長期間の温度変化に耐え得る部品、即ち、耐ヒートショック性に優れた部品が強く求められるようになってきている。   By the way, when such parts and members are composed of a metal base material and a resin layer formed on the base material and are manufactured based on an insert molding method or an outsert molding method, the base material and the resin Due to the difference in the linear expansion coefficient of the layers, the resin layer is subjected to significant stress concentration. As a result, immediately after molding, in the worst case, the resin layer is cracked due to a temperature change during use, or the resin layer is peeled off from the substrate. Recently, the structure of such parts is complicated, there are many parts where the thickness of the resin changes, the temperature used in the vicinity of the engine is large, and the thinness of the resin part due to downsizing and weight reduction of parts. For this reason, cracking of the resin is likely to occur. Accordingly, a component that can withstand such a long-term temperature change, that is, a component excellent in heat shock resistance has been strongly demanded.

反り等の変形が生じ難い電子機器が、例えば、特開2001−007574から周知である。この電子機器は、1つ以上の成形部品が取り付けられた組立部品を備えた電子機器である。そして、組立部品には貫通穴が少なくとも1つ形成され、少なくとも1つの成形部品は、成形部品の本体と、組立部品の貫通穴にスライド可能にはめられた複数の係合部とが一体成形され、複数の係合部のうちの少なくとも1つの頭部には部品取付用穴が形成されている。   For example, Japanese Patent Application Laid-Open No. 2001-007574 discloses an electronic device that hardly undergoes deformation such as warping. This electronic device is an electronic device provided with an assembly part to which one or more molded parts are attached. At least one through hole is formed in the assembly part, and at least one molded part is integrally formed with a main body of the molded part and a plurality of engaging portions slidably fitted in the through holes of the assembly part. A part mounting hole is formed in at least one head of the plurality of engaging portions.

特開2001−007574JP 2001-007574 A

しかしながら、このような構造を有する電子機器を製造する場合、基材の貫通孔に間隙を形成した状態で係合部となる突起を成形するため、金型の形状が複雑であったり、また、通常の成形条件では所望の成形品が得られない場合があり、効率的とはいい難い。また、得られる成形品は、成形部品がその係合部において組立部品にひっかかっているだけであるため、使用中の温度変化により樹脂層が割れたり、樹脂層が基材から剥がれるといった不具合が発生する場合がある。   However, when manufacturing an electronic device having such a structure, since the projections that become the engaging portions are formed in a state where a gap is formed in the through hole of the base material, the shape of the mold is complicated, Under normal molding conditions, a desired molded product may not be obtained, and it is difficult to say that it is efficient. In addition, the molded product obtained has a problem that the resin layer is cracked or peeled off from the base material due to temperature change during use because the molded component is only caught on the assembly part at the engaging part. There is a case.

従って、本発明の目的は、複雑な構造の金型を用いることなく、簡単な構造の金型を用いて射出成形することにより、樹脂層に割れの生ずることの少ない、金属と熱可塑性樹脂との複合成形品を製造する方法を提供することにある。   Accordingly, an object of the present invention is to provide a metal and a thermoplastic resin that are less likely to crack in the resin layer by injection molding using a mold having a simple structure without using a mold having a complicated structure. Another object of the present invention is to provide a method for producing a composite molded article.

上記の目的を達成するための本発明の複合成形品の製造方法は以下の通りである。
(第1の特徴)
(A)少なくとも一部が長孔形状とされた複数の貫通孔を有する板状部と、板状部の縁部に設けられた側壁とから成る略箱状の金属製の基材を、射出成形用金型のキャビティ内に装着した後、
(B)結晶性熱可塑性樹脂をキャビティ内に射出して、複数の貫通孔同士に跨り、且つ、貫通孔を介して板状部の両側に連続する結晶性熱可塑性樹脂層を形成することにより、基材と結晶性熱可塑性樹脂層との複合成形品を製造し、次いで、
(C)金型から複合成形品を取り出した後、結晶性熱可塑性樹脂を結晶化処理することにより、結晶性熱可塑性樹脂の結晶化度を金型取り出し後の結晶化度より1%以上高くし、以て、長孔形状とされた貫通孔中の結晶性熱可塑性樹脂を長孔の長軸方向に収縮させ、長軸末端部に空隙を形成させることを特徴とする複合成形品の製造方法。
(第2の特徴)
長孔形状を有する貫通孔は、複合成形品とした場合の溶融樹脂射出部跡と当該貫通孔とを結ぶ線に、その長軸が、ほぼ沿うように設けられることを特徴とする上記に記載の複合成形品の製造方法。
(第3の特徴)
長孔形状を有する貫通孔は、その長軸の長さ(LL)と短軸の長さ(LS)の比(LL/LS)が2以上とされていることを特徴とする上記に記載の複合成形品の製造方法。
(第4の特徴)
結晶化処理を、空気雰囲気中、温度60゜C乃至120゜C、時間0.5時間乃至2時間の条件にて行うことを特徴とする上記に記載の複合成形品の製造方法。
(第5の特徴)
基材を構成する材料の線膨張係数をαM、結晶性熱可塑性樹脂の線膨張係数をαRとしたとき、
1×10-5/゜C≦αR−αM≦15×10-5/゜C
を満足することを特徴とする上記に記載の複合成形品の製造方法。
(第6の特徴)
結晶性熱可塑性樹脂はポリアセタール樹脂であることを特徴とする上記に記載の複合成形品の製造方法。
The manufacturing method of the composite molded article of the present invention for achieving the above object is as follows.
(First feature)
(A) Injecting a substantially box-shaped metal base material comprising a plate-like portion having a plurality of through-holes, at least a part of which has a long hole shape, and a side wall provided at an edge of the plate-like portion. After mounting in the mold cavity,
(B) By injecting a crystalline thermoplastic resin into the cavity, and forming a crystalline thermoplastic resin layer straddling a plurality of through-holes and continuing on both sides of the plate-like portion via the through-holes , Producing a composite molded product of the base material and the crystalline thermoplastic resin layer,
(C) After taking out the composite molded product from the mold, the crystalline thermoplastic resin is crystallized so that the crystallinity of the crystalline thermoplastic resin is 1% or more higher than the crystallinity after taking out the mold. Thus, the production of a composite molded product characterized in that the crystalline thermoplastic resin in the through-hole having a long hole shape is contracted in the long axis direction of the long hole to form a void at the end of the long axis Method.
(Second feature)
The through hole having a long hole shape is provided so that a major axis thereof is substantially aligned with a line connecting the molten resin injection portion trace and the through hole in the case of a composite molded product. Manufacturing method of composite molded article.
(Third feature)
Through holes having a long hole shape, characterized in that the ratio of the length of the major axis (L L) and the length of the minor axis (L S) (L L / L S) is 2 or more The manufacturing method of the composite molded product as described above.
(Fourth feature)
The method for producing a composite molded article as described above, wherein the crystallization treatment is performed in an air atmosphere at a temperature of 60 ° C. to 120 ° C. for a time of 0.5 hours to 2 hours.
(Fifth feature)
When the linear expansion coefficient of the material constituting the substrate is α M and the linear expansion coefficient of the crystalline thermoplastic resin is α R ,
1 × 10 −5 / ° C ≦ α R −α M ≦ 15 × 10 −5 / ° C
The method for producing a composite molded article as described above, wherein:
(Sixth feature)
The method for producing a composite molded article as described above, wherein the crystalline thermoplastic resin is a polyacetal resin.

また、本発明の複合成形品の特徴点を以下に示す。
(第7の特徴)
(a)少なくとも一部が長孔形状とされた複数の貫通孔を有する板状部と、板状部の縁部に設けられた側壁とから成る略箱状の金属製の基材、
(b)基材の複数の貫通孔同士に跨り、且つ、貫通孔を介して板状部の両側に連続する結晶性熱可塑性樹脂層から成る複合成形品であって、
結晶性熱可塑性樹脂を結晶化処理することにより、長孔形状とされた貫通孔の長軸末端部に空隙を形成させたことを特徴とする複合成形品。
(第8の特徴)
複合成形品が電磁波シールド材又は磁気シールド材であることを特徴とする上記に記載の複合成形品。
The characteristic points of the composite molded article of the present invention are shown below.
(Seventh feature)
(A) a substantially box-shaped metal substrate comprising a plate-like portion having a plurality of through-holes, at least a part of which is in the shape of a long hole, and a side wall provided at an edge of the plate-like portion;
(B) a composite molded article composed of a crystalline thermoplastic resin layer straddling a plurality of through-holes of the base material and continuous on both sides of the plate-like portion via the through-holes,
A composite molded article characterized in that a void is formed at the end of the long axis of a through hole having a long hole shape by crystallizing a crystalline thermoplastic resin.
(Eighth feature)
The composite molded article as described above, wherein the composite molded article is an electromagnetic shielding material or a magnetic shielding material.

以下に本発明を、図面を用いて更に詳細に説明する。図1の(A)は、金属製基材1の斜視図である。図1の(B)は、金属製基材1を上方から見た図である。図1の(C)は、実施例1の金属製基材に設けられた貫通孔の模式的な平面図である。図2の(A)は、複合成形品6の斜視図である。図2の(B)は、図1の(B)におけるA−A端面図である。図2の(C)は、図1の(B)におけるB−B端面図である。   Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1A is a perspective view of the metal substrate 1. FIG. 1B is a view of the metal substrate 1 as viewed from above. FIG. 1C is a schematic plan view of a through hole provided in the metal base material of Example 1. FIG. FIG. 2A is a perspective view of the composite molded product 6. FIG. 2B is an AA end view of FIG. (C) of FIG. 2 is a BB end view in FIG. 1 (B).

本発明において、少なくとも一部が長孔形状とされた複数の貫通孔を有する板状部と、板状部の縁部に設けられた側壁とから成る略箱状の金属製の基材は、例えば、アルミニウム、マグネシウム、鋼、鉄、鉛、錫、亜鉛、銅、ニッケル、コバルト、クロム、チタン、ジルコニウム、金、銀といった金属だけでなく、それらの合金(例えば、ステンレス鋼や真鍮)等から成り、図1に示すような板状部2と板状部2の縁部に設けられた側壁3とから成るような、内部に電子部品等を収容し、電磁波、磁気等を遮断する用途に用い得る略箱状のものである。   In the present invention, a substantially box-shaped metal base material comprising a plate-like portion having a plurality of through-holes, at least a part of which is in the shape of a long hole, and a side wall provided at an edge of the plate-like portion, For example, not only metals such as aluminum, magnesium, steel, iron, lead, tin, zinc, copper, nickel, cobalt, chromium, titanium, zirconium, gold, silver, but also alloys thereof (for example, stainless steel and brass) It consists of a plate-like part 2 and a side wall 3 provided at the edge of the plate-like part 2 as shown in FIG. It is a substantially box-shaped one that can be used.

ここで、箱状とは、一枚の板状部2から成る形状ではないことをいい、板状部2の縁部の一部に側壁3を有し、基材1自体がある程度の剛性を示す形状であることを意味し、樹脂との複合体を形成して簡単に樹脂の収縮に伴って変形するものでないことの意である。従って、板状部2の形状は、矩形、円形、円形と矩形を繋いだ形、半球状等任意である。また、板状部2は平坦であることが好ましいが、基材1自体がある程度剛性を示すことができれば、湾曲していてもよい。側壁3は、板状部2の縁部の一部に設けられていればよい。即ち、側壁3は、板状部2の縁部の全てに設けられていなくてもよい。   Here, the box shape means that the shape is not composed of a single plate-like portion 2, and has a side wall 3 at a part of the edge of the plate-like portion 2, and the substrate 1 itself has a certain degree of rigidity. It means that it is a shape shown in the figure, and it is not intended to form a composite with a resin and easily deform as the resin shrinks. Therefore, the shape of the plate-like portion 2 is arbitrary such as a rectangle, a circle, a shape connecting a circle and a rectangle, a hemisphere, and the like. The plate-like portion 2 is preferably flat, but may be curved as long as the substrate 1 itself can exhibit some rigidity. The side wall 3 should just be provided in a part of edge part of the plate-shaped part 2. FIG. That is, the side wall 3 may not be provided on all the edges of the plate-like portion 2.

本発明の複合成形品を電磁波シールド材として用いる場合、基材1を構成する金属として、亜鉛、鉛、銀、銅、金、アルミニウム、ニッケル、鉄、マグネシウム、チタンといった金属だけでなく、それらの合金(例えば、ステンレス鋼)等を用いることが好ましい。一方、本発明の複合成形品を磁気シールド材として用いる場合、基材1を構成する金属として、鉄、ニッケル、コバルト、亜鉛といった金属だけでなく、それらの合金(例えば、ステンレス鋼)等を用いることが好ましい。このような基材1は、金属(含合金)をダイカスト成形して製造したり、金属板をプレス成形して作られるのが一般的である。   When the composite molded article of the present invention is used as an electromagnetic wave shielding material, the metal constituting the substrate 1 is not only a metal such as zinc, lead, silver, copper, gold, aluminum, nickel, iron, magnesium, titanium, but also It is preferable to use an alloy (for example, stainless steel). On the other hand, when the composite molded product of the present invention is used as a magnetic shielding material, not only metals such as iron, nickel, cobalt, and zinc but also alloys thereof (for example, stainless steel) are used as the metal constituting the substrate 1. It is preferable. Such a substrate 1 is generally manufactured by die-casting a metal (alloy-containing) or press-molding a metal plate.

また、基材1を構成する金属としては、金属の線膨張係数をαM、結晶性熱可塑性樹脂の線膨張係数をαRとしたとき、
1×10-5/゜C≦αR−αM≦15×10-5/゜C、
望ましくは、
3×10-5/゜C≦αR−αM≦12×10-5/゜C
を満足するものが好ましい。尚、本発明において、基材1を構成する材料の線膨張係数αMはJIS Z2285に、結晶性熱可塑性樹脂の線膨張係数αRはISO11359−2にそれぞれ準拠し、温度23゜C〜80゜Cの範囲で測定された値である。ここで、結晶性熱可塑性樹脂の線膨張係数αRは、樹脂の流れ方向(MD)の線膨張係数とする。
Further, as the metal constituting the substrate 1, when the linear expansion coefficient of the metal is α M and the linear expansion coefficient of the crystalline thermoplastic resin is α R ,
1 × 10 −5 / ° C ≦ α R −α M ≦ 15 × 10 −5 / ° C,
Preferably
3 × 10 −5 / ° C ≦ α R −α M ≦ 12 × 10 −5 / ° C
Those satisfying the above are preferable. In the present invention, the linear expansion coefficient α M of the material constituting the substrate 1 conforms to JIS Z2285, the linear expansion coefficient α R of the crystalline thermoplastic resin conforms to ISO 11359-2, and the temperature ranges from 23 ° C. to 80 ° C. It is a value measured in the range of ° C. Here, the linear expansion coefficient α R of the crystalline thermoplastic resin is a linear expansion coefficient in the resin flow direction (MD).

基材1の板状部2に複数形成される貫通孔4,4’,4”,5,5’は、この、基材1の成形時に形成されるのが一般的であるが、後加工により形成することも可能である。本発明においては、基材1に形成される貫通孔のうちの一部は長孔形状とされる必要がある。貫通孔は、通常、板状部2に複数形成されるが、更に、側壁3に設けられていてもよい。   A plurality of through holes 4, 4 ′, 4 ″, 5, 5 ′ formed in the plate-like portion 2 of the base material 1 are generally formed when the base material 1 is molded, but post-processing In the present invention, some of the through holes formed in the base material 1 need to have a long hole shape, and the through holes are usually formed in the plate-like portion 2. A plurality are formed, but may be further provided on the side wall 3.

このようにして得られた金属製基材1は射出成形用金型のキャビティ内に装着される。次いで、結晶性熱可塑性樹脂をキャビティ内に射出して、複数の貫通孔4,4’,4”,5,5’同士に跨り、且つ、貫通孔を介して板状部2の両側に連続する結晶性熱可塑性樹脂層(第1の樹脂層7と第2の樹脂層8)を形成することにより、基材1と結晶性熱可塑性樹脂との複合成形品6を製造する。この場合の複合成形品6においては、板状部2の一面(通常は外面)のほぼ全面に第1の樹脂層7が形成され、貫通孔4,4’,4”,5,5’を介してその反対側に第2の樹脂層8が形成されることを想定している。即ち、第1の樹脂層7は複数の貫通孔4,4”,4”と貫通孔4,4”,4”から離れた位置に形成された貫通孔5,5’に跨って連結して存在し、第2の樹脂層8は貫通孔4,4’,4”,5,5’から基材1の内側に突出して存在していることになる。そして、第1の樹脂層7と第2の樹脂層8とを連結する樹脂連結部9とは、貫通孔4,4’,4”,5,5’内に位置する樹脂部分をいう。即ち、結晶性熱可塑性樹脂層は、複数の貫通孔同士に跨り形成されているが、複数の貫通孔同士に跨る結晶性熱可塑性樹脂層の部分は、基材の一方の面にのみ形成されていてもよいし、基材の両面に形成されていてもよい。   The metal substrate 1 thus obtained is mounted in the cavity of the injection mold. Next, the crystalline thermoplastic resin is injected into the cavity, straddles the plurality of through holes 4, 4 ', 4 ", 5, 5' and continues to both sides of the plate-like portion 2 through the through holes. By forming the crystalline thermoplastic resin layers (the first resin layer 7 and the second resin layer 8) to be produced, the composite molded product 6 of the substrate 1 and the crystalline thermoplastic resin is produced. In the composite molded product 6, the first resin layer 7 is formed on almost the entire surface of the plate-like portion 2 (usually the outer surface), and the first resin layer 7 is formed through the through holes 4, 4 ′, 4 ″, 5, 5 ′. It is assumed that the second resin layer 8 is formed on the opposite side. That is, the first resin layer 7 is connected across a plurality of through holes 4, 4 ″, 4 ″ and through holes 5, 5 ′ formed at positions away from the through holes 4, 4 ″, 4 ″. The second resin layer 8 is present protruding from the through holes 4, 4 ′, 4 ″, 5, 5 ′ to the inside of the base material 1. The resin connecting portion 9 that connects the second resin layer 8 refers to a resin portion located in the through holes 4, 4 ', 4 ", 5, 5'. That is, the crystalline thermoplastic resin layer is formed across a plurality of through holes, but the portion of the crystalline thermoplastic resin layer across the plurality of through holes is formed only on one surface of the substrate. It may be formed on both sides of the substrate.

このような複合成形品6を単純に成形した場合(貫通孔の形状が、本発明の長孔形状ではない場合)、基材1の金属と結晶性熱可塑性樹脂の線膨張係数が大きく異なるため、基材1と結晶性熱可塑性樹脂の成形収縮の差が生じ、貫通孔付近、又は、貫通孔と貫通孔との間(例えば、貫通孔4と貫通孔5との間)に収縮応力が集中し、貫通孔付近や貫通孔同士の間で第1の樹脂層7に亀裂が入ったり、裂断したり、場合によっては基材1に変形が生じるという問題がある。   When such a composite molded product 6 is simply formed (when the shape of the through hole is not the long hole shape of the present invention), the linear expansion coefficient of the metal of the base material 1 and the crystalline thermoplastic resin are greatly different. A difference in molding shrinkage between the base material 1 and the crystalline thermoplastic resin occurs, and there is a shrinkage stress in the vicinity of the through hole or between the through hole and the through hole (for example, between the through hole 4 and the through hole 5). There is a problem that the first resin layer 7 is cracked in the vicinity of the through holes or between the through holes, or the base material 1 is deformed in some cases.

本発明はこのような問題を解決するために、当該貫通孔の一部(複合成形品6の末端近傍に位置する貫通孔)を長孔形状とすると共に、成形後金型から取り出した複合成形品6に特殊な処理を施すことによって、金属製の基材1と結晶性熱可塑性樹脂とを一体成形した際に生じる変形や、金属と結晶性熱可塑性樹脂との線膨張係数の違いにより発生する樹脂割れ等を防止するものである。   In order to solve such a problem, the present invention makes a part of the through hole (a through hole located near the end of the composite molded product 6) a long hole shape, and composite molding taken out from the mold after molding Due to the special treatment of the product 6, it occurs due to the deformation that occurs when the metal base 1 and the crystalline thermoplastic resin are integrally molded, and the difference in the linear expansion coefficient between the metal and the crystalline thermoplastic resin. This prevents cracking of the resin.

本発明において、長孔形状とは、長軸の長さをLL、短軸の長さLSとしたとき、LL>LSの関係を満足する細長い形状を意味するものである。図1の(C)の貫通孔の模式的な平面図を示すように、長孔形状における長軸とは、貫通孔の縁部の任意の2点を結んだ線分の内、最も長い線分が得られる2点P11,P12を結ぶ直線を指す。一方、長孔形状における短軸とは、長軸と直交する直線が貫通孔の縁部と交わる2点を結ぶ線分の内、最も長い線分が得られる2点P21,P22を結ぶ直線を指す。長孔形状を有する貫通孔は、長軸の長さと短軸の長さの比(LL/LS)の値は、2以上、好ましくは3.5以上であることが望ましい。尚、LL/LSの値の上限値として、限定するものではないが、例えば、10を挙げることができる。 In the present invention, the long hole shape, when the length of the major axis L L, and the length L S of the short axis, is intended to mean an elongated shape which satisfies the relationship L L> L S. As shown in the schematic plan view of the through hole in FIG. 1C, the long axis in the long hole shape is the longest line among the line segments connecting any two points of the edge of the through hole. A straight line connecting the two points P 11 and P 12 where the minute is obtained is indicated. On the other hand, the short axis in the long hole shape connects the two points P 21 and P 22 at which the longest line segment is obtained among the line segments connecting the two points where the straight line perpendicular to the long axis intersects the edge of the through hole. Point to a straight line. In the through hole having a long hole shape, the ratio of the length of the long axis to the length of the short axis (L L / L S ) is 2 or more, preferably 3.5 or more. In addition, although it does not limit as an upper limit of the value of L L / L S , 10 can be mentioned, for example.

長孔形状としては、2本の線分と2つの半円の組合せ、2本の線分と2つの任意の曲線の組合せ、重心に対して対称の位置に略平行である部分と2つの半円の組み合わせ(長円形)、三角形、丸みを帯びた三角形、四角形、丸みを帯びた四角形、五角形以上の多角形、丸みを帯びた五角形以上の多角形、楕円、双曲線や放物線の組合せ、任意の曲線を挙げることができる。これらの中でも、2本の線分と2つの半円の組合わせ、長円形、楕円、丸みを帯びた四角形が好ましい。長孔形状ではない貫通孔が存在する場合、斯かる貫通孔の形状は任意である。   The shape of the long hole includes a combination of two line segments and two semicircles, a combination of two line segments and two arbitrary curves, a portion that is substantially parallel to a symmetric position with respect to the center of gravity, and two half halves. Combinations of circles (oval), triangles, rounded triangles, quadrangles, rounded quadrangles, polygons with pentagons or more, polygons with rounded pentagons or more, ellipses, hyperbola and parabola combinations, any A curve can be mentioned. Among these, a combination of two line segments and two semicircles, an oval, an ellipse, and a rounded quadrangle are preferable. When there is a through hole that is not a long hole shape, the shape of the through hole is arbitrary.

以下、長孔形状を有する貫通孔4,4’,4”,5,5’のうち、貫通孔4を例に挙げて説明する。長孔形状を有する貫通孔4は、複合成形品6とした場合の溶融樹脂射出部跡10と当該貫通孔4とを結ぶ線に、その長軸がほぼ沿うように設けられる。これは、厳密ではないが、結晶性熱可塑性樹脂層に残された溶融樹脂射出部跡10の中心と長孔形状を有する貫通孔4の中心とを結ぶ直線(図1の(B)あるいは図3の(A)における一点鎖線参照)と、長孔形状を有する貫通孔4の長軸との成す角度をθ1としたとき、
|θ1|≦30度
好ましくは、
|θ1|≦25度
を満足すると定義できる。尚、溶融樹脂射出部が、樹脂射出口が複数である多点のゲート構造から構成されている場合、長孔形状を有する各貫通孔に最も近接した樹脂射出口の跡を、各貫通孔に対する溶融樹脂射出部跡10とすればよい。
Hereinafter, of the through holes 4, 4 ′, 4 ″, 5, 5 ′ having the long hole shape, the through hole 4 will be described as an example. The through hole 4 having the long hole shape is formed with the composite molded product 6. In this case, the major axis of the molten resin injection portion trace 10 and the through hole 4 is provided so that the major axis is substantially aligned with the molten resin remaining in the crystalline thermoplastic resin layer. A straight line connecting the center of the resin injection part mark 10 and the center of the through hole 4 having a long hole shape (see the dashed line in FIG. 1B or FIG. 3A) and the through hole having a long hole shape When the angle formed by the major axis of 4 is θ 1 ,
| Θ 1 | ≦ 30 degrees Preferably,
It can be defined that | θ 1 | ≦ 25 degrees is satisfied. In addition, when the molten resin injection part is composed of a multi-point gate structure having a plurality of resin injection ports, the trace of the resin injection port closest to each through hole having a long hole shape is marked with respect to each through hole. What is necessary is just to set it as the molten resin injection part trace 10. FIG.

また、一方、これも厳密ではないが、第1の樹脂層7と第2の樹脂層8の内、面積が大きい方の樹脂層(図2の(B)及び(C)においては第1の樹脂層7が該当する)の主たる熱収縮方向と、長孔形状を有する貫通孔の長軸との成す角度をθ2としたとき、
|θ2|≦30度
好ましくは、
|θ2|≦25度
を満足すると定義することもできる。
On the other hand, although this is not strict, the resin layer having the larger area out of the first resin layer 7 and the second resin layer 8 (the first layer in FIGS. 2B and 2C). When the angle formed between the main heat shrink direction of the resin layer 7) and the long axis of the through hole having a long hole shape is θ 2 ,
| Θ 2 | ≦ 30 degrees Preferably,
It can also be defined that | θ 2 | ≦ 25 degrees.

第1の樹脂層7及び第2の樹脂層8は、長孔形状を有する貫通孔4及びその他の貫通孔を上下から挟む形で覆っており、成形後の状態では、第1の樹脂層7及び第2の樹脂層8は、貫通孔を隙間無く完全に密閉した状態で覆っている。本発明においては、このような複合成形品を得た後、金型から複合成形品6を取り出し、結晶性熱可塑性樹脂を結晶化処理することにより、結晶性熱可塑性樹脂の結晶化度を金型取り出し後の結晶化度より1%以上、望ましくは3%以上高める結晶化処理を行い、以て、長孔形状を有する貫通孔中の結晶性熱可塑性樹脂を長孔の長軸方向に収縮させ、長軸末端部に空隙12を形成させる。尚、短軸方向にも空隙は形成され得る。キャビティ内への結晶性熱可塑性樹脂の射出が完了し、型開きした後であって、上記の結晶化処理を実行する前には、長孔形状を有する貫通孔4と樹脂連結部9との間には、実質的に、空隙は存在しない。   The first resin layer 7 and the second resin layer 8 cover the through hole 4 having a long hole shape and other through holes so as to be sandwiched from above and below, and in the state after molding, the first resin layer 7 And the 2nd resin layer 8 has covered the through-hole in the state completely sealed without gap. In the present invention, after obtaining such a composite molded product, the composite molded product 6 is taken out from the mold, and the crystalline thermoplastic resin is crystallized to thereby increase the crystallinity of the crystalline thermoplastic resin. A crystallization treatment is performed to increase the crystallinity after removal of the mold by 1% or more, preferably 3% or more, so that the crystalline thermoplastic resin in the through hole having a long hole shape contracts in the long axis direction of the long hole. The void 12 is formed at the end of the long axis. Note that voids can also be formed in the minor axis direction. After the injection of the crystalline thermoplastic resin into the cavity is completed and the mold is opened, and before the above crystallization process is performed, the through hole 4 having the long hole shape and the resin connecting portion 9 are There are virtually no voids in between.

結晶化処理方法は、結晶性熱可塑性樹脂の結晶化度を、金型から取り出した後の結晶化度より1%以上高くすることができれば、特に限定されるものではないが、好ましくは、空気雰囲気中、結晶性熱可塑性樹脂の融点以下の温度で、時間0.5時間乃至2時間の条件にて行うことが望ましい。より好ましい温度範囲は、温度60゜C乃至120゜Cである。また、結晶化処理後の結晶化度は、金型から取り出した後の結晶化度より2%以上高いことが好ましい。   The crystallization treatment method is not particularly limited as long as the crystallization degree of the crystalline thermoplastic resin can be made 1% or more higher than the crystallization degree after being taken out from the mold, but preferably air It is desirable to carry out in an atmosphere at a temperature not higher than the melting point of the crystalline thermoplastic resin for a period of 0.5 to 2 hours. A more preferable temperature range is a temperature of 60 ° C to 120 ° C. The crystallinity after the crystallization treatment is preferably 2% or more higher than the crystallinity after removal from the mold.

結晶化処理を施した複合成形品6は、長孔形状を有する貫通孔4中の長軸末端に空隙12が形成される。長孔形状を有する貫通孔4の長軸末端部に形成された長軸に沿った空隙12の長さは、複合成形品の大きさ・形状、貫通孔の大きさ・形状、用いる結晶性熱可塑性樹脂の収縮率等にもよるが、例えば、貫通孔の長軸の長さLLの0.01%以上、好ましくは0.05%以上、より好ましくは0.1%以上である。尚、空隙12の長さの上限値として、限定するものではないが、例えば、貫通孔の長軸の長さLLの3%を挙げることができる。 In the composite molded product 6 subjected to the crystallization treatment, a void 12 is formed at the end of the long axis in the through hole 4 having a long hole shape. The length of the gap 12 along the long axis formed at the end of the long axis of the through hole 4 having the long hole shape depends on the size / shape of the composite molded product, the size / shape of the through hole, and the crystalline heat used. depending on the shrinkage or the like of the thermoplastic resin, for example, 0.01% of the length L L of the major axis of the through hole is preferably 0.05% or more, more preferably 0.1% or more. Note that the upper limit value of the length of the gap 12 is not limited, but may be, for example, 3% of the length L L of the long axis of the through hole.

更には、以上に説明した好ましい形態、構成を含む本発明の複合成形品は、温度130゜Cに1時間保持した後、5秒間にて温度−40゜Cとし、−40゜Cに1時間保持した後、5秒間にて温度130゜Cとする熱サイクル試験を100回実行したとき、結晶性熱可塑性樹脂層に損傷が生じないことが望ましい。   Furthermore, the composite molded article of the present invention including the preferred embodiment and configuration described above is held at a temperature of 130 ° C. for 1 hour, then at a temperature of −40 ° C. for 5 seconds, and at −40 ° C. for 1 hour. After the holding, when the thermal cycle test at a temperature of 130 ° C. for 5 seconds is executed 100 times, it is desirable that the crystalline thermoplastic resin layer is not damaged.

更には、以上に説明した好ましい形態、構成を含む本発明において、第2の樹脂層8には、複合成形品の内部に収納すべき物品を取り付けるための取付部11が設けられている構成とすることが望ましい。ここで、取付部として、ボス、リブ等を挙げることができる。また、物品として、各種プリント配線板、コネクター、配線、各種巻線、磁気コイル等を挙げることができる。   Furthermore, in the present invention including the preferred modes and configurations described above, the second resin layer 8 has a configuration in which a mounting portion 11 for mounting an article to be stored in the composite molded product is provided. It is desirable to do. Here, examples of the attachment portion include bosses and ribs. Examples of the article include various printed wiring boards, connectors, wiring, various windings, and magnetic coils.

更には、以上に説明した好ましい形態、構成を含む本発明において、結晶性熱可塑性樹脂として、具体的には、ポリアセタール(ポリオキシメチレン)樹脂;ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン系樹脂;ポリアミド6、ポリアミド66、ポリアミドMXD6等のポリアミド系樹脂;ポリエチレンテレフタレート(PET)樹脂、ポリブチレンエチレンテレフタレート(PBT)樹脂等のポリエステル系樹脂;ポリフェニレンサルファイド樹脂を挙げることができるが、中でも、ポリアセタール樹脂を用いることが好ましい。ここで、熱可塑性樹脂が結晶性熱可塑性樹脂であるか否かは、一般に示差走査熱量測定(DSC)法により判断される。結晶性とは、明確な融点(急激な吸熱を示す温度)や測定可能な融解熱を有する場合を意味し、本発明においては、通常用いられる示差走査熱量測定装置を用いて測定した融解熱が、1cal/g以上のものである。融解熱は、具体的には、例えば、PERKIN−ELMER社製DSC−IIを用いて、試料を予想される融点以上の温度に10゜C/分の速度で昇温し、次に、この試料を30゜Cまで10゜C/分の速度で降温し、そのまま2分間保持後、再び10゜C/分の速度で昇温することにより測定することができる。このようにして測定した場合、融解熱が1cal/g以上の融解ピークが2回目の昇温時に確認される樹脂が結晶性熱可塑性樹脂であり、一方、1cal/g以上の明確な融点が2回目の昇温時に確認されない樹脂が非晶性熱可塑性樹脂である。   Furthermore, in the present invention including the preferred embodiments and configurations described above, as the crystalline thermoplastic resin, specifically, polyacetal (polyoxymethylene) resin; polyolefin resin such as polyethylene resin and polypropylene resin; polyamide 6 Polyamide resins such as polyamide 66 and polyamide MXD6; polyester resins such as polyethylene terephthalate (PET) resin and polybutylene ethylene terephthalate (PBT) resin; and polyphenylene sulfide resins, among which polyacetal resin is used. Is preferred. Here, whether or not the thermoplastic resin is a crystalline thermoplastic resin is generally determined by a differential scanning calorimetry (DSC) method. Crystallinity means a case where it has a clear melting point (a temperature showing a rapid endotherm) or a measurable heat of fusion. In the present invention, the heat of fusion measured using a commonly used differential scanning calorimeter is used. 1 cal / g or more. Specifically, for example, using a DSK-II manufactured by PERKIN-ELMER, the heat of fusion is raised to a temperature higher than the expected melting point at a rate of 10 ° C./min. The temperature can be measured by lowering the temperature to 30 ° C. at a rate of 10 ° C./minute, holding it for 2 minutes, and then increasing the temperature again at a rate of 10 ° C./minute. When measured in this way, the resin whose melting peak with a heat of fusion of 1 cal / g or more is confirmed at the second temperature rise is a crystalline thermoplastic resin, while the clear melting point of 1 cal / g or more is 2 A resin that is not confirmed at the time of the second temperature increase is an amorphous thermoplastic resin.

溶融樹脂射出部として、樹脂射出口が1つである1点型のサイドゲート構造、樹脂射出口が複数である多点型のサイドゲート構造、フィルムゲート構造(フラッシュゲート構造と呼ばれることもある)、ダイレクトゲート構造、ピンゲート構造、サブマリンゲート構造、ダイヤフラムゲート構造、トンネルゲート構造を例示することができる。   As a molten resin injection part, a one-point side gate structure with one resin injection port, a multi-point side gate structure with a plurality of resin injection ports, and a film gate structure (sometimes called a flash gate structure) Examples include a direct gate structure, a pin gate structure, a submarine gate structure, a diaphragm gate structure, and a tunnel gate structure.

本発明の複合成形品の製造方法において、キャビティ内への結晶性熱可塑性樹脂の射出が完了し、型開きした後、金型から複合成形品を取り出した後における結晶性熱可塑性樹脂の結晶化度DOC1は、以下の方法に基づき測定することができる。 In the method for producing a composite molded article of the present invention, after the injection of the crystalline thermoplastic resin into the cavity is completed and the mold is opened, the crystalline thermoplastic resin is crystallized after the composite molded article is taken out from the mold. The degree DOC 1 can be measured based on the following method.

金型から複合成形品6を取り出し、室温に12時間放置後、基材1の板状部2又は側壁3の外面に形成された第1の樹脂層7から約10mgの試料を切り出し、得られた試料をDSCで30゜Cから樹脂の融点以上(通常は、予想される樹脂の融点+40゜C程度)まで10゜C/分の速度で昇温し、昇温時の発熱ピークと吸熱ピークの熱量を求め、以下の式により、結晶化度を算出する。   The composite molded product 6 is taken out from the mold and left at room temperature for 12 hours, and then a sample of about 10 mg is obtained from the first resin layer 7 formed on the outer surface of the plate-like portion 2 or the side wall 3 of the base material 1. The sample was heated by DSC from 30 ° C to the melting point of the resin (usually the expected melting point of the resin + 40 ° C) at a rate of 10 ° C / min. And the degree of crystallinity is calculated by the following equation.

結晶化度DOC1(%)=[吸熱ピークの熱量(J/g)−発熱ピークの熱量(J/g)]/[結晶性熱可塑性樹脂の理論融解熱量(J/g)]×100 Crystallinity DOC 1 (%) = [heat amount of endothermic peak (J / g) −heat amount of exothermic peak (J / g)] / [theoretical heat of fusion of crystalline thermoplastic resin (J / g)] × 100

尚、本発明における各樹脂の理論融解熱量の測定法は次の通りである。
例えば、結晶性熱可塑性樹脂がポリアセタール樹脂の場合、様々な結晶化度を有するポリアセタール樹脂の融点における吸熱ピーク熱量を、それぞれDSCにより測定し、得られた吸熱ピーク熱量と結晶化度を2軸にプロットして検量線を作成し、検量線の結晶化度100%外挿点における熱量を理論融解熱量とした。尚、DSC測定に使用するポリアセタール樹脂の結晶化度の測定には、例えば、25゜Cにおいて四塩化炭素/トルエン混合溶媒で作成した密度勾配管法(JIS K7112)が利用できる。上記は、結晶性熱可塑性樹脂がポリアセタール樹脂の場合の例であるが、他の結晶性熱可塑性樹脂の場合も、同様の方法で理論融解熱量を求めることができる。
In addition, the measuring method of the theoretical heat of fusion of each resin in the present invention is as follows.
For example, when the crystalline thermoplastic resin is a polyacetal resin, the endothermic peak heat at the melting point of the polyacetal resin having various crystallinities is measured by DSC, and the obtained endothermic peak heat and crystallinity are biaxial. A calibration curve was created by plotting, and the calorific value at the extrapolation point of 100% crystallinity of the calibration curve was defined as the theoretical heat of fusion. For measuring the crystallinity of the polyacetal resin used for DSC measurement, for example, a density gradient tube method (JIS K7112) prepared with a carbon tetrachloride / toluene mixed solvent at 25 ° C. can be used. The above is an example in which the crystalline thermoplastic resin is a polyacetal resin. However, in the case of other crystalline thermoplastic resins, the theoretical heat of fusion can be determined by the same method.

また、結晶化処理が完了した後における結晶性熱可塑性樹脂の結晶化度DOC2も、結晶化処理完了後の複合成形品を室温に12時間放置後、第1の樹脂層7から約10mgの試料を切り出し、上記結晶化度DOC1の測定と同様の方法で求めることができる。 The crystallinity DOC 2 of the crystalline thermoplastic resin after completion of the crystallization treatment is also about 10 mg from the first resin layer 7 after leaving the composite molded product after completion of the crystallization treatment at room temperature for 12 hours. samples were cut out, it can be obtained in the same manner as the measurement of the crystallinity of DOC 1.

本発明の複合成形品、電磁波シールド材あるいは磁気シールド材は、
(a)少なくとも一部が長孔形状とされた複数の貫通孔を有する板状部と、板状部の縁部に設けられた側壁とから成る略箱状の金属製の基材、
(b)基材の複数の貫通孔同士に跨り、且つ、貫通孔を介して板状部の両側に連続する結晶性熱可塑性樹脂層から成る複合成形品であって、
結晶性熱可塑性樹脂を結晶化処理することにより、長孔形状とされた貫通孔の長軸末端部に空隙を形成させたことを特徴とする複合成形品であり、若しくは、斯かる複合成形品から成る電磁波シールド材あるいは磁気シールド材である。
The composite molded article, electromagnetic wave shielding material or magnetic shielding material of the present invention is
(A) a substantially box-shaped metal substrate comprising a plate-like portion having a plurality of through-holes, at least a part of which is in the shape of a long hole, and a side wall provided at an edge of the plate-like portion;
(B) a composite molded article composed of a crystalline thermoplastic resin layer straddling a plurality of through-holes of the base material and continuous on both sides of the plate-like portion via the through-holes,
It is a composite molded product characterized in that a void is formed at the end of the long axis of a through-hole formed into a long hole by crystallizing a crystalline thermoplastic resin, or such a composite molded product An electromagnetic shielding material or a magnetic shielding material comprising

また、本発明の複合成形品の具体的な形状として、立方体、直方体を含む任意の箱状の形状等を挙げることができる。また、第1の樹脂層7及び第2の樹脂層8の厚みは、通常0.5〜4mm、好ましくは0.8〜3mmである。   Moreover, as a specific shape of the composite molded article of the present invention, an arbitrary box shape including a cube and a rectangular parallelepiped can be exemplified. Moreover, the thickness of the 1st resin layer 7 and the 2nd resin layer 8 is 0.5-4 mm normally, Preferably it is 0.8-3 mm.

本発明の複合成形品、電磁波シールド材あるいは磁気シールド材として、具体的には、エンジン部品、制御コントロールユニット等の自動車部品、電気・電子部品、家電製品、建材等を挙げることができる。   Specific examples of the composite molded article, electromagnetic wave shielding material or magnetic shielding material of the present invention include engine parts, automobile parts such as control control units, electric / electronic parts, home appliances, and building materials.

本発明にあっては、第1の樹脂層7と第2の樹脂層8とは、少なくとも2つの長孔形状を有する樹脂連結部9によって連結されている。従って、基材1と結晶性熱可塑性樹脂層が剥離するといった不具合が発生しないといった優れた効果を奏する。しかも、長孔形状を有する貫通孔(4,4’,4”,5,5’)の長軸末端部と樹脂連結部9との間には空隙12が形成されており、第1の樹脂層7及び第2の樹脂層8は、長孔形状を有する貫通孔を覆っている。それ故、温度変化に対する樹脂割れや変形の発生が少なく、機械的物性と耐ヒートショック性に優れるといった優れた効果を奏する。   In the present invention, the first resin layer 7 and the second resin layer 8 are connected by a resin connecting portion 9 having at least two long hole shapes. Therefore, there is an excellent effect that the problem that the base material 1 and the crystalline thermoplastic resin layer are separated does not occur. In addition, a gap 12 is formed between the long-axis end portion of the through-hole (4, 4 ′, 4 ″, 5, 5 ′) having a long hole shape and the resin connecting portion 9, and the first resin The layer 7 and the second resin layer 8 cover the through-hole having a long hole shape, and therefore, there is little occurrence of resin cracking or deformation with respect to temperature change, and excellent mechanical properties and heat shock resistance are excellent. Has an effect.

図1の(A)、(B)及び(C)は、それぞれ、実施例1の金属製基材の斜視図、実施例1の金属製基材を上方から見た図、及び、貫通孔の模式的な平面図である。(A), (B), and (C) of FIG. 1 are respectively a perspective view of a metal base material of Example 1, a view of the metal base material of Example 1 viewed from above, and a through hole. It is a typical top view. 図2の(A)、(B)及び(C)は、それぞれ、複合成形品の斜視図、図1の(B)におけるA−A端面図、及び、図1の(B)におけるB−B端面図である。2A, 2B, and 2C are respectively a perspective view of a composite molded product, an AA end view in FIG. 1B, and a BB in FIG. 1B. It is an end view. 図3の(A)及び(B)は、それぞれ、実施例2の金属製基材を上方から見た図、及び、比較例1の金属製基材を上方から見た図である。(A) and (B) of Drawing 3 are the figures which looked at the metallic substrate of Example 2 from the upper part, respectively, and the figure which looked at the metallic substrate of comparative example 1 from the upper part, respectively.

以下、図面を参照して、実施例に基づき本発明を説明するが、それに先立ち、評価方法を説明する。   Hereinafter, the present invention will be described based on examples with reference to the drawings. Prior to that, an evaluation method will be described.

(1)結晶性熱可塑性樹脂の結晶化度の測定
基材の平面部に形成された第1の樹脂層から10mgの試料を切り出し、得られた試料を、PERKIN−ELMER社製DSC−IIを用いて、30゜C〜210゜Cまで10゜C/分の速度で昇温したところ、164゜C付近に吸熱ピークのみ観測された。この吸熱ピークの熱量と理論融解熱量から、成形後金型から取り出された後の複合成形品と、結晶化処理を行った後の複合成形品それぞれについて、結晶化度(DOC1、DOC2)を求めた。
(1) Measurement of crystallinity of crystalline thermoplastic resin A 10 mg sample was cut out from the first resin layer formed on the flat portion of the base material, and the resulting sample was subjected to PERKIN-ELMER DSC-II. When the temperature was raised from 30 ° C. to 210 ° C. at a rate of 10 ° C./min, only an endothermic peak was observed around 164 ° C. The degree of crystallinity (DOC 1 , DOC 2 ) for each of the composite molded product after being taken out from the mold after molding and the composite molded product after being subjected to crystallization treatment from the heat quantity of the endothermic peak and the theoretical heat of fusion. Asked.

(2)耐ヒートショック性試験
上記の方法で得られた結晶化処理後の実施例1〜実施例3及び比較例1の複合成形品について、耐ヒートショック性試験機(エスペック社製、型式:TSA−100S)によって試験を行った。耐ヒートショック性試験の条件は、温度130゜Cに1時間保持した後、5秒間で−40゜Cとし1時間保持し、更に、5秒間で温度130゜Cとする高温放置と低温放置との各1回ずつを1サイクルとし、これを100サイクル行った。各例につき5個の複合成形品について試験を実施し、試験後の複合成形品について目視観察を行い、割れが発生した複合成形品の個数を求めた。
(2) Heat shock resistance test About the composite molded products of Examples 1 to 3 and Comparative Example 1 after the crystallization treatment obtained by the above method, a heat shock resistance tester (manufactured by Espec Corp., model: The test was performed according to TSA-100S). The heat shock resistance test was conducted at a temperature of 130 ° C. for 1 hour, then at −40 ° C. for 5 seconds, held for 1 hour, and further at a temperature of 130 ° C. for 5 seconds. Each one of the above was regarded as one cycle, and this was carried out for 100 cycles. For each example, five composite molded articles were tested, and the composite molded articles after the test were visually observed to determine the number of composite molded articles in which cracks occurred.

縦型射出成形機(日精社製、型式:TH60−R5VSE)を使用し、図1の(A)に斜視図として示した、大きさが70mm×80mm×10mm、厚み0.5mmで、図1の(B)及び(C)に示したような、板状部2に5個の長円形の貫通孔4,4’,4”,5,5’(LL=16mm、LS=4mm)が設けられた直方体形状の亜鉛(線膨張係数:3.3×10-5/゜C)製のダイカストの基材1を、射出成形用金型に設けられたキャビティ内に装着した。樹脂温度200゜C、金型温度60゜Cで、キャビティに開口した溶融樹脂射出部を介して、溶融したポリアセタール樹脂(三菱エンジニアリングプラスチックス(株)製品「商品名:ユピタール(登録商標)F20−03」、線膨張係数:11×10-5/゜C)をキャビティ内に射出し、インサート成形法により、図2の(A)に斜視図、図2の(B)、(C)に端面図を示した複合成形品6を作製した。第1の樹脂層7の厚みは2mm、第2の樹脂層8の厚みも2mmであった。得られた複合成形品6を金型から取り出し、室温に12時間放置後、上記(1)に記載の方法で結晶性熱可塑性樹脂の結晶化度DOC1の測定を行ったところ、結晶化度DOC1は40%であった。尚、参照番号10は、第1の樹脂層7の略中央部に残された溶融樹脂射出部跡である。 Using a vertical injection molding machine (manufactured by Nissei Co., Ltd., model: TH60-R5VSE), the size shown in FIG. 1A as a perspective view is 70 mm × 80 mm × 10 mm and 0.5 mm in thickness. As shown in (B) and (C), five oval through holes 4, 4 ′, 4 ″, 5, 5 ′ (L L = 16 mm, L S = 4 mm) are formed in the plate-like portion 2. A die-cast base material 1 made of rectangular parallelepiped zinc (linear expansion coefficient: 3.3 × 10 −5 / ° C.) provided in a cavity provided in an injection mold. At 200 ° C, mold temperature 60 ° C, molten polyacetal resin (product name: Iupital (registered trademark) F20-03, manufactured by Mitsubishi Engineering Plastics Co., Ltd.) via a molten resin injection part opened in the cavity , linear expansion coefficient: 11 × 10 -5 / ° C) in the cavity to Out, by insert molding, perspective view in (A) of FIG. 2, FIG. 2 (B), to prepare a composite molded article 6 which shows an end view in (C). The thickness of the 1st resin layer 7 was 2 mm, and the thickness of the 2nd resin layer 8 was also 2 mm. The obtained composite molded article 6 was taken out of the mold, allowed to stand at room temperature for 12 hours, and then measured for the crystallinity DOC 1 of the crystalline thermoplastic resin by the method described in (1) above. DOC 1 was 40%. Reference numeral 10 is a trace of the molten resin injection portion left in the substantially central portion of the first resin layer 7.

続いて、この複合成形品について、空気雰囲気下中、温度100゜Cで1時間の条件で結晶化処理を行った。室温に12時間放置後、得られた結晶化処理後の複合成形品について、上記(1)記載の方法で結晶性熱可塑性樹脂の結晶化度DOC2を測定したところ、結晶化度DOC2は42%であった。また、貫通孔の長軸両末端に形成された空隙の長さは、両末端合わせて0.03mmであった。得られた結晶化処理後の複合成形品について、上記(2)に記載の方法で耐ヒートショック性試験を行ったところ、割れが発生した複合成形品の個数は、5個中0個であった。 Subsequently, the composite molded article was subjected to crystallization treatment in an air atmosphere at a temperature of 100 ° C. for 1 hour. When the crystallization degree DOC 2 of the crystalline thermoplastic resin was measured by the method described in (1) above for the obtained composite molded article after crystallization treatment after standing at room temperature for 12 hours, the crystallization degree DOC 2 was 42%. Moreover, the length of the space | gap formed in the long-axis both ends of the through-hole was 0.03 mm combining both ends. When the obtained composite molded article after the crystallization treatment was subjected to a heat shock resistance test by the method described in (2) above, the number of composite molded articles in which cracks occurred was 0 out of 5. It was.

実施例1において、図3の(A)に示すように、長円形の貫通孔を4,4”,4”(LL=16mm、LS=4mm)のみとし、溶融樹脂射出部跡10を図3の(A)のようにした以外は、実施例1と同様にして、複合成形品6を作製した。第1の樹脂層7の厚みは2mm、第2の樹脂層8の厚みも2mmであった。この複合成形品を金型から取り出し、室温に12時間放置後、上記(1)に記載の方法で結晶性熱可塑性樹脂の結晶化度DOC1の測定を行ったところ、結晶化度DOC1は40%であった。 In Example 1, as shown in FIG. 3A, the oval through holes are only 4, 4 ″, 4 ″ (L L = 16 mm, L S = 4 mm), and the molten resin injection portion trace 10 is formed. A composite molded product 6 was produced in the same manner as in Example 1 except that the method was as shown in FIG. The thickness of the 1st resin layer 7 was 2 mm, and the thickness of the 2nd resin layer 8 was also 2 mm. Retrieve this composite molded from the mold, allowed to stand at room temperature for 12 hours, the (1) was measured for the crystallinity of DOC 1 of crystalline thermoplastic resins by the method described in, crystallinity DOC 1 is 40%.

続いて、得られた複合成形品について、空気雰囲気下中、温度100゜Cで1時間の条件で結晶化処理を行った。室温に12時間放置後、得られた結晶化処理後の複合成形品について、上記(1)記載の方法で結晶性熱可塑性樹脂の結晶化度DOC2を測定したところ、結晶化度DOC2は42%であった。また、貫通孔の長軸両末端に形成された空隙の長さは、両末端合わせて0.03mmであった。得られた結晶化処理後の複合成形品について、上記(2)に記載の方法で耐ヒートショック性試験を行ったところ、割れが発生した複合成形品の個数は、5個中0個であった。 Subsequently, the obtained composite molded article was crystallized in an air atmosphere at a temperature of 100 ° C. for 1 hour. When the crystallization degree DOC 2 of the crystalline thermoplastic resin was measured by the method described in (1) above for the obtained composite molded article after crystallization treatment after standing at room temperature for 12 hours, the crystallization degree DOC 2 was 42%. Moreover, the length of the space | gap formed in the long-axis both ends of the through-hole was 0.03 mm combining both ends. When the obtained composite molded article after the crystallization treatment was subjected to a heat shock resistance test by the method described in (2) above, the number of composite molded articles in which cracks occurred was 0 out of 5. It was.

実施例1において、長円形の貫通孔の大きさをLL=8mm、LS=4mmとした以外は、実施例1と同様にして、複合成形品6を作製した。第1の樹脂層7の厚みは2mm、第2の樹脂層8の厚みも2mmであった。この複合成形品を金型から取り出し、室温に12時間放置後、上記(1)に記載の方法で結晶性熱可塑性樹脂の結晶化度DOC1の測定を行ったところ、結晶化度DOC1は40%であった。 A composite molded product 6 was produced in the same manner as in Example 1 except that the size of the oval through hole was set to L L = 8 mm and L S = 4 mm. The thickness of the 1st resin layer 7 was 2 mm, and the thickness of the 2nd resin layer 8 was also 2 mm. Retrieve this composite molded from the mold, allowed to stand at room temperature for 12 hours, the (1) was measured for the crystallinity of DOC 1 of crystalline thermoplastic resins by the method described in, crystallinity DOC 1 is 40%.

続いて、得られた複合成形品について、空気雰囲気下中、温度100゜Cで1時間の条件で結晶化処理を行った。室温に12時間放置後、得られた結晶化処理後の複合成形品について、上記(1)記載の方法で結晶性熱可塑性樹脂の結晶化度DOC2を測定したところ、結晶化度DOC2は42%あった。また、貫通孔の長軸両末端に形成された空隙の長さは、両末端合わせて0.015mmであった。得られた結晶化処理後の複合成形品について、上記(2)に記載の方法で耐ヒートショック性試験を行ったところ、割れが発生した複合成形品の個数は、5個中0個であった。 Subsequently, the obtained composite molded article was crystallized in an air atmosphere at a temperature of 100 ° C. for 1 hour. When the crystallization degree DOC 2 of the crystalline thermoplastic resin was measured by the method described in (1) above for the obtained composite molded article after crystallization treatment after standing at room temperature for 12 hours, the crystallization degree DOC 2 was 42%. Further, the length of the gap formed at both ends of the long axis of the through hole was 0.015 mm in total at both ends. When the obtained composite molded article after the crystallization treatment was subjected to a heat shock resistance test by the method described in (2) above, the number of composite molded articles in which cracks occurred was 0 out of 5. It was.

複合成形品の結晶化処理条件を、空気雰囲気下中、温度120゜Cで2時間とした以外は、実施例1と同様にした。金型取り出し後の結晶化度DOC1は40%であった。また、結晶化処理後の結晶化度DOC2は44%であった。また、貫通孔の長軸両末端に形成された空隙の長さは、両末端合わせて0.035mmであった。得られた結晶化処理後の複合成形品について、上記(2)に記載の方法で耐ヒートショック性試験を行ったところ、割れが発生した複合成形品の個数は、5個中0個であった。
[比較例1]
The crystallization treatment conditions for the composite molded article were the same as in Example 1 except that the conditions were 2 hours at 120 ° C. in an air atmosphere. The degree of crystallinity DOC 1 after removing the mold was 40%. The crystallinity DOC 2 after the crystallization treatment was 44%. Moreover, the length of the space | gap formed in the long-axis both ends of a through-hole was 0.035 mm in total for both ends. When the obtained composite molded article after the crystallization treatment was subjected to a heat shock resistance test by the method described in (2) above, the number of composite molded articles in which cracks occurred was 0 out of 5. It was.
[Comparative Example 1]

比較例1においては、貫通孔24の形状を円(直径4mm)とした(図3の(B)参照)以外は、実施例1と同様にして、複合成形品を作製した。第1の樹脂層の厚みは2mm、第2の樹脂層の厚みも2mmであった。この複合成形品を金型から取り出し、室温で12時間放置後、上記(1)に記載の方法で結晶性熱可塑性樹脂の結晶化度DOC1の測定を行ったところ、結晶化度DOC1は40%であった。 In Comparative Example 1, a composite molded article was produced in the same manner as in Example 1 except that the shape of the through hole 24 was a circle (diameter 4 mm) (see FIG. 3B). The thickness of the first resin layer was 2 mm, and the thickness of the second resin layer was 2 mm. Retrieve this composite molded from the mold, allowed to stand at room temperature for 12 hours, the (1) was measured for the crystallinity of DOC 1 of crystalline thermoplastic resins by the method described in, crystallinity DOC 1 is 40%.

続いて、得られた複合成形品について、空気雰囲気下中、温度100゜Cで1時間の条件で結晶化処理を行った。室温で12時間放置後、得られた結晶化処理後の複合成形品について、上記(1)記載の方法で結晶性熱可塑性樹脂の結晶化度DOC2を測定したところ、結晶化度DOC2は42%であった。得られた結晶化処理後の複合成形品について、上記(2)に記載の方法で耐ヒートショック性試験を行ったところ、貫通孔24の形状を円としたが故に、割れが発生した複合成形品の個数は、5個中5個であった。 Subsequently, the obtained composite molded article was crystallized in an air atmosphere at a temperature of 100 ° C. for 1 hour. When the crystallinity DOC 2 of the crystalline thermoplastic resin was measured by the method described in (1) above for the obtained composite molded article after crystallization treatment after standing at room temperature for 12 hours, the crystallinity DOC 2 was 42%. The obtained composite molded article after the crystallization treatment was subjected to a heat shock resistance test according to the method described in (2) above. As a result, the composite hole was cracked because the through hole 24 was shaped into a circle. The number of products was 5 out of 5.

1・・・基材、2・・・板状部、3・・・側壁、4,4’,4”,5,5’・・・貫通孔、6・・・複合成形品、7・・・第1の樹脂層、8・・・第2の樹脂層、9・・・樹脂連結部、10・・・溶融樹脂射出部跡、11・・・取付部、12・・・空隙、24・・・貫通孔 DESCRIPTION OF SYMBOLS 1 ... Base material, 2 ... Plate-shaped part, 3 ... Side wall, 4, 4 ', 4 ", 5, 5' ... Through-hole, 6 ... Composite molded article, 7 ... 1st resin layer, 8 ... 2nd resin layer, 9 ... Resin connecting part, 10 ... Molten resin injection part trace, 11 ... Mounting part, 12 ... Air gap, 24 ..Through holes

Claims (8)

(A)少なくとも一部が長孔形状とされた複数の貫通孔を有する板状部と、板状部の縁部に設けられた側壁とから成る略箱状の金属製の基材を、射出成形用金型のキャビティ内に装着した後、
(B)結晶性熱可塑性樹脂をキャビティ内に射出して、複数の貫通孔同士に跨り、且つ、貫通孔を介して板状部の両側に連続する結晶性熱可塑性樹脂層を形成することにより、基材と結晶性熱可塑性樹脂層との複合成形品を製造し、次いで、
(C)金型から複合成形品を取り出した後、結晶性熱可塑性樹脂を結晶化処理することにより、結晶性熱可塑性樹脂の結晶化度を金型取り出し後の結晶化度より1%以上高くし、以て、長孔形状を有する貫通孔中の結晶性熱可塑性樹脂を長孔の長軸方向に収縮させ、長軸末端部に空隙を形成させることを特徴とする複合成形品の製造方法。
(A) Injecting a substantially box-shaped metal base material comprising a plate-like portion having a plurality of through-holes, at least a part of which has a long hole shape, and a side wall provided at an edge of the plate-like portion. After mounting in the mold cavity,
(B) By injecting a crystalline thermoplastic resin into the cavity, and forming a crystalline thermoplastic resin layer straddling a plurality of through-holes and continuing on both sides of the plate-like portion via the through-holes , Producing a composite molded product of the base material and the crystalline thermoplastic resin layer,
(C) After taking out the composite molded product from the mold, the crystalline thermoplastic resin is crystallized so that the crystallinity of the crystalline thermoplastic resin is 1% or more higher than the crystallinity after taking out the mold. Therefore, a method for producing a composite molded product, characterized in that the crystalline thermoplastic resin in the through hole having a long hole shape is shrunk in the long axis direction of the long hole to form a void at the end of the long axis .
長孔形状を有する貫通孔は、複合成形品とした場合の溶融樹脂射出部跡と当該貫通孔とを結ぶ線に、その長軸がほぼ沿うように設けられることを特徴とする請求項1に記載の複合成形品の製造方法。   The through hole having a long hole shape is provided so that a major axis thereof is substantially along a line connecting the molten resin injection portion trace and the through hole in the case of a composite molded product. The manufacturing method of the composite molded product of description. 長孔形状を有する貫通孔は、その長軸の長さ(LL)と短軸の長さ(LS)の比(LL/LS)が2以上とされていることを特徴とする請求項1又は請求項2に記載の複合成形品の製造方法。 Through holes having a long hole shape, characterized in that the ratio of the length of the major axis (L L) and the length of the minor axis (L S) (L L / L S) is 2 or more The manufacturing method of the composite molded product of Claim 1 or Claim 2. 結晶化処理を、空気雰囲気中、温度60゜C乃至120゜C、時間0.5時間乃至2時間の条件にて行うことを特徴とする請求項1乃至請求項3のいずれか1項に記載の複合成形品の製造方法。   4. The crystallization treatment according to claim 1, wherein the crystallization treatment is performed in an air atmosphere at a temperature of 60 ° C. to 120 ° C. for a time of 0.5 hours to 2 hours. Manufacturing method of composite molded article. 基材を構成する金属の線膨張係数をαM、結晶性熱可塑性樹脂の線膨張係数をαRとしたとき、
1×10-5/゜C≦αR−αM≦15×10-5/゜C
を満足することを特徴とする請求項1乃至請求項4のいずれか1項に記載の複合成形品の製造方法。
When the linear expansion coefficient of the metal constituting the substrate is α M and the linear expansion coefficient of the crystalline thermoplastic resin is α R ,
1 × 10 −5 / ° C ≦ α R −α M ≦ 15 × 10 −5 / ° C
The method for producing a composite molded article according to any one of claims 1 to 4, wherein:
結晶性熱可塑性樹脂はポリアセタール樹脂であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の複合成形品の製造方法。   The method for producing a composite molded article according to any one of claims 1 to 5, wherein the crystalline thermoplastic resin is a polyacetal resin. (a)少なくとも一部が長孔形状とされた複数の貫通孔を有する板状部と、板状部の縁部に設けられた側壁とから成る略箱状の金属製の基材、
(b)基材の複数の貫通孔同士に跨り、且つ、貫通孔を介して板状部の両側に連続する結晶性熱可塑性樹脂層から成る複合成形品であって、
結晶性熱可塑性樹脂を結晶化処理することにより、長孔形状とされた貫通孔の長軸末端部に空隙を形成させたことを特徴とする複合成形品。
(A) a substantially box-shaped metal substrate comprising a plate-like portion having a plurality of through-holes, at least a part of which is in the shape of a long hole, and a side wall provided at an edge of the plate-like portion;
(B) a composite molded article composed of a crystalline thermoplastic resin layer straddling a plurality of through-holes of the base material and continuous on both sides of the plate-like portion via the through-holes,
A composite molded article characterized in that a void is formed at the end of the long axis of a through hole having a long hole shape by crystallizing a crystalline thermoplastic resin.
複合成形品が電磁波シールド材又は磁気シールド材であることを特徴とする請求項7に記載の複合成形品。   The composite molded article according to claim 7, wherein the composite molded article is an electromagnetic shielding material or a magnetic shielding material.
JP2009090054A 2009-04-02 2009-04-02 Composite molded article and manufacturing method thereof Active JP5388658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009090054A JP5388658B2 (en) 2009-04-02 2009-04-02 Composite molded article and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090054A JP5388658B2 (en) 2009-04-02 2009-04-02 Composite molded article and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010240906A JP2010240906A (en) 2010-10-28
JP5388658B2 true JP5388658B2 (en) 2014-01-15

Family

ID=43094523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090054A Active JP5388658B2 (en) 2009-04-02 2009-04-02 Composite molded article and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5388658B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6748913B2 (en) * 2016-07-29 2020-09-02 パナソニックIpマネジメント株式会社 Bathroom chair
JP7194872B1 (en) 2021-02-09 2022-12-22 ポリプラスチックス株式会社 Method for manufacturing insert-molded product, method for manufacturing insert-molded product and insert-molded product with reduced distortion

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825591B2 (en) * 1975-11-26 1983-05-28 東レ株式会社 Hifukukinzokuseikeihin no seizouhouhou
JPS59379B2 (en) * 1976-10-08 1984-01-06 ポリプラスチックス株式会社 Outsert molding method
JPS6353714U (en) * 1986-09-26 1988-04-11
JPH0939022A (en) * 1995-08-02 1997-02-10 Asahi Chem Ind Co Ltd Integrated molded product consisting of thermoplastic resin and hard substrate
JP3381598B2 (en) * 1998-01-19 2003-03-04 日立電線株式会社 Manufacturing method of molded substrate
JP2001300977A (en) * 2000-04-21 2001-10-30 Polyplastics Co Insert molding
JP4438272B2 (en) * 2002-07-31 2010-03-24 日本電産サーボ株式会社 Composite molded two-stage gear
JP2006093722A (en) * 2005-10-11 2006-04-06 Hitachi Ltd Electronic apparatus

Also Published As

Publication number Publication date
JP2010240906A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP6076358B2 (en) Bulk metallic glass sheet bonding using pressurized fluid formation
US9716050B2 (en) Amorphous alloy bonding
JP5388658B2 (en) Composite molded article and manufacturing method thereof
WO2019087755A1 (en) Temperature sensor and device provided with temperature sensor
CN108528378A (en) Forming polymer structure with metalized surface
US20150239213A1 (en) Insert casting or tack welding of machinable metal in bulk amorphous alloy part and post machining the machinable metal insert
CN110050034A (en) Poly arylidene thio-ester based resin composition and insert-molded article
JPS6258289B2 (en)
US20170090515A1 (en) Bulk metallic glass sheets and parts made therefrom
KR20130132777A (en) Insert molded body and method for producing insert molded body
CN116068239A (en) Packaging structure and packaging process of current sensor
KR101462177B1 (en) Core for injection molding
JP2012144036A (en) Compound molded article, method for manufacturing compound molded article, and in-mold label
JPH1029215A (en) Mold for molding plastic product and manufacture of the mold
WO2013035443A1 (en) Method for producing resin composite molded body and resin composite molded body
CN103718254B (en) Including polymeric material, the first metal and the conducting metal/plastics heterocomplex and its manufacture method of the bimetallic metal particle for being embedded in the first metal
JP5843506B2 (en) Manufacturing method of integrally molded body and integrally molded body
BRPI0709431A2 (en) process for manufacturing a multilayer duplex material article
JP4025281B2 (en) Method for manufacturing metal member
US7026060B2 (en) Layered structure providing shielding characteristics
Saifullah et al. An investigation on warpage analysis in plastic injection moulding
WO2023017656A1 (en) Metal-resin composite body
CN102555153A (en) Composite forming body, production method thereof and in-mould label
WO2024116793A1 (en) Electric conductive sheet, resin molded article, and manufacturing method for same
US8322397B2 (en) Mold for injection molding and method of manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Ref document number: 5388658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250