JP5386705B2 - High-purity iron alloy with excellent fatigue resistance - Google Patents

High-purity iron alloy with excellent fatigue resistance Download PDF

Info

Publication number
JP5386705B2
JP5386705B2 JP2008272974A JP2008272974A JP5386705B2 JP 5386705 B2 JP5386705 B2 JP 5386705B2 JP 2008272974 A JP2008272974 A JP 2008272974A JP 2008272974 A JP2008272974 A JP 2008272974A JP 5386705 B2 JP5386705 B2 JP 5386705B2
Authority
JP
Japan
Prior art keywords
fatigue
less
mass
massppm
iron alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008272974A
Other languages
Japanese (ja)
Other versions
JP2010100891A (en
Inventor
兼次 安彦
Original Assignee
スーパーピュアメタル合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スーパーピュアメタル合同会社 filed Critical スーパーピュアメタル合同会社
Priority to JP2008272974A priority Critical patent/JP5386705B2/en
Publication of JP2010100891A publication Critical patent/JP2010100891A/en
Application granted granted Critical
Publication of JP5386705B2 publication Critical patent/JP5386705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、耐疲労特性に優れるフェライト系の高純度鉄合金に関するものである。ここで、本発明の上記高純度鉄合金には、極微量のC,N,SおよびOを含有する高純度鉄(純Fe)も含むものとする。   The present invention relates to a ferritic high-purity iron alloy having excellent fatigue resistance. Here, the high-purity iron alloy of the present invention includes high-purity iron (pure Fe) containing trace amounts of C, N, S and O.

金属材料は、その引張強さを超える応力を加えると破壊する。しかし、その応力が巨視的降伏応力以下であっても、それが繰り返されると疲労を起こし、ついには破断に至ることがある。何回の繰り返し数で破壊するかは、その応力の大きさによる。繰り返し応力を特定数加えたときに疲労しない最大応力を、その繰り返し数における疲労強度または疲れ強度といい、また、疲労強度と繰り返し数の関係を表した線図をS−N線図といい、この線の下の領域では疲労を起こさない。   A metal material breaks when a stress exceeding its tensile strength is applied. However, even if the stress is less than or equal to the macroscopic yield stress, if it is repeated, fatigue may occur and eventually breakage may occur. The number of times of failure depends on the magnitude of the stress. The maximum stress that does not fatigue when a specific number of repeated stresses is applied is referred to as fatigue strength or fatigue strength at the number of repetitions, and a diagram representing the relationship between fatigue strength and the number of repetitions is referred to as an SN diagram, There is no fatigue in the area below this line.

鋼のS−N曲線は、右下がりの直線、即ち、繰り返し数が多くなるほど、より小さな応力で疲労を起こすが、繰り返し数が10〜10からは水平の直線となり、繰り返し数がいくら多くなっても疲労を起こす応力は変わらなくなる。この水平の直線の応力は、疲労限度または疲れ限度と呼ばれる。そして、疲労限度未満の繰り返し応力であれば、無限回数、応力を加えても疲労破壊を起こさない。したがって、鋼材は、通常、疲労限度未満の応力下で使用される。 The SN curve of steel is a straight line that falls to the right, that is, fatigue increases with a smaller stress as the number of repetitions increases, but from 10 6 to 10 7 the number of repetitions becomes a horizontal straight line. Even so, the stress that causes fatigue does not change. This horizontal straight line stress is called the fatigue limit or fatigue limit. And if it is a repetitive stress below the fatigue limit, fatigue failure will not occur even if the stress is applied an infinite number of times. Therefore, steel is usually used under stresses below the fatigue limit.

一般に、多くの鉄鋼材料の疲労限度は、引張強さの40〜60%、即ち、(疲労限度/引張強さ)で表される「疲労限度比」が0.4〜0.6の範囲にあるといわれている。ここで、降伏比(=降伏応力/引張強さ)を0.9とすると、疲労限度は、降伏応力の44〜67%の範囲であることになる。これは、従来の鉄鋼材料は、降伏応力の約2/3以下の応力下で使用されていることを意味する。したがって、上記疲労限度比を高めることができれば、低強度鋼でも使用可能範囲を拡大することができるので、その効果は計り知れないものがある。   Generally, the fatigue limit of many steel materials is 40 to 60% of the tensile strength, that is, the “fatigue limit ratio” expressed by (fatigue limit / tensile strength) is in the range of 0.4 to 0.6. It is said that there is. Here, assuming that the yield ratio (= yield stress / tensile strength) is 0.9, the fatigue limit is in the range of 44 to 67% of the yield stress. This means that conventional steel materials are used under a stress of about 2/3 or less of the yield stress. Therefore, if the fatigue limit ratio can be increased, the usable range can be expanded even with low-strength steel, and the effect is immeasurable.

また、原子力発電プラントや火力発電プラント、各種輸送機器等の分野では、安全性に対する要求が極めて厳しいことから、使用される鉄鋼材料が耐疲労特性に優れていることが強く求められている。   Further, in the fields of nuclear power plants, thermal power plants, various transportation equipments, and the like, since safety requirements are extremely severe, it is strongly required that steel materials used have excellent fatigue resistance.

そこで、本発明の目的は、耐疲労特性に優れる鉄鋼材料、具体的には、疲労限度比(疲労限度/引張強さ)が0.6以上である耐疲労特性に優れる高純度鉄合金を提供することにある。   Therefore, an object of the present invention is to provide a steel material having excellent fatigue resistance, specifically, a high-purity iron alloy having excellent fatigue resistance with a fatigue limit ratio (fatigue limit / tensile strength) of 0.6 or more. There is to do.

発明者らは、かねてから、フェライト系の純FeおよびFe−Cr系合金を高純度化したときの合金が有する各種特性の変化に着目し、研究を重ねてきた。その結果、純FeやFe−Cr系合金を、従来の不純物混入レベルを超えてさらに低減し、C,N,SおよびOの合計を100massppm以下に高純度化することにより、加工性や溶接性、耐食性等に優れるだけでなく、耐疲労特性にも優れる材料を得ることができることを知見し、本発明を完成させた。   The inventors have been researching for a long time, paying attention to changes in various properties of alloys obtained by purifying ferritic pure Fe and Fe—Cr alloys. As a result, pure Fe and Fe-Cr alloys are further reduced beyond the conventional impurity contamination level, and the total amount of C, N, S and O is increased to 100 massppm or less, thereby improving workability and weldability. The inventors have found that it is possible to obtain a material not only excellent in corrosion resistance but also excellent in fatigue resistance, and completed the present invention.

すなわち、本発明は、C:10massppm以下、N:10massppm以下、C,N,SおよびOの合計量が100massppm以下で、さらに、Cr:20〜50mass%、Mo:10mass%以下およびW:10mass%以下を含有し、残部がFeおよび不可避的不純物の成分組成からなり、疲労試験における繰り返し数が10の疲労限度比が0.6以上である高純度鉄合金である。 That is, the present invention is such that C: 10 massppm or less, N: 10 massppm or less, the total amount of C, N, S and O is 100 massppm or less , Cr: 20-50 mass%, Mo: 10 mass% or less, and W: 10 mass% It is a high-purity iron alloy containing the following, with the balance being composed of component compositions of Fe and inevitable impurities, and having a fatigue limit ratio of 0.6 or more with a repetition number of 10 7 in a fatigue test.

本発明によれば、疲労試験における繰り返し数が10の疲労強度、即ち、疲労限度が引張強さの0.6倍以上である耐疲労特性に優れる鉄合金(鉄鋼材料)を提供することができる。したがって、本発明の鉄合金は、安全性の向上や鉄合金の使用分野の拡大に大いに寄与する。 According to the present invention, it is possible to provide an iron alloy (steel material) having excellent fatigue resistance with a fatigue strength of 10 7 in the fatigue test, that is, a fatigue limit of 0.6 times or more of the tensile strength. it can. Therefore, the iron alloy of the present invention greatly contributes to the improvement of safety and the expansion of the field of use of the iron alloy.

本発明に係る高純度鉄合金の成分組成を限定する理由について説明する。
(C+N+S+O):100massppm以下
C,N,SおよびOは、鋼中に不純物として不可避的に混入してくる元素である。これらの元素は、他の元素と炭窒化物や硫化物、酸化物等を形成し、粒界や粒内に析出して、耐疲労特性を劣化させるだけでなく、加工性や溶接性、耐食性等の低下を引き起こす。特に、これらの元素の合計量が100massppmを超えると耐疲労特性の低下が顕著となるため、C,N,SおよびOは、合計で100massppm以下に制限する。好ましくは、50massppm以下、より好ましくは、30massppm以下である。
The reason for limiting the component composition of the high purity iron alloy according to the present invention will be described.
(C + N + S + O): 100 mass ppm or less C, N, S and O are elements inevitably mixed as impurities in steel. These elements form carbonitrides, sulfides, oxides, etc. with other elements and precipitate in grain boundaries and grains, not only deteriorating fatigue resistance, but also workability, weldability, corrosion resistance Etc. In particular, when the total amount of these elements exceeds 100 massppm, the fatigue resistance is significantly reduced. Therefore, C, N, S, and O are limited to 100 massppm or less in total. Preferably, it is 50 massppm or less, More preferably, it is 30 massppm or less.

なお、C,N,SおよびOは、合計で100massppm以下であることが必須であるが、個々の成分については、C:20massppm以下、N:20massppm以下、S:10massppm以下およびO:50massppm以下であることが好ましく、さらには、C:10massppm以下、N:10massppm以下、S:5massppm以下およびO:30massppm以下であることがより好ましい。   C, N, S, and O must be 100 massppm or less in total, but for each component, C: 20 massppm or less, N: 20 massppm or less, S: 10 massppm or less, and O: 50 massppm or less. More preferably, C: 10 massppm or less, N: 10 massppm or less, S: 5 massppm or less, and O: 30 massppm or less are more preferable.

本発明の高純度鉄合金は、上記C,N,SおよびO以外の成分として、Cr,WおよびMoのうちから選ばれる1種または2種以上を下記範囲で含有することができる。
Cr:15〜50mass%
Crは、本発明の高純度鉄合金においては、強度と耐食性を確保するために添加する元素であり、斯かる効果を発現させるためには、15mass%以上添加することが好ましい。Cr含有量が15mass%未満では、強度や耐食性の向上効果が十分に得られない。一方、Crの含有量が50mass%を超えると、上記効果が飽和すると共に、靭性も低下するようになる。より好ましくは、20〜40mass%の範囲である。
The high-purity iron alloy of the present invention can contain one or more selected from Cr, W and Mo as components other than C, N, S and O in the following ranges.
Cr: 15-50 mass%
Cr is an element added to ensure strength and corrosion resistance in the high-purity iron alloy of the present invention. In order to exhibit such effects, it is preferable to add 15 mass% or more. If the Cr content is less than 15 mass%, the effect of improving strength and corrosion resistance cannot be obtained sufficiently. On the other hand, when the content of Cr exceeds 50 mass%, the above effect is saturated and toughness is lowered. More preferably, it is the range of 20-40 mass%.

W:10mass%以下
Wは、合金強度を高めるのに有効な元素であり、必要に応じて添加することができる。しかし、10mass%を超えて添加した場合には、靭性の低下を招く。よって、Wは、10mass%以下添加するのが好ましい。より好ましくは1〜6mass%の範囲である。
W: 10 mass% or less W is an element effective for increasing the alloy strength, and can be added as necessary. However, when it exceeds 10 mass%, toughness is reduced. Therefore, it is preferable to add 10 mass% or less of W. More preferably, it is the range of 1-6 mass%.

Mo:10mass%以下
Moは、合金強度を高めるのに有効な元素であり、必要に応じて添加することができる。しかし、10mass%を超えて添加した場合には、靭性の低下を招く。よって、Moは、10mass%以下添加するのが好ましい。より好ましくは2〜6mass%の範囲である。
Mo: 10 mass% or less Mo is an element effective for increasing the alloy strength, and can be added as necessary. However, when it exceeds 10 mass%, toughness is reduced. Therefore, it is preferable to add 10 mass% or less of Mo. More preferably, it is the range of 2-6 mass%.

本発明の高純度鉄合金は、上記成分以外の残部は、Feおよび不可避的不純物である。しかし、上記以外の成分は、本発明の作用効果を害さない範囲であれば含有することができ、例えば、Si:0.015mass%以下、Mn:0.01mass%以下、P:0.01mass%以下、Al:0.05mass%以下、Ni:0.60mass%以下の範囲で含有してもよい。
また、NbおよびTiは、C,Nと炭窒化物を形成したり、Sと硫化物等を形成したりして析出し、高温強度を高める元素であり、Nb:1mass%以下、Ti:1mass%以下の範囲で必要に応じて添加することができる。なお、これらの元素を同時添加する場合には、合計で1.5mass%以下に制限するのが好ましい。
また、Bは、粒界の強度を高める元素であり、必要に応じて0.0050mass%以下の範囲で含有することができる。
その他の不可避的不純物としては、Cu,Pb,As,Sn,Zn,Zr等があるが、これらの元素は合計で0.01mass%以下に制限することが好ましい。
In the high purity iron alloy of the present invention, the balance other than the above components is Fe and inevitable impurities. However, components other than those described above can be contained as long as the effects of the present invention are not impaired. For example, Si: 0.015 mass% or less, Mn: 0.01 mass% or less, P: 0.01 mass% Hereinafter, Al: 0.05 mass% or less, Ni: 0.60 mass% or less may be contained.
Nb and Ti are elements that precipitate by forming carbon, nitrides with C, N, or sulfides with S, etc., and increasing high temperature strength. Nb: 1 mass% or less, Ti: 1 mass % Can be added as necessary within the range of% or less. In addition, when adding these elements simultaneously, it is preferable to restrict | limit to 1.5 mass% or less in total.
B is an element that increases the strength of the grain boundary, and can be contained in a range of 0.0050 mass% or less as necessary.
Other inevitable impurities include Cu, Pb, As, Sn, Zn, Zr, etc., but these elements are preferably limited to 0.01 mass% or less in total.

上記成分組成を満たす本発明の高純度鉄合金は、繰り返し数が10における疲労強度(疲労限度)が引張強さの0.6倍以上、即ち、疲労限度比が0.6以上という優れた耐疲労特性を有するものとなる。特に、C,N,SおよびOの合計含有量をさらに低減した場合には、疲労限度比が0.7以上、あるいは、0.8以上とすることも可能であり、さらには、C,N,SおよびOの合計含有量を20massppm以下の超高純度にした場合には、疲労限度比が0.9以上という降伏応力にほぼ匹敵する疲労限度を有する極めて優れた耐疲労特性を有するものとなる。 The high-purity iron alloy of the present invention satisfying the above component composition is excellent in that the fatigue strength (fatigue limit) at a repetition rate of 10 7 is 0.6 times or more of the tensile strength, that is, the fatigue limit ratio is 0.6 or more. It has fatigue resistance. In particular, when the total content of C, N, S and O is further reduced, the fatigue limit ratio can be 0.7 or more, or 0.8 or more. When the total content of, S and O is made ultrahigh purity of 20 massppm or less, the fatigue limit ratio is 0.9 or more and has a fatigue limit almost equal to the yield stress, and has excellent fatigue resistance characteristics. Become.

表1に示した、C,N,SおよびOの含有量が異なる4種類の20mass%Cr−3mass%Mo−2mass%W−Fe合金を溶製し、熱間圧延し、大気雰囲気中で950℃×30minの溶体化処理を施した後、これらの熱延材から圧延方向を引張方向とするJIS Z2201に規定された4号引張試験片と、図1に示した形状の疲労試験片を作製し、引張試験および高サイクル(30Hz)の回転曲げ疲労試験に供した。なお、参考例として、市販のSUS316Lから、上記と同じ疲労試験片を作製し、同様の試験に供した。
引張試験は、JIS Z2241に準拠して行い、降伏応力YS、引張強さTSおよび伸びElを測定した。
また、回転曲げ疲労試験は、振幅応力60〜400MPaで、繰り返し数10の疲労強度(疲労限度)を測定し、下記式から、疲労限度比を求めた。
疲労限度比=(繰り返し数10の疲労強度/引張強さ)
Four types of 20 mass% Cr-3 mass% Mo-2 mass% W—Fe alloys shown in Table 1 having different contents of C, N, S, and O are melted, hot-rolled, and 950 in the atmosphere. After a solution treatment at 30 ° C. for 30 minutes, a No. 4 tensile test piece defined in JIS Z2201 whose tensile direction is the rolling direction and a fatigue test piece having the shape shown in FIG. And subjected to a tensile test and a high cycle (30 Hz) rotating bending fatigue test. In addition, as a reference example, the same fatigue test piece as the above was produced from commercially available SUS316L, and it used for the same test.
The tensile test was conducted according to JIS Z2241, and the yield stress YS, tensile strength TS, and elongation El were measured.
Further, in the rotating bending fatigue test, the fatigue strength (fatigue limit) with an amplitude stress of 60 to 400 MPa and a repetition number of 10 7 was measured, and the fatigue limit ratio was determined from the following formula.
Fatigue limit ratio = (fatigue strength with 10 7 repetitions / tensile strength)

Figure 0005386705
Figure 0005386705

上記引張試験の結果を表2に、また、疲労試験の結果をS−N線図として図2に、また、図2から求められる繰り返し数10の疲労強度と、疲労限度比を表2に示した。これらの結果から、本発明に適合する高純度鉄合金(No.1〜3(ただし、No.3は参考例))は、繰り返し数が10における疲労限度比が0.6以上であり、耐疲労特性に優れていることがわかる。特に、C,N,SおよびOの合計量を20massppm以下の高純度にしたNo.1の合金では、従来材料では実現不可能であった降伏応力に匹敵する疲労限度を有することがわかる。 The results of the tensile test are shown in Table 2, also the results of the fatigue test in FIG. 2 as S-N diagram, also the fatigue strength of the repeating number 107 obtained from Fig. 2, the fatigue ratio in Table 2 Indicated. From these results, the present invention meets high-purity iron alloy (No.1~3 (although, No.3 Reference Example)) is the number of repetitions is at least 0.6 fatigue ratio at 10 7, It can be seen that the fatigue resistance is excellent. In particular, No. 1 in which the total amount of C, N, S and O was high purity of 20 mass ppm or less. It can be seen that the alloy No. 1 has a fatigue limit comparable to the yield stress that was not possible with conventional materials.

Figure 0005386705
Figure 0005386705

本発明の鉄合金は、原子力発電プラントや火力発電プラント、各種輸送機器の分野に用いて有益であるが、その他の一般産業分野にも好適に用いることができる。   The iron alloy of the present invention is beneficial for use in the fields of nuclear power plants, thermal power plants, and various transportation equipment, but can also be suitably used in other general industrial fields.

本発明の疲労試験片の形状を示す図である。It is a figure which shows the shape of the fatigue test piece of this invention. 高サイクル疲労試験結果を示すグラフである。It is a graph which shows a high cycle fatigue test result.

Claims (1)

C:10massppm以下、N:10massppm以下、C,N,SおよびOの合計量が100massppm以下で、さらに、Cr:20〜50mass%、Mo:10mass%以下およびW:10mass%以下を含有し、残部がFeおよび不可避的不純物の成分組成からなり、疲労試験における繰り返し数が10の疲労限度比が0.6以上である高純度鉄合金。 C: 10 massppm or less, N: 10 massppm or less, the total amount of C, N, S and O is 100 massppm or less , and further contains Cr: 20-50 mass%, Mo: 10 mass% or less, and W: 10 mass% or less, and the balance Is a high-purity iron alloy comprising a component composition of Fe and inevitable impurities, and having a fatigue limit ratio of 0.6 or more with a repetition number of 10 7 in a fatigue test.
JP2008272974A 2008-10-23 2008-10-23 High-purity iron alloy with excellent fatigue resistance Active JP5386705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008272974A JP5386705B2 (en) 2008-10-23 2008-10-23 High-purity iron alloy with excellent fatigue resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008272974A JP5386705B2 (en) 2008-10-23 2008-10-23 High-purity iron alloy with excellent fatigue resistance

Publications (2)

Publication Number Publication Date
JP2010100891A JP2010100891A (en) 2010-05-06
JP5386705B2 true JP5386705B2 (en) 2014-01-15

Family

ID=42291780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008272974A Active JP5386705B2 (en) 2008-10-23 2008-10-23 High-purity iron alloy with excellent fatigue resistance

Country Status (1)

Country Link
JP (1) JP5386705B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129143A (en) * 2001-10-16 2003-05-08 Nisshin Steel Co Ltd Method for melting high-purity metal or alloy
JP4286189B2 (en) * 2004-07-23 2009-06-24 株式会社日本製鋼所 High Cr ferritic iron alloy with excellent toughness and method for producing the same

Also Published As

Publication number Publication date
JP2010100891A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP4803174B2 (en) Austenitic stainless steel
JP5462281B2 (en) Stainless austenitic low Ni steel alloy
EP2850215B1 (en) Reduced cost steel for hydrogen technology with high resistance to hydrogen-induced imbrittlement
EP2553132B1 (en) Steel product with improved weathering characteristics in saline environment
KR20190065352A (en) NiCrFe alloy
DE102012104254A1 (en) Cost-reduced steel for hydrogen technology with high resistance to hydrogen-induced embrittlement
JP2017202494A (en) Austenitic heat-resistant steel weld metal and weld joint having the same
TW201410882A (en) Ferritic stainless steel
DE102010026808A1 (en) Austenite-containing cast steel, useful e.g. as component of composites, comprises carbon, nitrogen, manganese, nickel, chromium, molybdenum, aluminum, silicon, niobium, tantalum, titanium, tungsten, copper, phosphorus and vanadium
WO2012132679A1 (en) Cast austenitic stainless steel
KR101536402B1 (en) Titanium alloy product having high strength and excellent cold rolling property
JP5726537B2 (en) Duplex stainless steel with excellent toughness
RU2383649C2 (en) Precipitation hardening steel (versions) and item out of steel (versions)
JP5457859B2 (en) Weld metal with excellent low temperature toughness and drop characteristics
JP5836619B2 (en) Duplex stainless steel with good acid resistance
CN107075615B (en) The titanium alloy of economically alloying with predictable property
JP5035831B2 (en) High nitrogen austenitic stainless steel
JP5386705B2 (en) High-purity iron alloy with excellent fatigue resistance
JP5857894B2 (en) Austenitic heat-resistant alloy
JP6756147B2 (en) Welding material for austenitic heat resistant steel
JP6583885B2 (en) High hardness stainless steel with excellent corrosion resistance and manufacturability
JPWO2018066573A1 (en) Austenitic heat-resistant alloy and welded joint using the same
JP7339123B2 (en) High hardness hydrogen embrittlement resistant steel
JP6201731B2 (en) Austenitic heat-resistant casting alloy
JPH10245656A (en) Martensitic stainless steel excellent in cold forgeability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130912

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130912

R150 Certificate of patent or registration of utility model

Ref document number: 5386705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250