JP5386927B2 - Micro flow rate liquid feeding device and liquid feeding method - Google Patents

Micro flow rate liquid feeding device and liquid feeding method Download PDF

Info

Publication number
JP5386927B2
JP5386927B2 JP2008270539A JP2008270539A JP5386927B2 JP 5386927 B2 JP5386927 B2 JP 5386927B2 JP 2008270539 A JP2008270539 A JP 2008270539A JP 2008270539 A JP2008270539 A JP 2008270539A JP 5386927 B2 JP5386927 B2 JP 5386927B2
Authority
JP
Japan
Prior art keywords
flow rate
flow
value
liquid
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008270539A
Other languages
Japanese (ja)
Other versions
JP2010101630A (en
Inventor
原一 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008270539A priority Critical patent/JP5386927B2/en
Publication of JP2010101630A publication Critical patent/JP2010101630A/en
Application granted granted Critical
Publication of JP5386927B2 publication Critical patent/JP5386927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Flow Control (AREA)

Description

毎分数百nLから数十μLといった微小流量を流すための装置、及び方法に関する。   The present invention relates to an apparatus and a method for flowing a minute flow rate of several hundred nL to several tens of μL per minute.

毎分数百nLから数十μLといった微小流量を流すことができる装置は存在するものの、多くの欠点を有する。液体クロマトグラフィでよく知られるストローク機構を有するポンプは、前記微小流量を安定的に流すことは期待できない。別法として、シリンジ式ポンプは、前記微小流量においても比較的安定的に流すことができるものの、シリンジ容量が有限であり、かつ、連続的な使用が困難で各バッチ間に差異が生じやすいといった課題がある。   Although there are devices that can flow a minute flow rate of several hundred nL to several tens of μL per minute, they have many drawbacks. A pump having a stroke mechanism well known in liquid chromatography cannot be expected to stably flow the minute flow rate. Alternatively, the syringe-type pump can flow relatively stably even at the minute flow rate, but the syringe capacity is limited, and continuous use is difficult and differences between batches are likely to occur. There are challenges.

古典的な微小流量を流すための方法として、スプリット法(スタティックスプリット法)が知られている。目的の流量の数十倍から数百倍の流量を流し、分離媒体(7)の前で分岐手段(13)を用いて分岐し、その数十分の一から数百分の一を分離媒体側(A側流路)に流し、残りの大部分を廃棄側(B側流路)に流す方法である(図1参照)。本法ではA側流路とB側流路の圧力比により分岐比率が決まる。定常状態では微小流量を流すことができるが、A側流路とB側流路の圧力比が外乱により変化した場合、分岐比率が変化し、目的の微小流量も変化してしまう欠点がある(特許文献1及び2)。   A split method (static split method) is known as a classic method for flowing a minute flow rate. A flow rate of several tens to several hundred times the target flow rate is flowed and branched using the branching means (13) in front of the separation medium (7). This is a method of flowing to the side (A side flow path) and flowing most of the remainder to the disposal side (B side flow path) (see FIG. 1). In this method, the branching ratio is determined by the pressure ratio of the A side channel and the B side channel. In a steady state, a minute flow rate can be flowed, but when the pressure ratio between the A-side channel and the B-side channel changes due to a disturbance, there is a disadvantage that the branching ratio changes and the target minute flow rate also changes ( Patent Documents 1 and 2).

スタティックスプリット法の欠点を解決するために提案されたのが、アクティブスプリット法である(特許文献3)。本法(図2参照)は、A側流路またはB側流路に熱式流量計(5a)を配置し、流量が一定になるよう可動式のオリフィスバルブ(流量制御装置)(5b)で制御するものである。分離媒体(7)の下流側には目的成分の検出や捕獲するための機器を配置することが多いため、図2の装置のようにB側流路に熱式流量計(5a)を配置するのが一般的である。本法は、分離媒体や各配管の物理的な詰まりなどによる外乱が発生しても、スタティックスプリット法と比較し、A側流路に流れる微小流量への影響は少ない。しかしながら、アクティブスプリット法にもいくつかの課題がある。   The active split method has been proposed to solve the drawbacks of the static split method (Patent Document 3). In this method (see FIG. 2), a thermal flow meter (5a) is disposed in the A side flow path or the B side flow path, and a movable orifice valve (flow rate control device) (5b) is used so that the flow rate is constant. It is something to control. Since a device for detecting and capturing the target component is often arranged on the downstream side of the separation medium (7), a thermal flow meter (5a) is arranged in the B-side channel as in the apparatus of FIG. It is common. This method has less influence on the minute flow rate flowing through the A-side flow path than the static split method, even if disturbance due to physical separation of the separation medium or each pipe occurs. However, the active split method also has some problems.

第一の課題として、B側流路の流量を一定にする制御を行なうため、分岐前の流量が変化した場合、その変化分はすべて目的流路であるA側流路の流量変化となる。   As a first problem, control is performed to keep the flow rate of the B-side flow path constant. Therefore, when the flow rate before branching changes, all the changes are flow rate changes of the A-side flow path, which is the target flow path.

例えば図2の装置の場合、B側流路の流量値(F)を熱式流量計(5a)により任意のサンプリング間隔で計測し、その値が一定になるように流量制御装置(5b)で制御する。この値と分岐前の流量(F)との差がA側流路に送液される(F)。その流量変化を図3に示す。 For example, in the case of the apparatus shown in FIG. 2, the flow rate value (F b ) of the B-side channel is measured at an arbitrary sampling interval by the thermal flow meter (5a), and the flow rate control device (5b) is set so that the value becomes constant. To control. The difference between this value and the flow rate before branching (F m ) is sent to the A-side flow path (F a ). The flow rate change is shown in FIG.

=F−F
:A側流路の流量(微小流量)
:B側流路の流量値(大流量)
:分岐前の流量
ここで使用される熱式流量計(5a)は高精度であるため、分岐前の流量(F)が変動してもB側流路を一定に保つことができる(図3(a))。よって、分岐前の流量(F)が変動した場合、その偏差の殆どがA側流路の流量(F)に影響する(図3(b))。たとえば、分岐前の流量(F)毎分50μL、B側流路の流量(F)を毎分49μLで制御した場合、理論的にはA側流路の流量(F)は、毎分1μLとなる。分岐前の流量(F)が毎分±0.2μL変動した場合、B側流路の流量(F)は毎分49μLで制御されるため、A側流路の流量(F)は毎分0.8から1.2μLで変動し、±20%の誤差が生じてしまう。
F a = F m −F b
F a : A side flow rate (micro flow rate)
F b : Flow rate value of B side channel (large flow rate)
F m : Flow before branching Since the thermal flow meter (5a) used here is highly accurate, even if the flow (F m ) before branching fluctuates, the B-side flow path can be kept constant. (FIG. 3A). Therefore, when the flow rate (F m ) before branching varies, most of the deviation affects the flow rate (F a ) of the A-side flow path (FIG. 3B). For example, if the flow rate before branching (F m ) is 50 μL / min and the flow rate (F b ) of the B-side channel is 49 μL / min, the flow rate (F a ) of the A-side channel is theoretically 1 μL per minute. When the flow rate before branching (F m ) fluctuates ± 0.2 μL per minute, the flow rate (F b ) of the B side channel is controlled at 49 μL per minute, so the flow rate (F a ) of the A side channel is It fluctuates from 0.8 to 1.2 μL per minute, resulting in an error of ± 20%.

第二の課題として、流す液体の比熱が変化する場合(液体クロマトグラフィで使用される溶媒グラジエントなどの手法)、熱式流量計の応答が変化する。例えば、水で校正を行なった熱式流量計でアセトニトリルを使用した場合、同じ流量でありながら応答出力は水の場合の約30%である。よって、前記熱式流量計を用いたアクティブスプリット法による微小流量を流す方法において、水に続きアセトニトリルを流した場合、送液量が一定であると前記熱式流量計の応答出力が減少するため、応答出力を一定にするにはB側流路の流量が増加させる必要があり、結果的にA側流路の流量が減少する。そのため、アクティブスプリット法により微小流量を流すのは更に困難となる。   As a second problem, when the specific heat of the flowing liquid changes (a method such as a solvent gradient used in liquid chromatography), the response of the thermal flow meter changes. For example, when acetonitrile is used in a thermal flow meter that has been calibrated with water, the response output is about 30% that of water even though the flow rate is the same. Therefore, in the method of flowing a minute flow rate by the active split method using the thermal type flow meter, when acetonitrile is flowed after water, the response output of the thermal type flow meter is reduced if the liquid feeding amount is constant. In order to make the response output constant, it is necessary to increase the flow rate of the B-side flow path, and as a result, the flow rate of the A-side flow path decreases. Therefore, it becomes more difficult to flow a minute flow rate by the active split method.

特開2004−309135号公報JP 2004-309135 A 特表2004−506896号公報JP-T-2004-506896 特開2006−276021号公報JP 2006-276021 A

分析装置において、毎分数百nLから数十μLといった微小流量を分離媒体へ流すための微小流量送液手段、及び送液方法を提供することを目的とする。   It is an object of the present invention to provide a minute flow rate liquid feeding means and a liquid feeding method for flowing a minute flow rate of several hundred nL to several tens of μL per minute in the analyzer.

上記課題を鑑みてなされた本発明は、以下の発明を包含する:
第一の発明は、送液手段によって液体を流し、分岐手段を用いて、分離媒体側の流路及び廃棄側の流路とに分岐させることで、微小流量の液体を分離媒体に流す微小流量送液装置であって、
送液手段と分岐手段との間に流れる液体の流量値を任意のサンプリング間隔で計測する第一の流量計と、
分離媒体側の流路または廃棄側の流路に流れる液体の流量値を第一の流量計と同じまたは異なるサンプリング間隔で計測する第二の流量計と、
分離媒体側の流路または廃棄側の流路に流れる液体の流量を必要に応じて制御する流量制御手段と、
第一及び第二の流量計で計測された流量値に基づいて、送液手段と分岐手段との間の流路、分離媒体側の流路、及び廃棄側の流路に流れる液体の流量を制御するための信号を送る演算手段とを備え、
前記演算手段は
(1−1)第一の流量計で計測された流量値を入力値として、当該流量値に1未満の任意の値を乗じて、第二の流量計で計測されるべき流量値を計算し、
(1−2)第二の流量計で計測された流量値を入力値として、前記計算流量値と比較し、両方の流量値を一致させるように、前記流量制御手段を制御する、
または、
(2−1)第二の流量計で計測された流量値を入力値として、当該流量値に1を超える任意の値を乗じて、第一の流量計で計測されるべき流量値を計算し、
(2−2)第一の流量計で計測された流量値を入力値として、前記計算流量値と比較し、両方の流量値を一致させるように、前記送液手段を制御する、
ことを特徴とする、前記装置である。
The present invention made in view of the above problems includes the following inventions:
According to the first aspect of the present invention, the liquid is flowed by the liquid feeding means, and the branching means is used to branch the flow into the separation medium side flow path and the waste side flow path. A liquid delivery device,
A first flow meter for measuring a flow rate value of the liquid flowing between the liquid feeding means and the branching means at an arbitrary sampling interval;
A second flow meter that measures the flow rate value of the liquid flowing in the separation medium side flow path or the waste side flow path at the same or different sampling interval as the first flow meter;
A flow rate control means for controlling the flow rate of the liquid flowing in the flow path on the separation medium side or the flow path on the waste side as necessary;
Based on the flow rate values measured by the first and second flow meters, the flow rate of the liquid flowing in the flow path between the liquid feeding means and the branching means, the flow path on the separation medium side, and the flow path on the disposal side is calculated. Arithmetic means for sending a signal for control,
The calculation means (1-1) uses the flow value measured by the first flow meter as an input value, multiplies the flow value by an arbitrary value less than 1, and the flow rate to be measured by the second flow meter. Calculate the value
(1-2) Using the flow rate value measured by the second flow meter as an input value, comparing it with the calculated flow rate value, and controlling the flow rate control means so as to match both flow rate values;
Or
(2-1) Using the flow value measured by the second flow meter as an input value, multiply the flow value by an arbitrary value exceeding 1, and calculate the flow value to be measured by the first flow meter. ,
(2-2) Using the flow rate value measured by the first flow meter as an input value, comparing it with the calculated flow rate value, and controlling the liquid feeding means so as to match both flow rate values;
The device is characterized by the above.

第二の発明は、前記第一及び第二の流量計が、熱式流量計であることを特徴とする、第一に発明に記載の微小流量送液装置である。   A second invention is the micro flow rate liquid feeding device according to the first invention, wherein the first and second flow meters are thermal flow meters.

第三の発明は、廃棄側の流路に前記第二の流量計及び前記流量制御手段を設置していることを特徴とする、第一から第二の発明に記載の微小流量送液装置である。   The third invention is the micro flow rate liquid feeding device according to the first to second inventions, characterized in that the second flow meter and the flow rate control means are installed in the flow path on the disposal side. is there.

第四の発明は、前記演算手段には、各サンプリング間隔で計測した時間における、
(1)第一及び第二の流量計で計測された流量値、
(2)第一または第二の流量計で計測されるべき流量の計算値、
(3)流量制御手段または送液手段で制御すべき流量値、
(4)流量制御手段または送液手段の制御に関する情報、
を記録するための記録手段を備えていることを特徴とする、第一から第三の発明に記載の微小流量送液装置である。
According to a fourth aspect of the present invention, the calculation means includes a time measured at each sampling interval.
(1) Flow rate values measured by the first and second flow meters,
(2) a calculated value of the flow rate to be measured by the first or second flow meter,
(3) Flow rate value to be controlled by the flow rate control means or the liquid feeding means,
(4) Information relating to control of the flow rate control means or the liquid feeding means,
The micro flow rate liquid feeding device according to any one of the first to third inventions, comprising a recording means for recording

第五の発明は、送液手段を用いて液体を流し、分岐手段を用いて分離媒体側の流路及び廃棄側の流路とに分岐させることで、微小流量の液体を分離媒体に流す微小流量送液方法であって、
送液手段と分岐手段との間に流れる液体の流量値と、分離媒体側の流路または廃棄側の流路に流れる液体の流量値を計測し、
(1−1)前記送液手段と分岐手段との間に流れる液体の流量値に、1未満の任意の値を乗じて、分離媒体側の流路または廃棄側の流路に流すべき液体の流量値を計算し、
(1−2)前記計算流量値と、前記分離媒体側の流路または廃棄側の流路に流れる液体の流量値とが一致するように、分離媒体側の流路または廃棄側の流路に流れる液体の流量を制御する、
または
(2−1)前記分離媒体側の流路または廃棄側の流路に流れる液体の流量に、1を超える任意の値を乗じて、送液手段と分岐手段との間に流すべき液体の流量値を計算し、
(2−2)前記計算流量値と、前記送液手段と分岐手段との間に流れる液体の流量値とが一致するように、送液手段と分岐手段との間に流れる液体の流量を制御する、
ことを特徴とする、前記方法である。
According to a fifth aspect of the present invention, a liquid is flowed using a liquid feeding means, and is branched into a flow path on the separation medium side and a flow path on the disposal side using a branching means, so that a minute flow rate of liquid flows through the separation medium. A flow rate feeding method,
Measure the flow rate value of the liquid flowing between the liquid feeding means and the branching means and the flow rate value of the liquid flowing in the separation medium side flow path or the disposal side flow path,
(1-1) The flow rate value of the liquid flowing between the liquid feeding means and the branching means is multiplied by an arbitrary value less than 1, and the liquid to be flowed to the separation medium side flow path or the waste side flow path Calculate the flow value,
(1-2) The calculated flow rate value and the flow rate value of the liquid flowing in the separation medium side flow path or the disposal side flow path are matched with the separation medium side flow path or the waste side flow path. Control the flow rate of flowing liquid,
Or (2-1) multiplying the flow rate of the liquid flowing in the flow path on the separation medium side or the flow path on the waste side by an arbitrary value greater than 1, and the liquid to flow between the liquid feeding means and the branching means Calculate the flow value,
(2-2) The flow rate of the liquid flowing between the liquid feeding unit and the branching unit is controlled so that the calculated flow rate value matches the flow rate value of the liquid flowing between the liquid feeding unit and the branching unit. To
The method is characterized by the above.

第六の発明は、送液手段と分岐手段との間に流れる液体の流量値に1未満の任意の値を乗じた計算値で制御される流量が、廃棄側の流路に流れる液体の流量であることを特徴とする、第五の発明に記載の微小流量送液方法である。   According to a sixth aspect of the present invention, the flow rate controlled by a calculated value obtained by multiplying the flow rate value of the liquid flowing between the liquid feeding unit and the branching unit by an arbitrary value less than 1 is the flow rate of the liquid flowing in the waste-side flow path. The micro flow rate liquid feeding method according to the fifth aspect of the present invention.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、送液手段と分岐手段との間に流れる液体の流量値と、分離媒体側の流路または廃棄側の流路に流れる液体の流量値を計測し、
計測した送液手段と分岐手段との間に流れる液体の流量値に、1未満の任意の流量比率を乗じた流量値を計算し、前記計算流量値と、分離媒体側の流路または廃棄側の流路に流れる液体の流量の計測値とが一致するよう、分離媒体側の流路または廃棄側の流路に流れる液体の流量を制御する、
または、
計測した分離媒体側の流路または廃棄側の流路に流れる液体の流量値に、1を超える任意の流量比率を乗じた流量値を計算し、前記計算流量値と、送液手段と分岐手段との間に流れる液体の流量の計測値とが一致するよう、送液手段と分岐手段との間に流れる液体の流量を制御することで、
一定の微小流量の液体を分離媒体側の流路に流すことを特徴としている。
The present invention measures the flow rate value of the liquid flowing between the liquid feeding means and the branching means, and the flow rate value of the liquid flowing in the separation medium side flow path or the waste side flow path,
The flow rate value obtained by multiplying the flow rate value of the liquid flowing between the measured liquid feeding means and the branching unit by an arbitrary flow rate ratio of less than 1 is calculated, and the calculated flow rate value and the flow path on the separation medium side or the waste side The flow rate of the liquid flowing in the separation medium side flow path or the disposal side flow path is controlled so that the measured value of the flow rate of the liquid flowing in the flow path matches.
Or
The flow rate value obtained by multiplying the measured flow rate value of the liquid flowing in the separation medium side flow path or the waste side flow path by an arbitrary flow rate ratio exceeding 1 is calculated, and the calculated flow rate value, the liquid feeding means, and the branching means By controlling the flow rate of the liquid flowing between the liquid feeding unit and the branching unit so that the measured value of the flow rate of the liquid flowing between
It is characterized by flowing a liquid with a constant minute flow rate into the flow channel on the separation medium side.

本発明の微小流量送液方法における流量値の計測方法としては、液体の流量が計測可能な装置を用いるのであれば限定されないが、特に微小流量の液体を高精度に計測可能な熱式流量計を用いて計測するのが好ましい。   The method for measuring the flow rate value in the micro flow rate feeding method of the present invention is not limited as long as an apparatus capable of measuring the liquid flow rate is used, but in particular, a thermal flow meter capable of measuring a micro flow rate liquid with high accuracy. It is preferable to measure using

本発明の微小流量送液方法において、分離媒体側の流路または廃棄側の流路に流れる液体の流量を制御する場合は、液体の流量を計測した流路と同じ流路に流れる液体の流量を制御(例えば、流量を計測する流路が分離媒体側の流路の場合、分離媒体側の流路の流量を制御)してもよいし、液体の流量を計測した流路と異なる流路を流れる液体の流量を制御(例えば、流量を計測する流路が分離媒体側の流路の場合、廃棄側の流路の流量を制御)してもよいが、制御の容易性から前者の制御が好ましい。   In the minute flow rate liquid feeding method of the present invention, when controlling the flow rate of the liquid flowing in the separation medium side flow path or the disposal side flow path, the flow rate of the liquid flowing in the same flow path as the flow path for measuring the liquid flow rate (For example, if the flow channel for measuring the flow rate is a flow channel on the separation medium side, the flow rate of the flow channel on the separation medium side may be controlled), or a flow channel different from the flow channel measuring the liquid flow rate The flow rate of the liquid flowing through the flow path may be controlled (for example, if the flow rate measurement channel is a separation medium side flow rate, the flow rate of the waste side flow channel may be controlled). Is preferred.

本発明の微小流量送液方法における、流量制御手段を用いた、分離媒体側の流路または廃棄側の流路に流れる液体の流量制御方法としては、以下の方法があげられる。
[1]流量を制御する流路上にバルブを設置し、流量を制御する方法。
[2]分岐手段中にバルブを設置し、流量を制御する方法。
このうち、[1]または[2]の方法におけるバルブとしては、流量制御に通常用いられるゲートバルブ(仕切弁)、グローブバルブ(玉形弁)、バタフライバルブ、ダイヤフラムバルブを例示できるが、容易に微小流量の制御が可能なオリフィス板を利用したバルブを用いるのが好ましい。また、オリフィス板を利用したバルブを用いた流量制御では、
[3]オリフィス板が全開の状態から制御を開始し、その状態からオリフィス板を狭める制御、
[4]オリフィス板が中間開度の状態から制御を開始し、その状態からオリフィス板を広げる、または狭める制御、
いずれの制御を行なってもよい。[3]の制御は、流量を開始時の流量から増加させる制御を行なう場合、送液手段と分岐手段との間に流れる液体の流量制御を行なう必要があるものの、オリフィス板で制御できる流量の範囲を、[4]の制御と比較し広くすることができる。一方[4]の制御は、オリフィス板で制御できる流量の範囲は[3]の制御と比較し狭いものの、流量を開始時の流量から増加させる制御を行なう場合でも、オリフィス板を広げる制御で対応できる。
Examples of the flow rate control method for the liquid flowing in the separation medium side flow path or the waste side flow path using the flow rate control means in the micro flow rate liquid feeding method of the present invention include the following methods.
[1] A method of controlling a flow rate by installing a valve on a flow path for controlling the flow rate.
[2] A method of controlling the flow rate by installing a valve in the branching means.
Among these, as the valve in the method [1] or [2], a gate valve (gate valve), a globe valve (ball valve), a butterfly valve, and a diaphragm valve that are usually used for flow rate control can be exemplified. It is preferable to use a valve using an orifice plate capable of controlling a minute flow rate. In the flow control using a valve using an orifice plate,
[3] Control that starts from a state where the orifice plate is fully opened, and narrows the orifice plate from that state.
[4] Control in which the orifice plate starts control from the intermediate opening state, and the orifice plate is expanded or narrowed from that state.
Any control may be performed. In the control [3], when the flow rate is increased from the initial flow rate, it is necessary to control the flow rate of the liquid flowing between the liquid feeding means and the branching means. The range can be increased compared to the control in [4]. On the other hand, although the range of the flow rate that can be controlled by the orifice plate is narrower than the control of [3], the control of [4] can be performed by expanding the orifice plate even when the flow rate is increased from the initial flow rate. it can.

本発明の微小流量送液方法における、送液手段と分岐手段との間に流れる液体の流量制御方法としては、送液手段で流す液体の流量を制御する方法があげられる。   Examples of the flow rate control method for the liquid flowing between the liquid feeding unit and the branching unit in the micro flow rate liquid feeding method of the present invention include a method for controlling the flow rate of the liquid flowing through the liquid feeding unit.

本発明の微小流量制御方法では、以下の[1]または[2]のいずれかの制御を行なう方法でもよいし、必要に応じて[1]と[2]の制御を切り替える方法であってもよい。
[1]分離媒体側の流路または廃棄側の流路に流れる液体の流量を制御
[2]送液手段と分岐手段との間の流路に流れる液体の流量を制御
後者の微小流量制御方法を採用した場合には、分離媒体側または廃液側の流路に流れる液体の計測流量値と、計算流量値との間に大きな違いがあり、分離媒体側または廃液側の流路に設置した流量制御装置では流量の制御ができなくなった場合(例えば、オリフィスバルブが全開となった場合)でも、送液手段で流す液体の流量制御に切り替えることで、分離媒体側または廃液側の流路に流れる液体の流量を制御することができる。
The minute flow rate control method of the present invention may be a method of performing control of either [1] or [2] below, or a method of switching control of [1] and [2] as necessary. Good.
[1] Controlling the flow rate of the liquid flowing in the separation medium side channel or the disposal side channel [2] Controlling the flow rate of the liquid flowing in the channel between the liquid feeding means and the branching means The latter minute flow rate control method Is used, there is a large difference between the measured flow rate value of the liquid flowing in the separation medium side or waste liquid side flow path and the calculated flow rate value, and the flow rate installed in the separation medium side or waste liquid side flow path. Even when the control device cannot control the flow rate (for example, when the orifice valve is fully opened), it switches to the flow rate control of the liquid flowing by the liquid feeding means, and flows to the flow path on the separation medium side or the waste liquid side. The liquid flow rate can be controlled.

分離媒体側流路に設置される分離媒体としては、微小試料を分析・分取する目的に合致したものであればよく、微小試料を分析・分取するための液体クロマトグラフ用カラム、キャピラリー電気泳動用カラム、電気泳動などの分析用マイクロプレート、分取用マイクロプレートを例示することができる。また、分取した試料を別の試薬と反応させるマイクロリアクターの構成要素としても、本発明の送液方法を採用できる。   The separation medium installed in the separation medium side flow path is not particularly limited as long as it meets the purpose of analyzing / sorting a micro sample. Examples include electrophoresis columns, analysis microplates such as electrophoresis, and fractionation microplates. Moreover, the liquid feeding method of the present invention can also be adopted as a constituent element of a microreactor in which a collected sample is reacted with another reagent.

本発明の微小流量送液方法を用いた送液装置の一態様を図4に示す。送液ポンプ(2)により溶離液(1)を一定流量で送液する。送液された溶離液(1)は第一の熱式流量計(4)を通過した後、分岐ブロック(13)により分離媒体側(以下、A側流路とする)と廃棄側(以下、B側流路とする)に分岐される。A側流路には液体の流れる順に、第二の熱式流量計(5a)、流量制御装置(5b)、試料注入装置(6)、分析カラム(7)、検出器(9)が配置されている。B側流路に流れた液体はそのまま廃液(11)となる。なお、第一の熱式流量計(4)と第二の熱式流量計(5a)は接近して設置している。また、図4には記載されていないが、B側流路には必要に応じて抵抗管といった圧力調整手段を設置してもよい。   FIG. 4 shows an embodiment of a liquid feeding device using the micro flow rate liquid feeding method of the present invention. The eluent (1) is fed at a constant flow rate by the liquid feed pump (2). The sent eluent (1) passes through the first thermal flow meter (4), and then is separated by the branch block (13) on the separation medium side (hereinafter referred to as A side flow path) and the waste side (hereinafter referred to as (B side channel). A second thermal flow meter (5a), a flow rate control device (5b), a sample injection device (6), an analysis column (7), and a detector (9) are arranged in the flow path of the A side in the order in which the liquid flows. ing. The liquid flowing in the B side flow path becomes the waste liquid (11) as it is. The first thermal flow meter (4) and the second thermal flow meter (5a) are installed close to each other. Further, although not shown in FIG. 4, pressure adjusting means such as a resistance tube may be installed in the B side channel as necessary.

ポンプ(2)により送液された溶離液(1)の流量値を第一の熱式流量計(4)により、A側流路に流れる溶離液の流量値を第二の熱式流量計(5a)により、それぞれ任意のサンプリング間隔で計測し、その値を演算機(14)に入力後、前記演算機(14)で、前記計測流量値のうち、第一の熱式流量計(4)で計測された流量値に1未満の任意の流量比率を乗じることでA側流路に流すべき流量を計算する。そして、前記計算流量値と、第二の熱式流量計(5a)で計測された流量値と比較し、両方の流量値が一致するよう、流量制御装置(5b)の流量を制御する信号を前記演算機(14)から送ることで、A側流路に流れる溶離液の流量制御を行なう。これにより、A側流路は毎分数百nLから数十μLといった微小流量が流れ、B側流路には分岐前の流量とA側流路の流量の差分が流れる。演算機(14)は単独で存在してもよいし、第一の熱式流量計(4)または第二の熱式流量計(5a)に含まれてもよい。なお、前記演算機(14)には前記制御を行なうためのプログラムが備えられており、さらに
(1)第一及び第二の熱式流量計で計測された流量値、
(2)第二の熱式流量計で計測されるべき流量の計算値、
(3)流量制御装置で制御すべき流量値、
(4)流量制御装置の制御に関する情報、
を記録するための記録手段を備えているのが、前記制御を効率的に行なう点で好ましい。
The flow rate value of the eluent (1) sent by the pump (2) is changed by the first thermal flow meter (4), and the flow rate value of the eluent flowing in the A side flow path is changed by the second thermal flow meter ( 5a), each is measured at an arbitrary sampling interval, and the value is input to the calculator (14), and then the calculator (14) uses the first thermal flow meter (4) among the measured flow values. Multiply the flow rate value measured in step 1 by an arbitrary flow rate ratio less than 1 to calculate the flow rate that should flow through the A-side flow path. Then, the calculated flow rate value is compared with the flow rate value measured by the second thermal flow meter (5a), and a signal for controlling the flow rate of the flow rate control device (5b) so that both flow rate values coincide with each other. By sending from the calculator (14), the flow rate of the eluent flowing in the A-side flow path is controlled. Thereby, a minute flow rate of several hundred nL to several tens of μL per minute flows in the A-side flow channel, and a difference between the flow rate before branching and the flow rate of the A-side flow channel flows in the B-side flow channel. The calculator (14) may exist alone or may be included in the first thermal flow meter (4) or the second thermal flow meter (5a). The calculator (14) is provided with a program for performing the control, and (1) a flow rate value measured by the first and second thermal flow meters,
(2) Calculated value of the flow rate to be measured by the second thermal flow meter,
(3) The flow value to be controlled by the flow control device,
(4) Information relating to control of the flow control device,
It is preferable that a recording means for recording the above is provided from the viewpoint of efficiently performing the control.

図4に示す、A側流路に第二の熱式流量計(5a)を設置した送液手段では、分析カラム(7)の前に、少なくとも数百μL程度の内部容量を有する第二の熱式流量計(5a)及び流量制御装置(5b)が設置されている。毎分数百nLから数十μLの微小流量が流れるA側流路に対し、第二の熱式流量計(5a)及び流量制御装置(5b)の有する内部容量が大きいため、特に毎分数百nLと極めて微小な流量をA側流路に流す場合、第一の熱式流量計(4)を流れた溶離液が流量制御装置(5b)出口に設置された分析カラム(7)に到達するには相当の時間を要し(A側流路の流量が毎分500nLで、前記流量計及び制御装置の有する内部容量が500μLの場合、溶離液が前記流量計及び制御装置の通過するのに計算上1000分を要する)、分析カラム(7)へ到達する時間に遅れが生じる。   In the liquid sending means shown in FIG. 4 in which the second thermal flow meter (5a) is installed in the A side flow path, the second capacity having an internal capacity of at least about several hundred μL before the analytical column (7). A thermal flow meter (5a) and a flow control device (5b) are installed. Since the internal capacity of the second thermal flow meter (5a) and the flow control device (5b) is large with respect to the A-side flow path through which a minute flow rate of several hundreds nL to several tens of μL per minute, When a very small flow rate of 100 nL is allowed to flow through the A-side flow path, the eluent flowing through the first thermal flow meter (4) reaches the analysis column (7) installed at the outlet of the flow control device (5b). It takes a considerable amount of time (if the flow rate of the A side channel is 500 nL / min and the internal volume of the flow meter and the control device is 500 μL, the eluent passes through the flow meter and the control device. Takes 1000 minutes for calculation), and there is a delay in the time to reach the analytical column (7).

分離媒体に流れる液体の組成が変化しない系(例えば、アイソクラティック法での溶出、カラム洗浄、緩衝液置換)の場合は、事前に送液手段に溶離液を流すことで、分析カラム(7)へ到達する時間が遅れる問題は解消できる。また、第一の熱式流量計(4)と第二の熱式流量計(5a)は接近して設置しているため、第二の熱式流量計へ到達する時間の遅れは無視できる。   In the case of a system in which the composition of the liquid flowing in the separation medium does not change (for example, elution by isocratic method, column washing, buffer replacement), the analysis column (7 The problem that the time to reach) is delayed can be solved. Further, since the first thermal flow meter (4) and the second thermal flow meter (5a) are installed close to each other, a delay in time to reach the second thermal flow meter can be ignored.

一方、液体の組成が経時的に変化する系(例えば、溶媒グラジエント法での溶出)では、分離カラムへの到達時間の遅れがそのまま組成変化への応答の遅れに繋がるため、第二の熱式流量計(5a)と流量制御装置(5b)で流量を制御しても、分析カラム(7)に所望の流量及び組成の溶離液を送液するのは困難である。   On the other hand, in a system in which the liquid composition changes over time (for example, elution by the solvent gradient method), the delay in reaching the separation column directly leads to a delay in response to the composition change. Even if the flow rate is controlled by the flow meter (5a) and the flow rate control device (5b), it is difficult to send an eluent having a desired flow rate and composition to the analytical column (7).

本発明の微小流量送液方法を用いた送液装置の別の態様を図5に示す。   FIG. 5 shows another embodiment of the liquid feeding device using the micro flow rate liquid feeding method of the present invention.

図4の装置との違いは、A側流路の配置が液体の流れる順に、試料注入装置(6)、分析カラム(7)、検出器(9)、第二の熱式流量計(5a)、流量制御装置(5b)となっていることである。なお、図5には記載されていないが、B側流路には必要に応じて抵抗管といった圧力調整手段を設置してもよい。図5の装置も、図4の時と同様、A側流路には毎分数百nLから数十μLといった微小流量を作り出すことができる。   4 is different from the apparatus of FIG. 4 in that the arrangement of the A-side flow path is in the order of flow of the liquid, the sample injection device (6), the analysis column (7), the detector (9), and the second thermal flow meter (5a). The flow control device (5b) is provided. Although not shown in FIG. 5, a pressure adjusting means such as a resistance tube may be installed in the B side flow path as necessary. The apparatus of FIG. 5 can also produce a minute flow rate of several hundred nL to several tens of μL per minute in the A-side flow channel, as in FIG.

分離媒体に流れる液体の組成が変化しない系(例えば、アイソクラティック法での溶出、カラム洗浄、緩衝液置換)の場合は、図4の装置と同様、事前に送液手段に溶離液を流すことで、分離カラムへ到達する時間が遅れる問題は解消できる。また、第一の熱式流量計(4)と第二の熱式流量計(5a)との間には内部容量を有する分析カラム(7)が設置されているが、事前に送液手段に溶離液を流すことで、第二の熱式流量計へ到達する時間が遅れる問題も解消できる。   In the case of a system in which the composition of the liquid flowing in the separation medium does not change (for example, elution by isocratic method, column washing, buffer solution replacement), the eluent is flowed to the liquid feeding means in advance as in the apparatus of FIG. Thus, the problem that the time to reach the separation column is delayed can be solved. An analytical column (7) having an internal capacity is installed between the first thermal flow meter (4) and the second thermal flow meter (5a). By flowing the eluent, the problem of delaying the time to reach the second thermal flow meter can be solved.

液体の組成が経時的に変化する系(例えば、溶媒グラジエント法での溶出)では、図4の時と同様、分析カラム(7)への到達時間の遅れがそのまま組成変化への応答の遅れに繋がるが、第一の熱式流量計(4)と分析カラム(7)とが接近して設置している場合は、分析カラム(7)へ到達する時間が遅れる問題は無視できる。しかしながら、第一の熱式流量計(4)と第二の熱式流量計(5a)との間には、内部容量を有する分析カラム(7)が設置されているため、第二の熱式流量計へ到達する時間が遅れる問題、つまり組成変化への応答が遅れる問題が無視できなくなる。また、分離した目的成分の分画(捕集)装置、及び質量分析装置といった他の分析装置を第二の熱式流量計(5a)及び流量制御装置(5b)の後に設置した場合、第二の熱式流量計(5a)及び流量制御装置(5b)に少なくとも数百μL程度の内部容量を有しているため、当該分取装置及び他の分析装置に所望の流量及び組成の溶離液を送液するのはさらに困難となる。なお、分画(捕集)装置、及び他の分析装置を分析カラム(7)と第二の熱式流量計(5a)の間に設置した場合は当該分取装置及び他の分析装置へ到達する時間が遅れる問題は解消できるが、第一の熱式流量計(4)と第二の熱式流量計(5a)との間の距離がさらに離れるため、第二の熱式流量計へ到達する時間にさらに大きな遅れが発生する。   In a system in which the composition of the liquid changes over time (for example, elution by the solvent gradient method), as in the case of FIG. 4, the delay in the arrival time to the analytical column (7) remains as a delay in the response to the composition change. However, when the first thermal flow meter (4) and the analytical column (7) are installed close to each other, the problem of delaying the time to reach the analytical column (7) can be ignored. However, since an analytical column (7) having an internal capacity is installed between the first thermal flow meter (4) and the second thermal flow meter (5a), the second thermal type The problem that the time to reach the flow meter is delayed, that is, the problem that the response to the composition change is delayed cannot be ignored. In addition, when another analysis device such as a fractionation (collection) device for the separated target component and a mass spectrometer is installed after the second thermal flow meter (5a) and the flow control device (5b), the second The thermal flow meter (5a) and the flow control device (5b) have an internal capacity of at least several hundreds μL, so that an eluent having a desired flow rate and composition can be supplied to the preparative device and other analysis devices. It becomes even more difficult to send the solution. In addition, when a fractionation (collection) device and other analysis devices are installed between the analysis column (7) and the second thermal flow meter (5a), the separation device and the other analysis device are reached. However, the distance between the first thermal flow meter (4) and the second thermal flow meter (5a) is further away, so the second thermal flow meter is reached. An even greater delay occurs in the time to do.

本発明の微小流量送液方法を用いた送液装置の好ましい態様を図6に示す。   FIG. 6 shows a preferred embodiment of a liquid feeding device using the micro flow rate liquid feeding method of the present invention.

図4の装置との違いは、第二の熱式流量計(5a)、流量制御装置(5b)がB側流路に配置されており、A側流路には液体の流れる順に、試料注入装置(6)、分析カラム(7)及び検出器(9)が配置されていることである。なお、第一の熱式流量計(4)と第二の熱式流量計(5a)は接近して設置している。また、図6には記載されていないが、B側流路には必要に応じて抵抗管といった圧力調整手段を設置してもよい。   The difference from the apparatus of FIG. 4 is that the second thermal flow meter (5a) and the flow rate control device (5b) are arranged in the B-side flow path, and sample injection into the A-side flow path in the order of liquid flow. The device (6), the analytical column (7) and the detector (9) are arranged. The first thermal flow meter (4) and the second thermal flow meter (5a) are installed close to each other. Further, although not shown in FIG. 6, pressure adjusting means such as a resistance tube may be provided in the B side flow path as necessary.

ポンプ(2)により送液された溶離液(1)の流量値を第一の熱式流量計(4)により、B側流路に流れる溶離液の流量値を第二の熱式流量計(5a)により、それぞれリアルタイムで計測し、その値を演算機(14)に入力後、前記演算機(14)で、前記計測流量値のうち、第一の熱式流量計(5a)で計測された流量値に1未満の任意の流量比率を乗じることでB側流路に流すべき流量を計算する。そして、前記計算流量値と、第二の熱式流量計(5a)で計測された流量値と比較し、両方の流量値が一致するよう、流量制御装置(5b)の流量を制御する信号を前記演算機(14)から送ることで、B側流路に流れる溶離液の流量をリアルタイムで制御を行なう。これにより、A側流路には分岐前の流量とB側流路の流量の差分が流れる。   The flow rate value of the eluent (1) sent by the pump (2) is changed by the first thermal flow meter (4), and the flow rate value of the eluent flowing in the B side channel is changed by the second thermal flow meter ( 5a), each value is measured in real time, and the value is input to the calculator (14), and then measured by the calculator (14) with the first thermal flow meter (5a) among the measured flow values. The flow rate to be passed through the B-side flow path is calculated by multiplying the flow rate value by an arbitrary flow rate ratio of less than 1. Then, the calculated flow rate value is compared with the flow rate value measured by the second thermal flow meter (5a), and a signal for controlling the flow rate of the flow rate control device (5b) so that both flow rate values coincide with each other. By sending from the calculator (14), the flow rate of the eluent flowing in the B-side channel is controlled in real time. Thereby, the difference of the flow volume before a branch and the flow volume of a B side flow path flows into the A side flow path.

図6の微小流量送液装置の場合、第二の熱式流量計(5a)及び流量制御装置(5b)といった内部容量が少なくとも数百μL程度有する装置が、流量の多い廃棄側流路(B側流路)に設置されている。そのため、A側流路に設置の分析カラム(7)へ到達する時間が遅れる問題は解消できる。また、第一の熱式流量計(4)と第二の熱式流量計(5a)は接近して設置しているため、第二の熱式流量計(5a)へ到達する時間が遅れる問題も解消できる。さらに、液体の組成が経時的に変化する系(例えば、溶媒グラジエント法での溶出)においても、B側流路に流れる流量に対し、第二の熱式流量計(5a)及び流量制御装置(5b)の有する内部容量に差がないため、溶離液の組成変化の遅れの問題も解消できる。そのため、液体の組成が経時的に変化しない系/する系を問わず、所望の流量及び組成の溶離液を分析カラム(7)に流すことができる。   In the case of the minute flow rate liquid delivery device of FIG. 6, a device having an internal capacity of at least about several hundred μL such as the second thermal flow meter (5a) and the flow rate control device (5b) Side channel). Therefore, the problem that the time to reach the analysis column (7) installed in the A-side flow path is delayed can be solved. In addition, since the first thermal flow meter (4) and the second thermal flow meter (5a) are installed close to each other, the time to reach the second thermal flow meter (5a) is delayed. Can also be eliminated. Furthermore, even in a system in which the composition of the liquid changes with time (for example, elution by the solvent gradient method), the second thermal flow meter (5a) and the flow control device ( Since there is no difference in the internal capacity of 5b), the problem of delay in the composition change of the eluent can be solved. Therefore, regardless of the system in which the composition of the liquid does not change with time, an eluent having a desired flow rate and composition can be passed through the analysis column (7).

図6の微小流量送液装置における送液方法では、分岐前の流量値(送液手段と分岐手段との間に流れる液体の流量値)(F)を任意のサンプリング間隔で計測し、その流量値に、ある一定の流量比率を乗じて、B側流路の流量制御値とし制御を行なう。その流量変化を図7に示す。 In the liquid feeding method in the micro flow rate liquid feeding device of FIG. 6, the flow rate value before branching (flow rate value of the liquid flowing between the liquid feeding unit and the branching unit) (F m ) is measured at an arbitrary sampling interval. Control is performed by multiplying the flow rate value by a certain flow rate ratio to obtain a flow rate control value for the B-side flow path. The flow rate change is shown in FIG.

=F・S
=F−F
:A側流路の流量(微小流量)
:B側流路の流量値(大流量)
:分岐前の流量値
S:流量比率
図6の微小流量送液手段における送液方法では、分岐前の流量値(F)を任意のサンプリング間隔で計測できるように第一の熱式流量計(4)が設置されている。分岐前の流量値(F)を任意のサンプリング間隔で計測し、その値に1未満の一定の流量比率(S)を乗じて、B側流路の制御流量値として与える。そのため、分岐前の流量値(F)が変動した場合であっても、B側流路の流量値(F)は分岐前の流量値(F)に前記流量比率(S)を乗じた値で制御され(図7(a))、A側流路の流量(F)はその差分となる。よって、A側流路の流量(F)の変動は、流量の絶対値で制御する従来のアクティブスプリット法(図3(b))による微小流量送液方法と比較し小さくなる(図7(b))。たとえば、図6の装置で、分岐前の流量(F)を毎分50μL、分岐比率を(S)を0.98とした場合、B側流路の計算流量値(F)は毎分49μL、A側流路の流量(F)は、毎分1μLとなる。分岐前の流量値(F)が毎分±0.2μL変動した場合、B側流路の流量値(F)は毎分48.80から49.12μLで変動する。A側流路の流量(F)は毎分0.996から1.004μLで変動し、毎分0.008μL(±0.4%)の誤差で収まる。一方、同様な条件(分岐前の流量:毎分50μL、B側流路の流量:毎分49μL、流量値変動:毎分±0.2μL)で従来のアクティブスプリット法(図2)による微小流量送液方法では、A側流路の流量変動は毎分0.4μL(±20%)の変動となる。
F b = F m · S
F a = F m −F b
F a : A side flow rate (micro flow rate)
F b : Flow rate value of B side channel (large flow rate)
F m : Flow rate value before branching S: Flow rate ratio In the liquid feeding method in the minute flow rate liquid feeding means in FIG. 6, the first thermal equation is used so that the flow rate value (F m ) before branching can be measured at an arbitrary sampling interval. A flow meter (4) is installed. The flow rate value (F m ) before branching is measured at an arbitrary sampling interval, and the value is multiplied by a constant flow rate ratio (S) of less than 1 to give a control flow rate value for the B-side flow path. Therefore, even when the flow rate value (F m ) before branching varies, the flow rate value (F b ) of the B-side flow path is multiplied by the flow rate ratio (S) to the flow rate value (F m ) before branching. The flow rate (F a ) of the A-side channel is the difference between the values (FIG. 7 (a)). Therefore, the fluctuation of the flow rate (F a ) of the A-side flow path is smaller than that of the minute flow rate liquid feeding method by the conventional active split method (FIG. 3B) controlled by the absolute value of the flow rate (FIG. 7 ( b)). For example, in the apparatus shown in FIG. 6, when the flow rate before branching (F m ) is 50 μL / min and the branching ratio (S) is 0.98, the calculated flow rate value (F b ) of the B side channel is The flow rate (F a ) of 49 μL and the A side channel is 1 μL per minute. When the flow rate value (F m ) before branching varies by ± 0.2 μL per minute, the flow rate value (F b ) of the B-side flow channel varies from 48.80 to 49.12 μL per minute. The flow rate (F a ) of the A-side flow path varies from 0.996 to 1.004 μL per minute and falls within an error of 0.008 μL (± 0.4%) per minute. On the other hand, under the same conditions (flow before branching: 50 μL per minute, B side flow rate: 49 μL per minute, flow rate fluctuation: ± 0.2 μL per minute), minute flow rate by the conventional active split method (FIG. 2) In the liquid feeding method, the flow rate fluctuation of the A-side channel is 0.4 μL (± 20%) per minute.

溶離液の組成が経時的に変化する溶媒グラジエント溶出法のような場合、従来のアクティブスプリット法では微小流量を流すのは更に困難となる。   In the case of a solvent gradient elution method in which the composition of the eluent changes with time, it is more difficult to flow a minute flow rate by the conventional active split method.

熱式流量計は使用する溶離液にて事前に補正されているため、異なる溶離液を流した場合、その値は実際の値と乖離する。熱式流量計の出力は下式のように使用する溶離液の比熱により変化する。   Since the thermal flow meter is corrected in advance with the eluent used, when a different eluent is flowed, the value deviates from the actual value. The output of the thermal flow meter varies depending on the specific heat of the eluent used as shown in the following equation.

signal=k・C・Φ
signal=出力流量値
k=補正係数
=比熱
Φ=実際の流量
図8に、水で補正を行なった熱式流量計を使用し、水100%からアセトニトリル100%までのグラジエントを行なった場合の熱式流量計の出力の変化を示す。水の比熱は1.00Cal/(g・deg)、アセトニトリルの比熱:0.304Cal/(g・deg)である。水で補正を行なった熱式流量計を使用した場合、水を毎分1.00mLで送液すると、熱式流量計は毎分1.00mLの出力値となる。しかし、溶離液としてアセトニトリルを毎分1.00mLで送液すると、熱式流量計は毎分0.304mLの出力値となる。つまり、溶媒グラジエント溶出法で水100%からアセトニトリル100%までのグラジエントを行なった場合、実際の流量は一定であるにもかかわらず、熱式流量計の出力は経時的に小さくなる。このような特性があるため、従来のアクティブスプリット法による微小流量送液方法では不都合が生じる。溶媒グラジエント溶出法で、水100%からアセトニトリル100%まで溶離液の組成変化が伴う場合を例に、従来のアクティブスプリット法(図2)による微小流量送液方法と、図6に示す本発明の微小流量送液方法との違いを説明する。
V signal = k · C p · Φ
V signal = Output flow rate value k = Coefficient of correction C p = Specific heat Φ = Actual flow rate In FIG. 8, a thermal flow meter corrected with water was used, and a gradient from 100% water to 100% acetonitrile was performed. Shows the change in the output of the thermal flow meter. The specific heat of water is 1.00 Cal / (g · deg), and the specific heat of acetonitrile is 0.304 Cal / (g · deg). When a thermal flow meter corrected with water is used, if the water is fed at 1.00 mL per minute, the thermal flow meter has an output value of 1.00 mL per minute. However, when acetonitrile is fed as an eluent at 1.00 mL / min, the thermal flow meter has an output value of 0.304 mL / min. In other words, when a gradient from 100% water to 100% acetonitrile is performed by the solvent gradient elution method, the output of the thermal flow meter decreases with time even though the actual flow rate is constant. Due to such characteristics, there is a problem with the conventional micro flow rate liquid feeding method by the active split method. In the solvent gradient elution method, the minute flow rate liquid feeding method by the conventional active split method (FIG. 2) and the present invention shown in FIG. The difference from the minute flow rate liquid feeding method will be described.

まず、従来のアクティブスプリット法による微小流量送液方法では次のようになる(図9参照)。分岐前の流量(F)毎分50μL、B側流路の流量(F)を毎分49μLで制御した場合、最初水100%であることから、A側流路の流量(F)は、その差分の毎分1μLとなる(図9(a))。徐々にアセトニトリルの割合が増加していくと、B側流路の実流量は殆ど変化しないにもかかわらず、熱式流量計の応答は小さくなることから、B側流路の流量を増やす方向に制御され、一定の値(毎分49μL)を保つ(図9(a))。アセトニトリル100%ではB側流路の目標制御流量の値は229%増加し、計算上、毎分161μLとなる。A側流路の流量(F)は、その差分の毎分−112μLとなってしまい、制御できなくなる(図9(b))。 First, the conventional micro flow rate feeding method using the active split method is as follows (see FIG. 9). When the flow rate before branching (F m ) is 50 μL per minute and the flow rate (F b ) of the B side channel is 49 μL per minute, the flow rate (F a ) of the A side channel is initially 100% water. Is 1 μL of the difference per minute (FIG. 9A). As the proportion of acetonitrile gradually increases, the actual flow rate in the B-side channel hardly changes, but the response of the thermal flow meter decreases. It is controlled and keeps a constant value (49 μL / min) (FIG. 9A). With acetonitrile 100%, the value of the target control flow rate for the B-side channel increases by 229%, which is calculated to be 161 μL per minute. The flow rate (F a ) of the A side channel becomes −112 μL per minute of the difference, and cannot be controlled (FIG. 9B).

図6に示す本発明の微小流量送液方法では、同様な条件の場合、次のようになる(図10参照)。   In the minute flow rate liquid feeding method of the present invention shown in FIG. 6, under the same conditions, the following is performed (see FIG. 10).

分岐前の流量(F)毎分50μL、B側流路への流量比率を0.98として制御した場合、最初は水100%であるので、B側流路の計算流量値(F)は、分岐前の流量(F)毎分50μLに0.98を乗じた、毎分49μLとなり(図10(a))、A側流路の流量(F)は、その差分の毎分1μLとなる。徐々にアセトニトリルの割合が増加していくと、実際の流量は殆ど変化しないにもかかわらず、第一の熱式流量計および第二の熱式流量計の応答が同じ割合で減少していく(図10(a))。アセトニトリル100%では分岐前の第一の熱式流量計の出力流量値は毎分15μL(50×0.30)となり、計算上、B側流路の目標制御流量の値は分岐前の流量値(F)毎分15μLに0.98を乗じた、毎分14.7μLとなる。A側流路の流量(F)は計算上、その差分の毎分0.3μLとなる(図10(b))。しかしながら、実際には、熱式流量計の出力値は70%減少するものの、実流量は殆ど変化していないため、アセトニトリル100%でもB側流路の流量(F)は、分岐前の流量(F)毎分50μLに0.98を乗じた毎分49μL、A側流路の流量(F)は、その差分の毎分1μLとなる。 When the flow rate before branching (F m ) is controlled at 50 μL / min and the flow rate ratio to the B-side flow path is 0.98, the water flow is initially 100%, so the calculated flow rate value of the B-side flow path (F b ) Is 49 μL / min, obtained by multiplying the flow rate before branching (F m ) by 50 μL / min by 0.98 (FIG. 10 (a)), and the flow rate (F a ) of the A side channel is the difference per minute 1 μL. As the proportion of acetonitrile gradually increases, the response of the first thermal flow meter and the second thermal flow meter decrease at the same rate even though the actual flow rate hardly changes ( FIG. 10 (a)). With 100% acetonitrile, the output flow value of the first thermal flow meter before branching is 15 μL / min (50 × 0.30), and the target control flow rate value for the B-side channel is calculated to be the flow rate value before branching. (F m ) 14.7 μL / min, obtained by multiplying 15 μL / min by 0.98. The flow rate (F a ) of the A-side flow path is calculated to be 0.3 μL per minute of the difference (FIG. 10B). However, in reality, although the output value of the thermal flow meter is reduced by 70%, the actual flow rate is hardly changed, so the flow rate (F b ) of the B side channel is the flow rate before branching even with 100% acetonitrile. (F m ) 49 μL per minute obtained by multiplying 50 μL per minute by 0.98, and the flow rate (F a ) of the A-side channel is 1 μL per minute of the difference.

なお、図6の微小流量送液方法では、流量比率(S)が大きくなるほど(1に近づくほど)、流量誤差における、従来のアクティブスプリット法(図2)による微小流量送液方法に対する優位性が高まるため好ましく、分岐比率が0.7(A側流路:B側流路=30:70)から0.999(A側流路:B側流路=1:1000)の範囲が特に好ましい。   In addition, in the micro flow rate liquid feeding method of FIG. 6, as the flow rate ratio (S) increases (closer to 1), the flow rate error has an advantage over the micro flow rate liquid feeding method by the conventional active split method (FIG. 2). The branching ratio is preferably 0.7 (A-side flow path: B-side flow path = 30: 70) to 0.999 (A-side flow path: B-side flow path = 1: 1000).

本発明の微小流量送液方法は、
送液手段と分岐手段との間に流れる液体の流量値と、分離媒体側の流路または廃棄側の流路に流れる液体の流量値を計測し、
(1−1)前記送液手段と分岐手段との間に流れる液体の流量値に、1未満の任意の値を乗じて、分離媒体側の流路または廃棄側の流路に流すべき液体の流量値を計算し、
(1−2)前記計算流量値と、前記分離媒体側の流路または廃棄側の流路に流れる液体の流量値とが一致するように、分離媒体側の流路または廃棄側の流路に流れる液体の流量を制御する、
または、
(2−1)前記分離媒体側の流路または廃棄側の流路に流れる液体の流量値に、1を超える任意の値を乗じて、送液手段と分岐手段との間に流すべき液体の流量値を計算し、
(2−2)前記計算流量値と、前記送液手段と分岐手段との間に流れる液体の流量値とが一致するように、送液手段と分岐手段との間に流れる液体の流量を制御する、
ことで、一定の微小流量を分離媒体に流すことを特徴としている。このため、送液手段側の問題(例えば、ポンプの脈動)で送液手段と分岐手段との間に流れる液体の流量が変動した場合でも、分離媒体側の流路または廃棄側の流路に流れる液体の流量の絶対値のみで制御する従来のアクティブスプリット法と比較し、流量の変動を抑えることができるため、一定の微小流量の液体を精度良く分離媒体側の流路に送液することができる。
The minute flow rate liquid feeding method of the present invention is:
Measure the flow rate value of the liquid flowing between the liquid feeding means and the branching means and the flow rate value of the liquid flowing in the separation medium side flow path or the disposal side flow path,
(1-1) The flow rate value of the liquid flowing between the liquid feeding means and the branching means is multiplied by an arbitrary value less than 1, and the liquid to be flowed to the separation medium side flow path or the waste side flow path Calculate the flow value,
(1-2) The calculated flow rate value and the flow rate value of the liquid flowing in the separation medium side flow path or the disposal side flow path are matched with the separation medium side flow path or the waste side flow path. Control the flow rate of flowing liquid,
Or
(2-1) Multiplying the flow rate value of the liquid flowing through the separation medium side flow path or the disposal side flow path by an arbitrary value exceeding 1, and the amount of liquid to flow between the liquid feeding means and the branching means. Calculate the flow value,
(2-2) The flow rate of the liquid flowing between the liquid feeding unit and the branching unit is controlled so that the calculated flow rate value matches the flow rate value of the liquid flowing between the liquid feeding unit and the branching unit. To
Thus, a constant minute flow rate is caused to flow through the separation medium. For this reason, even when the flow rate of the liquid flowing between the liquid feeding means and the branching means fluctuates due to a problem on the liquid feeding means side (for example, pulsation of the pump), the flow path on the separation medium side or the waste side flow path Compared to the conventional active split method, which controls only the absolute value of the flow rate of the flowing liquid, the flow rate fluctuation can be suppressed, so that a liquid with a constant minute flow rate can be accurately fed to the flow path on the separation medium side. Can do.

本発明の微小流量送液方法は流量比率で制御しているため、分離媒体側の流路へ流す流量が微小であるほど、流量の絶対値で制御する従来のアクティブスプリット法に対する、流量精度における優位性が高い。特に、送液手段と分岐手段との間に流れる液体の流量に対する、廃棄側の流路に流れる液体の流量の割合が1に近い値、具体的には0.7(分離媒体側:廃棄側=30:70)から0.999(分離媒体側:廃棄側=1:1000)の範囲にすることで、従来のアクティブスプリット法に対する優位性が高まる。   Since the minute flow rate liquid feeding method of the present invention is controlled by the flow rate ratio, the smaller the flow rate flowing to the flow path on the separation medium side, the more accurate the flow rate accuracy compared to the conventional active split method that controls by the absolute value of the flow rate. Superiority. In particular, the ratio of the flow rate of the liquid flowing in the flow path on the disposal side to the flow rate of the liquid flowing between the liquid feeding means and the branching unit is a value close to 1, specifically 0.7 (separation medium side: disposal side) = 30: 70) to 0.999 (separation medium side: discard side = 1: 1000), the advantage over the conventional active split method is enhanced.

本発明の微小流量送液方法を採用した装置、具体的には、送液手段と分離手段との間に流れる液体の流量値を任意のサンプリング間隔で計測する第一の流量計と、分離媒体側の流路または廃棄側の流路に流れる液体の流量値を第一の流量計と同じまたは異なるサンプリング間隔で計測する第二の流量計と、分離媒体側の流路または廃棄側の流路に流れる液体の流路を必要に応じて制御する流量制御手段と、第一及び第二の流量計で計測された流量値に基づいて、送液手段と分岐手段との間の流路、分離媒体側の流路、及び廃棄側の流路に流れる液体の流量を制御するための信号を送る演算手段とを備えており、前記演算手段が
(3−1)第一の流量計で計測された流量値を入力値として、当該流量値に1未満の任意の値を乗じて、第二の流量計で計測されるべき流量値を計算し、
(3−2)第二の流量計で計測された流量値を入力値として、前記計算流量値と比較し、両方の流量値を一致させるように、前記流量制御手段を制御する、
または
(4−1)第二の流量計で計測された流量値を入力値として、当該流量値に1を超える任意の値を乗じて、第一の流量計で計測されるべき流量値を計算し、
(4−2)第一の流量計で計測された流量値を入力値として、前記計算流量値と比較し、両方の流量値を一致させるように、前記送液手段を制御する、
手段である、微小流量送液装置は、流路に流れる液体の組成変動にともない比熱が変動し、それに応じて熱式流量計の示す流量値が変動したとしても、分離媒体側の流路へ流す流量を流量比で制御しているため、分離媒体側の流路または廃棄側の流路に流れる液体の流量を、熱式流量計の示す流量の絶対値で制御する従来のアクティブスプリット法と比較し、実際の流量変動を抑えることができるため、一定の微小流量の液体を高い精度で分離媒体側の流路に流し続けることができる。
An apparatus adopting the micro flow rate liquid feeding method of the present invention, specifically, a first flow meter for measuring a flow rate value of a liquid flowing between the liquid feeding means and the separation means at an arbitrary sampling interval, and a separation medium A second flow meter that measures the flow rate of the liquid flowing in the flow channel on the side or the waste flow channel at the same or different sampling interval as the first flow meter, and the flow channel on the separation medium or the waste flow channel And a flow path between the liquid feeding means and the branching means based on the flow rate values measured by the first and second flow meters and the flow rate control means for controlling the flow path of the liquid flowing through And a calculation means for sending a signal for controlling the flow rate of the liquid flowing in the medium side flow path and the waste side flow path, and the calculation means is measured by (3-1) the first flow meter. The second flow rate is obtained by multiplying the flow rate value by any value less than 1 In calculates the flow rate value to be measured,
(3-2) Using the flow rate value measured by the second flow meter as an input value, comparing it with the calculated flow rate value, and controlling the flow rate control means so as to match both flow rate values;
Or (4-1) Using the flow value measured by the second flow meter as an input value, multiplying the flow value by an arbitrary value exceeding 1, and calculating the flow value to be measured by the first flow meter And
(4-2) The flow rate value measured by the first flow meter is used as an input value, compared with the calculated flow rate value, and the liquid feeding means is controlled to match both flow rate values.
Even if the specific heat fluctuates with the composition fluctuation of the liquid flowing in the flow path, and the flow value indicated by the thermal flow meter fluctuates accordingly, the micro flow rate liquid feeding device is a means to the flow path on the separation medium side. Since the flow rate is controlled by the flow rate ratio, the flow rate of the liquid flowing in the separation medium side channel or the waste side channel is controlled by the absolute value of the flow rate indicated by the thermal flow meter. In comparison, since the actual flow rate fluctuation can be suppressed, a liquid with a constant minute flow rate can continue to flow through the flow path on the separation medium side with high accuracy.

前記装置において、第二の熱式流量計及び流量制御装置を、分離媒体側の流路、廃棄側の流路、いずれの流路にも設置しても、分離媒体に流れる液体の組成が変化しない系(例えば、アイソクラティック法での溶出、カラム洗浄、緩衝液置換)では、従来のアクティブスプリット法と比較し微小流量制御に優れた送液装置を提供することができる。   In the apparatus, the composition of the liquid flowing in the separation medium changes even if the second thermal flow meter and the flow control device are installed in any of the separation medium side channel and the disposal side channel. In systems that do not (for example, elution by isocratic method, column washing, and buffer solution replacement), it is possible to provide a liquid delivery device that is superior in micro flow rate control as compared with the conventional active split method.

また、前記装置において、分離媒体に流れる液体の組成が経時的に変化する系(例えば、溶媒グラジエント系)での分析、前記分析で分離した目的成分の分画(捕集)及び他の分析装置を用いた分析に適用する場合には、第二の熱式流量計及び流量制御装置を、分離媒体及び前記分取・分析装置の入口側に設置すると、分離媒体側の流路に流れる流量(毎分数百nLから数十μL)に対する、第二の熱式流量計及び流量制御装置の有する内部容量(数百μL)が大きく、液体の組成または試料到達時間に大きな遅延が生じる。そのため、前記分析に対して本発明を適用する場合は、第二の熱式流量計及び流量制御装置を、分離媒体及び前記分取・分析装置の出口側、または廃棄側の流路に設置するのが好ましい。   Further, in the apparatus, analysis in a system (for example, a solvent gradient system) in which the composition of the liquid flowing in the separation medium changes with time, fractionation (collection) of target components separated in the analysis, and other analysis apparatuses When the second thermal flow meter and the flow control device are installed on the inlet side of the separation medium and the sorting / analyzing device, the flow rate ( The internal capacity (several hundred μL) of the second thermal flow meter and the flow rate control device with respect to several hundreds nL to several tens μL per minute is large, and a large delay occurs in the liquid composition or the sample arrival time. Therefore, when the present invention is applied to the analysis, the second thermal flow meter and the flow control device are installed in the separation medium and the flow path on the outlet side or the disposal side of the sorting / analyzing device. Is preferred.

特に、第二の熱式流量計及び流量制御装置がともに廃棄側の流路に設置した場合は、第一の熱式流量計、第二の熱式流量計及び流量制御装置を接近して設置することが可能なため、応答の遅延がなく、かつ、分離媒体に流れる液体の組成が変化しない系での分析、分離媒体に流れる液体の組成が経時的に変化する系での分析、前記分析で分離した目的成分の分画(捕集)及び他の分析装置を用いた分析、いずれの分析においても一定の微小流量制御が可能な装置を提供することができる。   In particular, when both the second thermal flow meter and the flow control device are installed in the flow path on the disposal side, the first thermal flow meter, the second thermal flow meter and the flow control device are installed close to each other. Analysis in a system in which there is no delay in response and the composition of the liquid flowing in the separation medium does not change, analysis in a system in which the composition of the liquid flowing in the separation medium changes over time, and the analysis Thus, it is possible to provide a device capable of controlling a minute flow rate in any analysis, ie, fractionation (collection) of the target component separated in (1) and analysis using another analysis device.

以下実施例を用いて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.

実施例1 アイソクラティック溶出法における送液方法の比較
熱式流量計に流れる液体の組成変化のないアイソクラティック溶出法で流量毎分数十μLの条件で分析を行なった場合における、従来のアクティブスプリット法による微小流量送液方法と、本発明の微小流量送液方法との比較を行なった。
Example 1 Comparison of liquid feeding methods in isocratic elution method Conventional analysis in the case of performing analysis under conditions of flow rate of several tens of μl per minute by isocratic elution method without composition change of the liquid flowing in the thermal flow meter Comparison was made between the micro flow rate feeding method by the active split method and the micro flow rate feeding method of the present invention.

(A)従来のアクティブスプリット法による微小流量送液方法
従来のアクティブスプリット法による微小流量送液装置のシステム構成を図2に示す。送液ポンプ(2)により溶離液(1)を一定流量で送液し、送液された溶離液(1)は分岐ブロック(13)によりA側流路とB側流路に分岐される。A側流路は分析に使用される流路であり、試料注入装置(6)、分析カラム(7)及びカラム恒温槽(8)、検出器(9)が配置されている。B側流路には熱式流量計(5a)、流量制御装置(5b)が配置されている。A側流路は毎分数百nLから数十μLといった微小流量が流れる流路である。B側流路は残りの大部分が流れる流路である。
(A) Microflow feeding method by conventional active split method FIG. 2 shows a system configuration of a microflow feeding device by a conventional active split method. The eluent (1) is fed at a constant flow rate by the liquid feed pump (2), and the sent eluent (1) is branched into the A side channel and the B side channel by the branch block (13). The A-side channel is a channel used for analysis, and a sample injection device (6), an analysis column (7), a column thermostat (8), and a detector (9) are arranged. A thermal flow meter (5a) and a flow rate control device (5b) are arranged in the B side flow path. The A-side channel is a channel through which a minute flow rate of several hundreds nL to several tens of μL per minute flows. The B-side channel is a channel through which most of the rest flows.

測定条件は分析カラム(7)として、内径0.3mm、長さ50mm、粒径3μmのODSカラム(GLサイエンス社製)、溶離液(1)として、アセトニトリル/水(40/60)を使用した。ポンプ(2)としては東ソー社製のCCPMを一部改良して使用した。ポンプ(2)の流量を毎分50μLに設定し送液を行ない、熱式流量計(5a)、流量制御装置(5b)でB側流路の流量値が毎分47.7μLで一定になるように制御し、分析を行なうA側流路には上記の差分である毎分2.3μL流れるように制御を行なった。   The measurement conditions were an ODS column (manufactured by GL Science) having an inner diameter of 0.3 mm, a length of 50 mm and a particle diameter of 3 μm as the analytical column (7), and acetonitrile / water (40/60) as the eluent (1). . As a pump (2), CCSO made by Tosoh Corporation was partially improved and used. The flow rate of the pump (2) is set to 50 μL / min and liquid feeding is performed, and the flow rate value of the B side channel is constant at 47.7 μL / min with the thermal flow meter (5a) and the flow rate control device (5b). Thus, the control was performed so that 2.3 μL per minute, which is the above difference, flows through the A-side flow channel for analysis.

測定試料としては、p−ヒドロキシ安息香酸メチル、p−ヒドロキシ安息香酸エチル、p−ヒドロキシ安息香酸プロピル、p−ヒドロキシ安息香酸n−ブチルの4種を混合したものを用いた。   As a measurement sample, a mixture of four kinds of methyl p-hydroxybenzoate, ethyl p-hydroxybenzoate, propyl p-hydroxybenzoate, and n-butyl p-hydroxybenzoate was used.

(B)本発明の微小流量送液方法
本発明の微小流量送液装置のシステム構成を図6に示す。送液ポンプ(2)により溶離液(1)を一定流量で送液する。送液された溶離液(1)は第一の熱式流量計(4)を通過した後、分岐ブロック(13)によりA側流路とB側流路に分岐される。A側流路は分析に使用される流路であり、試料注入装置(6)、分析カラム(7)及びカラム恒温槽(8)、検出器(9)が配置されている。B側流路には第二の熱式流量計(5a)、流量制御装置(5b)が配置されている。A側流路は毎分数百nLから数十μLといった微小流量が流れる流路である。B側流路は残りの大部分が流れる流路である。
(B) Micro flow rate liquid feeding method of the present invention FIG. 6 shows the system configuration of the micro flow rate liquid feeding device of the present invention. The eluent (1) is fed at a constant flow rate by the liquid feed pump (2). The sent eluent (1) passes through the first thermal flow meter (4) and is then branched into the A-side channel and the B-side channel by the branch block (13). The A-side channel is a channel used for analysis, and a sample injection device (6), an analysis column (7), a column thermostat (8), and a detector (9) are arranged. A second thermal type flow meter (5a) and a flow rate control device (5b) are arranged in the B side flow path. The A-side channel is a channel through which a minute flow rate of several hundreds nL to several tens of μL per minute flows. The B-side channel is a channel through which most of the rest flows.

測定条件は分析カラム(7)として、内径0.3mm、長さ50mm、粒径3μmのODSカラム(東ソー社製)、溶離液として、アセトニトリル/水(30/70)を使用した。ポンプ(2)としては東ソー社製のCCPMを一部改良して使用した。ポンプ(2)の流量は毎分50μLに設定し送液を行なった。溶離液は第一の熱式流量計(4)で流量値を計測し、その値(流量値)に流量比率(0.944)を乗じた値を演算機(14)で計算する。そして、前記演算機(14)より、前記計算流量値と、第二の熱式流量計(5a)の流量値とを一致させる制御信号を流量制御装置(5b)に送り、B側流路の流量値が毎分(第一の熱式流量計の流量値×0.944)μLになるように、分析を行なうA側流路には上記の差分である(第一の熱式流量計の流量値×0.056)μLになるように制御を行なった。   The measurement conditions were an ODS column (manufactured by Tosoh Corporation) having an inner diameter of 0.3 mm, a length of 50 mm and a particle diameter of 3 μm as the analytical column (7), and acetonitrile / water (30/70) as the eluent. As a pump (2), CCSO made by Tosoh Corporation was partially improved and used. The flow rate of the pump (2) was set to 50 μL / min for liquid feeding. For the eluent, the flow rate value is measured by the first thermal flow meter (4), and a value obtained by multiplying the value (flow rate value) by the flow rate ratio (0.944) is calculated by the calculator (14). Then, a control signal for matching the calculated flow rate value with the flow rate value of the second thermal flow meter (5a) is sent from the computing unit (14) to the flow rate control device (5b), It is the above difference (the first thermal flow meter of the first thermal flow meter) so that the flow rate value becomes minute (flow value of the first thermal flow meter × 0.944) μL per minute. The flow rate was controlled to be 0.056) μL.

測定試料としては、(A)の装置の時と同じ、p−ヒドロキシ安息香酸メチル、p−ヒドロキシ安息香酸エチル、p−ヒドロキシ安息香酸プロピル、p−ヒドロキシ安息香酸n−ブチルの4種を混合したものを用いた。   As the measurement sample, the same four kinds of methyl p-hydroxybenzoate, ethyl p-hydroxybenzoate, propyl p-hydroxybenzoate, and n-butyl p-hydroxybenzoate as in the apparatus (A) were mixed. A thing was used.

(C)結果
図11は、(A)のシステム構成(図2)における、B側流路に配置された熱式流量計(5a)からの信号を示した図である。図11に示すように、熱式流量計(5a)の信号は非常に安定しており、B側流路の流量が正確に一定に保たれていることがわかる。図11の状態におけるクロマトグラム(n=20)を図12に、各ピークの溶出時間のCv(%)をまとめた結果を図15(a)にそれぞれ示す。B側流路の流量が正確に一定に保たれているにも関わらず、溶出時間の再現性はCv(%)で1から4%と悪い。これは、送液ポンプの実送液量が、温度や溶離液中気泡の影響等により、毎分±数百nLのオーダで変動していることが原因である。送液ポンプ(2)の実際の送液量が、変動しているなか、B側流路の流量が一定に保たれているため、送液ポンプ(2)に起因する毎分±数百nLのオーダの変動が分析に使用するA側流路の実際の流量に直接加算あるいは減算され、大きな流量変動になっているためである。
(C) Results FIG. 11 is a diagram showing a signal from the thermal flow meter (5a) arranged in the B-side flow path in the system configuration (A) (FIG. 2). As shown in FIG. 11, the signal of the thermal flow meter (5a) is very stable, and it can be seen that the flow rate of the B-side flow path is accurately maintained constant. The chromatogram (n = 20) in the state of FIG. 11 is shown in FIG. 12, and the results of summarizing the Cv (%) of the elution time of each peak are shown in FIG. Despite the fact that the flow rate in the B-side channel is kept exactly constant, the reproducibility of the elution time is as bad as 1 to 4% in Cv (%). This is because the actual liquid delivery amount of the liquid feed pump fluctuates on the order of ± several hundreds nL per minute due to the temperature and the influence of bubbles in the eluent. While the actual liquid delivery amount of the liquid feed pump (2) is fluctuating, the flow rate of the B side flow path is kept constant, so ± 100 nL per minute due to the liquid feed pump (2) This is because the fluctuation in the order of the amount is directly added to or subtracted from the actual flow rate of the A-side flow path used for the analysis, resulting in a large flow rate fluctuation.

図13(a)は(B)のシステム構成(図6)における、第一の熱式流量計(4)からの信号、図13(b)は第二の熱式流量計(5a)の信号をそれぞれ示す。図13(c)は第一の熱式流量計(4)からの信号から第二の熱式流量計(5a)の信号を差し引いた値、つまり分析に使用するA側流路の流量変化を示した図である。   13A is a signal from the first thermal flow meter (4) in the system configuration of FIG. 6B (FIG. 6), and FIG. 13B is a signal from the second thermal flow meter (5a). Respectively. FIG. 13C shows a value obtained by subtracting the signal from the second thermal flow meter (5a) from the signal from the first thermal flow meter (4), that is, the flow rate change in the A-side flow path used for analysis. FIG.

図13(a)に示すように、第一の熱式流量計(4)の信号は一見安定しているようにも見られるが、毎分±数百nLのオーダで変動している。B側流路の流量は第一熱式流量計(4)の流量値に分岐比率を乗じた値になるように制御しているため、前記実流量の変動と同期して、B側流路の流量(図13(b))も毎分±数百nLのオーダで変動しており、正しくフィードバック制御が行なわれていることが示されている。そのため、分岐前の流量の変動をキャンセルでき、第一の熱式流量計(4)からの信号(図13(a))から第二の熱式流量計(5a)からの信号(図13(b))の差は(A)のシステム構成(図2)と比較し非常に安定している(図13(c))。   As shown in FIG. 13 (a), the signal of the first thermal flow meter (4) seems to be stable at first glance, but fluctuates on the order of several hundred nL per minute. Since the flow rate of the B side channel is controlled to be a value obtained by multiplying the flow rate value of the first thermal flow meter (4) by the branching ratio, the B side channel is synchronized with the fluctuation of the actual flow rate. The flow rate (FIG. 13B) also fluctuates on the order of ± several hundreds nL per minute, indicating that feedback control is being performed correctly. Therefore, the fluctuation of the flow rate before branching can be canceled, and the signal from the first thermal flow meter (4) (FIG. 13 (a)) to the signal from the second thermal flow meter (5a) (FIG. 13 ( The difference of b)) is very stable compared to the system configuration of FIG. (A) (FIG. 2) (FIG. 13C).

図13の状態における、クロマトグラム(n=20)を図14に、各ピークの溶出時間のCv(%)を図15(b)にそれぞれ示す。(B)のシステム構成(図6)を用いることにより、分析に使用するA側流路の実際の流量を一定に保つことが可能となり、その結果、溶出時間の再現性はCv(%)で0.5から1%と、(A)のシステム構成(図2)を用いたとき(図15(a))と比較し大幅に改善された。   The chromatogram (n = 20) in the state of FIG. 13 is shown in FIG. 14, and Cv (%) of the elution time of each peak is shown in FIG. 15 (b). By using the system configuration (B) (FIG. 6), it becomes possible to keep the actual flow rate of the A side flow path used for analysis constant, and as a result, the reproducibility of the elution time is Cv (%). From 0.5 to 1%, the system configuration (A) in FIG. 2 (FIG. 2) was significantly improved compared to that in FIG. 15 (a).

実施例2 溶媒グラジエント溶出法における送液方法の比較
熱式流量計に流れる液体の組成が経時的に変化する溶媒グラジエント溶出法で、流量毎分数十μLの条件で分析を行なった場合における、従来のアクティブスプリット法による微小流量送液方法と、本発明の微小流量送液方法との比較を示す。
Example 2 Comparison of liquid feeding method in solvent gradient elution method In the solvent gradient elution method in which the composition of the liquid flowing in the thermal flow meter changes with time, analysis was performed under conditions of several tens of μL per minute. A comparison between a conventional micro flow rate feeding method by the active split method and a micro flow rate feeding method of the present invention is shown.

(A)従来のアクティブスプリット法による微小流量送液方法
従来のアクティブスプリット法による微小流量送液装置のシステム構成を図16に示す。送液ポンプA(2)により溶離液A(1)を、送液ポンプB(16)により溶離液B(15)を送液する。送液ポンプA(2)、送液ポンプB(16)の各流量を変化させ溶媒グラジエントを行なう(送液ポンプA(2)と送液ポンプB(16)との流量の和は一定)。送液された溶離液(1、15)は、分岐ブロック(13)によりA側流路とB側流路に分岐される。A側流路は分析に使用される流路であり、試料注入装置(6)、分析カラム(7)及びカラム恒温槽(8)、検出器(9)が配置されている。B側流路には熱式流量計(5a)、流量制御装置(5b)が配置されている。A側流路は毎分数十μLから毎分数百nLといった微小流量が流れる流路である。B側流路は残りの大部分が流れる流路である。
(A) Microflow feeding method by conventional active split method FIG. 16 shows a system configuration of a microflow feeding device by a conventional active split method. The eluent A (1) is sent by the liquid feed pump A (2), and the eluent B (15) is sent by the liquid feed pump B (16). Solvent gradient is performed by changing the flow rates of the liquid feed pump A (2) and the liquid feed pump B (16) (the sum of the flow rates of the liquid feed pump A (2) and the liquid feed pump B (16) is constant). The sent eluent (1, 15) is branched into the A-side flow path and the B-side flow path by the branch block (13). The A-side channel is a channel used for analysis, and a sample injection device (6), an analysis column (7), a column thermostat (8), and a detector (9) are arranged. A thermal flow meter (5a) and a flow rate control device (5b) are arranged in the B side flow path. The A-side channel is a channel through which a minute flow rate of several tens of μL per minute to several hundreds of nL per minute flows. The B-side channel is a channel through which most of the rest flows.

測定条件は分析カラム(7)として、内径1mm、長さ50mm、粒径3μmのODSカラム(東ソー社製)、溶離液(1、15)として、A:アセトニトリル/水(20/80)、B:アセトニトリル/水(70/30)を使用した。ポンプ(2、16)としては東ソー社製のCCPMを一部改良して使用した。グラジエントは30分間で溶離液A100%から溶離液B100%まで変化するグラジエントを行なった。ポンプ(2、16)の総流量を毎分200μLに設定し、熱式流量計(5a)、流量制御装置(5b)でB側流路の流量値が毎分176.5μLで一定になるように制御し、分析を行なうA側流路には上記の差分である毎分23.5μL流れるように制御を行なった。   The measurement conditions were an analytical column (7), an ODS column (manufactured by Tosoh Corporation) having an inner diameter of 1 mm, a length of 50 mm and a particle size of 3 μm, and an eluent (1, 15) as A: acetonitrile / water (20/80), B : Acetonitrile / water (70/30) was used. As a pump (2, 16), CCSO manufactured by Tosoh Corporation was partially improved and used. The gradient changed from eluent A 100% to eluent B 100% in 30 minutes. The total flow rate of the pumps (2, 16) is set to 200 μL per minute, and the flow rate value of the B side channel is made constant at 176.5 μL per minute with the thermal flow meter (5a) and the flow control device (5b). Control was performed so that 23.5 μL per minute, which is the above difference, flows through the A-side flow channel for analysis.

測定試料としては、p−ヒドロキシ安息香酸メチル、p−ヒドロキシ安息香酸エチル、p−ヒドロキシ安息香酸プロピル、p−ヒドロキシ安息香酸n−ブチル、p−ヒドロキシ安息香酸ヘキシル、p−ヒドロキシ安息香酸ヘプチルの6種を混合したものを用いた。   As measurement samples, methyl p-hydroxybenzoate, ethyl p-hydroxybenzoate, propyl p-hydroxybenzoate, n-butyl p-hydroxybenzoate, hexyl p-hydroxybenzoate, heptyl p-hydroxybenzoate 6 A mixture of seeds was used.

(B)本発明の微小流量送液方法
本発明のアクティブスプリット法による微小流量送液装置のシステム構成を図17に示す。送液ポンプA(2)により溶離液A(1)を、送液ポンプB(16)により溶離液B(15)を送液する。送液ポンプA(2)、送液ポンプB(16)の各流量を変化させ溶媒グラジエントを行なう(送液ポンプA(2)と送液ポンプB(16)との流量の和は一定)。送液された溶離液(1、15)は第一の熱式流量計(4)を通過した後、分岐ブロック(13)によりA側流路とB側流路に分岐される。A側流路は分析に使用される流路であり、試料注入装置(6)、分析カラム(7)及びカラム恒温槽(8)、検出器(9)が配置されている。B側流路には第二の熱式流量計(5a)、流量制御装置(5b)が配置されている。A側流路は毎分数十μLから毎分数百nLといった微小流量が流れる流路である。B側流路は残りの大部分が流れる流路である。
(B) Micro flow rate liquid feeding method of the present invention FIG. 17 shows a system configuration of a micro flow rate liquid feeding device by the active split method of the present invention. The eluent A (1) is sent by the liquid feed pump A (2), and the eluent B (15) is sent by the liquid feed pump B (16). Solvent gradient is performed by changing the flow rates of the liquid feed pump A (2) and the liquid feed pump B (16) (the sum of the flow rates of the liquid feed pump A (2) and the liquid feed pump B (16) is constant). The sent eluent (1, 15) passes through the first thermal flow meter (4) and is then branched into the A-side flow path and the B-side flow path by the branch block (13). The A-side channel is a channel used for analysis, and a sample injection device (6), an analysis column (7), a column thermostat (8), and a detector (9) are arranged. A second thermal type flow meter (5a) and a flow rate control device (5b) are arranged in the B side flow path. The A-side channel is a channel through which a minute flow rate of several tens of μL per minute to several hundreds of nL per minute flows. The B-side channel is a channel through which most of the rest flows.

測定条件は分析カラム(7)として、内径1mm、長さ50mm、粒径3μmのODSカラム(東ソー社製)、溶離液(1、15)として、A:アセトニトリル/水(20/80)、B:アセトニトリル/水(70/30)を使用した。ポンプ(2、16)としては東ソー社製のCCPMを一部改良して使用した。グラジエントは30分間で溶離液A100%から溶離液B100%まで変化するグラジエントを行なった。溶離液は第一の熱式流量計(4)で流量値を計測し、その値(流量値)に流量比率(0.883)を乗じた値を演算機(14)で計算する。そして、前記演算機(14)より、前記計算値と、第二の熱式流量計(5a)の流量値とを一致させる制御信号を流量制御装置(5b)に送り、B側流路の流量値が毎分(第一の熱式流量計の流量値×0.883)μLになるように、分析を行なうA側流路には上記の差分である(第一の熱式流量計の流量値×0.117)μLになるように制御を行なった。   The measurement conditions were an analytical column (7), an ODS column (manufactured by Tosoh Corporation) having an inner diameter of 1 mm, a length of 50 mm and a particle size of 3 μm, and an eluent (1, 15) as A: acetonitrile / water (20/80), B : Acetonitrile / water (70/30) was used. As a pump (2, 16), CCSO manufactured by Tosoh Corporation was partially improved and used. The gradient changed from eluent A 100% to eluent B 100% in 30 minutes. For the eluent, the flow rate value is measured by the first thermal flow meter (4), and the value (flow rate value) multiplied by the flow rate ratio (0.883) is calculated by the calculator (14). And the control signal which makes the said calculated value and the flow value of the 2nd thermal type flow meter (5a) correspond from the said calculator (14) is sent to the flow control apparatus (5b), and the flow volume of B side flow path The above difference is applied to the A-side flow path for analysis (the flow rate of the first thermal flow meter) so that the value becomes μL per minute (flow value of the first thermal flow meter × 0.883) μL. Value × 0.117) μL was controlled.

測定試料としては(A)のシステム構成(図16)を用いたときと同じ、p−ヒドロキシ安息香酸メチル、p−ヒドロキシ安息香酸エチル、p−ヒドロキシ安息香酸プロピル、p−ヒドロキシ安息香酸n−ブチル、p−ヒドロキシ安息香酸ヘキシル、p−ヒドロキシ安息香酸ヘプチルの6種を混合したものを用いた。   As the measurement sample, the same as in the case where the system configuration (A) (FIG. 16) was used, methyl p-hydroxybenzoate, ethyl p-hydroxybenzoate, propyl p-hydroxybenzoate, and n-butyl p-hydroxybenzoate. , Hexyl p-hydroxybenzoate and heptyl p-hydroxybenzoate were mixed.

(C)結果
図18に(A)(B)両システム構成(図16、図17)を用いたときの、クロマトグラムの結果を示す。図18のうち、aが(A)のシステム構成(図16)を用いたときの、bが(B)のシステム構成(図17)を用いたときの結果である。(B)のシステム構成(図17)を用いたときは6種全てのピークが確認でき、良好にグラジエントが行なわれていることがわかる(図18b)。一方、(A)のシステム構成(図16)を用いたときでは極端に溶出が遅れ、80分でも3種のピークしか確認できなかった(図18a)。図18aの結果から、(A)のシステム構成(図16)を用いたときでは分析の途中から流量が極端に低下していることがわかる。
(C) Results FIG. 18 shows chromatogram results when both system configurations (A) and (B) are used (FIGS. 16 and 17). In FIG. 18, a is the result when the system configuration (A) (FIG. 16) is used, and b is the result when the system configuration (B) (FIG. 17) is used. When the system configuration (B) (FIG. 17) is used, all six types of peaks can be confirmed, indicating that the gradient is performed well (FIG. 18b). On the other hand, when the system configuration (A) (FIG. 16) was used, elution was extremely delayed, and only three types of peaks could be confirmed even at 80 minutes (FIG. 18a). From the result of FIG. 18a, it can be seen that when the system configuration (A) (FIG. 16) is used, the flow rate is extremely reduced from the middle of the analysis.

この時のカラム圧力変化を図19に、第一の熱式流量計(4)の出力値(分岐前の流量)を図20に、第二の熱式流量計(5a)の出力値(B側流路の流量)を図21にそれぞれ示す(それぞれ、図中のaが(A)のシステム構成(図16)を用いたとき、bが(B)のシステム構成(図17)を用いたときの結果である)。   The column pressure change at this time is shown in FIG. 19, the output value of the first thermal flow meter (4) (flow rate before branching) is shown in FIG. 20, and the output value of the second thermal flow meter (5a) (B The flow rate of the side flow path is shown in FIG. 21 (each using a system configuration (FIG. 16) in which (a) in the figure is a system configuration (FIG. 17) in which (b) is (B). Is the result of when).

(A)(B)両システム構成(図16、図17)を用いたときも、グラジエントの進行と共に、第一の熱式流量計(4)の出力値(分岐前の流量)は直線的に低下していく(図20)。これは、実際の流量は変化していないが、溶媒の比熱は変化するため熱式流量計の応答が変化していることに由来する。   (A) (B) When both system configurations (FIGS. 16 and 17) are used, the output value (flow rate before branching) of the first thermal flow meter (4) is linear as the gradient progresses. It decreases (FIG. 20). This is because the actual flow rate does not change, but the specific heat of the solvent changes, so the response of the thermal flow meter changes.

(A)のシステム構成(図16)を用いたときは、第二の熱式流量計(5a)の出力値(B側流路の流量)が一定になるように制御を行なうため、グラジエント開始後しばらくは一定の値になるが、13分以降は値の低下が見られ、正しく制御されていないことが分かる(図21a)。   When the system configuration (A) (FIG. 16) is used, the gradient starts because the control is performed so that the output value of the second thermal flow meter (5a) (the flow rate of the B side channel) is constant. After a while, it becomes a constant value, but after 13 minutes, a decrease in the value is seen, indicating that it is not controlled correctly (FIG. 21a).

一方、(B)のシステム構成(図17)を用いたときは、第一の熱式流量計(4)で実流量値を計測し、その値(実流量値)に分岐比率を乗じた計算流量値と、第二の熱式流量計(5a)の流量値とを一致させる制御を行なっているため、第二の熱式流量計(5a)の出力流量値(B側流路の流量)は、第一の熱式流量計(4)の出力流量値(分岐前の流量)の低下と同期して低下していく(図21b)。   On the other hand, when the system configuration (B) (FIG. 17) is used, the actual flow value is measured with the first thermal flow meter (4), and the value (actual flow value) is multiplied by the branching ratio. Since control is performed to match the flow rate value with the flow rate value of the second thermal flow meter (5a), the output flow rate value of the second thermal flow meter (5a) (the flow rate of the B side channel) Decreases in synchronization with a decrease in the output flow rate value (flow rate before branching) of the first thermal flow meter (4) (FIG. 21b).

第一の熱式流量計(4)の出力流量値と第二の熱式流量計(5a)の出力流量値の差、つまり分析に使用されるA側流路の流量を図22に示す。aは(A)のシステム構成(図16)を用いたときの流量、bは(B)のシステム構成(図17)を用いたときの流量、cは比熱の変化(理論値)の変化を示している。なお、cの比熱は、ボイドの影響を考慮し、2分の遅れをもたしている。   FIG. 22 shows the difference between the output flow value of the first thermal flow meter (4) and the output flow value of the second thermal flow meter (5a), that is, the flow rate of the A-side flow path used for analysis. a is the flow rate when using the system configuration (A) (FIG. 16), b is the flow rate when using the system configuration (B) (FIG. 17), and c is the change in specific heat (theoretical value). Show. The specific heat of c has a delay of 2 minutes in consideration of the influence of voids.

(A)のシステム構成(図16)を用いたとき(図22a)は、グラジエント開始後、約2分から急激に低下し約13分以降は全く流れていないことが分かる。一方、(B)のシステム構成(図17)を用いたとき(図22b)は、グラジエント開始時、毎分約27μLであったものが徐々に低下して行き、30分後毎分約17μLになっている。   When the system configuration of FIG. 16A (FIG. 16) is used (FIG. 22a), it can be seen that after the start of the gradient, it rapidly decreases from about 2 minutes and does not flow at all after about 13 minutes. On the other hand, when the system configuration (B) (FIG. 17) is used (FIG. 22b), at the start of the gradient, what was about 27 μL per minute gradually decreases, and after 30 minutes, it becomes about 17 μL per minute. It has become.

(B)のシステム構成(図17)を用いたとき(図22b)でも計算上の流量が低下しているのは、比熱の変化により熱式流量計の応答が変化しているためである。図20の第一の熱式流量計(4)の出力流量値と第二の熱式流量計(5a)の出力流量値の差を比熱で除すると実際の流量が算出できる。図23は除算後のA側流路の流量である。このように、本発明の微小流量送液方法を用いた場合、グラジエント実行中、毎分約30μLでほぼ一定の流量が得られていることが分かる。   Even when the system configuration (B) (FIG. 17) is used (FIG. 22b), the calculated flow rate is reduced because the response of the thermal flow meter is changed due to the change in specific heat. The actual flow rate can be calculated by dividing the difference between the output flow rate value of the first thermal flow meter (4) of FIG. 20 and the output flow rate value of the second thermal flow meter (5a) by the specific heat. FIG. 23 shows the flow rate of the A-side channel after division. As described above, when the minute flow rate liquid feeding method of the present invention is used, it is understood that a substantially constant flow rate is obtained at about 30 μL per minute during the gradient execution.

(B)のシステム構成(図17)を用いたときでの再現性を図24から26に示す。図24はクロマトグラム(n=10)、図25は溶出時間の変化(n=10)、図26は溶出時間の再現性を示す。(n=10×2)。このように各ピークの溶出時間の再現性はCv(%)で0.1から0.5%と良好な値が得られており(図26)、本発明の流量制御方法を用いることでA側流路に微小流量を精度良く送液可能であることが示唆される。   The reproducibility when the system configuration (B) (FIG. 17) is used is shown in FIGS. 24 shows the chromatogram (n = 10), FIG. 25 shows the change in elution time (n = 10), and FIG. 26 shows the reproducibility of the elution time. (N = 10 × 2). Thus, the reproducibility of the elution time of each peak is as good as 0.1 to 0.5% in Cv (%) (FIG. 26). By using the flow rate control method of the present invention, A It is suggested that a minute flow rate can be accurately fed to the side channel.

実施例3 本発明の微小流量送液方法を用いたキャピラリィ電気泳動装置
実施例1及び2では、ポンプにより液体を送液する液体クロマトグラフィに本発明を適用した例を示したが、キャピラリィ電気泳動に対しても同様な送液方法を適用することができる。図27にその構成を示す。送液ポンプ(2)の代わりに電解液A(20)を配し、導管を挿入する。A側流路の廃液およびB側流路の廃液配管を電解液B(21)に挿入する。電解液A(20)と電解液B(21)にそれぞれ電極(22)(23)を挿入し、電源(18)に接続することで、液流が発生し、キャピラリィ電気泳動を行なうことができる。
Example 3 Capillary Electrophoresis Device Using the Microflow Rate Liquid Feeding Method of the Present Invention In Examples 1 and 2, an example in which the present invention is applied to liquid chromatography in which a liquid is fed by a pump is shown. The same liquid feeding method can be applied to this. FIG. 27 shows the configuration. An electrolytic solution A (20) is arranged in place of the liquid feed pump (2), and a conduit is inserted. The waste liquid of the A side channel and the waste pipe of the B side channel are inserted into the electrolyte B (21). By inserting the electrodes (22) and (23) into the electrolytic solution A (20) and the electrolytic solution B (21), respectively, and connecting to the power source (18), a liquid flow is generated, and capillary electrophoresis can be performed. .

基本的なスプリット法(スタティックスプリット法)で微小流量を送液したときの流路図(アイソクラティック法)。長鎖線はA側流路、長破線はB側流路を示す。Flow path diagram (isocratic method) when a small flow rate is sent by the basic split method (static split method). A long chain line indicates the A-side flow path, and a long broken line indicates the B-side flow path. 従来のアクティブスプリット法で微小流量を送液したときの流路図(アイソクラティック法)。長鎖線はA側流路、長破線はB側流路を示す。Flow diagram when a minute flow rate is sent by the conventional active split method (isocratic method). A long chain line indicates the A-side flow path, and a long broken line indicates the B-side flow path. 従来のアクティブスプリット法における、溶離液組成が変化しない場合(アイソクラティック溶出法)の流量制御を示したグラフ。横軸は時間、縦軸は流量を表す。(a)は分岐前およびB側流路の流量の変化を示したグラフであり、実線は分岐前の流量、塗りつぶした領域はB側流路の熱式流量計/流量制御装置の制御値を示す。(b)はA側流路の流量の変化を示したグラフであり、塗りつぶした領域はA側流路の流量を示す。The graph which showed flow control in the case of the eluent composition not changing in the conventional active split method (isocratic elution method). The horizontal axis represents time, and the vertical axis represents the flow rate. (A) is a graph showing changes in the flow rate before branching and the B-side flow path, the solid line is the flow rate before branching, and the solid area is the control value of the thermal flow meter / flow control device for the B-side flow path. Show. (B) is the graph which showed the change of the flow volume of the A side flow path, and the filled area shows the flow volume of the A side flow path. 本発明の微小流量送液方法において、第二の熱式流量計(5a)及び流量制御装置(5b)を、A側流路の試料注入装置(6)の前に配置した場合の流路図。長鎖線はA側流路、長破線はB側流路を示す。Flow path diagram when the second thermal flow meter (5a) and the flow control device (5b) are arranged in front of the sample injection device (6) on the A side flow path in the micro flow rate liquid feeding method of the present invention. . A long chain line indicates the A-side flow path, and a long broken line indicates the B-side flow path. 本発明の微小流量送液方法において、第二の熱式流量計(5a)及び流量制御装置(5b)を、A側流路の検出器(9)の後に配置した場合の流路図。長鎖線はA側流路、長破線はB側流路を示す。The flow-path figure at the time of arrange | positioning the 2nd thermal type flow meter (5a) and the flow control apparatus (5b) after the detector (9) of an A side flow path in the micro flow volume liquid feeding method of this invention. A long chain line indicates the A-side flow path, and a long broken line indicates the B-side flow path. 本発明の微小流量送液方法において、第二の熱式流量計(5a)及び流量制御装置(5b)を、B側流路に配置した場合の流路図(アイソクラティック法)。長鎖線はA側流路、長破線はB側流路を示す。FIG. 5 is a flow chart (isocratic method) when the second thermal flow meter (5a) and the flow control device (5b) are arranged in the B-side flow path in the minute flow rate liquid feeding method of the present invention. A long chain line indicates the A-side flow path, and a long broken line indicates the B-side flow path. 本発明の微小流量送液方法における、溶離液組成が変化しない場合(アイソクラティック溶出法)の流量制御を示したグラフ。横軸は時間、縦軸は流量を表す。(a)は、分岐前およびB側流路の流量の変化を示したグラフであり、実線は分岐前の流量、塗りつぶした領域はB側流路の熱式流量計/流量制御装置の制御値を示す。(b)は、A側流路の流量の変化を示したグラフであり、塗りつぶした領域はA側流路の流量を示す。The graph which showed flow control in the case of the eluent composition not changing in the micro flow volume liquid feeding method of this invention (isocratic elution method). The horizontal axis represents time, and the vertical axis represents the flow rate. (A) is a graph showing changes in the flow rate before branching and the B-side flow path, the solid line is the flow rate before branching, and the solid area is the control value of the thermal flow meter / flow control device of the B-side flow path. Indicates. (B) is the graph which showed the change of the flow volume of the A side flow path, and the filled area shows the flow volume of the A side flow path. 水で補正を行なった熱式流量計を使用し、水100%からアセトニトリル100%までのグラジエントを行なった場合の熱式流量計の出力変化。横軸はアセトニトリルの濃度、左縦軸は流量、右縦軸は比熱を表す。破線は実際の流量、塗りつぶした領域は熱式流量計が指示する流量値をそれぞれ示す。Changes in the output of the thermal flow meter when using a thermal flow meter corrected with water and performing a gradient from 100% water to 100% acetonitrile. The horizontal axis represents the concentration of acetonitrile, the left vertical axis represents the flow rate, and the right vertical axis represents the specific heat. The broken line indicates the actual flow rate, and the filled area indicates the flow value indicated by the thermal flow meter. 従来のアクティブスプリット法による、溶離液組成が変化する場合(グラジエント溶出法)の流量制御を示したグラフ。横軸は時間、縦軸は流量を表す。(a)は分岐前およびB側流路の流量の変化を示したグラフであり、実線は熱式流量計が指示する分岐前の流量、破線は実際の流量、塗りつぶした領域はB側流路の熱式流量計/流量制御装置の制御値を示す。(b)はA側流路の流量の変化を示したグラフであり、塗りつぶした領域はA側流路の流量を示す。The graph which showed flow control by the conventional active split method when an eluent composition changes (gradient elution method). The horizontal axis represents time, and the vertical axis represents the flow rate. (A) is a graph showing changes in the flow rate before branching and on the B-side channel, the solid line is the flow rate before branching indicated by the thermal flow meter, the broken line is the actual flow rate, and the painted area is the B-side channel. The control value of the thermal type flow meter / flow rate control device is shown. (B) is the graph which showed the change of the flow volume of the A side flow path, and the filled area shows the flow volume of the A side flow path. 本発明の微小流量送液方法による、溶離液組成が変化する場合(グラジエント溶出法)の流量制御を示したグラフ。横軸は時間、縦軸は流量を表す。(a)は分岐前およびB側流路の流量の変化を示したグラフであり、実線は熱式流量計が指示する分岐前の流量、破線は実際の流量、塗りつぶした領域はB側流路の熱式流量計/流量制御装置の制御値を示す。(b)はA側流路の流量の変化を示したグラフであり、塗りつぶした領域はA側流路の流量を示す。The graph which showed flow volume control in case the eluent composition changes by the micro flow volume liquid feeding method of this invention (gradient elution method). The horizontal axis represents time, and the vertical axis represents the flow rate. (A) is a graph showing changes in the flow rate before branching and on the B-side channel, the solid line is the flow rate before branching indicated by the thermal flow meter, the broken line is the actual flow rate, and the painted area is the B-side channel. The control value of the thermal type flow meter / flow rate control device is shown. (B) is the graph which showed the change of the flow volume of the A side flow path, and the filled area shows the flow volume of the A side flow path. 従来のアクティブスプリット法で微小流量を送液したときのB側流路の熱式流量計の出力値の変化。横軸は時間、縦軸は流量を表す。Change in the output value of the thermal flow meter on the B side channel when a minute flow rate is sent by the conventional active split method. The horizontal axis represents time, and the vertical axis represents the flow rate. 従来のアクティブスプリット法で微小流量を送液したときのクロマトグラム結果(n=20)。横軸は時間、縦軸は吸光度を表す。Chromatogram result (n = 20) when a minute flow rate is fed by the conventional active split method. The horizontal axis represents time, and the vertical axis represents absorbance. 本発明の微小流量送液方法で微小流量を送液したときの各流路の流量変化。横軸は時間、縦軸は流量を表す。(a)は分岐前の流路に配置された、第一の熱式流量計の出力値の変化を示す。(b)はB側流路に配置された、第二の熱式流量計の出力値の変化を示す。(c)は分岐前の流路に配置された、第一の熱式流量計の出力値からB側流路に配置された、第二の熱式流量計の出力値の差を示す。The flow rate change of each flow path when a minute flow rate is fed by the minute flow rate feeding method of the present invention. The horizontal axis represents time, and the vertical axis represents the flow rate. (A) shows the change of the output value of the 1st thermal type flow meter arrange | positioned at the flow path before a branch. (B) shows the change of the output value of the 2nd thermal type flow meter arrange | positioned at the B side flow path. (C) shows the difference of the output value of the 2nd thermal type flow meter arrange | positioned at the B side flow path from the output value of the 1st thermal type flow meter arrange | positioned at the flow path before a branch. 本発明の微小流量送液方法で微小流量を送液したときのクロマトグラム(n=20)。横軸は時間、縦軸は吸光度を表す。The chromatogram (n = 20) when feeding a micro flow rate by the micro flow rate liquid feeding method of this invention. The horizontal axis represents time, and the vertical axis represents absorbance. 溶出時間のCv(%)を示した結果(n=10で3バッチ測定)。(a)は従来のアクティブスプリット法で微小流量を送液したときのCv(%)を示す。(b)は本発明の微小流量送液方法で微小流量を送液したときのCv(%)を示す。The result which showed Cv (%) of elution time (3 batch measurement at n = 10). (A) shows Cv (%) when a minute flow rate is fed by the conventional active split method. (B) shows Cv (%) when a minute flow rate is fed by the minute flow rate feeding method of the present invention. 従来のアクティブスプリット法で微小流量を送液したときの流路図(溶媒グラジエント溶出法)。長鎖線はA側流路、長破線はB側流路を示す。Flow diagram (liquid gradient elution method) when a minute flow rate is sent by the conventional active split method. A long chain line indicates the A-side flow path, and a long broken line indicates the B-side flow path. 本発明の微小流量送液方法で微小流量を送液したときの流路図(溶媒グラジエント溶出法)。長鎖線はA側流路、長破線はB側流路を示す。FIG. 4 is a flow chart (solvent gradient elution method) when a minute flow rate is fed by the minute flow rate feeding method of the present invention. A long chain line indicates the A-side flow path, and a long broken line indicates the B-side flow path. 溶媒グラジエント溶出法において、従来のアクティブスプリット法で微小流量を送液したときと、本発明の微小流量送液方法で微小流量を送液したときとを比較したクロマトグラム。横軸は時間、縦軸は吸光度を表す。aは従来のアクティブスプリット法で微小流量を送液したときの結果を示す。bは本発明の微小流量送液方法で微小流量を送液したときの結果を示す。In the solvent gradient elution method, a chromatogram comparing when a minute flow rate is fed by the conventional active split method and when a minute flow rate is fed by the minute flow rate feeding method of the present invention. The horizontal axis represents time, and the vertical axis represents absorbance. a shows the result when a minute flow rate is fed by the conventional active split method. b shows the result when a minute flow rate is fed by the minute flow rate feeding method of the present invention. 溶媒グラジエント溶出法において、従来のアクティブスプリット法で微小流量を送液したときと、本発明の微小流量送液方法で微小流量を送液したときとでカラム圧力の変化を示した図。横軸は時間、縦軸はカラム圧力を表す。aは従来のアクティブスプリット法で微小流量を送液したときの結果を示す。bは本発明の微小流量送液方法で微小流量を送液したときの結果を示す。In the solvent gradient elution method, the figure which showed the change of column pressure when feeding a micro flow rate by the conventional active split method, and when sending a micro flow rate by the micro flow rate feeding method of this invention. The horizontal axis represents time, and the vertical axis represents column pressure. a shows the result when a minute flow rate is fed by the conventional active split method. b shows the result when a minute flow rate is fed by the minute flow rate feeding method of the present invention. 溶媒グラジエント溶出法において、従来のアクティブスプリット法で微小流量を送液したときと、本発明の微小流量送液方法で微小流量を送液したときとで、分岐前の流路に配置された、第一の熱式流量計の出力値の変化を示した図。横軸は時間、縦軸は流量(流量計の出力値)を表す。aは従来のアクティブスプリット法で微小流量を送液したときの結果を示す。bは本発明の微小流量送液方法で微小流量を送液したときの結果を示す。In the solvent gradient elution method, when a minute flow rate is fed by the conventional active split method, and when a minute flow rate is fed by the minute flow rate feeding method of the present invention, it is arranged in the channel before branching. The figure which showed the change of the output value of a 1st thermal type flow meter. The horizontal axis represents time, and the vertical axis represents the flow rate (the output value of the flow meter). a shows the result when a minute flow rate is fed by the conventional active split method. b shows the result when a minute flow rate is fed by the minute flow rate feeding method of the present invention. 溶媒グラジエント溶出法において、従来のアクティブスプリット法で微小流量を送液したときと、本発明の微小流量送液方法で微小流量を送液したときとの、B側流路に配置された第二の熱式流量計の出力値の変化を示した図。横軸は時間、縦軸は流量を表す。aは従来のアクティブスプリット法で微小流量を送液したときの結果を示す。bは本発明の微小流量送液方法で微小流量を送液したときの結果を示す。In the solvent gradient elution method, the second flow rate disposed in the B-side flow path when the minute flow rate is fed by the conventional active split method and when the minute flow rate is fed by the minute flow rate feeding method of the present invention. The figure which showed the change of the output value of the thermal type flow meter. The horizontal axis represents time, and the vertical axis represents the flow rate. a shows the result when a minute flow rate is fed by the conventional active split method. b shows the result when a minute flow rate is fed by the minute flow rate feeding method of the present invention. 溶媒グラジエント溶出法において、従来のアクティブスプリット法で微小流量を送液したときと、本発明の微小流量送液方法で微小流量を送液したときとの、分岐前の流路に配置された第一の熱式流量計の出力値から、B側流路に配置された第二の熱式流量計の出力値の差を示した図。横軸は時間、縦軸は流量を表す。aは従来のアクティブスプリット法で微小流量を送液したときの結果を示す。bは本発明の微小流量送液方法で微小流量を送液したときの結果を示す。cは溶離液の比熱の変化を示す(ボイドの影響を考慮し、2分の遅れをもたしている)。In the solvent gradient elution method, when the minute flow rate is fed by the conventional active split method, and when the minute flow rate is fed by the minute flow rate feeding method of the present invention, the first flow channel arranged before branching is arranged. The figure which showed the difference of the output value of the 2nd thermal type flow meter arrange | positioned in the B side flow path from the output value of one thermal type flow meter. The horizontal axis represents time, and the vertical axis represents the flow rate. a shows the result when a minute flow rate is fed by the conventional active split method. b shows the result when a minute flow rate is fed by the minute flow rate feeding method of the present invention. c shows the change in the specific heat of the eluent (with a delay of 2 minutes considering the effect of voids). 溶媒グラジエント溶出法において、従来のアクティブスプリット法で微小流量を送液したときと、本発明の微小流量送液方法で微小流量を送液したときとの、熱式流量計の出力値の差を比熱で除算した値を示した図。横軸は時間、縦軸は流量を表す。aは従来のアクティブスプリット法で微小流量を送液したときの結果を示す。bは本発明の微小流量送液方法で微小流量を送液したときの結果を示す。In the solvent gradient elution method, the difference in the output value of the thermal flow meter between when the minute flow rate is fed by the conventional active split method and when the minute flow rate is fed by the minute flow rate feeding method of the present invention. The figure which showed the value divided by the specific heat. The horizontal axis represents time, and the vertical axis represents the flow rate. a shows the result when a minute flow rate is fed by the conventional active split method. b shows the result when a minute flow rate is fed by the minute flow rate feeding method of the present invention. 本発明の微小流量送液方法で微小流量を送液したときのクロマトグラム結果(n=10)。横軸は時間、縦軸は吸光度を表す。The chromatogram result (n = 10) when feeding a minute flow rate by the minute flow amount feeding method of the present invention. The horizontal axis represents time, and the vertical axis represents absorbance. 本発明の微小流量送液方法で微小流量を送液したときの、溶出時間の変動を示した図(n=10)。The figure which showed the fluctuation | variation of the elution time when a minute flow rate is sent with the minute flow amount feeding method of the present invention (n = 10). 本発明の微小流量送液方法で微小流量を送液したときの、溶出時間のCv(%)を示した図(n=10で2バッチ測定)。The figure which showed Cv (%) of elution time when supplying a micro flow rate by the micro flow rate liquid feeding method of this invention (2 batch measurement at n = 10). 本発明の微小流量送液方法をキャピラリィ電気泳動に適用した場合の流路図。長鎖線はA側流路、長破線はB側流路を示す。FIG. 3 is a flow chart when the micro flow rate liquid feeding method of the present invention is applied to capillary electrophoresis. A long chain line indicates the A-side flow path, and a long broken line indicates the B-side flow path.

符号の説明Explanation of symbols

1.溶離液A
2.送液ポンプA
3.圧力計
4.第一の熱式流量計
5a.第二の熱式流量計
5b.流量制御装置
6.試料注入装置
7.分析カラム
8.カラム恒温槽
9.検出器
10.廃液A
11.廃液B
12.フィードバック信号
13.分岐ブロック
14.演算機
15.溶離液B
16.送液ポンプB
17.可変抵抗
18.電源
19.電気泳動分離媒体
20.電解液A
21.電解液B
22.電極A
23.電極B
1. Eluent A
2. Liquid feed pump A
3. 3. Pressure gauge First thermal flow meter 5a. Second thermal flow meter 5b. 5. Flow control device 6. Sample injection device Analytical column 8. Column thermostat 9. Detector 10. Waste liquid A
11. Waste B
12 Feedback signal 13. Branch block 14. Calculator 15. Eluent B
16. Liquid feed pump B
17. Variable resistor 18. Power supply 19. Electrophoretic separation medium 20. Electrolyte A
21. Electrolyte B
22. Electrode A
23. Electrode B

Claims (6)

送液手段によって液体を流し、分岐手段を用いて、分離媒体側の流路及び廃棄側の流路とに分岐させることで、微小流量の液体を分離媒体に流す微小流量送液装置であって、
送液手段と分岐手段との間に流れる液体の流量値を任意のサンプリング間隔で計測する第一の流量計と、
分離媒体側の流路または廃棄側の流路に流れる液体の流量値を第一の流量計と同じまたは異なるサンプリング間隔で計測する第二の流量計と、
分離媒体側の流路または廃棄側の流路に流れる液体の流量を必要に応じて制御する流量制御手段と、
第一及び第二の流量計で計測された流量値に基づいて、送液手段と分岐手段との間の流路、分離媒体側の流路、及び廃棄側の流路に流れる液体の流量を制御するための信号を送る演算手段とを備え、
前記演算手段は
(1−1)第一の流量計で計測された流量値を入力値として、当該流量値に1未満の任意の値を乗じて、第二の流量計で計測されるべき流量値を計算し、
(1−2)第二の流量計で計測された流量値を入力値として、前記計算した第二の流量計で計測されるべき流量値と比較し、両方の流量値を一致させるように、前記流量制御手段を制御する、
または、
(2−1)第二の流量計で計測された流量値を入力値として、当該流量値に1を超える任意の値を乗じて、第一の流量計で計測されるべき流量値を計算し、
(2−2)第一の流量計で計測された流量値を入力値として、前記計算した第一の流量計で計測されるべき流量値と比較し、両方の流量値を一致させるように、前記送液手段を制御する、
ことを特徴とする、前記微小流量送液装置。
A micro flow rate liquid feeding device for flowing a liquid at a small flow rate to a separation medium by flowing a liquid by a liquid feeding unit and branching it to a separation medium side channel and a waste side channel by using a branching unit. ,
A first flow meter for measuring a flow rate value of the liquid flowing between the liquid feeding means and the branching means at an arbitrary sampling interval;
A second flow meter that measures the flow rate value of the liquid flowing in the separation medium side flow path or the waste side flow path at the same or different sampling interval as the first flow meter;
A flow rate control means for controlling the flow rate of the liquid flowing in the flow path on the separation medium side or the flow path on the waste side as necessary;
Based on the flow rate values measured by the first and second flow meters, the flow rate of the liquid flowing in the flow path between the liquid feeding means and the branching means, the flow path on the separation medium side, and the flow path on the disposal side is calculated. Arithmetic means for sending a signal for control,
The calculation means (1-1) uses the flow value measured by the first flow meter as an input value, multiplies the flow value by an arbitrary value less than 1, and the flow rate to be measured by the second flow meter. Calculate the value
(1-2) Using the flow value measured by the second flow meter as an input value, comparing it with the flow value to be measured by the calculated second flow meter, and making both flow values coincide, Controlling the flow rate control means;
Or
(2-1) Using the flow value measured by the second flow meter as an input value, multiply the flow value by an arbitrary value exceeding 1, and calculate the flow value to be measured by the first flow meter. ,
(2-2) Using the flow value measured by the first flow meter as an input value, comparing the flow value to be measured by the first flow meter calculated above, and matching both flow values, Controlling the liquid feeding means;
The micro flow rate liquid feeding device characterized by the above.
前記第一及び第二の流量計が、熱式流量計であることを特徴とする、請求項1に記載の微小流量送液装置。 The minute flow rate liquid feeding device according to claim 1, wherein the first and second flow meters are thermal flow meters. 廃棄側の流路に前記第二の流量計及び前記流量制御手段を設置していることを特徴とする、請求項1から2に記載の微小流量送液装置。 The minute flow rate liquid feeding device according to claim 1, wherein the second flow meter and the flow rate control means are installed in a flow path on the disposal side. 前記演算手段には、各サンプリング間隔で計測した時間における、
(1)第一及び第二の流量計で計測された流量値、
(2)第一または第二の流量計で計測されるべき流量の計算値、
(3)流量制御手段または送液手段で制御すべき流量値、
(4)流量制御手段または送液手段の制御に関する情報、
を記録するための記録手段を備えていることを特徴とする、請求項1から3に記載の微小流量送液装置。
In the calculation means, in the time measured at each sampling interval,
(1) Flow rate values measured by the first and second flow meters,
(2) a calculated value of the flow rate to be measured by the first or second flow meter,
(3) Flow rate value to be controlled by the flow rate control means or the liquid feeding means,
(4) Information relating to control of the flow rate control means or the liquid feeding means,
4. The micro flow rate liquid feeding device according to claim 1, further comprising recording means for recording
送液手段を用いて液体を流し、分岐手段を用いて分離媒体側の流路及び廃棄側の流路とに分岐させることで、微小流量の液体を分離媒体に流す微小流量送液方法であって、
送液手段と分岐手段との間に流れる液体の流量値と、分離媒体側の流路または廃棄側の流路に流れる液体の流量値を計測し、
(1−1)前記送液手段と分岐手段との間に流れる液体の流量値に、1未満の任意の値を乗じて、分離媒体側の流路または廃棄側の流路に流すべき液体の流量値を計算し、
(1−2)前記計算した分離媒体側の流路または廃棄側の流路に流すべき液体の流量値と、前記分離媒体側の流路または廃棄側の流路に流れる液体の流量値とが一致するように、分離媒体側の流路または廃棄側の流路に流れる液体の流量を制御する、
または
(2−1)前記分離媒体側の流路または廃棄側の流路に流れる液体の流量に、1を超える任意の値を乗じて、送液手段と分岐手段との間に流すべき液体の流量値を計算し、
(2−2)前記計算した送液手段と分岐手段との間に流すべき液体の流量値と、前記送液手段と分岐手段との間に流れる液体の流量値とが一致するように、送液手段と分岐手段との間に流れる液体の流量を制御する、
ことを特徴とする、前記微小流量送液方法。
This is a micro flow rate feeding method in which a liquid is flowed using a liquid feeding means and branched to a flow path on the separation medium side and a waste side flow path using a branching means, thereby allowing a liquid with a small flow rate to flow into the separation medium. And
Measure the flow rate value of the liquid flowing between the liquid feeding means and the branching means and the flow rate value of the liquid flowing in the separation medium side flow path or the disposal side flow path,
(1-1) The flow rate value of the liquid flowing between the liquid feeding means and the branching means is multiplied by an arbitrary value less than 1, and the liquid to be flowed to the separation medium side flow path or the waste side flow path Calculate the flow value,
(1-2) The calculated flow rate value of the liquid that should flow through the separation medium side channel or the disposal side channel and the flow rate value of the liquid flowing through the separation medium side channel or the disposal side channel. Control the flow rate of the liquid flowing in the separation medium side flow path or the waste side flow path so as to match.
Or (2-1) multiplying the flow rate of the liquid flowing in the flow path on the separation medium side or the flow path on the waste side by an arbitrary value greater than 1, and the liquid to flow between the liquid feeding means and the branching means Calculate the flow value,
(2-2) The flow rate value of the liquid that should flow between the liquid feeding unit and the branching unit and the flow rate value of the liquid flowing between the liquid feeding unit and the branching unit are matched. Controlling the flow rate of the liquid flowing between the liquid means and the branching means,
The method for feeding a minute flow rate as described above.
送液手段と分岐手段との間に流れる液体の流量値に1未満の任意の値を乗じた計算値で制御される流量が、廃棄側の流路に流れる液体の流量であることを特徴とする、請求項5に記載の微小流量送液方法。 The flow rate controlled by a calculated value obtained by multiplying the flow rate value of the liquid flowing between the liquid feeding unit and the branching unit by an arbitrary value less than 1 is the flow rate of the liquid flowing in the waste-side flow path. The micro flow rate liquid feeding method according to claim 5.
JP2008270539A 2008-10-21 2008-10-21 Micro flow rate liquid feeding device and liquid feeding method Active JP5386927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008270539A JP5386927B2 (en) 2008-10-21 2008-10-21 Micro flow rate liquid feeding device and liquid feeding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008270539A JP5386927B2 (en) 2008-10-21 2008-10-21 Micro flow rate liquid feeding device and liquid feeding method

Publications (2)

Publication Number Publication Date
JP2010101630A JP2010101630A (en) 2010-05-06
JP5386927B2 true JP5386927B2 (en) 2014-01-15

Family

ID=42292411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270539A Active JP5386927B2 (en) 2008-10-21 2008-10-21 Micro flow rate liquid feeding device and liquid feeding method

Country Status (1)

Country Link
JP (1) JP5386927B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5957973B2 (en) * 2012-03-07 2016-07-27 東ソー株式会社 Micro flow rate liquid feeding method and apparatus using the method
US9683975B2 (en) 2014-02-12 2017-06-20 Idex Health & Science Llc Volumetric flow regulation in multi-dimensional liquid analysis systems
US20170276652A1 (en) * 2014-08-28 2017-09-28 Shimadzu Corporation Analyzing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289914B1 (en) * 2000-08-16 2001-09-18 Novartis Ag Microflow splitter
JP2004309135A (en) * 2003-04-01 2004-11-04 Gl Sciences Inc Branching apparatus of liquid in liquid chromatography
US7186336B2 (en) * 2003-11-26 2007-03-06 Waters Investments Limited Flow sensing apparatus
US20060219637A1 (en) * 2005-03-29 2006-10-05 Killeen Kevin P Devices, systems and methods for liquid chromatography
JP4645437B2 (en) * 2005-12-22 2011-03-09 株式会社島津製作所 Gradient liquid feeder

Also Published As

Publication number Publication date
JP2010101630A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
US9393504B2 (en) Closed loop flow control of a HPLC constant flow pump to enable low-flow operation
US7927477B2 (en) Precision flow control system
US9618485B2 (en) HPLC-system with variable flow rate
US8679332B2 (en) Flow sensing apparatus used to monitor/provide feedback system to a split flow pumping system
CN109425394B (en) Measurement of fluid flow
US10175209B2 (en) Liquid flow rate measurement device
US20200088695A1 (en) Method and apparatus for control of mass composition of mobile phase
US20080291966A1 (en) Thermal conductivity detector (TCD) having compensated constant temperature element
JP5386927B2 (en) Micro flow rate liquid feeding device and liquid feeding method
US9354208B2 (en) Apparatus for generating small flow rates in a channel
WO2020049614A1 (en) Gas chromatograph device and gas chromatograph device analysis support method
JP3775541B2 (en) Calibration method for chromatography columns
US4151741A (en) Method and apparatus for gas chromatographic analysis
JP7282801B2 (en) Analysis apparatus having multiple liquid chromatographs and analysis method thereof
EP1543321A2 (en) Method and apparatus for monitoring fluid flow
GB2495777A (en) Flow sensor stabilisation by adjusting temperature gradient
JP2008083040A (en) Liquid chromatograph unit
RU2468363C1 (en) Flow chromatograph
US10976289B2 (en) Corrected flow reporting under dynamic conditions by system modeling
JP2014157139A (en) Liquid chromatograph
US20240019407A1 (en) Method of controlling liquid chromatograph and liquid chromatograph
RU2660392C1 (en) Planar microdoser with changing fixed amount of analyzed gas in dose
JP2023536141A (en) Method and system for gas chromatography carrier gas identification
WO2013083187A1 (en) Calibration procedure for fluidic sensors
EP2112507A1 (en) Apparatus and method for direct resistive heating of conduits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

R151 Written notification of patent or utility model registration

Ref document number: 5386927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151